Nature Genetics Nature Genetics is the primary research journal for the genetics community. With a reputation for quality global coverage, Nature Genetics delivers the latest research across the field, including human genetics and genomics, genomics in plant and animal breeding, epigenetics, cancer and genetic technology. With News and Views, Analysis, Perspectives, Letters, Articles and Technical Reports, Nature Genetics is consistently the most frequently cited primary research journal in the field of Genetics and Heredity. http://feeds.nature.com/ng/rss/current Nature Publishing Group en © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Genetics © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. [email protected]
  • Nature Genetics https://www.nature.com/uploads/product/ng/rss.png http://feeds.nature.com/ng/rss/current <![CDATA[Polyguanine microsatellites are robust replication clocks in cancer]]> https://www.nature.com/articles/s41588-025-02098-1 <![CDATA[

    Nature Genetics, Published online: 17 February 2025; doi:10.1038/s41588-025-02098-1

    Cancer phylogenetic trees describe the evolutionary relationship between primary tumors and metastatic sites. A study now shows that mutations in guanine homopolymer microsatellites represent accurate molecular clocks, revealing the number of cell divisions that have occurred during cancer development and progression.]]>
    <![CDATA[Polyguanine microsatellites are robust replication clocks in cancer]]> Ron S. GejmanBenjamin Izar doi:10.1038/s41588-025-02098-1 Nature Genetics, Published online: 2025-02-17; | doi:10.1038/s41588-025-02098-1 2025-02-17 Nature Genetics 10.1038/s41588-025-02098-1 https://www.nature.com/articles/s41588-025-02098-1
    <![CDATA[Multiomic single-cell profiling identifies critical regulators of postnatal brain]]> https://www.nature.com/articles/s41588-025-02083-8 <![CDATA[

    Nature Genetics, Published online: 17 February 2025; doi:10.1038/s41588-025-02083-8

    Simultaneous profiling of RNA and chromatin accessibility in single nuclei isolated from human postnatal brain regions from infancy to late adulthood identifies key cellular regulators and nominates target genes and mechanisms for brain-related diseases and disorders.]]>
    <![CDATA[Multiomic single-cell profiling identifies critical regulators of postnatal brain]]> Tereza ClarenceJaroslav BendlXuan CaoXinyi WangShiwei ZhengGabriel E. HoffmanAlexey KozlenkovAram HongMarina IskhakovaManoj K. JaiswalSarah MurphyAlexander YuVahram HaroutunianStella DrachevaSchahram AkbarianJohn F. FullardGuo-Cheng YuanDonghoon LeePanos Roussos doi:10.1038/s41588-025-02083-8 Nature Genetics, Published online: 2025-02-17; | doi:10.1038/s41588-025-02083-8 2025-02-17 Nature Genetics 10.1038/s41588-025-02083-8 https://www.nature.com/articles/s41588-025-02083-8
    <![CDATA[The <i>Marchantia polymorpha</i> pangenome reveals ancient mechanisms of plant adaptation to the environment]]> https://www.nature.com/articles/s41588-024-02071-4 <![CDATA[

    Nature Genetics, Published online: 17 February 2025; doi:10.1038/s41588-024-02071-4

    Pangenome analyses of 133 wild accessions of the model bryophyte Marchantia polymorpha identify adaptive features and provide insights into the mechanisms of plant adaptation to the terrestrial environment.]]>
    <![CDATA[The <i>Marchantia polymorpha</i> pangenome reveals ancient mechanisms of plant adaptation to the environment]]> Chloé BeaulieuCyril LibourelDuchesse Lacourt Mbadinga ZamarKarima El MahboubiDavid J. HoeyGeorge R. L. GreiffJean KellerCamille GirouHelene San ClementeIssa DiopEmilie AmblardBaptiste CastelAnthony ThéronStéphane CauetNathalie RoddeSabine ZachgoWiebke HalpapeAnja MeierhenrichBianca LakerAndrea BräutigamDavid J. HoeyEdwige MoyroudAlan WankeAlessandra BonfantiStefano GattiAlexander SummersElisabeth BurmeisterKathy GrubeAndreea AlexaNataliia KuksaLauren GardinerMartin BalcerowiczJemma SalmonBryony YatesLucie RigletElena SalviPeter SzovenyiShifeng ChengYasuhiro TanizawaSimon AzizJames H. Leebens-MackJeremy SchmutzJenell WebberJane GrimwoodChristophe JacquetChristophe DunandJessica M. NelsonFabrice RouxHervé PhilippeSebastian SchornackMaxime BonhommePierre-Marc Delaux doi:10.1038/s41588-024-02071-4 Nature Genetics, Published online: 2025-02-17; | doi:10.1038/s41588-024-02071-4 2025-02-17 Nature Genetics 10.1038/s41588-024-02071-4 https://www.nature.com/articles/s41588-024-02071-4
    <![CDATA[Functional analysis of cancer-associated germline risk variants]]> https://www.nature.com/articles/s41588-024-02070-5 <![CDATA[

    Nature Genetics, Published online: 17 February 2025; doi:10.1038/s41588-024-02070-5

