電子情報通信学会「パターン認識・メディア理解研究会」(2016年2月14日@九州工業大学,福岡県飯塚市)でのプレゼン資料です. 対応する原稿は以下です. 電子情報通信学会技術研究報告, PRMU2015-133 http://www.ieice.org/ken/paper/20160221UbGo/ 以下はアブストラクトです.=========================== 印刷数字,手書き数字,多フォント数字を対象として,畳み込みニューラルネッ トワーク(CNN) による認識実験を試みた.いずれのタスクにも大規模な データセットを用いた.得られた認識率は,印刷数字について99.99%,手書き数字について99.89%,そして多フォント数字について96.4%であった. さらに印刷数字と手書き数字の混合認識という,予想される困難性からか従来あまり試みられなかった課題についても,CNNの利用により99.92%の認識率を得た.以上の実験を通して,人間の認識能力に近い性能が得られるように なった事実を確認した上で,本稿ではさらに今後の研究課題としてどのような 方向性がありうるか,私見を述べたい.Read less