Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Strategies for the development of metalloimmunotherapies

Abstract

Metal ions play crucial roles in the regulation of immune pathways. In fact, metallodrugs have a long record of accomplishment as effective treatments for a wide range of diseases. Here we argue that the modulation of interactions of metal ions with molecules and cells involved in the immune system forms the basis of a new class of immunotherapies. By examining how metal ions modulate the innate and adaptive immune systems, as well as host–microbiota interactions, we discuss strategies for the development of such metalloimmunotherapies for the treatment of cancer and other immune-related diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune processes involving metal ions.
Fig. 2: Metalloimmunotherapies.
Fig. 3: Precision metalloimmunotherapy.
Fig. 4: Future research directions in metalloimmunotherapy.

Similar content being viewed by others

References

  1. Partington, J. R. An ancient Chinese treatise on alchemy. Nature 136, 287–288 (1935).

    Article  Google Scholar 

  2. Hambley, T. W. Chemistry. Metal-based therapeutics. Science 318, 1392–1393 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Thompson, K. H. & Orvig, C. Boon and bane of metal ions in medicine. Science 300, 936–939 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Rosenberg, B., VanCamp, L., Trosko, J. E. & Mansour, V. H. Platinum compounds: a new class of potent antitumour agents. Nature 222, 385–386 (1969).

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg, B., Vancamp, L. & Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205, 698–699 (1965).

    Article  CAS  PubMed  Google Scholar 

  6. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 7, 573–584 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Loveday, C. et al. Genomic landscape of platinum resistant and sensitive testicular cancers. Nat. Commun. 11, 2189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chaigne-Delalande, B. & Lenardo, M. J. Divalent cation signaling in immune cells. Trends Immunol 35, 332–344 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, C., Zhang, R., Wei, X., Lv, M. & Jiang, Z. Metalloimmunology: the metal ion-controlled immunity. Adv. Immunol. 145, 187–241 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chandy, K. G. & Norton, R. S. Immunology: channelling potassium to fight cancer. Nature 537, 497–499 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Shi, X. et al. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 493, 111–115 (2013).

    Article  PubMed  Google Scholar 

  13. Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Rossol, M. et al. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat. Commun. 3, 1329 (2012).

    Article  PubMed  Google Scholar 

  15. Munoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scambler, T. et al. ENaC-mediated sodium influx exacerbates NLRP3-dependent inflammation in cystic fibrosis. eLife 8, e49248 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, C. et al. Manganese increases the sensitivity of the cGAS–STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 48, 675–687.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Sun, X. et al. Amplifying STING activation by cyclic dinucleotide–manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol. 16, 1260–1270 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ahmed, A. & Tait, S. W. G. Targeting immunogenic cell death in cancer. Mol. Oncol. 14, 2994–3006 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Englinger, B. et al. Metal drugs and the anticancer immune response. Chem. Rev. 119, 1519–1624 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Hato, S. V., Khong, A., de Vries, I. J. & Lesterhuis, W. J. Molecular pathways: the immunogenic effects of platinum-based chemotherapeutics. Clin. Cancer Res. 20, 2831–2837 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Eisenbarth, S. C., Colegio, O. R., O’Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kurugol, Z., Akilli, M., Bayram, N. & Koturoglu, G. The prophylactic and therapeutic effectiveness of zinc sulphate on common cold in children. Acta Paediatr 95, 1175–1181 (2006).

    Article  PubMed  Google Scholar 

  24. Harrowfield, J. M., Norris, V. & Sargeson, A. M. Reactivity of coordinated nucleophiles. A comparison of metal bound imidazolate and hydroxide ions as models for carbonic anhydrase. J. Am. Chem. Soc. 98, 7282–7289 (1976).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, J. K. et al. Elucidating the role of metal ions in carbonic anhydrase catalysis. Nat. Commun. 11, 4557 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, C., Zhang, R., Wei, X., Lv, M. & Jiang, Z. in Advances in Immunology Vol. 145 (eds Dong, C. & Jiang, Z.) 187–241 (Academic Press, 2020).

  27. Li, J., Zheng, P., Zhao, J., Chen, P. R. & Guo, Z. Metal-mediated immune regulations and interventions: prospects of the emerging field of metalloimmunology. Sci. Sin. Chim. 49, 1037–1046 (2019).

