SlideShare a Scribd company logo
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Deep	Learningによる
超解像の進歩
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
⾃⼰紹介
2
Hiroto Honda
@hirotomusiker
n メーカー研究所 → 2017/1 DeNA
n ETH Zurich CVLにて客員(2013-2014)
n CVPR NTIRE Workshop Program Committee
n DeNA AI研究開発エンジニア
n 現職:Object Detection
(OSS: https://github.com/DeNA/Chainer_Mask_R-CNN )
n 前職:Low-Level Vision, Computational, Sensor LSI
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Contents
n 超解像は試しやすい
n 初期のSISRネットワーク
⁃ SRCNN, ESPCN, VDSR
⁃ Upsampling⼿法– deconv or pixelshuffle
n ベースライン⼿法:SRResNet
⁃ SRResNet, SRGAN, and EDSR
n 超解像とperception
⁃ 復元結果とロス関数の関係
⁃ Perception – Distortion Tradeoff
n まとめ
3
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
超解像とは
n 低解像度画像
n ⾼解像度画像
4
復元
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
超解像は試しやすい!
5
original(HR) LR
resize
train
アノテーションが不要な
Self-supervised	learningの⼀種
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
超解像の進歩
6
https://github.com/jbhuang0604/SelfExSRPSNR*	[dB]	(over	bicubic)
on	Set5	dataset,	x4
+1.86
+2.93
+2.06
+3.63
A+0.0
bicubic
2015 20172014 2016
+4.20
+2.48
PSNR	data	from:5)
SRCNN VDSR SRResNet EDSRESPCN
超解像の精度は年々向上している
*	PSNR	=	10	log10	(2552 /	MSE	)	when	max	value	is	255
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
超解像ネットワークの学習
n 正解画像からpatchをcropする HR
n patchをダウンサンプルする LR = g(HR)
n バッチを編成する {LR}, {HR}
n ネットワークfを学習する ロス関数は: MSE(HR, f(LR))
n ...以上!
7
LR=g(HR) f(LR) HR
f
MSE
e.g.	bicubic	down-sampling
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Non-deep⼿法:	辞書ベースのアルゴリズム
8
=
係数を最適化する
8
ベースライン:	A+	(2014)
http://www.vision.ee.ethz.ch/~timofter/publications/Timofte-ACCV-2014.pdf
=
学習済みの辞書
x	0			+	
x	0			+	
x	0.8			+	
x	0.8			+	
x	0.05		+	
x	0.05		+	
LR
patch
HR
patch
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
n 初期のSISR networks
⁃ SRCNN, ESPCN, VDSR
⁃ Upsampling⼿法 – deconv or pixelshuffle
9
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
最初のDeep超解像– SRCNN
10
Kernel	size:	9	– 1	– 5	or		9	– 3	– 5	or	9	– 5	– 5
from:1)
⾮常にシンプルで計算量も少ない
bicubic	x2
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
VDSR:	ディープなSRCNN
11
from:3)
3x3,	64	ch D=	5	to	20
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Efficient	sub-pixel	CNN	(ESPCN)
12
SRCNNと違い、LR画像をconvするので効率的
Kernel	size
5	– 3	– 3
from:2)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
SRCNN	/	VDSR	とESPCNの違い
n Post-upsamplingのほうが効率的だが、1.6倍 といった⾮整数の
upsamplingができない
13
SRCNN,
VDSR
ESPCN
bicubic	x2 output
input
Pixel	shuffle	x2
ch
h
w
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
CNNによるアップスケール - Deconvolution	or	PixelShuffle?
n Deconvolution
14
https://distill.pub/2016/deconv-checkerboard/
位置ごとに関与する画素数が均⼀ではないため
格⼦パターンが出てしまう
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
CNNによるアップスケール - Deconvolution	or	PixelShuffle?
n resize – convolutionしては?
15
格⼦パターンはなくなる
Resize(low-pass)により情報が失われる可能性があるので、
Nearest	neighborで埋める⽅法も
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
CNNによるアップスケール - Deconvolution	or	PixelShuffle?
n Sub-pixel convolution (aka. PixelShuffle)
16
各位置でチャネルの情報をタイルする
e.g.	9	channels	->	3x3	サブピクセル
格⼦ノイズフリーではない
from:2)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
n ベースライン⼿法:SRResNet
⁃ SRResNet, SRGAN, and EDSR
17
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
SRResnet and	SRGAN	– twitter	CVPR’17
18
Skip connection
pixel
shuffle
x2
MSE
MSE
Discriminator
Trained VGG
Perceptual Loss
Discriminator
Loss
MSE Loss
from:4)
pixel
shuffle
x2
ch
h
w
・3種類のロス関数
・MSEのみを使⽤する場合SRResNetと呼ぶ
24 residual blocks, 64 ch
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
SRResnet*	and	SRGAN	– ネットワーク詳細
19
・resblockとskip	connection
・pixel	shuffle	upsampling
from:4)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
さらに⾼精度に特化したEnhanced	Deep	Super	Resolution	(EDSR)
ソウル⼤
20
32 residual blocks, 256 ch
Skip connection x2
x2
l1
l1 Loss
from:5)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
PSNRと⾒た⽬
21
from:5)
20dB台で1dB違うと明らかに⾒た⽬が変わる
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
n 超解像とPerception
⁃ 復元結果とロス関数の関係
⁃ Perception – Distortion Tradeoff
22
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
主観評価とPSNR
23
Original
SRResNet
25.53dB
