Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optimization of the activity and biodegradability of ionizable lipids for mRNA delivery via directed chemical evolution

Abstract

Ionizable lipids largely determine the biocompatibility of lipid nanoparticles (LNPs) and the efficacy for mRNA delivery. Rational design and combinatorial synthesis have led to the development of potent and biodegradable ionizable lipids, yet methodologies for the stepwise optimization of ionizable lipid structure are lacking. Here we show that iterative chemical derivatization and combinatorial chemistry, and in particular the amine–aldehyde–alkyne coupling reaction, can be leveraged to iteratively accelerate the structural optimization of propargylamine-based ionizable lipids (named A3-lipids) to improve their delivery activity and biodegradability. Through five cycles of such directed chemical evolution, we identified dozens of biodegradable and asymmetric A3-lipids with delivery activity comparable to or better than a benchmark ionizable lipid. We then derived structure−activity relationships for the headgroup, ester linkage and tail. Compared with standard ionizable lipids, the lead A3-lipid improved the hepatic delivery of an mRNA-based genome editor and the intramuscular delivery of an mRNA vaccine against SARS-CoV-2. Structural criteria for ionizable lipids discovered via directed chemical evolution may accelerate the development of LNPs for mRNA delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A3-coupling reaction and activity- and degradability-driven directed chemical evolution of A3-lipids.
Fig. 2: Combinatorial synthesis and screening of A3-lipids in Library 1.
Fig. 3: Optimization of symmetric A3-lipids with biodegradable alkynes in Library 2 and asymmetric A3-lipids with long-chain aldehydes in Library 3.
Fig. 4: Optimization of biodegradable tails and headgroups for asymmetric A3-lipids in Libraries 4 and 5.
Fig. 5: Characterization of A3-LNP and its application in delivering mRNA-based gene editors and vaccines.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Han, X. et al. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12, 7233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eygeris, Y., Gupta, M., Kim, J. & Sahay, G. Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res. 55, 2–12 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. Engl. 51, 8529–8533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl. Acad. Sci. USA 107, 1864–1869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Whitehead, K. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun. 5, 4277 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Altinoglu, S., Wang, M. & Xu, Q. Combinatorial library strategies for synthesis of cationic lipid-like nanoparticles and their potential medical applications. Nanomedicine 10, 643–657 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023).

  13. Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379–394 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, Y. et al. Directed evolution: methodologies and applications. Chem. Rev. 121, 12384–12444 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peshkov, V. A., Pereshivko, O. P. & Van der Eycken, E. V. A walk around the A3-coupling. Chem. Soc. Rev. 41, 3790–3807 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Uhlig, N. & Li, C. J. Site-specific modification of amino acids and peptides by aldehyde-alkyne-amine coupling under ambient aqueous conditions. Org. Lett. 14, 3000–3003 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Jesin, I. & Nandi, G. C. Recent advances in the A3 coupling reactions and their applications. Eur. J. Org. Chem. 2019, 2704–2720 (2019).

    Article  CAS  Google Scholar 

  20. Bonfield, E. R. & Li, C. J. Efficient ruthenium and copper cocatalyzed five-component coupling to form dipropargyl amines under mild conditions in water. Org. Biomol. Chem. 5, 435–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Hajj, K. A. et al. Branched-tail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH. Small 15, e1805097 (2019).

    Article  PubMed  Google Scholar 

  22. Zhang, X. et al. Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. Sci. Adv. 6, eabc2315 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hashiba, K. et al. Branching ionizable lipids can enhance the stability, fusogenicity, and functional delivery of mRNA. Small Sci. 3, 2200071 (2023).

    Article  CAS  Google Scholar 

  24. Paunovska, K. et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 18, 2148–2157 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu, J. et al. Screening libraries to discover molecular design principles for the targeted delivery of mRNA with one-component ionizable amphiphilic janus dendrimers derived from plant phenolic acids. Pharmaceutics 15, eabc2315 (2023).

    Article  Google Scholar 

  26. Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Holthuis, J. C. & Menon, A. K. Lipid landscapes and pipelines in membrane homeostasis. Nature 510, 48–57 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, D. et al. One-component multifunctional sequence-defined ionizable amphiphilic janus dendrimer delivery systems for mRNA. J. Am. Chem. Soc. 143, 12315–12327 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Lam, K. et al. Unsaturated, trialkyl ionizable lipids are versatile lipid-nanoparticle components for therapeutic and vaccine applications. Adv. Mater. 35, e2209624 (2023).

    Article  PubMed  Google Scholar 

  30. Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 21, 1570–1578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, L., Hu, S. & Chen, X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials 171, 207–218 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Alameh, M. G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Han, X. et al. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. 18, 1105–1114 (2023).

