SlideShare a Scribd company logo
Structural Patterns and
Generative Models of
Real-world Hypergraphs
Manh Tuan Do, Se-eun Yoon, Bryan Hooi, Kijung Shin
26th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining
KDD 2020
Contact: Manh Tuan Do (manh.it97@kaist.ac.kr)
Roadmap
1. Introduction <<
2. Decomposition
3. Structural Patterns
4. Generators
5. Conclusions
2/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
3/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
Coauthorship Email Tags
Common patterns Underlying mechanisms
Motivation Structural Patterns GeneratorsDecomposition Conclusion
Hypergraphs
Roadmap
1. Motivation
2. Decomposition <<
3. Structural Patterns
4. Generators
5. Conclusions
4/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
• Hypergraphs: not straightforward to analyze
o complex representation
o lack tools
5/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
Only interactions
at the level of
nodes
1
2 3
4 5
7
6 1
2 3
4
7
5
6
Motivation for a New Tool
Motivation Structural Patterns GeneratorsDecomposition Conclusion
• Projection
o information loss
o no high-order level information
• Multi-level decomposition:
◦ representation by pair-wise graphs
◦ leveraging existing tools & measurements
◦ no information loss: original hypergraph is reconstructible
6/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
Our Tool: Decomposition
Motivation Structural Patterns GeneratorsDecomposition Conclusion
1 7
2 42 3
1 4 3 4
1 21 3
5 6
4 5
3 5
3 4
5
1 2
3
1 2
4
1 3
4
2 3
4
1
2 3
4
7
5
6
7/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
1
2 3
4 5
7
6
{1, 2, 3, 4}
{3, 4, 5}
{5, 6}
{1, 7}
1
2 3
4
7
5
6
3 4
5
1 2
3
1 2
4
1 3
4
2 3
4
1 2
3 4
Node level
Triangle level 4clique level
Our Tool: Decomposition
2 42 3
1 4 3 4
1 21 31 7
5 6
4 5
3 5
Edge level
Motivation Structural Patterns GeneratorsDecomposition Conclusion
8/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
{1, 2, 3, 4}
{3, 4, 5}
{5, 6}
{1, 7}
Maximum
hyperedge size: 𝑁
Our Tool: Decomposition
Hypergraph Decomposed graphs
Node-level
Edge-level
…..
(𝑁-1)-clique level
Decomposition
Reconstruction
1 7
2 42 3
1 4 3 4
1 21 3
5 6
4 5
3 5
3 4
5
1 2
3
1 2
4
1 3
4
2 3
4
1
2 3
4
7
5
6
1
2 3
4 5
7
6
Motivation Structural Patterns GeneratorsDecomposition Conclusion
Roadmap
1. Motivation
2. Decomposition
3. Structural Patterns <<
4. Generators
5. Conclusions
9/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
• 13 datasets from 6 domains
◦ Email: recipient addresses of an email
◦ Drug components: classes or substances within a single drug, listed
in the National Drug Code Directory
◦ Drug use: drugs used by a patient, reported to the Drug Abuse
Warning Network, before an emergency visit
◦ Online tags: tags in a question in Stack Exchange forums
◦ Online threads: users answering a question in Stack Exchange forums
◦ Coauthorship: coauthors of a publications
10/26Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
Motivation Structural Patterns GeneratorsDecomposition Conclusion
Real-word Datasets
11/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
Structural Patterns
P1. Degree distribution: heavy-tailed
P2. Connected component: giant
P3. Clustering coefficient: high
P4. Effective diameter: small
P5. Singular value distribution: heavy-tailed
Motivation Structural Patterns GeneratorsDecomposition Conclusion
12/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
P1+P5. Heavy-tailed Distributions
Abundant low-
degree nodes
A few high-
degree nodes
Degree Singular values
Motivation Structural Patterns GeneratorsDecomposition Conclusion
Degree and singular-value distributions are heavy-tailed
J. Leskovec, J. Kleinberg, Cornell, C. Faloutsos . 2005. Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. In KDD
13/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
Motivation Structural Patterns GeneratorsDecomposition Conclusion
Statistical tests: to confirm heavy-tailed distributions
Lilliefors Test(1)
• 𝐻0: distribution is exponential
• 𝐻1: distribution is not exponential
𝐻0 rejected at 2.5% significance level
Log likelihood ratio(2)
𝑟 = 𝑙𝑜𝑔
𝐿1
𝐿0
• 𝐿1 : likelihood of a heavy-tailed
distribution (power-law, log
normal)
• 𝐿0 : likelihood of the exponential
distribution
If 𝑟 > 0 : the distribution is more
likely to be heavy-tailed.
P1+P5. Heavy-tailed Distributions
(1) Hubert W Lilliefors. 1969. On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. Journal of American Statististical
Association 64 (1969), 387–389.
(2) Jeff Alstott and Dietmar Plenz Bullmore. 2014. powerlaw: a Python package for analysis of heavy-tailed distributions. PloS one 9, 1 (2014)
14/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
P2. Giant Connected Component
A large proportion of nodes are connected
