Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May 15;79(10):3654-61.
doi: 10.1021/ac062386n. Epub 2007 Apr 13.

Characterization of two types of silanol groups on fused-silica surfaces using evanescent-wave cavity ring-down spectroscopy

Affiliations

Characterization of two types of silanol groups on fused-silica surfaces using evanescent-wave cavity ring-down spectroscopy

Hsiu-Fang Fan et al. Anal Chem. .

Abstract

Evanescent-wave cavity ring-down spectroscopy has been applied to a planar fused-silica surface covered with crystal violet (CV+) cations to characterize the silanol groups indirectly. A radiation-polarization dependence of the adsorption isotherm of CV+ at the CH3CN/silica interface is measured and fit to a two-site Langmuir equation to determine the relative populations of two different types of isolated silanol groups. CV+ binding at type I sites yields a free energy of adsorption of -29.9 +/- 0.2 kJ/mol and a saturation surface density of (7.4 +/- 0.5) x 10(12) cm(-2), whereas the values of -17.9 +/- 0.4 kJ/mol and (3.1 +/- 0.4) x 10(13) cm(-2) are obtained for the type II sites. The CV+ cations, each with a planar area of approximately 120 A2, seem to be aligned randomly while lying over the SiO- type I sites, thereby suggesting that this type of site may be surrounded by a large empty surface area (>480 A2). In contrast, the CV+ cations on a type II sites are restricted with an average angle of approximately 40 degrees tilted off the surface normal, suggesting that the CV+ cations on these sites are grouped closely together. The average tilt angle increases with increasing concentration of crystal violet so that CV+ cations may be separated from each other to minimize the repulsion of nearby CV+ and SiOH sites.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources