The Impact of Wrist Percooling on Physiological and Perceptual Responses during a Running Time Trial Performance in the Heat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Overview
2.3. Procedures
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Effects of Wrist Cooling on Baseline Parameters
3.3. Ten km Time Trial Performance
3.4. Physiological Response to 10 km Time Trial in the Heat
3.5. Perceptual Measures during 10 Km Time Trial in the Heat
3.6. Impact of Wrist Cooling on Recovery
4. Discussion
4.1. Ten km Time Trial Performance
4.2. Impact of Wrist Percooling on Physiological Responses to 10 km TT in the Heat
4.3. Impact of Wrist Percooling on Perceptual Measures during 10 km TT in the Heat
4.4. Impact of Wrist Percooling on Physiological Recovery
4.5. Impact of Wrist Percooling on Recovery of Perceptual Measurements
4.6. Experimental Considerations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crandall, C.G.; Gonzalez-Alonso, J. Cardiovascular function in the heat-stressed human. Acta Physiol. 2010, 199, 407–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowell, L.B. Human cardiovascular adjustments to exercise and thermal stress. Physiol. Rev. 1974, 54, 75–159. [Google Scholar] [CrossRef] [PubMed]
- Van Haitsma, T.A.; Light, A.R.; Light, K.C.; Hughen, R.W.; Yenchik, S.; White, A.T. Fatigue sensation and gene expression in trained cyclists following a 40 km time trial in the heat. Eur. J. Appl. Physiol. 2016, 116, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.R.; Barton, C.; Morrissey, D.; Maffulli, N.; Hemmings, S. Pre-cooling for endurance exercise performance in the heat: A systematic review. BMC Med. 2012, 10, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatterson, A.J.; Hahn, A.G.; Martin, D.T.; Febbraio, M.A. Effects of heat stress on physiological responses and exercise performance in elite cyclists. J. Sci. Med. Sport 2000, 3, 186–193. [Google Scholar] [CrossRef]
- Ely, B.R.; Cheuvront, S.N.; Kenefick, R.W.; Sawka, M.N. Aerobic performance is degraded, despite modest hyperthermia, in hot environments. Med. Sci. Sports Exerc. 2010, 42, 135–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, K.C.; Verbrigghe, D.; Gabe, A.; Jauquet, B.; Eischer, C.; Yoon, T. The influence of thermal alterations on prefrontal cortex activation and neuromuscular function during a fatiguing task. Int. J. Environ. Res. Public Health 2020, 17, 7194. [Google Scholar] [CrossRef] [PubMed]
- Bongers, C.C.; Thijssen, D.H.; Veltmeijer, M.T.; Hopman, M.T.; Eijsvogels, T.M. Precooling and percooling (cooling during exercise) both improve performance in the heat: A meta-analytical review. Br. J. Sports Med. 2015, 49, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Tyler, C.J.; Sunderland, C.; Cheung, S.S. The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: A meta-analysis. Br. J. Sports Med. 2015, 49, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Schlicht, E.; Caruso, R.; Denby, K.; Matias, A.; Dudar, M.; Ives, S.J. Effects of wrist cooling on recovery from exercise-induced heat stress with firefighting personal protective equipment. J. Occup. Environ. Med. 2018, 60, 1049-00. [Google Scholar] [CrossRef]
- Jeffries, O.; Waldron, M. The effects of menthol on exercise performance and thermal sensation: A meta-analysis. J. Sci. Med. Sport 2019, 22, 707–715. [Google Scholar] [CrossRef] [PubMed]
- McConnell, T.R.; Clark, B.A. Treadmill protocols for determination of maximum oxygen uptake in runners. Br. J. Sports Med. 1988, 22, 3–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ives, S.J.; Blegen, M.; Coughlin, M.A.; Redmond, J.; Matthews, T.; Paolone, V. Salivary estradiol, interleukin-6 production, and the relationship to substrate metabolism during exercise in females. Eur. J. Appl. Physiol. 2011, 111, 1649–1658. [Google Scholar] [CrossRef]
- Crouter, S.E.; Antczak, A.; Hudak, J.R.; DellaValle, D.M.; Haas, J.D. Accuracy and reliability of the parvomedics trueone 2400 and medgraphics vo2000 metabolic systems. Eur. J. Appl. Physiol. 2006, 98, 139–151. [Google Scholar] [CrossRef]
- Byrne, C.; Lim, C.L. The ingestible telemetric body core temperature sensor: A review of validity and exercise applications. Br. J. Sports Med. 2007, 41, 126–133. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, C.; Hoyt, R.W.; Buller, M.J.; Castellani, J.W.; Young, A.J. Telemetry pill measurement of core temperature in humans during active heating and cooling. Med. Sci. Sports Exerc. 1998, 30, 468–472. [Google Scholar] [CrossRef]
- Matias, A.; Dudar, M.; Kauzlaric, J.; Frederick, K.A.; Fitzpatrick, S.; Ives, S.J. Rehydrating efficacy of maple water after exercise-induced dehydration. J. Int. Soc. Sports Nutr. 2019, 16, 5. [Google Scholar] [CrossRef] [Green Version]
- Esco, M.R.; Flatt, A.A. Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: Evaluating the agreement with accepted recommendations. J. Sports Sci. Med. 2014, 13, 535–541. [Google Scholar]
- Aysin, B.; Aysin, E. Effect of respiration in heart rate variability (hrv) analysis. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 1776–1779. [Google Scholar]
- Perrotta, A.S.; Jeklin, A.T.; Hives, B.A.; Meanwell, L.E.; Warburton, D.E.R. Validity of the elite hrv smartphone application for examining heart rate variability in a field-based setting. J. Strength Cond. Res. 2017, 31, 2296–2302. [Google Scholar] [CrossRef]
- Flatt, A.A.; Esco, M.R. Smartphone-derived heart-rate variability and training load in a women’s soccer team. Int. J. Sports Physiol. Perform. 2015, 10, 994–1000. [Google Scholar] [CrossRef]
- Flatt, A.A.; Esco, M.R. Evaluating individual training adaptation with smartphone-derived heart rate variability in a collegiate female soccer team. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2016, 30, 378–385. [Google Scholar] [CrossRef]
- Edmonds, R.; Burkett, B.; Leicht, A.; McKean, M. Effect of chronic training on heart rate variability, salivary iga and salivary alpha-amylase in elite swimmers with a disability. PLoS ONE 2015, 10, e0127749. [Google Scholar] [CrossRef]
- Egan-Shuttler, J.D.; Edmonds, R.; Ives, S.J. The efficacy of heart rate variability in tracking travel and training stress in youth female rowers: A preliminary study. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2018. [Google Scholar] [CrossRef]
- Flatt, A.A.; Esco, M.R.; Nakamura, F.Y. Individual heart rate variability responses to preseason training in high level female soccer players. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2017, 31, 531–538. [Google Scholar] [CrossRef]
- Plews, D.J.; Laursen, P.B.; Stanley, J.; Kilding, A.E.; Buchheit, M. Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. Sports Med. 2013, 43, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Izzo, J.; Saleem, O.; Khan, S.; Osmond, P. 7b.05: Differential effects nebivolol and valsartan alone and in combination on 24-h ambulatory rate-pressure product, stroke load, and blood pressure-heart rate variability. J. Hypertens. 2015, 33 (Suppl. 1), e93. [Google Scholar] [CrossRef]
- Izzo, J.L., Jr.; Khan, S.U.; Saleem, O.; Osmond, P.J. Ambulatory 24-hour cardiac oxygen consumption and blood pressure-heart rate variability: Effects of nebivolol and valsartan alone and in combination. J. Am. Soc. Hypertens. JASH 2015, 9, 526–535. [Google Scholar] [CrossRef]
- Varrenti, M.; Meani, P.; Giupponi, L.; Vallerio, P.; Ferrari, E.; Stucchi, M.; Maloberti, A.; Bruno, J.; Turazza, F.; Parati, G.; et al. 1b.01: 24 h modulation of peripheral and central blood pressure, heart rate and arterial stiffness in heart transplant hypertensive individuals. J. Hypertens. 2015, 33 (Suppl. 1), e5. [Google Scholar] [CrossRef]
- Booth, J.; Marino, F.; Ward, J.J. Improved running performance in hot humid conditions following whole body precooling. Med. Sci. Sports Exerc. 1997, 29, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Duffield, R.; Steinbacher, G.; Fairchild, T.J. The use of mixed-method, part-body pre-cooling procedures for team-sport athletes training in the heat. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2009, 23, 2524–2532. [Google Scholar] [CrossRef]
- Lee, D.T.; Haymes, E.M. Exercise duration and thermoregulatory responses after whole body precooling. J. Appl. Physiol. (Bethesda Md. 1985) 1995, 79, 1971–1976. [Google Scholar] [CrossRef] [PubMed]
- Uckert, S.; Joch, W. Effects of warm-up and precooling on endurance performance in the heat. Br. J. Sports Med. 2007, 41, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Yeargin, S. Precooling improves endurance performance in the heat. Clin. J. Sport Med. 2008, 18, 177–178. [Google Scholar] [PubMed]
- Kenny, G.P.; Schissler, A.R.; Stapleton, J.; Piamonte, M.; Binder, K.; Lynn, A.; Lan, C.Q.; Hardcastle, S.G. Ice cooling vest on tolerance for exercise under uncompensable heat stress. J. Occup. Environ. Hyg. 2011, 8, 484–491. [Google Scholar] [CrossRef]
- Duffield, R.; Green, R.; Castle, P.; Maxwell, N. Precooling can prevent the reduction of self-paced exercise intensity in the heat. Med. Sci. Sports Exerc. 2010, 42, 577–584. [Google Scholar] [CrossRef]
- Gleeson, M. Temperature regulation during exercise. Int. J. Sports Med. 1998, 19 (Suppl. 2), S96–S99. [Google Scholar] [CrossRef]
- Smith, D.L.; Fehling, P.C.; Hultquist, E.M.; Arena, L.; Lefferts, W.K.; Haller, J.M.; Storer, T.W.; Cooper, C.B. The effect of precooling on cardiovascular and metabolic strain during incremental exercise. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2013, 38, 935–940. [Google Scholar] [CrossRef]
- Siegel, R.; Mate, J.; Brearley, M.B.; Watson, G.; Nosaka, K.; Laursen, P.B. Ice slurry ingestion increases core temperature capacity and running time in the heat. Med. Sci. Sports Exerc. 2010, 42, 717–725. [Google Scholar] [CrossRef] [Green Version]
- Edmonds, R.C.; Wilkinson, A.F.; Fehling, P.C. Novel cooling device enhances autonomic nervous system recovery from live fire training: A pilot study. Int. J. Innov. Res. Med Sci. 2017, 2, 455–460. [Google Scholar] [CrossRef]
- Hue, O.; Chabert, C.; Collado, A.; Hermand, E. Menthol as an adjuvant to help athletes cope with a tropical climate: Tracks from heat experiments with special focus on guadeloupe investigations. Front. Physiol. 2019, 10, 1360. [Google Scholar] [CrossRef]
- Poppendieck, W.; Faude, O.; Wegmann, M.; Meyer, T. Cooling and performance recovery of trained athletes: A meta-analytical review. Int. J. Sports Physiol. Perform. 2013, 8, 227–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colburn, D.; Suyama, J.; Reis, S.E.; Morley, J.L.; Goss, F.L.; Chen, Y.-F.; Moore, C.G.; Hostler, D. A comparison of cooling techniques in firefighters after a live burn evolution. Prehospital Emerg. Care 2011, 15, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Hostler, D.; Reis, S.E.; Bednez, J.C.; Kerin, S.; Suyama, J. Comparison of active cooling devices with passive cooling for rehabilitation of firefighters performing exercise in thermal protective clothing: A report from the fireground rehab evaluation (fire) trial. Prehospital Emerg. Care 2010, 14, 300–309. [Google Scholar] [CrossRef]
- Barr, D.; Reilly, T.; Gregson, W. The impact of different cooling modalities on the physiological responses in firefighters during strenuous work performed in high environmental temperatures. Eur. J. Appl. Physiol. 2011, 111, 959–967. [Google Scholar] [CrossRef] [PubMed]