Connected components
Proportionofnodes
Motivation Structural Patterns GeneratorsDecomposition Conclusion
J. Leskovec, J. Kleinberg, Cornell, C. Faloutsos . 2005. Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. In KDD
15/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
P3. High Clustering Coefficient
Local clustering coefficient:
𝐶𝑖 =
2 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 𝑎𝑡 𝑖
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑑𝑔𝑒𝑠 𝑎𝑡 𝑖
Clustering coefficient:
𝐶 =
1
|𝑉|
𝑖∈𝑉
𝐶𝑖
High likelihood of having links between “friends of friends”
Motivation Structural Patterns GeneratorsDecomposition Conclusion
Wedge at 𝑖: open triangle
𝑖
16/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
P4. Small Effective Diameter
d = 8
90%
of
pairs
Most pairs of connected nodes: reachable within a small distance
Motivation Structural Patterns GeneratorsDecomposition Conclusion
https://web.stanford.edu/class/cs224w/handouts/02-gnp-smallworld.pdf
17/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
Structural Patterns: Intuition
Real-world
graphs
P1. Degree distribution: heavy-tailed
P2. Connected component: giant
P3. Clustering coefficient: high
P4. Effective diameter: small
P5. Singular value distribution: heavy-tailed
Hypergraph Decomposed
graphs
All decomposition
levels
Real-world graph
Decomposition
Motivation Structural Patterns GeneratorsDecomposition Conclusion
J. Leskovec, J. Kleinberg, Cornell, C. Faloutsos. 2005. Graphs over Time:
Densification Laws, Shrinking Diameters and Possible Explanations. In KDD
18/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
Structural Patterns
Degree distributions: heavy-tailed
Node level Edge level Triangle level 4clique level
Motivation Structural Patterns GeneratorsDecomposition Conclusion
19/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
Structural Patterns
Singular-value distributions: heavy-tailed
Node level Edge level Triangle level 4clique level
Motivation Structural Patterns GeneratorsDecomposition Conclusion
20/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
Structural Patterns
Giant connected components vary among datasets
Motivation Structural Patterns GeneratorsDecomposition Conclusion
If there is a giant connected component
• High Clustering Coefficient
• Small Effective Diameter
Proportion of nodes in the
largest connected component
Small numbers indicate the
absence of a giant connected
component
Roadmap
1. Motivation
2. Decomposition
3. Structural Patterns
4. Generators <<
5. Conclusions
21/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
22/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
Our Model: HyperPA
1
2
3
A new node: 4
1: 2 2: 2 3: 1
(1,2): 2 (1,3): 1 (2,3): 1
(1,2,3): 1
2 hyperedges
1st hyperedge: size 2 {2,4}
2nd hyperedge: size 3 {1,3,4}
{1,2}
{1,2,3}
Motivation Structural Patterns GeneratorsDecomposition Conclusion
Main idea: “Subsets get rich together”
23/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
Our Model: HyperPA
Main idea: “Subsets get rich together”
Introduce a new node
Add the newly formed hyperedges
Update subset degrees
Repeat the process
1
2
3
1: 3 2: 3 3: 2
(1,2): 2 (1,3): 2 (2,3): 1
(1,2,3): 1
4
4: 2
(1,3,4): 1
(1,4): 1 (2,4): 1
{1,2}
{1,2,3}
(3,4): 1
A new node: 5
Motivation Structural Patterns GeneratorsDecomposition Conclusion
{2,4}
{1,3,4}
24/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
Node level Edge level Triangle level 4clique level
Motivation Structural Patterns GeneratorsDecomposition Conclusion
HyperPA
Real HyperPA: considers degrees of groups of nodes
Our Model: HyperPA
25/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
Node level Edge level Triangle level 4clique level
NaivePA
Real
Motivation Structural Patterns GeneratorsDecomposition Conclusion
NaivePA: considers node degrees individually
Baseline: NaïvePA
Roadmap
1. Motivation
2. Decomposition
3. Structural Patterns
4. Generators
5. Conclusions <<
26/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
27/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
Conclusion
Motivation Structural Patterns GeneratorsDecomposition Conclusion
• Our contributions in this work:
◦ Decomposition Tool: convenient analysis of hypergraphs
◦ Structural Patterns: 5 patterns across decomposition levels
◦ HyperPA: generator reproducing the 5 structural patterns
P1. Degree distribution: heavy-tailed
P2. Connected component: giant
P3. Clustering coefficient: high
P4. Effective diameter: small
P5. Singular-value distribution: heavy-tailed
Structural Patterns and
Generative Models of
Real-world Hypergraphs
Manh Tuan Do, Se-eun Yoon, Bryan Hooi, Kijung Shin
26th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining
KDD 2020
Contact: Manh Tuan Do (manh.it97@kaist.ac.kr)