SRGAN
21.15dB
bicubic
21.59dB
Method→
PSNR	→
from:	4)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
SRResnet	and	SRGAN	– lossでこんなに違う
24
MSE loss ● ●
Perceptual loss using VGG ●
Discriminator loss ● ●
from:4)
PSNRが
最も⾼い
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
3タイプのロス関数
①l1/l2 loss
②perceptual loss
③GAN loss
25
generated
image
real	/	fake
ground	
truth
multi-scale
feature	
matching
VGG
discrimi-
nator
generated
image
ground	
truth
generated
image
ground	
truth
Low
Distortion
Good	
Perception
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Perception-Distortion	Tradeoff	
どの⼿法も、low	distortionとgood	perceptual	qualityを
同時に満たせない → tradeoff把握が⼤事
26
from:8)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
超解像の⽬的はなにか?
27
Accurate Plausible
正確な復元
⾃然な復元
どちらを選ぶかは、⽤途次第!!
引⽤元:4)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
n まとめ
28
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Progress	on	SISR	– 精度と速度
29
PSNR	[dB]	(over	bicubic)
on	Set5	dataset,	x4
+1.86
+2.93
+2.06
+3.63
A+ SRCNN VDSR SRResNet EDSR0.0
bicubic
2015 20172014 2016
+4.20
ESPCN
+2.48
0.44
0.04
0.74
1.33
40.7
・CNNを通る画像サイズ
・中間レイヤのチャネル数
で計算量が⼤きく変化する PSNRデータ引⽤元:5)
Mega-Multiplication
per	one	input	pixel
for	x2	restoration
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
NTIRE	2017	超解像コンペでのベンチマーク詳細
30
EDSR
SRResNet
VDSR
ESPCN
SRCNN
A+
from:	9)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
まとめ
n 超解像はdeepが主流、⾼精度だが計算量が⼤きい
n resblock連結 + skip connectionや、pixel shuffle upsamplingが重要
n SRResNetベースの⼿法がベースライン
n ʻAccurateʼ か ʻPlausibleʼ かは⽤途次第。
31
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Appendix:	Residual	Dense	Network	for	Super-Resolution
32
DenseNetベースのSRResNet
from:	6)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Appendix:	Deep	Back-Projection	Networks	For	Super-Resolution
(best	PSNR	in	NTIRE	ʼ18	x8	bicubic	downsampling	track)
33
from:	7)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Datasets
n DIV2K dataset (train, val)
https://data.vision.ee.ethz.ch/cvl/DIV2K/
n Set5 dataset (test)
http://people.rennes.inria.fr/Aline.Roumy/results/SR_BMVC12.html
n B100 dataset (test)
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
n Urban100 dataset (test)
https://sites.google.com/site/jbhuang0604/publications/struct_sr
34
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Competitions
n NTIRE2017:
New Trends in Image Restoration and Enhancement workshop and challenge on image super-
resolution in conjunction with CVPR 2017
http://www.vision.ee.ethz.ch/ntire17/
report: http://www.vision.ee.ethz.ch/~timofter/publications/Timofte-CVPRW-2017.pdf
n NTIRE2018:
New Trends in Image Restoration and Enhancement workshop and challenge on super-resolution,
dehazing, and spectral reconstructionin conjunction with CVPR 2018
http://www.vision.ee.ethz.ch/ntire18/
report:
http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w13/Timofte_NTIRE_2018
_Challenge_CVPR_2018_paper.pdf
n PIRM2018:
Workshop and Challenge on Perceptual Image Restoration and Manipulation in conjunction with
ECCV 2018
https://www.pirm2018.org/
35
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
References
1) Dong et al., Image Super-Resolution Using Deep Convolutional Networks,
https://arxiv.org/abs/1501.00092
2) Shi et al., Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel
Convolutional Neural Network, https://arxiv.org/abs/1609.05158
3) Kim et al., Accurate Image Super-Resolution Using Very Deep Convolutional Networks,
https://arxiv.org/pdf/1511.04587
4) Ledig et al., Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network ,
https://arxiv.org/abs/1609.04802
5) Lim et al., Enhanced Deep Residual Networks for Single Image Super-Resolution,
https://arxiv.org/abs/1707.02921
6) Zhang et al., Residual Dense Network for Image Super-Resolution,
https://arxiv.org/abs/1802.08797
7) Haris et al., Deep Back-Projection Networks For Super-Resolution,
https://arxiv.org/pdf/1803.02735.pdf
8) Blau et al., Perception Distortion Tradeoff, https://arxiv.org/abs/1711.06077
9) Timofte et al., NTIRE 2017 Challenge on Single Image Super-Resolution: Methods and
Results , http://www.vision.ee.ethz.ch/~timofter/publications/Timofte-CVPRW-2017.pdf

