The Characteristics, Sources, and Health Risks of Volatile Organic Compounds in an Industrial Area of Nanjing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location
2.2. Chemical Analysis
2.3. Data Analysis
2.3.1. Ozone Formation Potential (OFP)
2.3.2. Ozone Sensitivity Analysis
2.3.3. Source Apportionment
2.3.4. Risk Characterization
3. Results and Discussion
3.1. Concentration Level and Composition Characteristics of VOCs
3.2. Chemical Reactivity Evaluation
3.3. Potential Source Identification
3.3.1. PMF Model Analysis
3.3.2. Potential Source Contribution Analysis
3.4. Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mangotra, A.; Singh, S.K. Volatile organic compounds: A threat to the environment and health hazards to living organisms-A review. J. Biotechnol. 2024, 382, 51–69. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Kong, S.; Chen, N.; Niu, Z.; Zhang, Y.; Jiang, S.; Yan, Y.; Qi, S. Source apportionment of volatile organic compounds: Implications to reactivity, ozone formation, and secondary organic aerosol potential. Atmos. Res. 2021, 249, 105344. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Jing, S.; Peng, Y.; Gao, Y.; Yan, R.; Wang, Q.; Lou, S.; Cheng, T.; Huang, C. Strong regional transport of volatile organic compounds (VOCs) during wintertime in Shanghai megacity of China. Atmos. Environ. 2021, 244, 117940. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Y.; Zhao, Y.; Zang, X.; Xie, H.; Yang, J.; Zhang, W.; Wu, G.; Li, G.; Yang, X.; et al. Effects of isoprene on the ozonolysis of Δ3-carene and β-caryophyllene: Mechanisms of secondary organic aerosol formation and cross-dimerization. J. Environ. Sci. 2025, 150, 556–570. [Google Scholar] [CrossRef]
- Wang, X.; Liu, G.; Hu, R.; Zhang, H.; Zhang, M.; Zhang, F. Distribution, sources, and health risk assessment of volatile organic compounds in Hefei city. Arch. Environ. Contam. Toxicol. 2020, 78, 392–400. [Google Scholar] [CrossRef]
- Ghaffari, H.R.; Kamari, Z.; Hassanvand, M.S.; Fazlzadeh, M.; Heidari, M. Level of air BTEX in urban, rural and industrial regions of Bandar Abbas, Iran; indoor-outdoor relationships and probabilistic health risk assessment. Environ. Res. 2021, 200, 111745. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M. Emerging processes for soil and groundwater cleanup—Potential benefits and risks. Environ. Eng. Manage. J. 2009, 8, 1293–1307. [Google Scholar] [CrossRef]
- Jia, Q. Urban air quality assessment method based on GIS technology. Appl. Ecol. Env. Res. 2019, 17, 9367–9375. [Google Scholar] [CrossRef]
- Long, R.W.; Whitehill, A.; Habel, A.; Urbanski, S.; Halliday, H.; Colón, M.; Kaushik, S.; Landis, M.S. Comparison of ozone measurement methods in biomass burning smoke: An evaluation under field and laboratory conditions. Atmos. Meas. Tech. 2021, 14, 1783–1800. [Google Scholar] [CrossRef]
- Tassi, F.; Capaccioni, B.; Capecchiacci, F.; Vaselli, O. Non-methane Volatile Organic Compounds (VOCs) at El Chichon volcano (Chiapas, Mexico): Geochemical features, origin and behavior. Geofis. Int. 2009, 48, 85–95. [Google Scholar] [CrossRef]
- Hsu, C.; Chiang, H.; Shie, R.; Ku, C.; Lin, T.; Chen, M.; Chen, N.; Chen, Y. Ambient VOCs in residential areas near a large-scale petrochemical complex: Spatiotemporal variation, source apportionment and health risk. Environ. Pollut. 2018, 240, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Huang, W.; Zhang, Y.; Zheng, C.; Jiang, X.; Gao, X.; Cen, K. Characteristics and Uncertainty of Industrial VOCs Emissions in China. Aerosol Air Qual. Res. 2015, 15, 1045–1058. [Google Scholar] [CrossRef]