    Article  Google Scholar 

  28. Ahn, J. & Barber, G. N. STING signaling and host defense against microbial infection. Exp. Mol. Med. 51, 1–10 (2019).

    Article  PubMed  Google Scholar 

  29. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Schmidt, M. et al. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat. Immunol. 11, 814–819 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Anjum, S. A. et al. Effect of cobalt-mediated Toll-like receptor 4 activation on inflammatory responses in endothelial cells. Oncotarget 7, 76471–76478 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu, J.-T., Chen, B.-Y., Zhang, J.-Q., Kuang, F. & Chen, L.-W. Lead exposure induced microgliosis and astrogliosis in hippocampus of young mice potentially by triggering TLR4–MyD88–NFκB signaling cascades. Toxicol. Lett. 239, 97–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Babolmorad, G. et al. Toll-like receptor 4 is activated by platinum and contributes to cisplatin-induced ototoxicity. EMBO Rep 22, e51280 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dutra, F. F. & Bozza, M. T. Heme on innate immunity and inflammation. Front. Pharmacol. 5, 115 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goebeler, M., Roth, J., Bröcker, E. B., Sorg, C. & Schulze-Osthoff, K. Activation of nuclear factor-kappa B and gene expression in human endothelial cells by the common haptens nickel and cobalt. J. Immunol. 155, 2459–2467 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. She, H. et al. Iron activates NF-κB in Kupffer cells. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G719–G726 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Altura, B. M. et al. Expression of the nuclear factor-κB and proto-oncogenes c-Fos and c-Jun are induced by low extracellular Mg2+ in aortic and cerebral vascular smooth muscle cells: possible links to hypertension, atherogenesis, and stroke. Am. J. Hypertens. 16, 701–707 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, M.-J. et al. ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB. Cell Rep 3, 386–400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brieger, A., Rink, L. & Haase, H. Differential regulation of TLR-dependent MyD88 and TRIF signaling pathways by free zinc ions. J. Immunol. 191, 1808–1817 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Mariathasan, S. & Monack, D. M. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat. Rev. Immunol. 7, 31–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Summersgill, H. et al. Zinc depletion regulates the processing and secretion of IL-1β. Cell Death Dis 5, e1040 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Sarkar, S. et al. Manganese activates NLRP3 inflammasome signaling and propagates exosomal release of ASC in microglial cells. Sci. Signal. 12, eaat9900 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo, H. et al. Nickel induces inflammatory activation via NF-κB, MAPKs, IRF3 and NLRP3 inflammasome signaling pathways in macrophages. Aging 11, 11659–11672 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ip, W. K. E. & Medzhitov, R. Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat. Commun. 6, 6931 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, G.-S. et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492, 123–127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pétrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14, 1583–1589 (2007).

    Article  PubMed  Google Scholar 

  51. Compan, V. et al. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37, 487–500 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Liao, J. et al. Inhibition of caspase-1-dependent pyroptosis attenuates copper-induced apoptosis in chicken hepatocytes. Ecotoxicol. Environ. Saf. 174, 110–119 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Tang, J. et al. Acute cadmium exposure induces GSDME-mediated pyroptosis in triple-negative breast cancer cells through ROS generation and NLRP3 inflammasome pathway activation. Environ. Toxicol. Pharmacol. 87, 103686 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu, J. et al. Cyclic GMP–AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Kranzusch, P. Jc. G. A. S. and CD-NTase enzymes: structure, mechanism, and evolution. Curr. Opin. Struct. Biol. 59, 178–187 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gao, P. et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP–AMP synthase. Cell 153, 1094–1107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao, Z. et al. Mn2+ directly activates cGAS and structural analysis suggests Mn2+ induces a noncanonical catalytic synthesis of 2′3′-cGAMP. Cell Rep 32, 108053 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Du, M. & Chen, Z. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, 704–709 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, Y.-P. et al. Endoplasmic reticulum stress regulates the innate immunity critical transcription factor IRF3. J. Immunol. 189, 4630–4639 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Banerjee, I. et al. Gasdermin D restrains type I interferon response to cytosolic DNA by disrupting ionic homeostasis. Immunity 49, 413–426.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Palacios, E. H. & Weiss, A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23, 7990–8000 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Weiss, A. & Littman, D. R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Verma, S. et al. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J. Immunol. 186, 2127–2137 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Li, F.-Y. et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 475, 471–476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chaigne-Delalande, B. et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science 341, 186–191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kanellopoulou, C. et al. Mg2+ regulation of kinase signaling and immune function. J. Exp. Med. 216, 1828–1842 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lotscher, J. et al. Magnesium sensing via LFA-1 regulates CD8+ T cell effector function. Cell 185, 585–602.e29 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Bhakta, G., Nurcombe, V., Maitra, A. & Shrivastava, A. DNA-encapsulated magnesium phosphate nanoparticles elicit both humoral and cellular immune responses in mice. Results Immunol 4, 46–53 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Huang, J. et al. An approach to assay calcineurin activity and the inhibitory effect of zinc ion. Anal. Biochem. 375, 385–387 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Kim, P. W., Sun, Z.-Y. J., Blacklow, S. C., Wagner, G. & Eck, M. J. A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8. Science 301, 1725–1728 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Eil, R. et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537, 539–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Baixauli, F., Villa, M. & Pearce, E. L. Potassium shapes antitumor immunity. Science 363, 1395–1396 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hernandez, A. L. et al. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J. Clin. Invest. 125, 4212–4222 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Turnbaugh, P. J. et al. The Human Microbiome Project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res 30, 492–506 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Bachem, A. et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51, 285–297.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hood, M. I. & Skaar, E. P. Nutritional immunity: transition metals at the pathogen–host interface. Nat. Rev. Microbiol. 10, 525–537 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Forbes, J. R. & Gros, P. Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102, 1884–1892 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Posey, J. E. & Gherardini, F. C. Lack of a role for iron in the Lyme disease pathogen. Science 288, 1651–1653 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Schalk, I. J. Metal trafficking via siderophores in Gram-negative bacteria: specificities and characteristics of the pyoverdine pathway. J. Inorg. Biochem. 102, 1159–1169 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Flo, T. H. et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Honsa, E. S. & Maresso, A. W. Mechanisms of iron import in anthrax. BioMetals 24, 533–545 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Kehl-Fie, T. E. & Skaar, E. P. Nutritional immunity beyond iron: a role for manganese and zinc. Curr. Opin. Chem. Biol. 14, 218–224 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Corbin, B. D. et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319, 962–965 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Botella, H. et al. Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10, 248–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gentile, C. L. & Weir, T. L. The gut microbiota at the intersection of diet and human health. Science 362, 776–780 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. He, P., Zou, Y. & Hu, Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum. Vaccin. Immunother. 11, 477–488 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Masson, J. D., Thibaudon, M., Belec, L. & Crepeaux, G. Calcium phosphate: a substitute for aluminum adjuvants? Expert Rev. Vaccines 16, 289–299 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Marques Neto, L. M., Kipnis, A. & Junqueira-Kipnis, A. P. Role of metallic nanoparticles in vaccinology: implications for infectious disease vaccine development. Front. Immunol. 8, 239 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhang, R. et al. Manganese salts function as potent adjuvants. Cell Mol. Immunol. 18, 1222–1234 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Read, S. A., Obeid, S., Ahlenstiel, C. & Ahlenstiel, G. The role of zinc in antiviral immunity. Adv. Nutr. 10, 696–710 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Baum, M. K., Shor-Posner, G. & Campa, A. Zinc status in human immunodeficiency virus infection. J. Nutr. 130, 1421S–1423S (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

    Article  PubMed  Google Scholar 

  103. Chen, C. et al. Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy. Sci. Transl. Med. 14, eabn1128 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Yu, M. et al. Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma. Mol. Ther. 26, 366–378 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Lv, M. et al. Manganese is critical for antitumor immune responses via cGAS–STING and improves the efficacy of clinical immunotherapy. Cell Res 30, 966–979 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang, G. et al. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 8, 902 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Song, M., Liu, T., Shi, C., Zhang, X. & Chen, X. Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 10, 633–647 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Nie, Y. et al. Metal organic framework coated MnO2 nanosheets delivering doxorubicin and self-activated DNAzyme for chemo-gene combinatorial treatment of cancer. Int. J. Pharm. 585, 119513 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Liu, X. et al. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 137, 4552–4558 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Yang, R. et al. Biomineralization-inspired crystallization of manganese oxide on silk fibroin nanoparticles for in vivo MR/fluorescence imaging-assisted tri-modal therapy of cancer. Theranostics 9, 6314–6333 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Banerjee, A. et al. Bifunctional pyrrolidin-2-one terminated manganese oxide nanoparticles for combined magnetic resonance and fluorescence imaging. ACS Appl. Mater. Interfaces 11, 13069–13078 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Zhang, M. et al. Manganese doped iron oxide theranostic nanoparticles for combined T1 magnetic resonance imaging and photothermal therapy. ACS Appl. Mater. Interfaces 7, 4650–4658 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Atif, M. et al. Manganese-doped cerium oxide nanocomposite induced photodynamic therapy in MCF-7 cancer cells and antibacterial activity. Biomed. Res. Int. 2019, 7156828 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Geng, Z. et al. Combining anti-PD-1 antibodies with Mn2+-drug coordinated multifunctional nanoparticles for enhanced cancer therapy. Biomaterials 275, 120897 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Tang, H. et al. Targeted manganese doped silica nano GSH-cleaner for treatment of liver cancer by destroying the intracellular redox homeostasis. Theranostics 10, 9865–9887 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li, Z. et al. Immunogenic cell death augmented by manganese zinc sulfide nanoparticles for metastatic melanoma immunotherapy. ACS Nano 16, 15471–15483 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Xi, J. et al. Mn2+-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy. Int. J. Nanomed. 12, 3331–3345 (2017).

    Article  CAS  Google Scholar 

  118. Liu, Y. et al. A tumor microenvironment responsive biodegradable CaCO3/MnO2-based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics 9, 6867–6884 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rottenberg, S., Disler, C. & Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 21, 37–50 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Awuah, S. G., Zheng, Y. R., Bruno, P. M., Hemann, M. T. & Lippard, S. J. A Pt(iv) pro-drug preferentially targets indoleamine-2,3-dioxygenase, providing enhanced ovarian cancer immuno-chemotherapy. J. Am. Chem. Soc. 137, 14854–14857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, L. et al. An ER-targeting iridium(iii) complex that induces immunogenic cell death in non-small-cell lung cancer. Angew. Chem. Int. Ed. 60, 4657–4665 (2021).

    Article  CAS  Google Scholar 

  122. Wernitznig, D. et al. First-in-class ruthenium anticancer drug (KP1339/IT-139) induces an immunogenic cell death signature in colorectal spheroids in vitro. Metallomics 11, 1044–1048 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Kaur, P., Johnson, A., Northcote-Smith, J., Lu, C. & Suntharalingam, K. Immunogenic cell death of breast cancer stem cells induced by an endoplasmic reticulum-targeting copper(ii) complex. ChemBioChem 21, 3618–3624 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Patel, R. B. et al. Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade. Sci. Transl. Med. 13, eabb3631 (2021).

  125. Choi, J., Kim, G., Cho, S. B. & Im, H. J. Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J. Nanobiotechnol. 18, 122 (2020).

    Article  Google Scholar 

  126. Tang, R. et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J. Hematol. Oncol. 13, 110 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Zheng, D. W. et al. Switching apoptosis to ferroptosis: metal–organic network for high-efficiency anticancer therapy. Nano Lett 17, 284–291 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Yang, J. et al. Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy. J. Control. Release 334, 21–33 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Tang, Z. M. et al. Biodegradable nanoprodrugs: “delivering” ROS to cancer cells for molecular dynamic therapy. Adv. Mater. 32, e1904011 (2020).

    Article  PubMed  Google Scholar 

  131. Yu, P. et al. Pyroptosis: mechanisms and diseases. Signal Transduct. Target. Ther. 6, 128 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Zheng, P., Ding, B., Zhu, G., Li, C. & Lin, J. Biodegradable Ca2+ nanomodulators activate pyroptosis through mitochondrial Ca2+ overload for cancer immunotherapy. Angew. Chem. Int. Ed. 61, e202204904 (2022).

    Article  CAS  Google Scholar 

  133. Zhou, B. et al. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res 28, 1171–1185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yuan, H. et al. Ferroptosis photoinduced by new cyclometalated iridium(iii) complexes and its synergism with apoptosis in tumor cell inhibition. Angew. Chem. Int. Ed. 60, 8174–8181 (2021).

    Article  CAS  Google Scholar 

  135. Su, X. et al. A carbonic anhydrase IX (CAIX)-anchored rhenium(i) photosensitizer evokes pyroptosis for enhanced anti-tumor immunity. Angew. Chem. Int. Ed. 61, e202115800 (2022).

    Article  CAS  Google Scholar 

  136. Ling, Y.-Y. et al. Simultaneous photoactivation of cGAS–STING pathway and pyroptosis by platinum(ii) triphenylamine complexes for cancer immunotherapy. Angew. Chem. Int. Ed. 61, e202210988 (2022).

    Article  CAS  Google Scholar 

  137. Tsvetkov, P. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375, 1254–1261 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xie, J., Yang, Y., Gao, Y. & He, J. Cuproptosis: mechanisms and links with cancers. Mol. Cancer 22, 46 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li, X., Zhang, S., Guo, G., Han, J. & Yu, J. Gut microbiome in modulating immune checkpoint inhibitors. eBioMedicine 82, 104163 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhu, W. et al. Precision editing of the gut microbiota ameliorates colitis. Nature 553, 208–211 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Han, K. et al. Generation of systemic antitumour immunity via the in situ modulation of the gut microbiome by an orally administered inulin gel. Nat. Biomed. Eng. 5, 1377–1388 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, R. et al. Treatment of peanut allergy and colitis in mice via the intestinal release of butyrate from polymeric micelles. Nat. Biomed. Eng. 7, 38–55 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tuganbaev, T., Yoshida, K. & Honda, K. The effects of oral microbiota on health. Science 376, 934–936 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Di Simone, S. K., Rudloff, I., Nold-Petry, C. A., Forster, S. C. & Nold, M. F. Understanding respiratory microbiome–immune system interactions in health and disease. Sci. Transl. Med. 15, eabq5126 (2023).

    Article  PubMed  Google Scholar 

  147. Zheng, D. W. et al. Biomaterial-mediated modulation of oral microbiota synergizes with PD-1 blockade in mice with oral squamous cell carcinoma. Nat. Biomed. Eng. 6, 32–43 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Wu, Q., Gao, Z. J., Yu, X. & Wang, P. Dietary regulation in health and disease. Signal Transduct. Target. Ther. 7, 252 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Sears, M. E. Chelation: harnessing and enhancing heavy metal detoxification—a review. ScientificWorldJournal 2013, 219840 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Guthrie, L. M. et al. Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice. Science 368, 620–625 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Palermo, G., Spinello, A., Saha, A. & Magistrato, A. Frontiers of metal-coordinating drug design. Expert Opin. Drug Discov 16, 497–511 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Chomet, M., van Dongen, G. & Vugts, D. J. State of the art in radiolabeling of antibodies with common and uncommon radiometals for preclinical and clinical immuno-PET. Bioconjug. Chem. 32, 1315–1330 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Han, G., Spitzer, M. H., Bendall, S. C., Fantl, W. J. & Nolan, G. P. Metal-isotope-tagged monoclonal antibodies for high-dimensional mass cytometry. Nat. Protoc. 13, 2121–2148 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Arunachalam, P. S. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369, 1210–1220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Trotta, A. M. et al. Novel peptide-based PET probe for non-invasive imaging of C-X-C chemokine receptor type 4 (CXCR4) in tumors. J. Med. Chem. 64, 3449–3461 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Bouvier-Muller, A. & Duconge, F. Application of aptamers for in vivo molecular imaging and theranostics. Adv. Drug Deliv. Rev. 134, 94–106 (2018).

    Article  PubMed  Google Scholar 

  158. Wong, D. Y., Yeo, C. H. & Ang, W. H. Immuno-chemotherapeutic platinum(iv) prodrugs of cisplatin as multimodal anticancer agents. Angew. Chem. Int. Ed 53, 6752–6756 (2014).

    Article  CAS  Google Scholar 

  159. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Yoo, J. W., Irvine, D. J., Discher, D. E. & Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 10, 521–535 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. He, C., Liu, D. & Lin, W. Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem. Rev. 115, 11079–11108 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Li, J., Chen, Y. C., Tseng, Y. C., Mozumdar, S. & Huang, L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J. Control. Release 142, 416–421 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Soetaert, F., Korangath, P., Serantes, D., Fiering, S. & Ivkov, R. Cancer therapy with iron oxide nanoparticles: agents of thermal and immune therapies. Adv. Drug Deliv. Rev. 163–164, 65–83 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Li, J., Yang, Y. & Huang, L. Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. J. Control. Release 158, 108–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Liu, D., Poon, C., Lu, K., He, C. & Lin, W. Self-assembled nanoscale coordination polymers with trigger release properties for effective anticancer therapy. Nat. Commun. 5, 4182 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Ni, K., Lan, G. & Lin, W. Nanoscale metal–organic frameworks generate reactive oxygen species for cancer therapy. ACS Cent. Sci. 6, 861–868 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yang, Y. et al. One-pot synthesis of pH-responsive charge-switchable PEGylated nanoscale coordination polymers for improved cancer therapy. Biomaterials 156, 121–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Vrieling, H. et al. Stabilised aluminium phosphate nanoparticles used as vaccine adjuvant. Colloids Surf. B 181, 648–656 (2019).