More Related Content

What's hot (20)

[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
Deep Learning JP
 
画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ
cvpaper. challenge
 
Anomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめたAnomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめた
ぱんいち すみもと
 
近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer
Yusuke Uchida
 
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
Deep Learning JP
 
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields [DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
Deep Learning JP
 
モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化
Yusuke Uchida
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder
Sho Tatsuno
 
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Kento Doi
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
Deep Learning JP
 
CVPR 2019 速報
CVPR 2019 速報CVPR 2019 速報
CVPR 2019 速報
cvpaper. challenge
 
Deep Learning による視覚×言語融合の最前線
Deep Learning による視覚×言語融合の最前線Deep Learning による視覚×言語融合の最前線
Deep Learning による視覚×言語融合の最前線
Yoshitaka Ushiku
 
コンピュータビジョンの研究開発状況
コンピュータビジョンの研究開発状況コンピュータビジョンの研究開発状況
コンピュータビジョンの研究開発状況
cvpaper. challenge
 
Semantic segmentation
Semantic segmentationSemantic segmentation
Semantic segmentation
Takuya Minagawa
 
How Much Position Information Do Convolutional Neural Networks Encode?
How Much Position Information Do Convolutional Neural Networks Encode?How Much Position Information Do Convolutional Neural Networks Encode?
How Much Position Information Do Convolutional Neural Networks Encode?
Kazuyuki Miyazawa
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII
 
SSII2018TS: 3D物体検出とロボットビジョンへの応用
SSII2018TS: 3D物体検出とロボットビジョンへの応用SSII2018TS: 3D物体検出とロボットビジョンへの応用
SSII2018TS: 3D物体検出とロボットビジョンへの応用
SSII
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
Motokawa Tetsuya
 
【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields
cvpaper. challenge
 
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
Yusuke Uchida
 
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
Deep Learning JP
 
画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ
cvpaper. challenge
 
Anomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめたAnomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめた
ぱんいち すみもと
 
近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer
Yusuke Uchida
 
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
Deep Learning JP
 
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields [DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
Deep Learning JP
 
モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化
Yusuke Uchida
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder
Sho Tatsuno
 
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Kento Doi
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
Deep Learning JP
 