  35. Chen, J. et al. Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response. Proc. Natl Acad. Sci. USA 119, e2207841119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Semple, S. C. et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta Biomembranes 1510, 152–166 (2001).

    Article  CAS  Google Scholar 

  37. Hassett, K. J. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic acids 15, 1–11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cornebise, M. et al. Discovery of a novel amino lipid that improves lipid nanoparticle performance through specific interactions with mRNA. Adv. Funct. Mater. 32, 2106727 (2022).

    Article  CAS  Google Scholar 

  39. Maheshri, N., Koerber, J. T., Kaspar, B. K. & Schaffer, D. V. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol. 24, 198–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Tabebordbar, M. et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 184, 4919–4938.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rajappan, K. et al. Property-driven design and development of lipids for efficient delivery of siRNA. J. Med. Chem. 63, 12992–13012 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Xu, Y. et al. AGILE platform: a deep learning-powered approach to accelerate LNP development for mRNA delivery. Nat. Commun. 15, 6305 (2024).

  43. Miao, L. et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 11, 2424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei, C., Li, Z. & Li, C.-J. The development of A3-coupling (aldehyde-alkyne-amine) and AA3-coupling (asymmetric aldehyde-alkyne-amine). Synlett 2004, 1472–1483 (2004).

    Google Scholar 

  45. Rokade, B. V., Barker, J. & Guiry, P. J. Development of and recent advances in asymmetric A3 coupling. Chem. Soc. Rev. 48, 4766–4790 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Suzuki, Y. et al. Design and lyophilization of lipid nanoparticles for mRNA vaccine and its robust immune response in mice and nonhuman primates. Mol. Ther. Nucleic acids 30, 226–240 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, R. et al. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomater. Sci. 9, 1449–1463 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Han, X. et al. Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis. Nat. Commun. 14, 75 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Billingsley, M. M. et al. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 20, 1578–1589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, L. et al. Meganuclease targeting of PCSK9 in macaque liver leads to stable reduction in serum cholesterol. Nat. Biotechnol. 36, 717–725 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Frey, A., Di Canzio, J. & Zurakowski, D. A statistically defined endpoint titer determination method for immunoassays. J. Immunol. Methods 221, 35–41 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.J.M. acknowledges support from a US National Institutes of Health (NIH) Director’s New Innovator Award (DP2 TR002776), a Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI) and an American Cancer Society Research Scholar Grant (RSG-22-122-01-ET). J.M.W. acknowledges support from iECURE. We thank S. Steimle from the Beckman Center for Cryo Electron Microscopy at UPenn Perelman School of Medicine (RRID: SCR_022375) for help in characterizing the morphology of LNPs; the UPenn Gene Therapy Program NAT Core for sequencing service and K. Martins for processing the NGS data.

Author information

Authors and Affiliations

Authors

Contributions

X.H. and M.J.M. conceptualized the project. X.H. and M.-G.A. developed the methodology. X.H., M.-G.A., Y.X., R.P., J.X., R.E.-M., G.D., C.C.W. and I.-C.Y. conducted investigations. X.H. and Y.X. performed visualization. M.J.M. acquired funding and supervised the project. X.H. and M.J.M. wrote the original draft. J.X., M.-G.A., Y.X., R.P., L.X., N.G., R.E.-M., K.L.S., Q.S., C.C.W., J.M.W., D.W. and M.J.M. reviewed and edited the manuscript.

Corresponding author

Correspondence to Michael J. Mitchell.

Ethics declarations

Competing interests

X.H. and M.J.M. have filed a patent application based on this work. J.M.W. is a paid advisor to and holds equity in iECURE, Passage Bio, and the Center for Breakthrough Medicines (CBM). He also holds equity in the former G2 Bio asset companies and Ceva Santé Animale. He has sponsored research agreements with Alexion Pharmaceuticals, Amicus Therapeutics, CBM, Ceva Santé Animale, Elaaj Bio, FA212, Foundation for Angelman Syndrome Therapeutics, former G2 Bio asset companies, iECURE, and Passage Bio, which are licensees of Penn technology. J.M.W. and C.C.W. are inventors on patents that have been licensed to various biopharmaceutical companies and for which they may receive payments. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Hideyoshi Harashima and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, figures and tables.

Reporting Summary

Supplementary Data

Source data for the supplementary figures.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Alameh, MG., Xu, Y. et al. Optimization of the activity and biodegradability of ionizable lipids for mRNA delivery via directed chemical evolution. Nat. Biomed. Eng 8, 1412–1424 (2024). https://doi.org/10.1038/s41551-024-01267-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-024-01267-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research