More Related Content

What's hot (20)

マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
Yoshitake Takebayashi
 
Neural network
Neural networkNeural network
Neural network
Ramesh Giri
 
MLaPP 24章 「マルコフ連鎖モンテカルロ法 (MCMC) による推論」
MLaPP 24章 「マルコフ連鎖モンテカルロ法 (MCMC) による推論」MLaPP 24章 「マルコフ連鎖モンテカルロ法 (MCMC) による推論」
MLaPP 24章 「マルコフ連鎖モンテカルロ法 (MCMC) による推論」
moterech
 
マルコフ連鎖モンテカルロ法入門-1
マルコフ連鎖モンテカルロ法入門-1マルコフ連鎖モンテカルロ法入門-1
マルコフ連鎖モンテカルロ法入門-1
Nagi Teramo
 
Introduction to Neural Networks
Introduction to Neural NetworksIntroduction to Neural Networks
Introduction to Neural Networks
Databricks
 
ブースティング入門
ブースティング入門ブースティング入門
ブースティング入門
Retrieva inc.
 
Neural Networks
Neural NetworksNeural Networks
Neural Networks
Ismail El Gayar
 
Deep Learning for Graphs
Deep Learning for GraphsDeep Learning for Graphs
Deep Learning for Graphs
DeepLearningBlr
 
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
Deep Learning JP
 
Feature selection concepts and methods
Feature selection concepts and methodsFeature selection concepts and methods
Feature selection concepts and methods
Reza Ramezani
 
Artificial Neural Networks Lect5: Multi-Layer Perceptron & Backpropagation
Artificial Neural Networks Lect5: Multi-Layer Perceptron & BackpropagationArtificial Neural Networks Lect5: Multi-Layer Perceptron & Backpropagation
Artificial Neural Networks Lect5: Multi-Layer Perceptron & Backpropagation
Mohammed Bennamoun
 
Lie-Trotter-Suzuki分解、特にフラクタル分解について
Lie-Trotter-Suzuki分解、特にフラクタル分解についてLie-Trotter-Suzuki分解、特にフラクタル分解について
Lie-Trotter-Suzuki分解、特にフラクタル分解について
Maho Nakata
 
PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」
Keisuke Sugawara
 
遺伝的アルゴリズム・遺伝的プログラミング
遺伝的アルゴリズム・遺伝的プログラミング遺伝的アルゴリズム・遺伝的プログラミング
遺伝的アルゴリズム・遺伝的プログラミング
MatsuiRyo
 
東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1
hirokazutanaka
 
効用最大化理論の観点から見る強化学習
効用最大化理論の観点から見る強化学習効用最大化理論の観点から見る強化学習
効用最大化理論の観点から見る強化学習
Kenta Ishii
 
Imitation learning tutorial
Imitation learning tutorialImitation learning tutorial
Imitation learning tutorial
Yisong Yue
 
海鳥の経路予測のための逆強化学習
海鳥の経路予測のための逆強化学習海鳥の経路予測のための逆強化学習
海鳥の経路予測のための逆強化学習
Tsubasa Hirakawa
 
Hmotif vldb2020 slide
Hmotif vldb2020 slideHmotif vldb2020 slide
Hmotif vldb2020 slide
Geon Lee
 
DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」
Ken'ichi Matsui
 
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
Yoshitake Takebayashi
 
MLaPP 24章 「マルコフ連鎖モンテカルロ法 (MCMC) による推論」
MLaPP 24章 「マルコフ連鎖モンテカルロ法 (MCMC) による推論」MLaPP 24章 「マルコフ連鎖モンテカルロ法 (MCMC) による推論」
MLaPP 24章 「マルコフ連鎖モンテカルロ法 (MCMC) による推論」
moterech
 
マルコフ連鎖モンテカルロ法入門-1
マルコフ連鎖モンテカルロ法入門-1マルコフ連鎖モンテカルロ法入門-1
マルコフ連鎖モンテカルロ法入門-1
Nagi Teramo
 
Introduction to Neural Networks
Introduction to Neural NetworksIntroduction to Neural Networks
Introduction to Neural Networks
Databricks
 
ブースティング入門
ブースティング入門ブースティング入門
ブースティング入門
Retrieva inc.
 
Deep Learning for Graphs
Deep Learning for GraphsDeep Learning for Graphs
Deep Learning for Graphs
DeepLearningBlr
 
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
Deep Learning JP
 
Feature selection concepts and methods
Feature selection concepts and methodsFeature selection concepts and methods
Feature selection concepts and methods
Reza Ramezani
 
Artificial Neural Networks Lect5: Multi-Layer Perceptron & Backpropagation
Artificial Neural Networks Lect5: Multi-Layer Perceptron & BackpropagationArtificial Neural Networks Lect5: Multi-Layer Perceptron & Backpropagation
Artificial Neural Networks Lect5: Multi-Layer Perceptron & Backpropagation
Mohammed Bennamoun
 
Lie-Trotter-Suzuki分解、特にフラクタル分解について
Lie-Trotter-Suzuki分解、特にフラクタル分解についてLie-Trotter-Suzuki分解、特にフラクタル分解について
Lie-Trotter-Suzuki分解、特にフラクタル分解について
Maho Nakata
 
PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」
Keisuke Sugawara
 
遺伝的アルゴリズム・遺伝的プログラミング
遺伝的アルゴリズム・遺伝的プログラミング遺伝的アルゴリズム・遺伝的プログラミング
遺伝的アルゴリズム・遺伝的プログラミング
MatsuiRyo
 
東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1
hirokazutanaka
 
効用最大化理論の観点から見る強化学習
効用最大化理論の観点から見る強化学習効用最大化理論の観点から見る強化学習
効用最大化理論の観点から見る強化学習
Kenta Ishii
 
Imitation learning tutorial
Imitation learning tutorialImitation learning tutorial
Imitation learning tutorial
Yisong Yue
 
海鳥の経路予測のための逆強化学習
海鳥の経路予測のための逆強化学習海鳥の経路予測のための逆強化学習
海鳥の経路予測のための逆強化学習
Tsubasa Hirakawa
 
Hmotif vldb2020 slide
Hmotif vldb2020 slideHmotif vldb2020 slide
Hmotif vldb2020 slide
Geon Lee
 
DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」
Ken'ichi Matsui
 

Similar to Kdd'20 presentation 223 (20)

A Diffusion Wavelet Approach For 3 D Model Matching
A Diffusion Wavelet Approach For 3 D Model MatchingA Diffusion Wavelet Approach For 3 D Model Matching
A Diffusion Wavelet Approach For 3 D Model Matching
rafi
 
Report: "MolGAN: An implicit generative model for small molecular graphs"
Report: "MolGAN: An implicit generative model for small molecular graphs"Report: "MolGAN: An implicit generative model for small molecular graphs"
Report: "MolGAN: An implicit generative model for small molecular graphs"
Ryohei Suzuki
 