Deep Learning による視覚×言語融合の最前線
Deep Learning による視覚×言語融合の最前線Deep Learning による視覚×言語融合の最前線
Deep Learning による視覚×言語融合の最前線
Yoshitaka Ushiku
 
コンピュータビジョンの研究開発状況
コンピュータビジョンの研究開発状況コンピュータビジョンの研究開発状況
コンピュータビジョンの研究開発状況
cvpaper. challenge
 
How Much Position Information Do Convolutional Neural Networks Encode?
How Much Position Information Do Convolutional Neural Networks Encode?How Much Position Information Do Convolutional Neural Networks Encode?
How Much Position Information Do Convolutional Neural Networks Encode?
Kazuyuki Miyazawa
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII
 
SSII2018TS: 3D物体検出とロボットビジョンへの応用
SSII2018TS: 3D物体検出とロボットビジョンへの応用SSII2018TS: 3D物体検出とロボットビジョンへの応用
SSII2018TS: 3D物体検出とロボットビジョンへの応用
SSII
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
Motokawa Tetsuya
 
【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields
cvpaper. challenge
 
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
Yusuke Uchida
 

Similar to Deep Learningによる超解像の進歩 (20)

Recent Progress on Single-Image Super-Resolution
Recent Progress on Single-Image Super-ResolutionRecent Progress on Single-Image Super-Resolution
Recent Progress on Single-Image Super-Resolution
Hiroto Honda
 
SeRanet introduction
SeRanet introductionSeRanet introduction
SeRanet introduction
Kosuke Nakago
 
Small Deep-Neural-Networks: Their Advantages and Their Design
Small Deep-Neural-Networks: Their Advantages and Their DesignSmall Deep-Neural-Networks: Their Advantages and Their Design
Small Deep-Neural-Networks: Their Advantages and Their Design
Forrest Iandola
 
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
CHENHuiMei
 
Urs Köster Presenting at RE-Work DL Summit in Boston
Urs Köster Presenting at RE-Work DL Summit in BostonUrs Köster Presenting at RE-Work DL Summit in Boston
Urs Köster Presenting at RE-Work DL Summit in Boston
Intel Nervana
 
Scaling Up AI Research to Production with PyTorch and MLFlow
Scaling Up AI Research to Production with PyTorch and MLFlowScaling Up AI Research to Production with PyTorch and MLFlow
Scaling Up AI Research to Production with PyTorch and MLFlow
Databricks
 
Operationalizing SDN
Operationalizing SDNOperationalizing SDN
Operationalizing SDN
ADVA
 
Software Defined Visualization (SDVis): Get the Most Out of ParaView* with OS...
Software Defined Visualization (SDVis): Get the Most Out of ParaView* with OS...Software Defined Visualization (SDVis): Get the Most Out of ParaView* with OS...
Software Defined Visualization (SDVis): Get the Most Out of ParaView* with OS...
Intel® Software
 
Transformer 動向調査 in 画像認識
Transformer 動向調査 in 画像認識Transformer 動向調査 in 画像認識
Transformer 動向調査 in 画像認識
Kazuki Maeno
 
Deep Learning Hardware: Past, Present, & Future
Deep Learning Hardware: Past, Present, & FutureDeep Learning Hardware: Past, Present, & Future
Deep Learning Hardware: Past, Present, & Future
Rouyun Pan
 
PointNet
PointNetPointNet
PointNet
PetteriTeikariPhD
 
Distributed deep learning_over_spark_20_nov_2014_ver_2.8
Distributed deep learning_over_spark_20_nov_2014_ver_2.8Distributed deep learning_over_spark_20_nov_2014_ver_2.8
Distributed deep learning_over_spark_20_nov_2014_ver_2.8
Vijay Srinivas Agneeswaran, Ph.D
 
"Designing CNN Algorithms for Real-time Applications," a Presentation from Al...
"Designing CNN Algorithms for Real-time Applications," a Presentation from Al..."Designing CNN Algorithms for Real-time Applications," a Presentation from Al...
"Designing CNN Algorithms for Real-time Applications," a Presentation from Al...
Edge AI and Vision Alliance
 