- Cao, L.; Men, Q.; Zhang, Z.; Yue, H.; Cui, S.; Huang, X.; Zhang, Y.; Wang, J.; Chen, M.; Li, H. Significance of volatile organic compounds to secondary pollution formation and health risks observed during a summer campaign in an industrial urban area. Toxics 2024, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Kong, S.; Zheng, H.; Hu, Y.; Zheng, S.; Cheng, Y.; Yao, L.; Liu, W.; Ding, F.; Liu, X.; et al. Differences in compositions and effects of VOCs from vehicle emission detected using various methods. Environ. Pollut. 2023, 333, 122077. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Zhang, Y.; Xia, Z.; Fan, G.; Zhao, M.; Sun, X.; Liu, Y.; Chen, T.; Shen, H.; Zhang, Z.; et al. Two-year online measurements of volatile organic compounds (VOCs) at four sites in a Chinese city: Significant impact of petrochemical industry. Sci. Total Environ. 2023, 858, 159951. [Google Scholar] [CrossRef] [PubMed]
- Gkatzelis, G.I.; Coggon, M.M.; McDonald, B.C.; Peischl, J.; Gilman, J.B.; Aikin, K.C.; Robinson, M.A.; Canonaco, F.; Prevot, A.S.H.; Trainer, M.; et al. Observations confirm that volatile chemical products are a major source of petrochemical emissions in US Cities. Environ. Sci. Technol. 2021, 55, 4332–4343. [Google Scholar] [CrossRef]
- Li, X.; Yuan, B.; Wang, S.; Wang, C.; Lan, J.; Liu, Z.; Song, Y.; He, X.; Huangfu, Y.; Pei, C. Variations and sources of volatile organic compounds (VOCs) in urban region: Insights from measurements on a tall tower. Atmos. Chem. Phys. 2022, 22, 10567–10587. [Google Scholar] [CrossRef]
- Liang, X.; Chen, X.; Zhang, J.; Shi, T.; Sun, X.; Fan, L.; Wang, L.; Ye, D. Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China. Atmos. Environ. 2017, 162, 115–126. [Google Scholar] [CrossRef]
- Qiu, K.; Yang, L.; Lin, J.; Wang, P.; Yang, Y.; Ye, D.; Wang, L. Historical industrial emissions of non-methane volatile organic compounds in China for the period of 1980–2010. Atmos. Environ. 2014, 86, 102–112. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Zheng, B.; Tong, D.; Lei, Y.; Liu, F.; Hong, C.; Kang, S.; Yan, L.; Zhang, Y.; et al. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: Drivers, speciation and ozone formation potential. Atmos. Chem. Phys. 2019, 19, 8897–8913. [Google Scholar] [CrossRef]
- Lu, K.; Guo, S.; Tan, Z.; Wang, H.; Shang, D.; Liu, Y.; Li, X.; Wu, Z.; Hu, M.; Zhang, Y. Exploring atmospheric free-radical chemistry in China: The self-cleansing capacity and the formation of secondary air pollution. Natl. Sci. Rev. 2019, 6, 579–594. [Google Scholar] [CrossRef] [PubMed]
- Pinthong, N.; Thepanondh, S. Source Identification of VOCs and their Environmental Health Risk in a Petrochemical Industrial Area. Aerosol Air Qual. Res. 2022, 22, 210064. [Google Scholar] [CrossRef]
- Fang, W.; Huang, Y.; Ding, Y.; Qi, G.; Liu, Y.; Bi, J. Health risks of odorous compounds during the whole process of municipal solid waste collection and treatment in China. Environ. Int. 2022, 158, 106951. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tan, Y.; Guo, M.; Cheng, M.; Gu, Y.; Chen, S.; Wu, X.; Chai, F. Prospect of China’s ambient air quality standards. J. Environ. Sci. 2023, 123, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.L.; Liu, Z.G.; Li, Z.A.; Sun, Y.C.; Wang, C.; Zhu, C.Y.; Sun, L.; Yang, N.; Bai, G.; Fan, G.L.; et al. Characteristics, chemical transformation and source apportionment of volatile organic compounds (VOCs) during wintertime at a suburban site in a provincial capital city, east China. Atmos. Environ. 2023, 298, 119621. [Google Scholar] [CrossRef]
- Geng, F.; Zhang, Q.; Tie, X.; Huang, M.; Ma, X.; Deng, Z.; Yu, Q.; Quan, J.; Zhao, C. Aircraft measurements of O3, NOx, CO, VOCs, and SO2 in the Yangtze River Delta region. Atmos. Environ. 2009, 43, 584–593. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, L.; Carter, W.P.L.; Pei, C.; Chen, T.; Mu, J.; Wang, Y.; Zhang, Q.; Wang, W. Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity. Atmos. Chem. Phys. 2021, 21, 11053–11068. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of a condensed SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5336–5345. [Google Scholar] [CrossRef]