    Article  CAS  Google Scholar 

  170. Shen, X. et al. Manganese phosphate self-assembled nanoparticle surface and its application for superoxide anion detection. Sci. Rep. 6, 28989 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jia, Y. et al. Engineered NanoAlum from aluminum turns cold tumor hot for potentiating cancer metalloimmunotherapy. J. Control. Release 354, 770–783 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Singh, K., Sethi Chopra, D., Singh, D. & Singh, N. Nano-formulations in treatment of iron deficiency anaemia: an overview. Clin. Nutr. ESPEN 52, 12–19 (2022).

    Article  PubMed  Google Scholar 

  173. Shaffer, T. M. et al. Silica nanoparticles as substrates for chelator-free labeling of oxophilic radioisotopes. Nano Lett 15, 864–868 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ovanesyan, Z. et al. Ion–ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles. J. Colloid Interface Sci 462, 325–333 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Pivovarov, S. Adsorption of ions onto amorphous silica: ion exchange model. J. Colloid Interface Sci 319, 374–376 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharm. 6, 286 (2015).

    Article  Google Scholar 

  177. Yu, J. et al. Remote loading paclitaxel–doxorubicin prodrug into liposomes for cancer combination therapy. Acta Pharm. Sin. B 10, 1730–1740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ohki, S. & Duzgunes, N. Divalent cation-induced interaction of phospholipid vesicle and monolayer membranes. Biochim. Biophys. Acta 552, 438–449 (1979).

    Article  CAS  PubMed  Google Scholar 

  179. Papahadjopoulos, D., Vail, W. J., Jacobson, K. & Poste, G. Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim. Biophys. Acta 394, 483–491 (1975).

    Article  CAS  PubMed  Google Scholar 

  180. Moon, J. J. et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater. 10, 243–251 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Liu, H. et al. Nanoliposomes co-encapsulating Ce6 and SB3CT against the proliferation and metastasis of melanoma with the integration of photodynamic therapy and NKG2D-related immunotherapy on A375 cells. Nanotechnology 32, 455102 (2021).

    Article  CAS  Google Scholar 

  182. Godoy-Gallardo, M. et al. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioact. Mater. 6, 4470–4490 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Makadia, H. K. & Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Ambrogio, M. W., Toro-González, M., Keever, T. J., McKnight, T. E. & Davern, S. M. Poly (lactic-co-glycolic acid) nanoparticles as delivery systems for the improved administration of radiotherapeutic anticancer agents. ACS Appl. Nano Mater 3, 10565–10570 (2020).

    Article  CAS  Google Scholar 

  185. Dordelmann, G. et al. Calcium phosphate increases the encapsulation efficiency of hydrophilic drugs (proteins, nucleic acids) into poly(d,l-lactide-co-glycolide acid) nanoparticles for intracellular delivery. J. Mater. Chem. B 2, 7250–7259 (2014).