Synthetic dialogue generation with Deep Learning
Synthetic dialogue generation with Deep LearningSynthetic dialogue generation with Deep Learning
Synthetic dialogue generation with Deep Learning
S N
 
Hao hsiang ma resume
Hao hsiang ma resumeHao hsiang ma resume
Hao hsiang ma resume
Eliot Ma
 
Introduction to Deep Learning and neon at Galvanize
Introduction to Deep Learning and neon at GalvanizeIntroduction to Deep Learning and neon at Galvanize
Introduction to Deep Learning and neon at Galvanize
Intel Nervana
 
GTC Europe 2017 Keynote
GTC Europe 2017 KeynoteGTC Europe 2017 Keynote
GTC Europe 2017 Keynote
NVIDIA
 
(Research Note) Delving deeper into convolutional neural networks for camera ...
(Research Note) Delving deeper into convolutional neural networks for camera ...(Research Note) Delving deeper into convolutional neural networks for camera ...
(Research Note) Delving deeper into convolutional neural networks for camera ...
Jacky Liu
 
Convolutional neural network
Convolutional neural network Convolutional neural network
Convolutional neural network
Yan Xu
 
PIES_Profile_INDIA
PIES_Profile_INDIAPIES_Profile_INDIA
PIES_Profile_INDIA
Piengsol India
 
Recent Progress on Single-Image Super-Resolution
Recent Progress on Single-Image Super-ResolutionRecent Progress on Single-Image Super-Resolution
Recent Progress on Single-Image Super-Resolution
Hiroto Honda
 
SeRanet introduction
SeRanet introductionSeRanet introduction
SeRanet introduction
Kosuke Nakago
 
Small Deep-Neural-Networks: Their Advantages and Their Design
Small Deep-Neural-Networks: Their Advantages and Their DesignSmall Deep-Neural-Networks: Their Advantages and Their Design
Small Deep-Neural-Networks: Their Advantages and Their Design
Forrest Iandola
 
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
CHENHuiMei
 
Urs Köster Presenting at RE-Work DL Summit in Boston
Urs Köster Presenting at RE-Work DL Summit in BostonUrs Köster Presenting at RE-Work DL Summit in Boston
Urs Köster Presenting at RE-Work DL Summit in Boston
Intel Nervana
 
Scaling Up AI Research to Production with PyTorch and MLFlow
Scaling Up AI Research to Production with PyTorch and MLFlowScaling Up AI Research to Production with PyTorch and MLFlow
Scaling Up AI Research to Production with PyTorch and MLFlow
Databricks
 
Operationalizing SDN
Operationalizing SDNOperationalizing SDN
Operationalizing SDN
ADVA
 
Software Defined Visualization (SDVis): Get the Most Out of ParaView* with OS...
Software Defined Visualization (SDVis): Get the Most Out of ParaView* with OS...Software Defined Visualization (SDVis): Get the Most Out of ParaView* with OS...
Software Defined Visualization (SDVis): Get the Most Out of ParaView* with OS...
Intel® Software
 
Transformer 動向調査 in 画像認識
Transformer 動向調査 in 画像認識Transformer 動向調査 in 画像認識
Transformer 動向調査 in 画像認識
Kazuki Maeno
 
Deep Learning Hardware: Past, Present, & Future
Deep Learning Hardware: Past, Present, & FutureDeep Learning Hardware: Past, Present, & Future
Deep Learning Hardware: Past, Present, & Future
Rouyun Pan
 
"Designing CNN Algorithms for Real-time Applications," a Presentation from Al...
"Designing CNN Algorithms for Real-time Applications," a Presentation from Al..."Designing CNN Algorithms for Real-time Applications," a Presentation from Al...
"Designing CNN Algorithms for Real-time Applications," a Presentation from Al...
Edge AI and Vision Alliance
 
Synthetic dialogue generation with Deep Learning
Synthetic dialogue generation with Deep LearningSynthetic dialogue generation with Deep Learning
Synthetic dialogue generation with Deep Learning
S N
 
Hao hsiang ma resume
Hao hsiang ma resumeHao hsiang ma resume
Hao hsiang ma resume
Eliot Ma
 
