This document discusses methods for automated machine learning (AutoML) and optimization of hyperparameters. It focuses on accelerating the Nelder-Mead method for hyperparameter optimization using predictive parallel evaluation. Specifically, it proposes using a Gaussian process to model the objective function and perform predictive evaluations in parallel to reduce the number of actual function evaluations needed by the Nelder-Mead method. The results show this approach reduces evaluations by 49-63% compared to baseline methods.
このスライドではベイズ統計学によく登場する確率分布の関係について紹介している。平易なベルヌーイ分布から多少複雑なベータ分布までがどのようにつながっているかを示している。いくつかの重要な性質については実際に証明を与えた。本スライドは2016年10月1日のNagoyaStat #2で発表したものである。
Some probability distributions are used for bayes statistics. This slide shows relationships from Bernoulli distribution to Beta distribution. Some important properties are proofed in this slide.
The document describes various probability distributions that can arise from combining Bernoulli random variables. It shows how a binomial distribution emerges from summing Bernoulli random variables, and how Poisson, normal, chi-squared, exponential, gamma, and inverse gamma distributions can approximate the binomial as the number of Bernoulli trials increases. Code examples in R are provided to simulate sampling from these distributions and compare the simulated distributions to their theoretical probability density functions.
このスライドではベイズ統計学によく登場する確率分布の関係について紹介している。平易なベルヌーイ分布から多少複雑なベータ分布までがどのようにつながっているかを示している。いくつかの重要な性質については実際に証明を与えた。本スライドは2016年10月1日のNagoyaStat #2で発表したものである。
Some probability distributions are used for bayes statistics. This slide shows relationships from Bernoulli distribution to Beta distribution. Some important properties are proofed in this slide.
The document describes various probability distributions that can arise from combining Bernoulli random variables. It shows how a binomial distribution emerges from summing Bernoulli random variables, and how Poisson, normal, chi-squared, exponential, gamma, and inverse gamma distributions can approximate the binomial as the number of Bernoulli trials increases. Code examples in R are provided to simulate sampling from these distributions and compare the simulated distributions to their theoretical probability density functions.
This document summarizes context-aware recommendation and factorization machines. It discusses how factorization machines improve on traditional matrix factorization models by incorporating additional context features. It also introduces gradient boosting factorization machines which further enhance factorization machines by optimizing the factorization model with gradient boosting algorithms.
This document summarizes research on using structured event representations extracted from news articles to predict stock price movements. Key points include:
- Events are extracted from articles and represented as tuples of actors, actions, and objects to capture the who, what, when of events.
- A deep neural network model is used to predict stock price changes based on extracted event representations.
- The model achieves better performance than baselines that use bag-of-words representations of articles.