    Analysis of 4,041 single-nucleotide variants (SNVs) linked to 13 cancers performed in primary human cell types identifies 380 potentially regulatory SNVs and their putative target genes. Editing one SNV, rs10411210 , revealed that the risk allele increases RHPN2 expression and stimulus-responsive RhoA activation.]]>
    <![CDATA[Functional analysis of cancer-associated germline risk variants]]> Laura N. KellmanPoornima H. NeelaSuhas SrinivasanZurab SiprashviliRonald L. ShandersonAudrey W. HongDeepti RaoDouglas F. PorterDavid L. ReynoldsRobin M. MeyersMargaret G. GuoXue YangYang ZhaoGlenn G. WozniakLaura K. H. DonohueRajani ShenoyLisa A. KoDuy T. NguyenSmarajit MondalOmar S. GarciaLara E. ElcavageIbtihal ElfakiNathan S. AbellShiying TaoChristopher M. LopezStephen B. MontgomeryPaul A. Khavari doi:10.1038/s41588-024-02070-5 Nature Genetics, Published online: 2025-02-17; | doi:10.1038/s41588-024-02070-5 2025-02-17 Nature Genetics 10.1038/s41588-024-02070-5 https://www.nature.com/articles/s41588-024-02070-5
    <![CDATA[Active repression of cell fate plasticity by PROX1 safeguards hepatocyte identity and prevents liver tumorigenesis]]> https://www.nature.com/articles/s41588-025-02081-w <![CDATA[

    Nature Genetics, Published online: 13 February 2025; doi:10.1038/s41588-025-02081-w

    This study identifies candidate safeguard repressor transcription factors that repress alternate lineages in mature cell types and provides functional evidence that Prox1 performs such a function in hepatocytes during reprogramming, regeneration and in cancer.]]>
    <![CDATA[Active repression of cell fate plasticity by PROX1 safeguards hepatocyte identity and prevents liver tumorigenesis]]> Bryce LimAryan KamalBorja Gomez RamosJuan M. Adrian SegarraIgnacio L. IbarraLennart DignasTim KindingerKai VolzMohammad RahbariNuh RahbariEric PoiselKanela KafetzopoulouLio BöseMarco BreinigDanijela HeideSuchira GallageJose E. Barragan AvilaHendrik WiethoffIvan BerestSarah SchnabellehnerMartin SchneiderJonas BeckerDominic HelmDirk GrimmTaija MäkinenDarjus F. TschaharganehMathias HeikenwalderJudith B. ZauggMoritz Mall doi:10.1038/s41588-025-02081-w Nature Genetics, Published online: 2025-02-13; | doi:10.1038/s41588-025-02081-w 2025-02-13 Nature Genetics 10.1038/s41588-025-02081-w https://www.nature.com/articles/s41588-025-02081-w
    <![CDATA[Comparative analysis of the Mexico City Prospective Study and the UK Biobank identifies ancestry-specific effects on clonal hematopoiesis]]> https://www.nature.com/articles/s41588-025-02085-6 <![CDATA[

    Nature Genetics, Published online: 13 February 2025; doi:10.1038/s41588-025-02085-6

    This paper compares the frequency and genetic basis of clonal hematopoiesis in 136,401 admixed American participants from the Mexico City Prospective Cohort with 416,118 largely European ancestry individuals from the UK Biobank cohort.]]>
    <![CDATA[Comparative analysis of the Mexico City Prospective Study and the UK Biobank identifies ancestry-specific effects on clonal hematopoiesis]]> Sean WenPablo Kuri-MoralesFengyuan HuAbhishek NagIoanna TachmazidouSri V. V. DeeviHaeyam TaiyKatherine R. SmithDouglas P. LoeschOliver S. BurrenRyan S. DhindsaSebastian WasilewskiJesus Alegre-DíazJaime BerumenJonathan EmbersonJason M. TorresRory CollinsKeren CarssQuanli WangSlavé PetrovskiRoberto Tapia-ConyerMargarete A. FabreAndrew R. HarperGeorge S. VassiliouJonathan Mitchell doi:10.1038/s41588-025-02085-6 Nature Genetics, Published online: 2025-02-13; | doi:10.1038/s41588-025-02085-6 2025-02-13 Nature Genetics 10.1038/s41588-025-02085-6 https://www.nature.com/articles/s41588-025-02085-6
    <![CDATA[Germline mutations increasing pediatric cancer risk]]> https://www.nature.com/articles/s41588-025-02104-6 <![CDATA[

    Nature Genetics, Published online: 12 February 2025; doi:10.1038/s41588-025-02104-6

    Germline mutations increasing pediatric cancer risk]]>
    <![CDATA[Germline mutations increasing pediatric cancer risk]]> Tiago Faial doi:10.1038/s41588-025-02104-6 Nature Genetics, Published online: 2025-02-12; | doi:10.1038/s41588-025-02104-6 2025-02-12 Nature Genetics 10.1038/s41588-025-02104-6 https://www.nature.com/articles/s41588-025-02104-6
    <![CDATA[DNA loop extrusion is asymmetric but can switch direction]]> https://www.nature.com/articles/s41588-025-02102-8 <![CDATA[

    Nature Genetics, Published online: 12 February 2025; doi:10.1038/s41588-025-02102-8

    DNA loop extrusion is asymmetric but can switch direction]]>
    <![CDATA[DNA loop extrusion is asymmetric but can switch direction]]> Chiara Anania doi:10.1038/s41588-025-02102-8 Nature Genetics, Published online: 2025-02-12; | doi:10.1038/s41588-025-02102-8 2025-02-12 Nature Genetics 10.1038/s41588-025-02102-8 https://www.nature.com/articles/s41588-025-02102-8