    Article  PubMed  Google Scholar 

  186. Avgoustakis, K. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr. Drug Deliv. 1, 321–333 (2004).

    Article  CAS  PubMed  Google Scholar 

  187. Park, J. H., Saravanakumar, G., Kim, K. & Kwon, I. C. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv. Drug Deliv. Rev. 62, 28–41 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Hamidi, M., Azadi, A. & Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 60, 1638–1649 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Severino, P. et al. Alginate nanoparticles for drug delivery and targeting. Curr. Pharm. Des. 25, 1312–1334 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Rao, N. V. et al. Hyaluronic acid nanoparticles as nanomedicine for treatment of inflammatory diseases. Pharmaceutics 12, 931 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. He, C., Lu, K., Liu, D. & Lin, W. Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 136, 5181–5184 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Venditto, V. J. & Szoka, F. C. Jr Cancer nanomedicines: so many papers and so few drugs! Adv. Drug Deliv. Rev. 65, 80–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  193. Liu, D., Yang, F., Xiong, F. & Gu, N. The smart drug delivery system and its clinical potential. Theranostics 6, 1306–1323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Mehata, A. K., Vikas, Viswanadh, M. K. & Muthu, M. S. Theranostics of metal–organic frameworks: image-guided nanomedicine for clinical translation. Nanomedicine 18, 695–703 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Shen, S., Wu, Y., Liu, Y. & Wu, D. High drug-loading nanomedicines: progress, current status, and prospects. Int. J. Nanomed. 12, 4085–4109 (2017).

    Article  CAS  Google Scholar 

  196. Del Solar, V. & Contel, M. Metal-based antibody drug conjugates. Potential and challenges in their application as targeted therapies in cancer. J. Inorg. Biochem. 199, 110780 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Carrasco-Triguero, M. et al. Immunogenicity of antibody–drug conjugates: observations across 8 molecules in 11 clinical trials. Bioanalysis 11, 1555–1568 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Choi, H. S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Manspeaker, M. P. & Thomas, S. N. Lymphatic immunomodulation using engineered drug delivery systems for cancer immunotherapy. Adv. Drug Deliv. Rev. 160, 19–35 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hoshyar, N., Gray, S., Han, H. & Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11, 673–692 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Alqahtani, M. S., Syed, R. & Alshehri, M. Size-dependent phagocytic uptake and immunogenicity of gliadin nanoparticles. Polymers 12, 2576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Da Silva-Candal, A. et al. Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions. J. Control. Release 309, 94–105 (2019).

    Article  PubMed  Google Scholar 

  203. Cooley, M. et al. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale 10, 15350–15364 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kumar, S., Anselmo, A. C., Banerjee, A., Zakrewsky, M. & Mitragotri, S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J. Control. Release 220, 141–148 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. Stater, E. P., Sonay, A. Y., Hart, C. & Grimm, J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 16, 1180–1194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  207. Hoang Thi, T. T. et al. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers 12, 298 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Fang, R. H., Kroll, A. V., Gao, W. & Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 30, e1706759 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Hu, C. M. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Hu, C. M. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Rodriguez, P. L. et al. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Maeda, H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J. Control. Release 164, 138–144 (2012).

    Article  CAS  PubMed  Google Scholar 

  213. Irvine, D. J., Hanson, M. C., Rakhra, K. & Tokatlian, T. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev. 115, 11109–11146 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Schudel, A., Francis, D. M. & Thomas, S. N. Material design for lymph node drug delivery. Nat. Rev. Mater. 4, 415–428 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Pearce, A. K. & O’Reilly, R. K. Insights into active targeting of nanoparticles in drug delivery: advances in clinical studies and design considerations for cancer nanomedicine. Bioconjug. Chem. 30, 2300–2311 (2019).

    Article  CAS  PubMed  Google Scholar 

  218. Li, Z. et al. PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials 34, 9160–9170 (2013).

    Article  CAS  PubMed  Google Scholar 

  219. Crucho, C. I. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem 10, 24–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  220. El-Sawy, H. S., Al-Abd, A. M., Ahmed, T. A., El-Say, K. M. & Torchilin, V. P. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. ACS Nano 12, 10636–10664 (2018).

    Article  CAS  PubMed  Google Scholar 

  221. Li, F. et al. Stimuli-responsive nano-assemblies for remotely controlled drug delivery. J. Control. Release 322, 566–592 (2020).

    Article  CAS  PubMed  Google Scholar 

  222. Li, L., Yang, W. W. & Xu, D. G. Stimuli-responsive nanoscale drug delivery systems for cancer therapy. J. Drug Target. 27, 423–433 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Rahoui, N., Jiang, B., Taloub, N. & Huang, Y. D. Spatio-temporal control strategy of drug delivery systems based nano structures. J. Control. Release 255, 176–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  224. Yoo, D., Lee, J. H., Shin, T. H. & Cheon, J. Theranostic magnetic nanoparticles. Acc. Chem. Res. 44, 863–874 (2011).

    Article  CAS  PubMed  Google Scholar 

  225. Svirskis, D., Travas-Sejdic, J., Rodgers, A. & Garg, S. Electrochemically controlled drug delivery based on intrinsically conducting polymers. J. Control. Release 146, 6–15 (2010).