Jeffrey xu yu large graph processing
Jeffrey xu yu large graph processingJeffrey xu yu large graph processing
Jeffrey xu yu large graph processing
jins0618
 
WPIPosterPresentation24x36
WPIPosterPresentation24x36WPIPosterPresentation24x36
WPIPosterPresentation24x36
Allan La
 
Toward unified framework and symbolic decision making - Berkeley LLM AI Agent...
Toward unified framework and symbolic decision making - Berkeley LLM AI Agent...Toward unified framework and symbolic decision making - Berkeley LLM AI Agent...
Toward unified framework and symbolic decision making - Berkeley LLM AI Agent...
VincentLui15
 
Multiple Target Machine Learning Prediction of Capacity Curves of Reinforced ...
Multiple Target Machine Learning Prediction of Capacity Curves of Reinforced ...Multiple Target Machine Learning Prediction of Capacity Curves of Reinforced ...
Multiple Target Machine Learning Prediction of Capacity Curves of Reinforced ...
Journal of Soft Computing in Civil Engineering
 
ensembles_emptytemplate_v2
ensembles_emptytemplate_v2ensembles_emptytemplate_v2
ensembles_emptytemplate_v2
Shrayes Ramesh
 
Jing Ma - 2017 - Detect Rumors in Microblog Posts Using Propagation Structur...
Jing Ma - 2017 -  Detect Rumors in Microblog Posts Using Propagation Structur...Jing Ma - 2017 -  Detect Rumors in Microblog Posts Using Propagation Structur...
Jing Ma - 2017 - Detect Rumors in Microblog Posts Using Propagation Structur...
Association for Computational Linguistics
 
Simplicial closure and higher-order link prediction
Simplicial closure and higher-order link predictionSimplicial closure and higher-order link prediction
Simplicial closure and higher-order link prediction
Austin Benson
 
00 Automatic Mental Health Classification in Online Settings and Language Emb...
00 Automatic Mental Health Classification in Online Settings and Language Emb...00 Automatic Mental Health Classification in Online Settings and Language Emb...
00 Automatic Mental Health Classification in Online Settings and Language Emb...
Duke Network Analysis Center
 
Graphical Structure Learning accelerated with POWER9
Graphical Structure Learning accelerated with POWER9Graphical Structure Learning accelerated with POWER9
Graphical Structure Learning accelerated with POWER9
Ganesan Narayanasamy
 
Engineering Data Science Objectives for Social Network Analysis
Engineering Data Science Objectives for Social Network AnalysisEngineering Data Science Objectives for Social Network Analysis
Engineering Data Science Objectives for Social Network Analysis
David Gleich
 
Lecture_2_Stats.pdf
Lecture_2_Stats.pdfLecture_2_Stats.pdf
Lecture_2_Stats.pdf
paijitk
 
A Longitudinal Perspective on the Relationship between Hypermedia Structure...
A Longitudinal Perspective on the Relationship between Hypermedia Structure...A Longitudinal Perspective on the Relationship between Hypermedia Structure...
A Longitudinal Perspective on the Relationship between Hypermedia Structure...
Pierre Fastrez
 
Ability Study of Proximity Measure for Big Data Mining Context on Clustering
Ability Study of Proximity Measure for Big Data Mining Context on ClusteringAbility Study of Proximity Measure for Big Data Mining Context on Clustering
Ability Study of Proximity Measure for Big Data Mining Context on Clustering
KamleshKumar394
 
ICDE-2015 Shortest Path Traversal Optimization and Analysis for Large Graph C...
ICDE-2015 Shortest Path Traversal Optimization and Analysis for Large Graph C...ICDE-2015 Shortest Path Traversal Optimization and Analysis for Large Graph C...
ICDE-2015 Shortest Path Traversal Optimization and Analysis for Large Graph C...
Waqas Nawaz
 
[Ris cy business]
[Ris cy business][Ris cy business]
[Ris cy business]
Dino, llc
 
[IJET V2I3P11] Authors: Payal More, Rohini Pandit, Supriya Makude, Harsh Nirb...
[IJET V2I3P11] Authors: Payal More, Rohini Pandit, Supriya Makude, Harsh Nirb...[IJET V2I3P11] Authors: Payal More, Rohini Pandit, Supriya Makude, Harsh Nirb...
[IJET V2I3P11] Authors: Payal More, Rohini Pandit, Supriya Makude, Harsh Nirb...
IJET - International Journal of Engineering and Techniques
 
20151130
2015113020151130
20151130
chen chao
 
Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...
Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...
Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...
Association for Computational Linguistics
 
A Diffusion Wavelet Approach For 3 D Model Matching
A Diffusion Wavelet Approach For 3 D Model MatchingA Diffusion Wavelet Approach For 3 D Model Matching
A Diffusion Wavelet Approach For 3 D Model Matching
rafi
 
Report: "MolGAN: An implicit generative model for small molecular graphs"
Report: "MolGAN: An implicit generative model for small molecular graphs"Report: "MolGAN: An implicit generative model for small molecular graphs"
Report: "MolGAN: An implicit generative model for small molecular graphs"
Ryohei Suzuki
 
Jeffrey xu yu large graph processing
Jeffrey xu yu large graph processingJeffrey xu yu large graph processing
Jeffrey xu yu large graph processing
jins0618
 
WPIPosterPresentation24x36
WPIPosterPresentation24x36WPIPosterPresentation24x36
WPIPosterPresentation24x36
Allan La
 