- McEntire, S.J.; Suyama, J.; Hostler, D. Mitigation and prevention of exertional heat stress in firefighters: A review of cooling strategies for structural firefighting and hazardous materials responders. Prehospital Emerg. Care 2013, 17, 241–260. [Google Scholar] [CrossRef]
- Giesbrecht, G.G.; Jamieson, C.; Cahill, F. Cooling hyperthermic firefighters by immersing forearms and hands in 10 degrees c and 20 degrees c water. Aviat. Space Environ. Med. 2007, 78, 561–567. [Google Scholar] [PubMed]
- Kregel, K.C.; Seals, D.R.; Callister, R. Sympathetic nervous system activity during skin cooling in humans: Relationship to stimulus intensity and pain sensation. J. Physiol 1992, 454, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Racinais, S.; Moussay, S.; Nichols, D.; Travers, G.; Belfekih, T.; Schumacher, Y.O.; Periard, J.D. Core temperature up to 41.5 °C during the uci road cycling world championships in the heat. Br. J. Sports Med. 2019, 53, 426–429. [Google Scholar] [CrossRef]
Variable | Means ± SD |
---|---|
Age (years) | 32.6 ± 8.9 |
Height (cm) | 178.6 ± 9.1 |
Weight (kg) | 76.9 ± 8.0 |
Body Mass Index (kg/m2) | 24.1 ± 2.1 |
VO2Max (mL/kg/min) | 59.1 ± 5.2 |
Body Fat % | 14.8 ± 6.8 |
Fat Free % | 80.5 ± 15.3 |
Body Fat Mass (kg) | 11.5 ± 5.4 |
Body Fat Free Mass (kg) | 65.4 ± 7.4 |
Variable | Off/Off | Off/On | On/On | |
---|---|---|---|---|
HR (beats/min) | Pre | 56.0 ± 7.0 | 61.0 ± 8.0 # | 59.0 ± 6.5 |
Post | 86.0 ± 6.0 | 87.0 ± 6.0 | 87.0 ± 6.8 *,† | |
Core Temperature (°C) | Pre | 37.0 ± 0.5 | 37.2 ± 0.6 | 37.1 ± 0.7 |
Post | 38.0 ± 1.0 | 37.3 ± 1.6 | 37.8 ± 1.0 | |
MAP (mmHg) | Pre | 106 ± 11 | 109 ± 11 | 106 ± 10 |
Post | 101 ± 6 | 104 ± 8 | 99 ± 11 * | |
SBP (mmHg) | Pre | 124 ± 13 | 125 ±13 | 120 ±12 |
Post | 119 ± 10 | 120 ± 9 | 113 ± 16 | |
DBP (mmHg) | Pre | 85 ± 12 | 85 ± 12 | 86 ± 10 |
Post | 81 ± 8 | 80 ± 10 | 80 ± 10* | |
LnRMSSD (a.u.) | Pre | 4.6 ± 0.4 | 4.5 ± 0.4 | 4.56 ± 0.5 |
Post | 3.4 ± 0.5 | 3.5 ± 0.7 | 3.4 ± 0.6 * | |
SDNN (ms) | Pre | 159.0 ± 65.4 | 133.8 ± 36.3 | 146.5 ± 45.6 |
Post | 59.6 ± 28.2 | 64.1 ± 45.1 | 64.5 ± 29.1 * | |
TS (0–8) | Pre | 3.4 ± 0.6 | 3.2 ± 0.4 | 3.5 ± 0.6 |
Post | 4.6 ± 0.9 | 4.2 ± 1.2 | 4.5 ± 0.8* | |
RPE (1–10) | Pre | 2.0 ±1.0 | 1.5 ± 0.7 | 2.0 ± 0.6 |
Post | 4.5 ± 1.6 | 5.0 ± 2.0 | 4.0 ± 2.0 * | |
Fatigue (VAS 1–10) | Pre | 1.4 ± 1.3 | 1.7 ± 1.1 | 1.2 ± 1.0 |
Post | 6.2 ± 1.8 | 6.4 ± 1.6 | 5.3 ± 2.5 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denby, K.; Caruso, R.; Schlicht, E.; Ives, S.J. The Impact of Wrist Percooling on Physiological and Perceptual Responses during a Running Time Trial Performance in the Heat. Int. J. Environ. Res. Public Health 2020, 17, 7559. https://doi.org/10.3390/ijerph17207559
Denby K, Caruso R, Schlicht E, Ives SJ. The Impact of Wrist Percooling on Physiological and Perceptual Responses during a Running Time Trial Performance in the Heat. International Journal of Environmental Research and Public Health. 2020; 17(20):7559. https://doi.org/10.3390/ijerph17207559
Chicago/Turabian StyleDenby, Kelsey, Ronald Caruso, Emily Schlicht, and Stephen J. Ives. 2020. "The Impact of Wrist Percooling on Physiological and Perceptual Responses during a Running Time Trial Performance in the Heat" International Journal of Environmental Research and Public Health 17, no. 20: 7559. https://doi.org/10.3390/ijerph17207559
APA StyleDenby, K., Caruso, R., Schlicht, E., & Ives, S. J. (2020). The Impact of Wrist Percooling on Physiological and Perceptual Responses during a Running Time Trial Performance in the Heat. International Journal of Environmental Research and Public Health, 17(20), 7559. https://doi.org/10.3390/ijerph17207559