Introduction to Deep Learning and neon at Galvanize
Introduction to Deep Learning and neon at GalvanizeIntroduction to Deep Learning and neon at Galvanize
Introduction to Deep Learning and neon at Galvanize
Intel Nervana
 
GTC Europe 2017 Keynote
GTC Europe 2017 KeynoteGTC Europe 2017 Keynote
GTC Europe 2017 Keynote
NVIDIA
 
(Research Note) Delving deeper into convolutional neural networks for camera ...
(Research Note) Delving deeper into convolutional neural networks for camera ...(Research Note) Delving deeper into convolutional neural networks for camera ...
(Research Note) Delving deeper into convolutional neural networks for camera ...
Jacky Liu
 
Convolutional neural network
Convolutional neural network Convolutional neural network
Convolutional neural network
Yan Xu
 

Recently uploaded (20)

Learn Prompt Engineering: Google’s 10-Step Guide Now Available
Learn Prompt Engineering: Google’s 10-Step Guide Now AvailableLearn Prompt Engineering: Google’s 10-Step Guide Now Available
Learn Prompt Engineering: Google’s 10-Step Guide Now Available
SOFTTECHHUB
 
Monitor Kafka Clients Centrally with KIP-714
Monitor Kafka Clients Centrally with KIP-714Monitor Kafka Clients Centrally with KIP-714
Monitor Kafka Clients Centrally with KIP-714
Kumar Keshav
 
Meme Coin Development The Roadmap from Concept to Triumph.pdf
Meme Coin Development The Roadmap from Concept to Triumph.pdfMeme Coin Development The Roadmap from Concept to Triumph.pdf
Meme Coin Development The Roadmap from Concept to Triumph.pdf
Abi john
 
The Five Pillars of AI Readiness Webinar
The Five Pillars of AI Readiness WebinarThe Five Pillars of AI Readiness Webinar
The Five Pillars of AI Readiness Webinar
BrainSell Technologies
 
Domen Zavrl - Strategic Technology Trends Set to Make a Major Impact in 2025
Domen Zavrl - Strategic Technology Trends Set to Make a Major Impact in 2025Domen Zavrl - Strategic Technology Trends Set to Make a Major Impact in 2025
Domen Zavrl - Strategic Technology Trends Set to Make a Major Impact in 2025
Domen Zavrl
 
How to Set Up and Use SimplSecure Camera
How to Set Up and Use SimplSecure CameraHow to Set Up and Use SimplSecure Camera
How to Set Up and Use SimplSecure Camera
TP-Link Repeatrs
 
[KZ] Web Ecosystem with Multimodality of Gemini.pptx
[KZ] Web Ecosystem with Multimodality of Gemini.pptx[KZ] Web Ecosystem with Multimodality of Gemini.pptx
[KZ] Web Ecosystem with Multimodality of Gemini.pptx
asemaialmanbetova
 
Unveiling the Hidden Layers of Java Class Files: Beyond Bytecode (Devnexus 2025)
Unveiling the Hidden Layers of Java Class Files: Beyond Bytecode (Devnexus 2025)Unveiling the Hidden Layers of Java Class Files: Beyond Bytecode (Devnexus 2025)
Unveiling the Hidden Layers of Java Class Files: Beyond Bytecode (Devnexus 2025)
NTT DATA Technology & Innovation
 
Towards value-awareness in administrative processes: an approach based on con...
Towards value-awareness in administrative processes: an approach based on con...Towards value-awareness in administrative processes: an approach based on con...
Towards value-awareness in administrative processes: an approach based on con...
Universidad Rey Juan Carlos
 
Robert Paul Hardee - A Dedicated IT Team Member
Robert Paul Hardee - A Dedicated IT Team MemberRobert Paul Hardee - A Dedicated IT Team Member
Robert Paul Hardee - A Dedicated IT Team Member
Robert Paul Hardee
 
Winning the UX Battle Whitepaper 032725.pdf
Winning the UX Battle Whitepaper 032725.pdfWinning the UX Battle Whitepaper 032725.pdf
Winning the UX Battle Whitepaper 032725.pdf
mike224215
 
launch your uber clone app in a weeks.pdf
launch your uber clone app in a weeks.pdflaunch your uber clone app in a weeks.pdf
launch your uber clone app in a weeks.pdf
V3cube
 