Toward unified framework and symbolic decision making - Berkeley LLM AI Agent...
Toward unified framework and symbolic decision making - Berkeley LLM AI Agent...Toward unified framework and symbolic decision making - Berkeley LLM AI Agent...
Toward unified framework and symbolic decision making - Berkeley LLM AI Agent...
VincentLui15
 
ensembles_emptytemplate_v2
ensembles_emptytemplate_v2ensembles_emptytemplate_v2
ensembles_emptytemplate_v2
Shrayes Ramesh
 
Jing Ma - 2017 - Detect Rumors in Microblog Posts Using Propagation Structur...
Jing Ma - 2017 -  Detect Rumors in Microblog Posts Using Propagation Structur...Jing Ma - 2017 -  Detect Rumors in Microblog Posts Using Propagation Structur...
Jing Ma - 2017 - Detect Rumors in Microblog Posts Using Propagation Structur...
Association for Computational Linguistics
 
Simplicial closure and higher-order link prediction
Simplicial closure and higher-order link predictionSimplicial closure and higher-order link prediction
Simplicial closure and higher-order link prediction
Austin Benson
 
00 Automatic Mental Health Classification in Online Settings and Language Emb...
00 Automatic Mental Health Classification in Online Settings and Language Emb...00 Automatic Mental Health Classification in Online Settings and Language Emb...
00 Automatic Mental Health Classification in Online Settings and Language Emb...
Duke Network Analysis Center
 
Graphical Structure Learning accelerated with POWER9
Graphical Structure Learning accelerated with POWER9Graphical Structure Learning accelerated with POWER9
Graphical Structure Learning accelerated with POWER9
Ganesan Narayanasamy
 
Engineering Data Science Objectives for Social Network Analysis
Engineering Data Science Objectives for Social Network AnalysisEngineering Data Science Objectives for Social Network Analysis
Engineering Data Science Objectives for Social Network Analysis
David Gleich
 
Lecture_2_Stats.pdf
Lecture_2_Stats.pdfLecture_2_Stats.pdf
Lecture_2_Stats.pdf
paijitk
 
A Longitudinal Perspective on the Relationship between Hypermedia Structure...
A Longitudinal Perspective on the Relationship between Hypermedia Structure...A Longitudinal Perspective on the Relationship between Hypermedia Structure...
A Longitudinal Perspective on the Relationship between Hypermedia Structure...
Pierre Fastrez
 
Ability Study of Proximity Measure for Big Data Mining Context on Clustering
Ability Study of Proximity Measure for Big Data Mining Context on ClusteringAbility Study of Proximity Measure for Big Data Mining Context on Clustering
Ability Study of Proximity Measure for Big Data Mining Context on Clustering
KamleshKumar394
 
ICDE-2015 Shortest Path Traversal Optimization and Analysis for Large Graph C...
ICDE-2015 Shortest Path Traversal Optimization and Analysis for Large Graph C...ICDE-2015 Shortest Path Traversal Optimization and Analysis for Large Graph C...
ICDE-2015 Shortest Path Traversal Optimization and Analysis for Large Graph C...
Waqas Nawaz
 
[Ris cy business]
[Ris cy business][Ris cy business]
[Ris cy business]
Dino, llc
 
Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...
Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...
Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...
Association for Computational Linguistics
 

Recently uploaded (20)

Unit---5.pdf of ba in srcc du gst before exam
Unit---5.pdf of ba in srcc du gst before examUnit---5.pdf of ba in srcc du gst before exam
Unit---5.pdf of ba in srcc du gst before exam
FireBolt6
 
Digestive_System_Presentation_BSc_Nursing.pptx
Digestive_System_Presentation_BSc_Nursing.pptxDigestive_System_Presentation_BSc_Nursing.pptx
Digestive_System_Presentation_BSc_Nursing.pptx
RanvirSingh357259
 
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
JunZhao68
 
Covid19_Project_ Presentation.pptx
Covid19_Project_       Presentation.pptxCovid19_Project_       Presentation.pptx
Covid19_Project_ Presentation.pptx
pavipraveen37
 
Chapter4.1.pptx you can come to the house and statistics
Chapter4.1.pptx you can come to the house and statisticsChapter4.1.pptx you can come to the house and statistics
Chapter4.1.pptx you can come to the house and statistics
SotheaPheng
 
Chapter 5.1.pptxsertj you can get it done before the election and I will
Chapter 5.1.pptxsertj you can get it done before the election and I willChapter 5.1.pptxsertj you can get it done before the election and I will
Chapter 5.1.pptxsertj you can get it done before the election and I will
SotheaPheng
 
Human body make Structure analysis the part of the human
Human body make Structure analysis the part of the humanHuman body make Structure analysis the part of the human
Human body make Structure analysis the part of the human
ankit392215
 
Content Moderation Services_ Leading the Future of Online Safety.docx
Content Moderation Services_ Leading the Future of Online Safety.docxContent Moderation Services_ Leading the Future of Online Safety.docx
Content Moderation Services_ Leading the Future of Online Safety.docx
sofiawilliams5966
 
GDPR Audit - GDPR gap analysis cost Data Protection People.pdf
GDPR Audit - GDPR gap analysis cost  Data Protection People.pdfGDPR Audit - GDPR gap analysis cost  Data Protection People.pdf
GDPR Audit - GDPR gap analysis cost Data Protection People.pdf
Data Protection People
 
Market Share Analysis.pptx nnnnnnnnnnnnnn
Market Share Analysis.pptx nnnnnnnnnnnnnnMarket Share Analysis.pptx nnnnnnnnnnnnnn
Market Share Analysis.pptx nnnnnnnnnnnnnn
rocky
 
Is RAG Really Dead Generative AI for Reterial.pptx
Is RAG Really Dead Generative AI for Reterial.pptxIs RAG Really Dead Generative AI for Reterial.pptx
Is RAG Really Dead Generative AI for Reterial.pptx
NajeebAhmed36
 