- Kim, M.J.; Park, R.J.; Kim, J.J. Urban air quality modeling with full O3–NOx–VOC chemistry: Implications for O3 and PM air quality in a street canyon. Atmos. Environ. 2012, 47, 330–340. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Z.; Ji, Y.; Chen, T.; Li, H.; Gao, R.; Xue, L.; Wang, Y.; Zhao, Y.; Yang, X. Comparison of the ozone formation mechanisms and VOCs apportionment in different ozone pollution episodes in urban Beijing in 2019 and 2020: Insights for ozone pollution control strategies. Sci. Total Environ. 2023, 908, 168332. [Google Scholar] [CrossRef]
- Via, M.; Yus-Díez, J.; Canonaco, F.; Petit, J.E.; Hopke, P.; Reche, C.; Pandolfi, M.; Ivančič, M.; Rigler, M.; Prevôt, A.S.; et al. Towards a better understanding of fine PM sources: Online and offline datasets combination in a single PMF. Environ. Int. 2023, 177, 108006. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, B.; Meng, H.; Dai, Q.; Shi, L.; Song, S.; Feng, Y.; Hopke, P. Changes in source apportioned VOCs during high O3 periods using initial VOC-concentration-dispersion normalized PMF. Sci. Total Environ. 2023, 896, 165182. [Google Scholar] [CrossRef]
- Brown, S.G.; Eberly, S.; Paatero, P.; Norris, G.A. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Sci. Total Environ. 2015, 518–519, 626–635. [Google Scholar] [CrossRef]
- Jia, J.; Wang, J.; Jin, W.; Yu, N.; Gong, S.; Ni, J.; Zhang, X.; Zhou, L. Inter-annual variability and health risk assessment of summer VOCs in a Plain City of China. Atmos. Environ. 2024, 337, 120790. [Google Scholar] [CrossRef]
- Dimitriou, K.; Grivas, G.; Liakakou, E.; Gerasopoulos, E.; Mihalopoulos, N. Assessing the contribution of regional sources to urban air pollution by applying 3D-PSCF modeling. Atmos. Res. 2021, 248, 105187. [Google Scholar] [CrossRef]
- Kulshrestha, U.C.; Raman, R.S.; Kulshrestha, M.J.; Rao, T.N.; Hazarika, P.J. Secondary aerosol formation and identification of regional source locations by PSCF analysis in the Indo-Gangetic region of India. J. Atmos. Chem. 2009, 63, 33–47. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, X.; Zhang, Y.; Tan, Q.; Feng, M.; Qu, Y.; An, J.; Deng, Y.; Zhai, R.; Wang, Z.; et al. Characteristics, source apportionment and chemical conversions of VOCs based on a comprehensive summer observation experiment in Beijing. Atmos. Pollut. Res. 2021, 12, 183–194. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, J.; Han, L.; Tian, W.; Wang, C.; Li, Y.; Chen, J. Source apportionment of VOCs and ozone formation potential and transport in Chengdu, China. Atmos. Pollut. Res. 2023, 14, 101730. [Google Scholar] [CrossRef]
- Xiong, Y.; Bari, M.A.; Xing, Z.Y.; Du, K. Ambient volatile organic compounds (VOCs) in two coastal cities in western Canada: Spatiotemporal variation, source apportionment, and health risk assessment. Sci. Total Environ. 2020, 706, 135970. [Google Scholar] [CrossRef]
- Xie, G.; Chen, H.; Zhang, F.; Shang, X.; Zhan, B.; Zeng, L.; Mu, Y.J.; Mellouki, A.; Tang, X.; Chen, J. Compositions, sources, and potential health risks of volatile organic compounds in the heavily polluted rural North China Plain during the heating season. Sci. Total Environ. 2021, 789, 147956. [Google Scholar] [CrossRef]
- Yu, S.; Su, F.; Yin, S.; Wang, S.; Xu, R.; He, B.; Fan, X.; Yuan, M.; Zhang, R. Characterization of ambient volatile organic compounds, source apportionment, and the ozone–NOx–VOC sensitivities in a heavily polluted megacity of central China: Effect of sporting events and emission reductions. Atmos. Chem. Phys. 2021, 21, 15239–15257. [Google Scholar] [CrossRef]
- Zhang, H.; Ji, Y.; Wu, Z.; Peng, L.; Bao, J.; Peng, Z.; Li, H. Atmospheric volatile halogenated hydrocarbons in air pollution episodes in an urban area of Beijing: Characterization, health risk assessment and sources apportionment. Sci. Total Environ. 2022, 806, 150283. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Zhao, X.; Wang, B.; Chen, Y.; Cao, S. Highlights of the Chinese Exposure Factors Handbook; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Dai, L.; Meng, J.; Zhao, X.; Li, Q.; Shi, B.; Wu, M.; Zhang, Q.; Su, G.; Hu, J.; Shu, X. High-spatial-resolution VOCs emission from the petrochemical industries and its differential regional effect on soil in typical economic zones of China. Sci. Total Environ. 2022, 827, 154318. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Tang, G.; Wang, Y.; Yang, Y.; Wang, L.; Chen, T.; He, H.; Wang, Y. Significant contribution of spring northwest transport to volatile organic compounds in Beijing. J. Environ. Sci. 2021, 104, 169–181. [Google Scholar] [CrossRef]
- Cai, C.; Geng, F.; Tie, X.; Yu, Q.; An, J. Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmos. Environ. 2010, 44, 5005–5014. [Google Scholar] [CrossRef]
- Hui, L.; Liu, X.; Tan, Q.; Feng, M.; An, J.; Qu, Y.; Zhang, Y.; Deng, Y.; Zhai, R.; Wang, Z. VOC characteristics, chemical reactivity and sources in urban Wuhan, central China. Atmos. Environ. 2020, 224, 117340. [Google Scholar] [CrossRef]
- Hui, L.; Liu, X.; Tan, Q.; Feng, M.; An, J.; Qu, Y.; Zhang, Y.; Jiang, M. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China. Atmos. Environ. 2018, 192, 55–71. [Google Scholar] [CrossRef]
- Liao, D.; Wang, L.; Wang, Y.; Lin, C.; Chen, J.; Huang, H.; Zhuang, Z.; Choi, S.-D.; Hong, Y. Health risks and environmental influence of volatile organic compounds (VOCs) in a residential area near an industrial park in Southeast China. Atmos. Pollut. Res. 2024, 15, 101966. [Google Scholar] [CrossRef]
- Yuan, C.; Cheng, W.; Huang, H. Spatiotemporal distribution characteristics and potential sources of VOCs at an industrial harbor city in southern Taiwan: Three-year VOCs monitoring data analysis. J. Environ. Manag. 2022, 303, 114259. [Google Scholar] [CrossRef]
- Zhou, Z.; Xiao, L.; Fei, L.; Yu, W.; Lin, M.; Huang, J.; Zhang, Z.; Tao, J. Characteristics and source apportionment of volatile organic compounds (VOCs) in a typical industrial area in Dongguan during periods of ozone and non-ozone pollution in summer. Environ. Sci. 2022, 43, 4497–4505. [Google Scholar] [CrossRef]
- Keim, W. Petrochemicals: Raw material change from fossil to biomass? Pet. Chem. 2010, 50, 298–304. [Google Scholar] [CrossRef]
- Tsai, J.H.; How, V.; Wang, W.; Chiang, H.L. Characteristics of airborne pollutants in the area of an agricultural-industrial complex near a petrochemical industry facility. Atmosphere 2023, 14, 803. [Google Scholar] [CrossRef]
- Hasan, A.O.; Abu-Jrai, A.; Al-Muhtaseb, A.A.H.; Tsolakis, A.; Xu, H. Formaldehyde, acetaldehyde and other aldehyde emissions from HCCI/SI gasoline engine equipped with prototype catalyst. Fuel 2016, 175, 249–256. [Google Scholar] [CrossRef]
- Chen, Z.; Li, R.; Chen, D.; Zhuang, Y.; Gao, B.; Yang, L.; Li, M. Understanding the causal influence of major meteorological factors on ground ozone concentrations across China. J. Cleaner Prod. 2020, 242, 118498. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.; Wang, H.; Mengyun, L.; Li, H.; Wang, P.; Yue, X.; Li, K.; Zhu, J.; Liao, H. Meteorological characteristics of extreme ozone pollution events in China and their future predictions. Atmos. Chem. Phys. 2024, 24, 1177–1191. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, X.; Zhang, Y.; Zhang, X.; Wu, J.; Sheng, X.; Chen, F.; Chen, L.; Ge, X.; Wu, H. Characteristics of air pollution complex in a typical chemical industrial development zone in eastern China. Atmos. Environ. 2024, 319, 120274. [Google Scholar] [CrossRef]