Autopilot for Everyone Series Session 2: Elevate Your Automation Skills
Autopilot for Everyone Series Session 2: Elevate Your Automation SkillsAutopilot for Everyone Series Session 2: Elevate Your Automation Skills
Autopilot for Everyone Series Session 2: Elevate Your Automation Skills
UiPathCommunity
 
ISTQB Foundation Level – Chapter 4: Test Design Techniques
ISTQB Foundation Level – Chapter 4: Test Design TechniquesISTQB Foundation Level – Chapter 4: Test Design Techniques
ISTQB Foundation Level – Chapter 4: Test Design Techniques
zubair khan
 
Beginners: Introduction to OSS & BSS in Mobile Networks
Beginners: Introduction to OSS & BSS in Mobile NetworksBeginners: Introduction to OSS & BSS in Mobile Networks
Beginners: Introduction to OSS & BSS in Mobile Networks
3G4G
 
Latest Features of Odoo 18- Surekha Tech
Latest Features of Odoo 18- Surekha TechLatest Features of Odoo 18- Surekha Tech
Latest Features of Odoo 18- Surekha Tech
Surekha Technologies
 
New from BookNet Canada for 2025: Loan Stars
New from BookNet Canada for 2025: Loan StarsNew from BookNet Canada for 2025: Loan Stars
New from BookNet Canada for 2025: Loan Stars
BookNet Canada
 
Delta Lake Tips, Tricks, and Best Practices WIP.pptx
Delta Lake Tips, Tricks, and Best Practices WIP.pptxDelta Lake Tips, Tricks, and Best Practices WIP.pptx
Delta Lake Tips, Tricks, and Best Practices WIP.pptx
carlyakerly1
 
Transcript: On the rise: Book subjects on the move in the Canadian market - T...
Transcript: On the rise: Book subjects on the move in the Canadian market - T...Transcript: On the rise: Book subjects on the move in the Canadian market - T...
Transcript: On the rise: Book subjects on the move in the Canadian market - T...
BookNet Canada
 
Workshop: Mastering Enterprise Agility: From Tension to Transformation by Zia...
Workshop: Mastering Enterprise Agility: From Tension to Transformation by Zia...Workshop: Mastering Enterprise Agility: From Tension to Transformation by Zia...
Workshop: Mastering Enterprise Agility: From Tension to Transformation by Zia...
Agile ME
 
Learn Prompt Engineering: Google’s 10-Step Guide Now Available
Learn Prompt Engineering: Google’s 10-Step Guide Now AvailableLearn Prompt Engineering: Google’s 10-Step Guide Now Available
Learn Prompt Engineering: Google’s 10-Step Guide Now Available
SOFTTECHHUB
 
Monitor Kafka Clients Centrally with KIP-714
Monitor Kafka Clients Centrally with KIP-714Monitor Kafka Clients Centrally with KIP-714
Monitor Kafka Clients Centrally with KIP-714
Kumar Keshav
 
Meme Coin Development The Roadmap from Concept to Triumph.pdf
Meme Coin Development The Roadmap from Concept to Triumph.pdfMeme Coin Development The Roadmap from Concept to Triumph.pdf
Meme Coin Development The Roadmap from Concept to Triumph.pdf
Abi john
 
The Five Pillars of AI Readiness Webinar
The Five Pillars of AI Readiness WebinarThe Five Pillars of AI Readiness Webinar
The Five Pillars of AI Readiness Webinar
BrainSell Technologies
 
Domen Zavrl - Strategic Technology Trends Set to Make a Major Impact in 2025
Domen Zavrl - Strategic Technology Trends Set to Make a Major Impact in 2025Domen Zavrl - Strategic Technology Trends Set to Make a Major Impact in 2025
Domen Zavrl - Strategic Technology Trends Set to Make a Major Impact in 2025
Domen Zavrl
 
How to Set Up and Use SimplSecure Camera
How to Set Up and Use SimplSecure CameraHow to Set Up and Use SimplSecure Camera
How to Set Up and Use SimplSecure Camera
TP-Link Repeatrs
 
