Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increasing aerosol emissions from boreal biomass burning exacerbate Arctic warming

Abstract

The Northern Hemisphere boreal region is undergoing rapid warming, leading to an upsurge in biomass burning. Previous studies have primarily focused on greenhouse gas emissions from these fires, whereas the associated biomass burning aerosols (BBAs) have received less attention. Here we use satellite-constrained modelling to assess the radiative effect of aerosols from boreal fires on the climate in the Arctic region. We find a substantial increase in boreal BBA emissions associated with warming over the past two decades, causing pronounced positive radiative effects during Arctic summer mostly due to increased solar absorption. At a global warming level of 1 °C above current temperatures, boreal BBA emissions are projected to increase 6-fold, further warming the Arctic and potentially negating the benefits of ambitious anthropogenic black carbon mitigation. Given the high sensitivity of boreal and Arctic fires to climate change, our results underscore the increasingly relevant role of BBAs in Arctic climate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BBA emissions over boreal regions from 2000 to 2020.
Fig. 2: Interannual variability and trend of summer (JJA) AOD over the boreal and Arctic region.
Fig. 3: Modelled radiative effects of BBAs over the Arctic during summer on top of the atmosphere.
Fig. 4: Future prediction of boreal BBA emissions and the resulting aerosols over the Arctic.

Similar content being viewed by others

Data availability

The GFED4s emissions can be accessed from https://www.geo.vu.nl/~gwerf/GFED/GFED4. Other fire emissions can be obtained via Zenodo from https://zenodo.org/records/7229675 (ref. 62) for GFED500m, https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-fire-emissions-gfas?tab=overview for GFAS, https://feer.gsfc.nasa.gov/data/emissions/ for FEER, https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar for FINN and https://portal.nccs.nasa.gov/datashare/iesa/aerosol/emissions/QFED/v2.4r6/ for QFED. Satellite data can be downloaded from https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MYD08_D3 for MODIS observations, https://www.grasp-open.com/products/polder-data-release for POLDER data and https://climatedataguide.ucar.edu/climate-data/gpcp-daily-global-precipitation-climatology-project for Global Precipitation Climatology Project data. Aerosol Robotic Network data can be downloaded from https://aeronet.gsfc.nasa.gov/. CALIOP data can be accessed from https://www-calipso.larc.nasa.gov/. Meteorological data can be obtained from https://lpdaac.usgs.gov/products/mod11c3v006/ for MODIS surface temperature and from ERA5 (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form) for other variables. The AeroCom model data can be accessed from https://aerocom.met.no. CMIP6 model data can be downloaded from https://aims2.llnl.gov/search/. In situ observations are obtained from EBAS (https://ebas.nilu.no/) and from the stated references in Supplementary Information. The outputs of the modified simulations are available via Zenodo at https://zenodo.org/records/13832721 (ref. 63). All the other data needed to evaluate the conclusions in the paper are present in the article and/or its Supplementary Information.

Code availability

The ECHAM-HAM model source code can be accessed at Redmine at https://redmine.hammoz.ethz.ch. The Community Intercomparison Suite (cis, http://cistools.net/) software was used to analyse model outputs, and the code for creating diagrams in this paper is available via Zenodo at https://zenodo.org/records/13832721 (ref. 63).

References

  1. Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).

    Article  Google Scholar 

  2. Previdi, M., Smith, K. L. & Polvani, L. M. Arctic amplification of climate change: a review of underlying mechanisms. Environ. Res. Lett. 16, 093003 (2021).

    Article  CAS  Google Scholar 

  3. IPCC in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 553–672 (Cambridge Univ. Press, 2023).

  4. Marelle, L., Raut, J.-C., Law, K. & Duclaux, O. Current and future arctic aerosols and ozone from remote emissions and emerging local sources—modeled source contributions and radiative effects. J. Geophys. Res. Atmos. 123, 12942–12963 (2018).

    Article  CAS  Google Scholar 

  5. Lathem, T. L. et al. Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008. Atmos. Chem. Phys. 13, 2735–2756 (2013).

    Article  Google Scholar 

  6. Hansen, J. & Nazarenko, L. Soot climate forcing via snow and ice albedos. Proc. Natl Acad. Sci. USA 101, 423–428 (2003).