Comprehensive Roadmap of AI, ML, DS, DA & DSA.pdf
Comprehensive Roadmap of AI, ML, DS, DA & DSA.pdfComprehensive Roadmap of AI, ML, DS, DA & DSA.pdf
Comprehensive Roadmap of AI, ML, DS, DA & DSA.pdf
epsilonice
 
delta airlines new york office (Airwayscityoffice)
delta airlines new york office (Airwayscityoffice)delta airlines new york office (Airwayscityoffice)
delta airlines new york office (Airwayscityoffice)
jamespromind
 
SQL DB Relational Data Explanation Model
SQL DB Relational Data Explanation ModelSQL DB Relational Data Explanation Model
SQL DB Relational Data Explanation Model
hojurit
 
Acounting Softwares Options & ERP system
Acounting Softwares Options & ERP systemAcounting Softwares Options & ERP system
Acounting Softwares Options & ERP system
huenkwan1214
 
Ethical Frameworks for Trustworthy AI – Opportunities for Researchers in Huma...
Ethical Frameworks for Trustworthy AI – Opportunities for Researchers in Huma...Ethical Frameworks for Trustworthy AI – Opportunities for Researchers in Huma...
Ethical Frameworks for Trustworthy AI – Opportunities for Researchers in Huma...
Karim Baïna
 
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptxMulti-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
VikashVats1
 
Understanding Large Language Model Hallucinations: Exploring Causes, Detectio...
Understanding Large Language Model Hallucinations: Exploring Causes, Detectio...Understanding Large Language Model Hallucinations: Exploring Causes, Detectio...
Understanding Large Language Model Hallucinations: Exploring Causes, Detectio...
Tamanna36
 
IST606_SecurityManagement-slides_ 4 pdf
IST606_SecurityManagement-slides_ 4  pdfIST606_SecurityManagement-slides_ 4  pdf
IST606_SecurityManagement-slides_ 4 pdf
nwanjamakane
 
lecture 33333222234555555555555555556.pptx
lecture 33333222234555555555555555556.pptxlecture 33333222234555555555555555556.pptx
lecture 33333222234555555555555555556.pptx
obsinaafilmakuush
 
Unit---5.pdf of ba in srcc du gst before exam
Unit---5.pdf of ba in srcc du gst before examUnit---5.pdf of ba in srcc du gst before exam
Unit---5.pdf of ba in srcc du gst before exam
FireBolt6
 
Digestive_System_Presentation_BSc_Nursing.pptx
Digestive_System_Presentation_BSc_Nursing.pptxDigestive_System_Presentation_BSc_Nursing.pptx
Digestive_System_Presentation_BSc_Nursing.pptx
RanvirSingh357259
 
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
JunZhao68
 
Covid19_Project_ Presentation.pptx
Covid19_Project_       Presentation.pptxCovid19_Project_       Presentation.pptx
Covid19_Project_ Presentation.pptx
pavipraveen37
 
Chapter4.1.pptx you can come to the house and statistics
Chapter4.1.pptx you can come to the house and statisticsChapter4.1.pptx you can come to the house and statistics
Chapter4.1.pptx you can come to the house and statistics
SotheaPheng
 
Chapter 5.1.pptxsertj you can get it done before the election and I will
Chapter 5.1.pptxsertj you can get it done before the election and I willChapter 5.1.pptxsertj you can get it done before the election and I will
Chapter 5.1.pptxsertj you can get it done before the election and I will
SotheaPheng
 
Human body make Structure analysis the part of the human
Human body make Structure analysis the part of the humanHuman body make Structure analysis the part of the human
Human body make Structure analysis the part of the human
ankit392215
 
Content Moderation Services_ Leading the Future of Online Safety.docx
Content Moderation Services_ Leading the Future of Online Safety.docxContent Moderation Services_ Leading the Future of Online Safety.docx
Content Moderation Services_ Leading the Future of Online Safety.docx
sofiawilliams5966
 
GDPR Audit - GDPR gap analysis cost Data Protection People.pdf
GDPR Audit - GDPR gap analysis cost  Data Protection People.pdfGDPR Audit - GDPR gap analysis cost  Data Protection People.pdf
GDPR Audit - GDPR gap analysis cost Data Protection People.pdf
Data Protection People
 
Market Share Analysis.pptx nnnnnnnnnnnnnn
Market Share Analysis.pptx nnnnnnnnnnnnnnMarket Share Analysis.pptx nnnnnnnnnnnnnn
Market Share Analysis.pptx nnnnnnnnnnnnnn
rocky
 
Is RAG Really Dead Generative AI for Reterial.pptx
Is RAG Really Dead Generative AI for Reterial.pptxIs RAG Really Dead Generative AI for Reterial.pptx
Is RAG Really Dead Generative AI for Reterial.pptx
NajeebAhmed36
 
Comprehensive Roadmap of AI, ML, DS, DA & DSA.pdf
Comprehensive Roadmap of AI, ML, DS, DA & DSA.pdfComprehensive Roadmap of AI, ML, DS, DA & DSA.pdf
Comprehensive Roadmap of AI, ML, DS, DA & DSA.pdf
epsilonice
 
delta airlines new york office (Airwayscityoffice)
delta airlines new york office (Airwayscityoffice)delta airlines new york office (Airwayscityoffice)
delta airlines new york office (Airwayscityoffice)
jamespromind
 
SQL DB Relational Data Explanation Model
SQL DB Relational Data Explanation ModelSQL DB Relational Data Explanation Model
SQL DB Relational Data Explanation Model
hojurit
 