[KZ] Web Ecosystem with Multimodality of Gemini.pptx
[KZ] Web Ecosystem with Multimodality of Gemini.pptx[KZ] Web Ecosystem with Multimodality of Gemini.pptx
[KZ] Web Ecosystem with Multimodality of Gemini.pptx
asemaialmanbetova
 
Unveiling the Hidden Layers of Java Class Files: Beyond Bytecode (Devnexus 2025)
Unveiling the Hidden Layers of Java Class Files: Beyond Bytecode (Devnexus 2025)Unveiling the Hidden Layers of Java Class Files: Beyond Bytecode (Devnexus 2025)
Unveiling the Hidden Layers of Java Class Files: Beyond Bytecode (Devnexus 2025)
NTT DATA Technology & Innovation
 
Towards value-awareness in administrative processes: an approach based on con...
Towards value-awareness in administrative processes: an approach based on con...Towards value-awareness in administrative processes: an approach based on con...
Towards value-awareness in administrative processes: an approach based on con...
Universidad Rey Juan Carlos
 
Robert Paul Hardee - A Dedicated IT Team Member
Robert Paul Hardee - A Dedicated IT Team MemberRobert Paul Hardee - A Dedicated IT Team Member
Robert Paul Hardee - A Dedicated IT Team Member
Robert Paul Hardee
 
Winning the UX Battle Whitepaper 032725.pdf
Winning the UX Battle Whitepaper 032725.pdfWinning the UX Battle Whitepaper 032725.pdf
Winning the UX Battle Whitepaper 032725.pdf
mike224215
 
launch your uber clone app in a weeks.pdf
launch your uber clone app in a weeks.pdflaunch your uber clone app in a weeks.pdf
launch your uber clone app in a weeks.pdf
V3cube
 
Autopilot for Everyone Series Session 2: Elevate Your Automation Skills
Autopilot for Everyone Series Session 2: Elevate Your Automation SkillsAutopilot for Everyone Series Session 2: Elevate Your Automation Skills
Autopilot for Everyone Series Session 2: Elevate Your Automation Skills
UiPathCommunity
 
ISTQB Foundation Level – Chapter 4: Test Design Techniques
ISTQB Foundation Level – Chapter 4: Test Design TechniquesISTQB Foundation Level – Chapter 4: Test Design Techniques
ISTQB Foundation Level – Chapter 4: Test Design Techniques
zubair khan
 
Beginners: Introduction to OSS & BSS in Mobile Networks
Beginners: Introduction to OSS & BSS in Mobile NetworksBeginners: Introduction to OSS & BSS in Mobile Networks
Beginners: Introduction to OSS & BSS in Mobile Networks
3G4G
 
Latest Features of Odoo 18- Surekha Tech
Latest Features of Odoo 18- Surekha TechLatest Features of Odoo 18- Surekha Tech
Latest Features of Odoo 18- Surekha Tech
Surekha Technologies
 
New from BookNet Canada for 2025: Loan Stars
New from BookNet Canada for 2025: Loan StarsNew from BookNet Canada for 2025: Loan Stars
New from BookNet Canada for 2025: Loan Stars
BookNet Canada
 
Delta Lake Tips, Tricks, and Best Practices WIP.pptx
Delta Lake Tips, Tricks, and Best Practices WIP.pptxDelta Lake Tips, Tricks, and Best Practices WIP.pptx
Delta Lake Tips, Tricks, and Best Practices WIP.pptx
carlyakerly1
 
Transcript: On the rise: Book subjects on the move in the Canadian market - T...
Transcript: On the rise: Book subjects on the move in the Canadian market - T...Transcript: On the rise: Book subjects on the move in the Canadian market - T...
Transcript: On the rise: Book subjects on the move in the Canadian market - T...
BookNet Canada
 
Workshop: Mastering Enterprise Agility: From Tension to Transformation by Zia...
Workshop: Mastering Enterprise Agility: From Tension to Transformation by Zia...Workshop: Mastering Enterprise Agility: From Tension to Transformation by Zia...
Workshop: Mastering Enterprise Agility: From Tension to Transformation by Zia...
Agile ME
 

Deep Learningによる超解像の進歩