    Article  Google Scholar 

  7. Schmale, J., Zieger, P. & Ekman, A. M. L. Aerosols in current and future Arctic climate. Nat. Clim. Change 11, 95–105 (2021).

    Article  Google Scholar 

  8. Acosta Navarro, J. C. et al. Amplification of Arctic warming by past air pollution reductions in Europe. Nat. Geosci. 9, 277–281 (2016).

    Article  CAS  Google Scholar 

  9. Descals, A. et al. Unprecedented fire activity above the Arctic Circle linked to rising temperatures. Science 378, 532–537 (2022).

    Article  CAS  Google Scholar 

  10. Zheng, B. et al. Record-high CO2 emissions from boreal fires in 2021. Science 379, 912–917 (2023).

    Article  CAS  Google Scholar 

  11. Duffy, P. A., Walsh, J. E., Graham, J. M., Mann, D. H. & Rupp, T. S. Impacts of large‐scale atmospheric–ocean variability on Alaskan fire season severity. Ecol. Appl 15, 1317–1330 (2005).

    Article  Google Scholar 

  12. Gillett, N. P., Weaver, A. J., Zwiers, F. W. & Flannigan, M. D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 31, L18211 (2004).

    Article  Google Scholar 

  13. Li, Y., Janssen, T. A., Chen, R., He, B. & Veraverbeke, S. Trends and drivers of Arctic-boreal fire intensity between 2003 and 2022. Sci. Total Environ. 926, 172020 (2024).

    Article  CAS  Google Scholar 

  14. Flannigan, M. et al. Global wildland fire season severity in the 21st century. Ecol. Manag. 294, 54–61 (2013).

    Article  Google Scholar 

  15. Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M. & Gowman, L. M. Implications of changing climate for global wildland fire. Int J. Wildland Fire 18, 483–507 (2009).

    Article  Google Scholar 

  16. Jiang, Y. et al. Impacts of wildfire aerosols on global energy budget and climate: the role of climate feedbacks. J. Clim. 33, 3351–3366 (2020).

    Article  Google Scholar 

  17. DeRepentigny, P. et al. Enhanced simulated early 21st century Arctic sea ice loss due to CMIP6 biomass burning emissions. Sci. Adv. 8, eabo2405 (2022).

    Article  CAS  Google Scholar 

  18. McIlhattan, E. A., Kay, J. E. & L’Ecuyer, T. S. Arctic clouds and precipitation in the Community Earth System Model version 2. J. Geophys. Res. Atmos. 125, e2020JD032521 (2020).

    Article  Google Scholar 

  19. Tilmes, S. et al. Description and performance of a sectional aerosol microphysical model in the Community Earth System Model (CESM2). Geosci. Model Dev. 16, 6087–6125 (2023).

    Article  CAS  Google Scholar 

  20. Zhang, K. et al. The global aerosol–climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations. Atmos. Chem. Phys. 12, 8911–8949 (2012).

    Article  CAS  Google Scholar 

  21. Tegen, I. et al. The global aerosol–climate model ECHAM6.3–HAM2.3—part 1: aerosol evaluation. Geosci. Model Dev. 12, 1643–1677 (2019).

    Article  CAS  Google Scholar 

  22. Zhong, Q. et al. Using modelled relationships and satellite observations to attribute modelled aerosol biases over biomass burning regions. Nat. Commun. 13, 5914 (2022).

    Article  CAS  Google Scholar 

  23. van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    Article  Google Scholar 

  24. Forster, P. M. et al. Current and future global climate impacts resulting from COVID-19. Nat. Clim. Change 10, 913–919 (2020).

    Article  CAS  Google Scholar 

  25. Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).

    Article  Google Scholar 

  26. Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).

    Article  Google Scholar 

  27. Alizadeh, M. R. et al. Warming enabled upslope advance in western US forest fires. Proc. Natl Acad. Sci. USA 118, e2009717118 (2021).

    Article  CAS  Google Scholar 

  28. Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 7, 529–534 (2017).

    Article  Google Scholar 

  29. Neubauer, D. et al. The global aerosol–climate model ECHAM6.3–HAM2.3—part 2: cloud evaluation, aerosol radiative forcing and climate sensitivity. Geosci. Model Dev. 12, 3609–3639 (2019).