Acounting Softwares Options & ERP system
Acounting Softwares Options & ERP systemAcounting Softwares Options & ERP system
Acounting Softwares Options & ERP system
huenkwan1214
 
Ethical Frameworks for Trustworthy AI – Opportunities for Researchers in Huma...
Ethical Frameworks for Trustworthy AI – Opportunities for Researchers in Huma...Ethical Frameworks for Trustworthy AI – Opportunities for Researchers in Huma...
Ethical Frameworks for Trustworthy AI – Opportunities for Researchers in Huma...
Karim Baïna
 
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptxMulti-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
VikashVats1
 
Understanding Large Language Model Hallucinations: Exploring Causes, Detectio...
Understanding Large Language Model Hallucinations: Exploring Causes, Detectio...Understanding Large Language Model Hallucinations: Exploring Causes, Detectio...
Understanding Large Language Model Hallucinations: Exploring Causes, Detectio...
Tamanna36
 
IST606_SecurityManagement-slides_ 4 pdf
IST606_SecurityManagement-slides_ 4  pdfIST606_SecurityManagement-slides_ 4  pdf
IST606_SecurityManagement-slides_ 4 pdf
nwanjamakane
 
lecture 33333222234555555555555555556.pptx
lecture 33333222234555555555555555556.pptxlecture 33333222234555555555555555556.pptx
lecture 33333222234555555555555555556.pptx
obsinaafilmakuush
 