- Seinfeld, J.H. Urban Air Pollution: State of the Science. Science 1989, 243, 745–752. [Google Scholar] [CrossRef]
- Yu, W.; Shen, X.; Yao, Z.; Cao, X.; Hao, X.; Li, X.; Wu, B.; Zhang, H.; Wang, S.; Zhou, Q. Database of emission factors of volatile organic compound (VOC) species in motor vehicle exhaust in China. Sci. Total Environ. 2024, 914, 169844. [Google Scholar] [CrossRef]
- Liu, B.; Liang, D.; Yang, J.; Dai, Q.; Bi, X.; Feng, Y.; Yuan, J.; Xiao, Z.; Zhang, Y.; Xu, H. Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China. Environ. Pollut. 2016, 218, 757–769. [Google Scholar] [CrossRef]
- Martienssen, M.; Fabritius, H.; Kukla, S.; Balcke, G.U.; Hasselwander, E.; Schirmer, M. Determination of naturally occurring MTBE biodegradation by analysing metabolites and biodegradation by-products. J. Contam. Hydrol. 2006, 87, 37–53. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Bonfiglioli, R.; Carnevali, L.; Di Lello, M.; Violante, F.S. Bilateral hearing loss after dichloromethane poisoning: A case report. Am. J. Ind. Med. 2014, 57, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Prabu, M.; Sharma, S.; Raja, A.; Archana, R.; Samruddhi, M.; Raja, T. Nitric acid free cyclohexane to adipic acid production using nickel and vanadium incorporated AlPO-5 molecular sieve. Mol. Catal. 2023, 540, 113051. [Google Scholar] [CrossRef]
- Firouzi, E.; Hajifatheali, H.; Ahmadi, E.; Marefat, M. An overview of acrylonitrile production methods: Comparison of carbon fiber precursors and marketing. Mini-Rev. Org. Chem. 2020, 17, 570–588. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, M.S.; Wang, M.Y.; Fan, C.Y.; Tao, L.; Ma, W.Q.; Sui, S.B.; Liu, T.; Jia, L.H.; Guo, X.M. Revealing the dual impact of VOCs on recycled rubber workers: Health risk and odor perception. Ecotoxicol. Environ. Safe 2024, 283, 116824. [Google Scholar] [CrossRef]
- Cheng, L.; Wei, W.; Guo, A.; Zhang, C.; Sha, K.; Wang, R.; Wang, K.; Cheng, S. Health risk assessment of hazardous VOCs and its associations with exposure duration and protection measures for coking industry workers. J. Cleaner Prod. 2022, 379, 134919. [Google Scholar] [CrossRef]
- Higashino, H.; Mita, K.; Yoshikado, H.; Wata, M.; Nakanishi, J. Exposure and risk assessment of 1,3-butadiene in Japan. Chem. Biol. Interact. 2007, 166, 52–62. [Google Scholar] [CrossRef]
- U.S. EPA (United States Environmental Protection Agency). Indoor Air Quality (IAQ): Technical Overview of Volatile Organic Compounds; EPA: Washington, DC, USA, 2017. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, T.; Xu, X.; Gu, H.; Cao, L.; Liu, T.; Zhang, Y.; Wang, J.; Chen, M.; Li, H.; Ge, X. The Characteristics, Sources, and Health Risks of Volatile Organic Compounds in an Industrial Area of Nanjing. Toxics 2024, 12, 868. https://doi.org/10.3390/toxics12120868
Tan T, Xu X, Gu H, Cao L, Liu T, Zhang Y, Wang J, Chen M, Li H, Ge X. The Characteristics, Sources, and Health Risks of Volatile Organic Compounds in an Industrial Area of Nanjing. Toxics. 2024; 12(12):868. https://doi.org/10.3390/toxics12120868
Chicago/Turabian StyleTan, Tao, Xinyuan Xu, Haixin Gu, Li Cao, Ting Liu, Yunjiang Zhang, Junfeng Wang, Mindong Chen, Haiwei Li, and Xinlei Ge. 2024. "The Characteristics, Sources, and Health Risks of Volatile Organic Compounds in an Industrial Area of Nanjing" Toxics 12, no. 12: 868. https://doi.org/10.3390/toxics12120868
APA StyleTan, T., Xu, X., Gu, H., Cao, L., Liu, T., Zhang, Y., Wang, J., Chen, M., Li, H., & Ge, X. (2024). The Characteristics, Sources, and Health Risks of Volatile Organic Compounds in an Industrial Area of Nanjing. Toxics, 12(12), 868. https://doi.org/10.3390/toxics12120868