    Article  CAS  Google Scholar 

  30. Kühn, T. et al. Effects of black carbon mitigation on Arctic climate. Atmos. Chem. Phys. 20, 5527–5546 (2020).

    Article  Google Scholar 

  31. Zhong, Q. et al. Threefold reduction of modeled uncertainty in direct radiative effects over biomass burning regions by constraining absorbing aerosols. Sci. Adv. 9, eadi3568 (2023).

    Article  Google Scholar 

  32. van Wees, D. et al. Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED). Geosci. Model Dev. 15, 8411–8437 (2022).

    Article  Google Scholar 

  33. Sand, M., Berntsen, T. K., Seland, Ø. & Kristjánsson, J. E. Arctic surface temperature change to emissions of black carbon within Arctic or midlatitudes. J. Geophys. Res. Atmos. 118, 7788–7798 (2013).

    Article  CAS  Google Scholar 

  34. Hurteau, M. D. et al. Vegetation–fire feedback reduces projected area burned under climate change. Sci. Rep. 9, 2838 (2019).

    Article  Google Scholar 

  35. Sand, M. et al. Response of Arctic temperature to changes in emissions of short-lived climate forcers. Nat. Clim. Change 6, 286–289 (2016).

    Article  CAS  Google Scholar 

  36. AMAP Assessment 2021: Impacts of Short-Lived Climate Forcers on Arctic Climate, Air Quality and Human Health (Arctic Monitoring and Assessment Programme, 2021).

  37. McCarty, J. L. et al. Reviews and syntheses: Arctic fire regimes and emissions in the 21st century. Biogeosciences 18, 5053–5083 (2021).

    Article  CAS  Google Scholar 

  38. Phillips, C. A. et al. Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management. Sci. Adv. 8, eabl7161 (2022).

    Article  Google Scholar 

  39. Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M. & Veraverbeke, S. Overwintering fires in boreal forests. Nature 593, 399–404 (2021).

    Article  CAS  Google Scholar 

  40. Xu, W., Scholten, R. C., Hessilt, T. D., Liu, Y. & Veraverbeke, S. Overwintering fires rising in eastern Siberia. Environ. Res. Lett. 17, 045005 (2022).

    Article  Google Scholar 

  41. Chen, D., Shevade, V., Baer, A. & Loboda, T. V. Missing burns in the high northern latitudes: the case for regionally focused burned area products. Remote Sens. 13, 4145 (2021).

    Article  Google Scholar 

  42. Abbatt, J. P. D. et al. Overview paper: new insights into aerosol and climate in the Arctic. Atmos. Chem. Phys. 19, 2527–2560 (2019).

    Article  Google Scholar 

  43. Shindell, D. & Faluvegi, G. Climate response to regional radiative forcing during the twentieth century. Nat. Geosci. 2, 294–300 (2009).

    Article  CAS  Google Scholar 

  44. Sand, M. et al. The Arctic response to remote and local forcing of black carbon. Atmos. Chem. Phys. 13, 211–224 (2013).

    Article  Google Scholar 

  45. Heslin-Rees, D. et al. Increase in precipitation scavenging contributes to long-term reductions of light-absorbing aerosol in the Arctic. Atmos. Chem. Phys. 24, 2059–2075 (2024).

    Article  CAS  Google Scholar 

  46. Allen, R. J. et al. Observationally constrained aerosol–cloud semi-direct effects. NPJ Clim. Atmos. Sci. 2, 16 (2019).

    Article  Google Scholar 

  47. Flanner, M. G. Arctic climate sensitivity to local black carbon. J. Geophys. Res. Atmos. 118, 1840–1851 (2013).

    Article  CAS  Google Scholar 

  48. Wan, Z., Hook, S. & Hulley, G. MOD11C3 MODIS/Terra Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG V006 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center https://doi.org/10.5067/MODIS/MOD11C3.006 (2015).

  49. Lack, D. A. & Langridge, J. M. On the attribution of black and brown carbon light absorption using the Ångström exponent. Atmos. Chem. Phys. 13, 10535–10543 (2013).