Kdd'20 presentation 223

  • 1. Structural Patterns and Generative Models of Real-world Hypergraphs Manh Tuan Do, Se-eun Yoon, Bryan Hooi, Kijung Shin 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD 2020 Contact: Manh Tuan Do ([email protected])
  • 2. Roadmap 1. Introduction << 2. Decomposition 3. Structural Patterns 4. Generators 5. Conclusions 2/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
  • 3. 3/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) Coauthorship Email Tags Common patterns Underlying mechanisms Motivation Structural Patterns GeneratorsDecomposition Conclusion Hypergraphs
  • 4. Roadmap 1. Motivation 2. Decomposition << 3. Structural Patterns 4. Generators 5. Conclusions 4/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
  • 5. • Hypergraphs: not straightforward to analyze o complex representation o lack tools 5/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) Only interactions at the level of nodes 1 2 3 4 5 7 6 1 2 3 4 7 5 6 Motivation for a New Tool Motivation Structural Patterns GeneratorsDecomposition Conclusion • Projection o information loss o no high-order level information
  • 6. • Multi-level decomposition: ◦ representation by pair-wise graphs ◦ leveraging existing tools & measurements ◦ no information loss: original hypergraph is reconstructible 6/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) Our Tool: Decomposition Motivation Structural Patterns GeneratorsDecomposition Conclusion 1 7 2 42 3 1 4 3 4 1 21 3 5 6 4 5 3 5 3 4 5 1 2 3 1 2 4 1 3 4 2 3 4 1 2 3 4 7 5 6
  • 7. 7/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) 1 2 3 4 5 7 6 {1, 2, 3, 4} {3, 4, 5} {5, 6} {1, 7} 1 2 3 4 7 5 6 3 4 5 1 2 3 1 2 4 1 3 4 2 3 4 1 2 3 4 Node level Triangle level 4clique level Our Tool: Decomposition 2 42 3 1 4 3 4 1 21 31 7 5 6 4 5 3 5 Edge level Motivation Structural Patterns GeneratorsDecomposition Conclusion
  • 8. 8/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) {1, 2, 3, 4} {3, 4, 5} {5, 6} {1, 7} Maximum hyperedge size: 𝑁 Our Tool: Decomposition Hypergraph Decomposed graphs Node-level Edge-level ….. (𝑁-1)-clique level Decomposition Reconstruction 1 7 2 42 3 1 4 3 4 1 21 3 5 6 4 5 3 5 3 4 5 1 2 3 1 2 4 1 3 4 2 3 4 1 2 3 4 7 5 6 1 2 3 4 5 7 6 Motivation Structural Patterns GeneratorsDecomposition Conclusion
  • 9. Roadmap 1. Motivation 2. Decomposition 3. Structural Patterns << 4. Generators 5. Conclusions 9/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
  • 10. • 13 datasets from 6 domains ◦ Email: recipient addresses of an email ◦ Drug components: classes or substances within a single drug, listed in the National Drug Code Directory ◦ Drug use: drugs used by a patient, reported to the Drug Abuse Warning Network, before an emergency visit ◦ Online tags: tags in a question in Stack Exchange forums ◦ Online threads: users answering a question in Stack Exchange forums ◦ Coauthorship: coauthors of a publications 10/26Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) Motivation Structural Patterns GeneratorsDecomposition Conclusion Real-word Datasets
  • 11. 11/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) Structural Patterns P1. Degree distribution: heavy-tailed P2. Connected component: giant P3. Clustering coefficient: high P4. Effective diameter: small P5. Singular value distribution: heavy-tailed Motivation Structural Patterns GeneratorsDecomposition Conclusion
  • 12. 12/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) P1+P5. Heavy-tailed Distributions Abundant low- degree nodes A few high- degree nodes Degree Singular values Motivation Structural Patterns GeneratorsDecomposition Conclusion Degree and singular-value distributions are heavy-tailed J. Leskovec, J. Kleinberg, Cornell, C. Faloutsos . 2005. Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. In KDD
  • 13. 13/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) Motivation Structural Patterns GeneratorsDecomposition Conclusion Statistical tests: to confirm heavy-tailed distributions Lilliefors Test(1) • 𝐻0: distribution is exponential • 𝐻1: distribution is not exponential 𝐻0 rejected at 2.5% significance level Log likelihood ratio(2) 𝑟 = 𝑙𝑜𝑔 𝐿1 𝐿0 • 𝐿1 : likelihood of a heavy-tailed distribution (power-law, log normal) • 𝐿0 : likelihood of the exponential distribution If 𝑟 > 0 : the distribution is more likely to be heavy-tailed. P1+P5. Heavy-tailed Distributions (1) Hubert W Lilliefors. 1969. On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. Journal of American Statististical Association 64 (1969), 387–389. (2) Jeff Alstott and Dietmar Plenz Bullmore. 2014. powerlaw: a Python package for analysis of heavy-tailed distributions. PloS one 9, 1 (2014)
  • 14. 14/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) P2. Giant Connected Component A large proportion of nodes are connected Connected components Proportionofnodes Motivation Structural Patterns GeneratorsDecomposition Conclusion J. Leskovec, J. Kleinberg, Cornell, C. Faloutsos . 2005. Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. In KDD
  • 15. 15/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) P3. High Clustering Coefficient Local clustering coefficient: 𝐶𝑖 = 2 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 𝑎𝑡 𝑖 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑑𝑔𝑒𝑠 𝑎𝑡 𝑖 Clustering coefficient: 𝐶 = 1 |𝑉| 𝑖∈𝑉 𝐶𝑖 High likelihood of having links between “friends of friends” Motivation Structural Patterns GeneratorsDecomposition Conclusion Wedge at 𝑖: open triangle 𝑖
  • 16. 16/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) P4. Small Effective Diameter d = 8 90% of pairs Most pairs of connected nodes: reachable within a small distance Motivation Structural Patterns GeneratorsDecomposition Conclusion https://web.stanford.edu/class/cs224w/handouts/02-gnp-smallworld.pdf
  • 17. 17/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) Structural Patterns: Intuition Real-world graphs P1. Degree distribution: heavy-tailed P2. Connected component: giant P3. Clustering coefficient: high P4. Effective diameter: small P5. Singular value distribution: heavy-tailed Hypergraph Decomposed graphs All decomposition levels Real-world graph Decomposition Motivation Structural Patterns GeneratorsDecomposition Conclusion J. Leskovec, J. Kleinberg, Cornell, C. Faloutsos. 2005. Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. In KDD
  • 18. 18/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) Structural Patterns Degree distributions: heavy-tailed Node level Edge level Triangle level 4clique level Motivation Structural Patterns GeneratorsDecomposition Conclusion
  • 19. 19/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) Structural Patterns Singular-value distributions: heavy-tailed Node level Edge level Triangle level 4clique level Motivation Structural Patterns GeneratorsDecomposition Conclusion
  • 20. 20/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) Structural Patterns Giant connected components vary among datasets Motivation Structural Patterns GeneratorsDecomposition Conclusion If there is a giant connected component • High Clustering Coefficient • Small Effective Diameter Proportion of nodes in the largest connected component Small numbers indicate the absence of a giant connected component
  • 21. Roadmap 1. Motivation 2. Decomposition 3. Structural Patterns 4. Generators << 5. Conclusions 21/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
  • 22. 22/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) Our Model: HyperPA 1 2 3 A new node: 4 1: 2 2: 2 3: 1 (1,2): 2 (1,3): 1 (2,3): 1 (1,2,3): 1 2 hyperedges 1st hyperedge: size 2 {2,4} 2nd hyperedge: size 3 {1,3,4} {1,2} {1,2,3} Motivation Structural Patterns GeneratorsDecomposition Conclusion Main idea: “Subsets get rich together”
  • 23. 23/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) Our Model: HyperPA Main idea: “Subsets get rich together” Introduce a new node Add the newly formed hyperedges Update subset degrees Repeat the process 1 2 3 1: 3 2: 3 3: 2 (1,2): 2 (1,3): 2 (2,3): 1 (1,2,3): 1 4 4: 2 (1,3,4): 1 (1,4): 1 (2,4): 1 {1,2} {1,2,3} (3,4): 1 A new node: 5 Motivation Structural Patterns GeneratorsDecomposition Conclusion {2,4} {1,3,4}
  • 24. 24/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) Node level Edge level Triangle level 4clique level Motivation Structural Patterns GeneratorsDecomposition Conclusion HyperPA Real HyperPA: considers degrees of groups of nodes Our Model: HyperPA
  • 25. 25/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) Node level Edge level Triangle level 4clique level NaivePA Real Motivation Structural Patterns GeneratorsDecomposition Conclusion NaivePA: considers node degrees individually Baseline: NaïvePA
  • 26. Roadmap 1. Motivation 2. Decomposition 3. Structural Patterns 4. Generators 5. Conclusions << 26/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do)
  • 27. 27/28Structural Patterns and Generative Models of Real-world Hypergraphs (by Manh Tuan Do) Conclusion Motivation Structural Patterns GeneratorsDecomposition Conclusion • Our contributions in this work: ◦ Decomposition Tool: convenient analysis of hypergraphs ◦ Structural Patterns: 5 patterns across decomposition levels ◦ HyperPA: generator reproducing the 5 structural patterns P1. Degree distribution: heavy-tailed P2. Connected component: giant P3. Clustering coefficient: high P4. Effective diameter: small P5. Singular-value distribution: heavy-tailed
  • 28. Structural Patterns and Generative Models of Real-world Hypergraphs Manh Tuan Do, Se-eun Yoon, Bryan Hooi, Kijung Shin 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD 2020 Contact: Manh Tuan Do ([email protected])