    Article  CAS  PubMed  Google Scholar 

  226. Liu, J. et al. Light-controlled drug release from singlet-oxygen sensitive nanoscale coordination polymers enabling cancer combination therapy. Biomaterials 146, 40–48 (2017).

    Article  CAS  PubMed  Google Scholar 

  227. Liu, J. et al. Nanoscale‐coordination‐polymer‐shelled manganese dioxide composite nanoparticles: a multistage redox/pH/H2O2‐responsive cancer theranostic nanoplatform. Adv. Funct. Mater. 27, 1605926 (2017).

    Article  Google Scholar 

  228. Sennoga, C. A. et al. Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring. Expert Opin. Drug Deliv 14, 1031–1043 (2017).

    Article  CAS  PubMed  Google Scholar 

  229. Jain, A., Tiwari, A., Verma, A. & Jain, S. K. Ultrasound-based triggered drug delivery to tumors. Drug Deliv. Transl. Res. 8, 150–164 (2018).

    Article  CAS  PubMed  Google Scholar 

  230. Mertz, D., Sandre, O. & Begin-Colin, S. Drug releasing nanoplatforms activated by alternating magnetic fields. Biochim. Biophys. Acta Gen. Subj. 1861, 1617–1641 (2017).

    Article  CAS  PubMed  Google Scholar 

  231. Wang, X. et al. Near-infrared photoresponsive drug delivery nanosystems for cancer photo-chemotherapy. J. Nanobiotechnol. 18, 108 (2020).

    Article  Google Scholar 

  232. Ni, K., Luo, T., Nash, G. T. & Lin, W. Nanoscale metal–organic frameworks for cancer immunotherapy. Acc. Chem. Res. 53, 1739–1748 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Mounicou, S., Szpunar, J. & Lobinski, R. Metallomics: the concept and methodology. Chem. Soc. Rev. 38, 1119–1138 (2009).

    Article  CAS  PubMed  Google Scholar 

  234. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    Article  CAS  PubMed  Google Scholar 

  235. Yuan, S. et al. Metallodrug ranitidine bismuth citrate suppresses SARS-CoV-2 replication and relieves virus-associated pneumonia in Syrian hamsters. Nat. Microbiol. 5, 1439–1448 (2020).

    Article  CAS  PubMed  Google Scholar 

  236. Jarosz, M., Olbert, M., Wyszogrodzka, G., Mlyniec, K. & Librowski, T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 25, 11–24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Kitabayashi, C. et al. Zinc suppresses TH17 development via inhibition of STAT3 activation. Int. Immunol. 22, 375–386 (2010).

    Article  CAS  PubMed  Google Scholar 

  238. Ainscough, J. S., Gerberick, G. F., Kimber, I. & Dearman, R. J. Interleukin-1β processing is dependent on a calcium-mediated interaction with calmodulin. J. Biol. Chem. 290, 31151–31161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Brough, D. et al. Ca2+ stores and Ca2+ entry differentially contribute to the release of IL-1β and IL-1α from murine macrophages. J. Immunol. 170, 3029–3036 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health (through grants R01DE030691, R01DE031951, R01DK125087, R01CA271799, R01NS122536, R01DE026728, R44CA281497, U01CA210152 and P30CA046592).

Author information

Authors and Affiliations

Authors

Contributions

X. Sun, X.Z. and J.J.M. discussed the content, researched the data and wrote the paper. X. Shi, O.A.A., X.A. and Y.L.L. contributed to the discussion. All authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Xiaoqi Sun or James J. Moon.

Ethics declarations

Competing interests

X. Sun is an employee and shareholder of Editas Medicine. Y.L.L. is a co-founder of Saros Therapeutics and serves on its scientific advisory board. J.J.M. declares financial interests in EVOQ Therapeutics and Saros Therapeutics as a board member, paid consultant and equity holder, and as a recipient of research funding. The University of Michigan also has financial interest in EVOQ Therapeutics.

Peer review

Peer review information

Nature Biomedical Engineering thanks Twan Lammers, Yumiao Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhou, X., Shi, X. et al. Strategies for the development of metalloimmunotherapies. Nat. Biomed. Eng 8, 1073–1091 (2024). https://doi.org/10.1038/s41551-024-01221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-024-01221-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research