    Article  Google Scholar 

  50. Holden, Z. A. et al. Decreasing fire season precipitation increased recent western US forest wildfire activity. Proc. Natl Acad. Sci. USA 115, E8349–E8357 (2018).

    Article  CAS  Google Scholar 

  51. Vignati, E., Wilson, J. & Stier, P. M7: an efficient size‐resolved aerosol microphysics module for large‐scale aerosol transport models. J. Geophys. Res. Atmos. 109, D22202 (2004).

  52. O’Rourke, P. et al. CEDS v_2021_04_21 Gridded emissions data. Pacific Northwest National Library https://doi.org/10.25584/PNNLDataHub/1779095 (2021).

  53. Dentener, F. et al. Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys. 6, 4321–4344 (2006).

    Article  CAS  Google Scholar 

  54. Tegen, I. et al. Impact of vegetation and preferential source areas on global dust aerosol: results from a model study. J. Geophys. Res. Atmos. 107, AAC-14 (2002).

    Article  Google Scholar 

  55. Long, M. S., Keene, W. C., Kieber, D. J., Erickson, D. J. & Maring, H. A sea-state based source function for size- and composition-resolved marine aerosol production. Atmos. Chem. Phys. 11, 1203–1216 (2011).

    Article  CAS  Google Scholar 

  56. Veira, A., Kloster, S., Schutgens, N. A. J. & Kaiser, J. W. Fire emission heights in the climate system—part 2: impact on transport, black carbon concentrations and radiation. Atmos. Chem. Phys. 15, 7173–7193 (2015).

    Article  CAS  Google Scholar 

  57. Dubovik, O. et al. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. 4, 975–1018 (2011).

    Article  CAS  Google Scholar 

  58. Huffman, G. J. et al. The new version 3.2 Global Precipitation Climatology Project (GPCP) monthly and daily precipitation products. J. Clim. 36, 7635–7655 (2023).

    Article  Google Scholar 

  59. Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B. & Hunke, E. Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic sea ice. J. Clim. 25, 1413–1430 (2012).

    Article  Google Scholar 

  60. Jiao, C. et al. An AeroCom assessment of black carbon in Arctic snow and sea ice. Atmos. Chem. Phys. 14, 2399–2417 (2014).

    Article  Google Scholar 

  61. Andrews, T. et al. Effective radiative forcing in a GCM with fixed surface temperatures. J. Geophys. Res. Atmos. 126, e2020JD033880 (2021).

    Article  Google Scholar 

  62. van Wees, D. et al. Model data for ‘Global biomass burning fuel consumption and emissions at 500-m spatial resolution based on the Global Fire Emissions Database (GFED)’. Zenodo https://doi.org/10.5281/zenodo.7229675 (2022).

  63. Zhong, Q., Schutgens, N., Veraverbeke, S. & van der Werf, G. Arctic fire aerosols simulated by a modified version of the ECHAM-HAM global model. Zenodo https://doi.org/10.5281/zenodo.13832721 (2024).

Download references

Acknowledgements

This work was financially supported by the NSFC Excellent Young Scientists Fund Program (Overseas) and Dutch Research Council (NWO; ALWGO.2018.052 and Vici scheme 016.160.324). The contribution of S.V. was funded by the European Research Council through a Consolidator grant under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101000987). The ECHAM-HAM simulations were carried out on the Dutch national e-infrastructure with the support of the SURF Cooperative.

Author information

Authors and Affiliations

Authors

Contributions

Q.Z. and N.S. designed this study. Q.Z. conducted the data analysis, designed and performed the model experiments of ECHAM-HAM and wrote the paper. S.V. and G.R.v.d.W. provided important aspects on boreal fire dynamics. N.S., S.V. and G.R.v.d.W. provided scientific advice and valuable comments to revise the paper. All authors contributed to reviewing and improving the final version of the paper.

Corresponding author

Correspondence to Qirui Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Patricia DeRepentigny and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Figs. 1–30.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Q., Schutgens, N., Veraverbeke, S. et al. Increasing aerosol emissions from boreal biomass burning exacerbate Arctic warming. Nat. Clim. Chang. 14, 1275–1281 (2024). https://doi.org/10.1038/s41558-024-02176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-024-02176-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing