Deep Learning and Recurrence Information Analysis for the Automatic Detection of Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Methods
2.1. Databases
2.1.1. Apnea-ECG Database
2.1.2. MIT-BIH Polysomnographic Database
2.1.3. University College Dublin Sleep Apnea Database
2.2. Data Labeling
2.3. Signal Processing
2.4. RP-Based Representation of the HRV Signal
- represents the phase space trajectory matrix.
- denotes individual state vectors within the phase space.
- refers to the time series values at different time points.
- is the time delay, determining the temporal separation between consecutive elements in each state vector.
- m represents the embedding dimension, indicating the number of components in each state vector.
- k signifies the number of state vectors constructed from the time series.
2.5. OSA Detection Based on Deep Learning Techniques
2.6. OSA Detection Based on Machine Learning Techniques
- Recurrence rate (REC): percentage of points in the plot that represent recurrences or instances where the system revisits a similar state.
- Determinism (DET): percentage of recurrence points which form diagonal lines.
- Shannon entropy (ENTR): Shannon entropy of the probability distribution of the diagonal line lengths.
- Average diagonal line length (L): average length of all diagonal lines within an RP.
- Divergence (DIV): inverse of the length of the longest diagonal line, which also corresponds to the sum of the positive Lyapunov exponents [51].
2.7. Other OSA Detectors Based on Time–Frequency Analysis
2.8. Training and Testing of the OSA Detectors
3. Results
4. Discussion
Future Work
Ref. | Year | Authors | Databases | Methodology | Classifiers | Validation | Ac (%) | Se (%) | Sp (%) |
---|---|---|---|---|---|---|---|---|---|
[30] | 2011 | Acharya et al. | UCD-DB | Nonlinear features from ECG: ApEn, fractal dimension, correlation dimension, Lyapunov exponents, Hurst exponents | ANN | 3-fold cross-validation | 89.1 | 100.0 | 95.0 |
[22] | 2014 | Nguyen et al. | Apnea-ECG (released set) | Recurrence Quantificantion Analysis (RQA) from HRV with Fixed Amount of Neighbor thresholding | SVM, ANN | 3-fold cross-validation | 85.26 | 86.37 | 83.47 |
[90] | 2016 | Cheng et al. | Apnea-ECG (released set) | Heterogeneous Recurrence Analysis on HRV series with PCA | LR | Average of 100 iterations of randomly selected training and testing datasets | 85.0 | 83.0 | 82.0 |
[23] | 2016 | Le and Bukkapatnam | Apnea-ECG (released set), UCD-DB, Custom recorded | Characterization of the HRV state space with RP (RQA) | SVM | Tested on Apnea-ECG and custom dataset | 83.6 | - | - |
[87] | 2017 | Martín-Gonzalez et al. | Apnea-ECG, HuGCDN2014 | Filterbank, Cepstrum, DFA, and QDA on HRV | LDA, QDA, LR | Apnea-ECG as Training set, HuGCDN2014 as Testing set | 84.76 | 81.45 | 86.82 |
[24] | 2018 | Martín-Gonzalez et al. | Apnea-ECG, HuGCDN2014 | Recurrence Quantification Analysis (RQA) based on HRV obtained with Fixed Amount of Neighbors (FAN) algorithm (5%) | LDA | Train with Apnea-ECG, test with HuGCDN2014 | 86.33 | - | - |
[18] | 2021 | Taghizadegan et al. | MIT-BIH, UCD-DB | Reproduce RP from ECG, EEG, and respiration signals. Transfer learning with fine-tuning and Weighted Majority Voting (WMV) | CNN | 10-fold cross-validation on MIT-BIH | 90.72 | 89.61 | 89.29 |
[91] | 2021 | Mukherjee et al. | Apnea-ECG | Three different CNN models: Wang, Sharan and Almutairi’s models. All adapted to input 1-D ECG signal | CNN | Used original training (released) and testing (withheld) proportion | 85.58 | 88.26 | - |
[31] | 2022 | Ayatollahi et al. | Apnea-ECG | Custom CNN, ECG’s distance matrix as input | CNN | 5-fold cross-validation | 93.33 | - | 93.6 |
- | 2024 | Padovano et al. | Apnea-ECG, MIT-BIH, UCD-DB | Custom CNN, HRV’s DM as input | CNN | External validation | 74.72 | 73.99 | 75.17 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rundo, J.V. Obstructive sleep apnea basics. Clevel. Clin. J. Med. 2019, 86, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Veasey, S.C.; Rosen, I.M. Obstructive Sleep Apnea in Adults. N. Engl. J. Med. 2019, 380, 1442–1449. [Google Scholar] [CrossRef] [PubMed]
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of Obstructive Sleep Apnea in the General Population: A Systematic Review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K.; et al. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e56–e67. [Google Scholar] [CrossRef]
- Word Health Organization. Noncommunicable Diseases Country Profiles 2018; Publications on NCDs; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Bahrami, M.; Forouzanfar, M. Sleep Apnea Detection from Single-Lead ECG: A Comprehensive Analysis of Machine Learning and Deep Learning Algorithms. IEEE Trans. Instrum. Meas. 2022, 71, 4003011. [Google Scholar] [CrossRef]
- JeyaJothi, E.S.; Anitha, J.; Rani, S.; Tiwari, B. A Comprehensive Review: Computational Models for Obstructive Sleep Apnea Detection in Biomedical Applications. BioMed Res. Int. 2022, 2022, e7242667. [Google Scholar] [CrossRef] [PubMed]
- Bsoul, M.; Minn, H.; Tamil, L. Apnea MedAssist: Real-Time Sleep Apnea Monitor Using Single-Lead ECG. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 416–427. [Google Scholar] [CrossRef]
- Mannarino, M.R.; Di Filippo, F.; Pirro, M. Obstructive Sleep Apnea Syndrome. Eur. J. Intern. Med. 2012, 23, 586–593. [Google Scholar] [CrossRef]
- Ucak, S.; Dissanayake, H.U.; Sutherland, K.; de Chazal, P.; Cistulli, P.A. Heart Rate Variability and Obstructive Sleep Apnea: Current Perspectives and Novel Technologies. J. Sleep Res. 2021, 30, e13274. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Sica, A.L.; Wang, J.; Lakticova, V.; Greenberg, H.E. Respiratory Effort-Related Arousals Contribute to Sympathetic Modulation of Heart Rate Variability. Sleep Breath. 2013, 17, 1193–1200. [Google Scholar] [CrossRef] [PubMed]
- Neha; Sardana, H.K.; Kanwade, R.; Tewary, S. Arrhythmia Detection and Classification Using ECG and PPG Techniques: A Review. Phys. Eng. Sci. Med. 2021, 44, 1027–1048. [Google Scholar] [CrossRef]
- Chang, H.Y.; Yeh, C.Y.; Lee, C.T.; Lin, C.C. A Sleep Apnea Detection System Based on a One-Dimensional Deep Convolution Neural Network Model Using Single-Lead Electrocardiogram. Sensors 2020, 20, 4157. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.H.; Wu, D.; Li, C.; Zhang, H.; Zhang, Y.T. Comparison of Heart Rate Variability from PPG with That from ECG. In Proceedings of the International Conference on Health Informatics (ICHI 2013), Vilamoura, Portugal, 7–9 November 2013; IFMBE, Proceedings. Zhang, Y.T., Ed.; Springer: Cham, Switzerland, 2014; pp. 213–215. [Google Scholar] [CrossRef]
- Camm, J. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart Rate Variability: Standarts of Measurement, Physiological Interpretation and Clinical Use. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Sheta, A.; Turabieh, H.; Thaher, T.; Too, J.; Mafarja, M.; Hossain, M.S.; Surani, S.R. Diagnosis of Obstructive Sleep Apnea from ECG Signals Using Machine Learning and Deep Learning Classifiers. Appl. Sci. 2021, 11, 6622. [Google Scholar] [CrossRef]
- Yang, Q.; Zou, L.; Wei, K.; Liu, G. Obstructive Sleep Apnea Detection from Single-Lead Electrocardiogram Signals Using One-Dimensional Squeeze-and-Excitation Residual Group Network. Comput. Biol. Med. 2022, 140, 105124. [Google Scholar] [CrossRef] [PubMed]
- Taghizadegan, Y.; Jafarnia Dabanloo, N.; Maghooli, K.; Sheikhani, A. Obstructive Sleep Apnea Event Prediction Using Recurrence Plots and Convolutional Neural Networks (RP-CNNs) from Polysomnographic Signals. Biomed. Signal Process. Control 2021, 69, 102928. [Google Scholar] [CrossRef]
- Dong, Z.; Li, X.; Chen, W. Frequency Network Analysis of Heart Rate Variability for Obstructive Apnea Patient Detection. IEEE J. Biomed. Health Inform. 2018, 22, 1895–1905. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Liu, G. The Novel Approach of Temporal Dependency Complexity Analysis of Heart Rate Variability in Obstructive Sleep Apnea. Comput. Biol. Med. 2021, 135, 104632. [Google Scholar] [CrossRef]
- Zarei, A.; Asl, B.M. Automatic Detection of Obstructive Sleep Apnea Using Wavelet Transform and Entropy-Based Features from Single-Lead ECG Signal. IEEE J. Biomed. Health Inform. 2019, 23, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.D.; Wilkins, B.A.; Cheng, Q.; Benjamin, B.A. An Online Sleep Apnea Detection Method Based on Recurrence Quantification Analysis. IEEE J. Biomed. Health Inform. 2014, 18, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Le, T.Q.; Bukkapatnam, S.T.S. Nonlinear Dynamics Forecasting of Obstructive Sleep Apnea Onsets. PLoS ONE 2016, 11, e0164406. [Google Scholar] [CrossRef] [PubMed]
- Martín-González, S.; Navarro-Mesa, J.L.; Juliá-Serdá, G.; Ramírez-Ávila, G.M.; Ravelo-García, A.G. Improving the Understanding of Sleep Apnea Characterization Using recurrence quantification analysis by Defining OverallAcceptable Values for the Dimensionality of the System, the Delay, and the Distance Threshold. Public Libr. Sci. 2018, 13, e0194462. [Google Scholar] [CrossRef]
- Marwan, N.; Trauth, M.H.; Vuille, M.; Kurths, J. Comparing Modern and Pleistocene ENSO-like Influences in NW Argentina using Nonlinear Time Series Analysis Methods. Clim. Dyn. 2003, 21, 317–326. [Google Scholar] [CrossRef]
- Marwan, N.; Wessel, N.; Meyerfeldt, U.; Schirdewan, A.; Kurths, J. Recurrence-plot-based Measures of Complexity and their Application to Heart Rate Variability Data. Am. Phys. Soc. 2002, 66, 026702. [Google Scholar] [CrossRef] [PubMed]
- Marwan, N.; Carmen Romano, M.; Thiel, M.; Kurths, J. Recurrence Plots for the Analysis of Complex Systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Hummel, J.P.; Baher, A.; Buck, B.; Fanarjian, M.; Webber, C.L.; Akar, J.G. A Method for Quantifying Recurrent Patterns of Local Wavefront Direction During Atrial Fibrillation. Comput. Biol. Med. 2017, 89, 497–504. [Google Scholar] [CrossRef]
- Yang, H.; Bukkapatnam, S.T.; Komanduri, R. Spatiotemporal representation of cardiac vectorcardiogram (VCG) signals. Biomed. Eng. Online 2012, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Chua, E.C.P.; Faust, O.; Lim, T.C.; Lim, L.F.B. Automated detection of sleep apnea from electrocardiogram signals using nonlinear parameters. Physiol. Meas. 2011, 32, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Ayatollahi, A.; Afrakhteh, S.; Soltani, F.; Saleh, E. Sleep apnea detection from ECG signal using deep CNN-based structures. Evol. Syst. 2023, 14, 191–206. [Google Scholar] [CrossRef]
- Kraemer, K.H.; Marwan, N. Border effect corrections for diagonal line based recurrence quantification analysis measures. Phys. Lett. A 2019, 383, 125977. [Google Scholar] [CrossRef]
- Lee, H.; Lee, J.; Shin, M. Using Wearable ECG/PPG Sensors for Driver Drowsiness Detection Based on Distinguishable Pattern of Recurrence Plots. Electronics 2019, 8, 192. [Google Scholar] [CrossRef]
- Garcia-Ceja, E.; Uddin, M.Z.; Torresen, J. Classification of Recurrence Plots’ Distance Matrices with a Convolutional Neural Network for Activity Recognition. Procedia Comput. Sci. 2018, 130, 157–163. [Google Scholar] [CrossRef]
- Calderón-Juárez, M.; Gutiérrez Alvarado, D.A.; González Gómez, G.H.; Echeverría, J.C.; Arellano-Martínez, J.; Pérez-Granados, E.; López-Gil, S.; Campos-González, I.D.; Mariscal-Ramírez, L.A.; Pérez-Negrete, D.L.; et al. Recurrence Plot Analysis of Heart Rate Variability in End-Stage Renal Disease Treated Twice-Weekly by Hemodialysis With or Without Intradialytic Hypotension. Eur. Phys. J. Spec. Top. 2023, 232, 99–110. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef]
- Penzel, T.; Moody, G.B.; Mark, R.G.; Goldberger, A.L.; Peter, J.H. Apnea-ECG database. Comput. Cardiol. 2000, 27, 255–258. [Google Scholar] [CrossRef]
- Ichimaru, Y.; Moody, G.B. Development of the polysomnographic database on CD-ROM. Psychiatry Clin. Neurosci. 1999, 53, 175–177. [Google Scholar] [CrossRef] [PubMed]
- McNicholas, W.; Doherty, L.; Ryan, S.; Garvey, J.; Boyle, P.; Chua, E. St. Vincent’s University Hospital/University College Dublin Sleep Apnea Database. 2004. Available online: https://physionet.org/content/ucddb/1.0.0/ (accessed on 11 March 2024).
- Padovano, D.; Martinez-Rodrigo, A.; Pastor, J.M.; Rieta, J.J.; Alcaraz, R. On the Generalization of Sleep Apnea Detection Methods Based on Heart Rate Variability and Machine Learning. IEEE Access 2022, 10, 92710–92725. [Google Scholar] [CrossRef]
- Silber, M.H.; Ancoli, I.S.; Bonnet, M.H.; Chokroverty, S.; Grigg, D.M.M.; Hirshkowitz, M.; Kapen, S.; Keenan, S.A.; Kryger, M.H.; Penzel, T.; et al. The Visual Scoring of Sleep in Adults. J. Clin. Sleep Med. 2007, 3, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Thakur, R.S.; Yadav, R.N.; Gupta, L.; Raghuvanshi, D.K. Review of noise removal techniques in ECG signals. IET Signal Process. 2020, 14, 569–590. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, B.; Seema. Comparison of different approaches for removal of baseline wander from ECG signal. In Proceedings of the International Conference & Workshop on Emerging Trends in Technology, New York, NY, USA, 25–26 February 2011; ICWET ’11. pp. 1290–1294. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, BME-32, 230–236. [Google Scholar] [CrossRef]
- Noakes, L. The Takens Embedding Theorem. Int. J. Bifurc. Chaos 1991, 1, 867–872. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Comert, Z.; Deng, Y. Computer-Aided Diagnosis System of Fetal Hypoxia Incorporating Recurrence Plot with Convolutional Neural Network. Front. Physiol. 2019, 10, 255. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Eykholt, R.; Salas, J.D. Nonlinear Dynamics, Delay Times, and Embedding Windows. Phys. D Nonlinear Phenom. 1999, 127, 48–60. [Google Scholar] [CrossRef]
- Packard, N.H.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S. Geometry from a Time Series. Phys. Rev. Lett. 1980, 45, 712–716. [Google Scholar] [CrossRef]
- Wallot, S.; Mønster, D. Calculation of Average Mutual Information (AMI) and False-Nearest Neighbors (FNN) for the Estimation of Embedding Parameters of Multidimensional Time Series in Matlab. Front. Psychol. 2018, 9, 1679. [Google Scholar] [CrossRef]
- Henriques, T.; Ribeiro, M.; Teixeira, A.; Castro, L.; Antunes, L.; Costa-Santos, C. Nonlinear Methods Most Applied to Heart-Rate Time Series: A Review. Entropy 2020, 22, 309. [Google Scholar] [CrossRef]
- Marwan, N. Encounters with Neighbours: Current Developments of Concepts Based on Recurrence Plots and Their Applications. Ph.D. Thesis, Postdam University, Postdam, Germany, 2003. [Google Scholar]
- Maier, C.; Dickhaus, H. Recurrence Analysis of Nocturnal Heart Rate in Sleep Apnea Patients. Biomed. Eng. 2006, 51, 224–228. [Google Scholar] [CrossRef]
- Le, T.Q.; Cheng, C.; Sangasoongsong, A.; Wongdhamma, W.; Bukkapatnam, S.T.S. Wireless Wearable Multisensory Suite and Real-Time Prediction of Obstructive Sleep Apnea Episodes. IEEE J. Transl. Eng. Health Med. 2013, 1, 2700109. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope. Electronics 2021, 10, 2470. [Google Scholar] [CrossRef]
- Kayalibay, B.; Jensen, G.; van der Smagt, P. CNN-based Segmentation of Medical Imaging Data. arXiv 2017, arXiv:1701.03056. [Google Scholar]
- Kachkou, D.I. Language Modeling and Bidirectional Coders Representations: An Overview of Key Technologies. Informatics 2020, 17, 61–72. [Google Scholar] [CrossRef]
- Dixit, M.; Tiwari, A.; Pathak, H.; Astya, R. An Overview of Deep Learning Architectures, Libraries and its Applications Areas. In Proceedings of the 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida, India, 12–13 October 2018; pp. 293–297. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Nirthika, R.; Manivannan, S.; Ramanan, A.; Wang, R. Pooling in Convolutional Neural Networks for Medical Image Analysis: A Survey and an Empirical Study. Neural Comput. Appl. 2022, 34, 5321–5347. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.W.; Zhao, H.D.; Luo, X.L.; Xu, J. Research Progress on Batch Normalization of Deep Learning and Its Related Algorithms. Acta Autom. Sin. 2021, 46, 1090–1120. [Google Scholar] [CrossRef]
- Huang, L.; Qin, J.; Zhou, Y.; Zhu, F.; Liu, L.; Shao, L. Normalization Techniques in Training DNNs: Methodology, Analysis and Application. arXiv 2020, arXiv:2009.12836. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; JMLR Workshop and Conference Proceedings. pp. 249–256. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Information Science and Statistics (ISS); Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef]
- Iman, M.; Rasheed, K.; Arabnia, H.R. A Review of Deep Transfer Learning and Recent Advancements. arXiv 2022, arXiv:2201.09679. [Google Scholar]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Van Esesn, B.C.; Awwal, A.A.S.; Asari, V.K. The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches. arXiv 2018, arXiv:1803.01164. [Google Scholar]
- Berk, R.A. Classification and Regression Trees (CART). In Statistical Learning from a Regression Perspective; Springer Series in Statistics; Springer: New York, NY, USA, 2008; pp. 1–65. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wang, Y.W.; Setiawan, F.; Trang, N.T.H.; Lin, C.W. Sleep Apnea Classification Algorithm Development Using a Machine-Learning Framework and Bag-of-Features Derived from Electrocardiogram Spectrograms. J. Clin. Med. 2021, 11, 192. [Google Scholar] [CrossRef] [PubMed]
- Rioul, O.; Vetterli, M. Wavelets and Signal Processing. IEEE Signal Process. Mag. 1991, 8, 14–38. [Google Scholar] [CrossRef]
- Neto, O.P.; Oliveira Pinheiro, A.; Pereira, V.L.; Pereira, R.; Baltatu, O.C.; Campos, L.A. Morlet Wavelet Transforms of Heart Rate Variability for Autonomic Nervous System Activity. Appl. Comput. Harmon. Anal. 2016, 40, 200–206. [Google Scholar] [CrossRef]
- Tzabazis, A.; Eisenried, A.; Yeomans, D.C.; Hyatt, M.I. Wavelet Analysis of Heart Rate Variability: Impact of Wavelet Selection. Biomed. Signal Process. Control 2018, 40, 220–225. [Google Scholar] [CrossRef]
- Penzel, T.; Kantelhardt, J.; Becker, H.; Peter, J.; Bunde, A. Detrended Fluctuation Analysis and Spectral Analysis of Heart Rate Variability for Sleep Stage and Sleep Apnea Identification. In Proceedings of the Computers in Cardiology, Thessaloniki, Greece, 21–24 September 2003; pp. 307–310. [Google Scholar] [CrossRef]
- Jiao, Y.; Du, P. Performance Measures in Evaluating Machine Learning Based Bioinformatics Predictors for Classifications. Quant. Biol. 2016, 4, 320–330. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Br. J. Surg. 2015, 102, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Byrd, J.; Lipton, Z. What is the Effect of Importance Weighting in Deep Learning? In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 872–881. [Google Scholar]
- Tutunov, R.; Li, M.; Cowen-Rivers, A.I.; Wang, J.; Bou-Ammar, H. Compositional ADAM: An Adaptive Compositional Solver. arXiv 2020, arXiv:2002.03755. [Google Scholar]
- Mendonca, F.; Mostafa, S.S.; Ravelo-Garcia, A.G.; Morgado-Dias, F.; Penzel, T. A review of obstructive sleep apnea detection approaches. IEEE J. Biomed. Health Inform. 2018, 23, 825–837. [Google Scholar] [CrossRef]
- Tripathy, R.K. Application of intrinsic band function technique for automated detection of sleep apnea using HRV and EDR signals. Biocybern. Biomed. Eng. 2018, 38, 136–144. [Google Scholar] [CrossRef]
- Ferreira-Santos, D.; Amorim, P.; Martins, T.S.; Monteiro-Soares, M.; Rodrigues, P.P. Enabling Early Obstructive Sleep Apnea Diagnosis with Machine Learning: Systematic Review. J. Med. Internet Res. 2022, 24, e39452. [Google Scholar] [CrossRef]
- Mencar, C.; Gallo, C.; Mantero, M.; Tarsia, P.; Carpagnano, G.E.; Foschino Barbaro, M.P.; Lacedonia, D. Application of machine learning to predict obstructive sleep apnea syndrome severity. Health Inform. J. 2020, 26, 298–317. [Google Scholar] [CrossRef]
- Papini, G.B.; Fonseca, P.; Margarito, J.; van Gilst, M.M.; Overeem, S.; Bergmans, J.W.; Vullings, R. On the Generalizability of ECG-based Obstructive Sleep Apnea Monitoring: Merits and Limitations of the Apnea-ECG Database. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, HI, USA, 18–21 July 2018; pp. 6022–6025. [Google Scholar] [CrossRef]
- Leinonen, T.; Wong, D.; Vasankari, A.; Wahab, A.; Nadarajah, R.; Kaisti, M.; Airola, A. Empirical investigation of multi-source cross-validation in clinical ECG classification. Comput. Biol. Med. 2024, 183, 109271. [Google Scholar] [CrossRef]
- Varon, C.; Caicedo, A.; Testelmans, D.; Buyse, B.; Huffel, S.V. A novel algorithm for the automatic detection of sleep apnea from single-lead ECG. IEEE Trans. Biomed. Eng. 2015, 62, 2269–2278. [Google Scholar] [CrossRef]
- Martin-Gonzalez, S.; Navarro-Mesa, J.L.; Julia-Serda, G.; Kraemer, J.F.; Wessel, N.; Ravelo-Garcia, A.G. Heart rate variability feature selection in the presence of sleep apnea: An expert system for the characterization and detection of the disorder. Comput. Biol. Med. 2017, 91, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Steenbergen, N.; Glos, M.; Wessel, N.; Kraemer, J.; Penzel, T. The Different Facets of Heart Rate Variability in Obstructive Sleep Apnea. Front. Psychiatry 2021, 12, 1128. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Han, C.; Wang, L.; Li, X.; Cai, E.; Zhang, P. Surface roughness prediction of large shaft grinding via attentional CNN-LSTM fusing multiple process signals. Int. J. Adv. Manuf. Technol. 2023, 126, 4925–4936. [Google Scholar] [CrossRef]
- Cheng, M.; Sori, W.J.; Jiang, F.; Khan, A.; Liu, S. Recurrent Neural Network Based Classification of ECG Signal Features for Obstruction of Sleep Apnea Detection. In Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 21–24 July 2017; Volume 2, pp. 199–202. [Google Scholar] [CrossRef]
- Mukherjee, D.; Dhar, K.; Schwenker, F.; Sarkar, R. Ensemble of Deep Learning Models for Sleep Apnea Detection: An Experimental Study. Sensors 2021, 21, 5425. [Google Scholar] [CrossRef] [PubMed]
Class/DB | Apnea-ECG | MIT-BIH | UCD-DB |
---|---|---|---|
Apnea | 10,373 | 2841 | 3977 |
Normal | 15,971 | 1472 | 6359 |
Total | 26,344 | 4313 | 10,336 |
Layer | Type | Input Size | Output Size |
---|---|---|---|
1 | Input | 227 × 227 × 3 | 227 × 227 × 3 |
2 | Convolutional | 227 × 227 × 3 | 227 × 227 × 32 |
3 | Max Pooling | 227 × 227 × 32 | 114 × 114 × 32 |
4 | Convolutional (ReLU) | 114 × 114 × 32 | 114 × 114 × 64 |
5 | Max Pooling | 114 × 114 × 64 | 57 × 57 × 64 |
6 | Convolutional (ReLU) | 57 × 57 × 64 | 57 × 57 × 128 |
7 | Max Pooling | 57 × 57 × 128 | 28 × 28 × 128 |
8 | Fully Conn. (ReLU) | 28 × 28 × 128 | 256 |
9 | Fully Conn. (ReLU) | 256 | 2 |
10 | Fully Conn. (Softmax) | 2 | 2 |
L | Type (Activation) | Input Size | Output Size |
---|---|---|---|
1 | Input | 227 × 227 × 3 | 227 × 227 × 3 |
2 | Convolutional (ReLU) | 227 × 227 × 3 | 55 × 55 × 96 |
3 | Max Pooling | 55 × 55 × 96 | 27 × 27 × 96 |
4 | Convolutional (ReLU) | 27 × 27 × 96 | 27 × 27 × 256 |
5 | Max Pooling | 27 × 27 × 256 | 13 × 13 × 256 |
6 | Convolutional (ReLU) | 13 × 13 × 256 | 13 × 13 × 384 |
7 | Convolutional (ReLU) | 13 × 13 × 384 | 13 × 13 × 384 |
8 | Convolutional (ReLU) | 13 × 13 × 384 | 13 × 13 × 256 |
9 | Max Pooling | 13 × 13 × 256 | 6 × 6 × 256 |
10 | Fully Conn. (ReLU) | 6 × 6 × 256 | 4096 |
11 | Fully Conn. (ReLU) | 4096 | 4096 |
12 | Fully Conn. (Softmax) | 4096 | 2 |
Input | Model | Ac (%) | Se (%) | Sp (%) | PPV (%) | NPV (%) | F1 (%) |
---|---|---|---|---|---|---|---|
DM images | cuCNN | 68.11 | 66.44 | 69.14 | 57.05 | 76.96 | 61.39 |
AlexNet | 64.86 | 68.29 | 62.74 | 53.06 | 76.23 | 59.72 | |
AlexNet (pre-trained) | 74.72 | 73.99 | 75.17 | 65.02 | 82.41 | 69.40 | |
RP images | cuCNN | 68.72 | 66.52 | 70.07 | 57.82 | 77.23 | 61.87 |
AlexNet | 68.97 | 62.95 | 72.69 | 58.71 | 76.08 | 60.75 | |
AlexNet (pre-trained) | 67.65 | 62.54 | 70.80 | 56.92 | 75.39 | 59.60 | |
CWT images | cuCNN | 64.11 | 68.52 | 62.39 | 52.26 | 40.78 | 59.30 |
AlexNet | 60.94 | 81.50 | 48.25 | 49.28 | 80.87 | 61.42 | |
AlexNet (pre-trained) | 64.14 | 60.48 | 66.39 | 52.61 | 35.98 | 56.27 |
Input | # Features | Model | Ac (%) | Se (%) | Sp (%) | PPV (%) | NPV (%) | F1 (%) |
---|---|---|---|---|---|---|---|---|
5 | SVM | 68.41 | 21.69 | 89.06 | 46.70 | 72.01 | 29.62 | |
5 | KNN | 62.35 | 33.32 | 75.18 | 37.24 | 71.84 | 35.17 | |
RQA features | 5 | DT | 59.38 | 41.26 | 67.39 | 35.87 | 72.19 | 38.37 |
5 | BAG | 62.76 | 32.18 | 76.28 | 37.48 | 71.79 | 34.63 | |
5 | ADA | 66.45 | 27.84 | 83.52 | 42.75 | 72.37 | 33.72 | |
Time, | 4 | SVM | 63.82 | 59.65 | 70.42 | 76.13 | 52.45 | 55.82 |
frequency, | 11 | KNN | 61.81 | 62.23 | 59.58 | 71.22 | 50.60 | 56.21 |
and complexity | 5 | DT | 59.79 | 63.65 | 53.69 | 68.49 | 48.28 | 54.91 |
features | 8 | BAG | 63.39 | 62.47 | 64.86 | 73.77 | 52.21 | 56.88 |
9 | ADA | 65.89 | 68.42 | 61.91 | 73.97 | 55.34 | 61.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padovano, D.; Martinez-Rodrigo, A.; Pastor, J.M.; Rieta, J.J.; Alcaraz, R. Deep Learning and Recurrence Information Analysis for the Automatic Detection of Obstructive Sleep Apnea. Appl. Sci. 2025, 15, 433. https://doi.org/10.3390/app15010433
Padovano D, Martinez-Rodrigo A, Pastor JM, Rieta JJ, Alcaraz R. Deep Learning and Recurrence Information Analysis for the Automatic Detection of Obstructive Sleep Apnea. Applied Sciences. 2025; 15(1):433. https://doi.org/10.3390/app15010433
Chicago/Turabian StylePadovano, Daniele, Arturo Martinez-Rodrigo, José M. Pastor, José J. Rieta, and Raul Alcaraz. 2025. "Deep Learning and Recurrence Information Analysis for the Automatic Detection of Obstructive Sleep Apnea" Applied Sciences 15, no. 1: 433. https://doi.org/10.3390/app15010433
APA StylePadovano, D., Martinez-Rodrigo, A., Pastor, J. M., Rieta, J. J., & Alcaraz, R. (2025). Deep Learning and Recurrence Information Analysis for the Automatic Detection of Obstructive Sleep Apnea. Applied Sciences, 15(1), 433. https://doi.org/10.3390/app15010433