Biological and Chemical Processes of Nitrate Reduction and Ferrous Oxidation Mediated by Shewanella oneidensis MR-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Experimental Conditions
2.3.1. Selection of Experimental Strains
2.3.2. Experimental Group Design
2.4. Test Methods
2.4.1. Determination of Ferrous Content
2.4.2. Determination of Nitric Acid and Nitrous Acid
2.4.3. Organic Acid Content Test
3. Results
3.1. Shewanella oneidensis MR-1 WT Section
3.1.1. MR-1 Ferrous Oxidation Curve Under Different Conditions
3.1.2. The Effect of Nitric Acid on the Oxidation of Fe (II) and the Variation Curve of Nitric Acid
3.1.3. MR-1 Organic Acid Variation Curve
3.2. Mutant Strain Testing Section
3.2.1. Ferrous Oxidation Curve of Mutant Strain
3.2.2. Variation Curves of Nitrate and Nitrite in Mutant Strains During the Reaction Process
4. Discussion
4.1. Result Analysis
4.2. Mechanism Exploration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weber, K.A.; Achenbach, L.A.; Coates, J.D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 2006, 4, 752–764. [Google Scholar] [CrossRef] [PubMed]
- Bryce, C.; Blackwell, N.; Schmidt, C.; Otte, J.; Huang, Y.M.; Kleindienst, S.; Tomaszewski, E.; Schad, M.; Warter, V.; Peng, C.; et al. Microbial anaerobic Fe(II) oxidation—Ecology, mechanisms and environmental implications. Environ. Microbiol. 2018, 20, 3462–3483. [Google Scholar] [CrossRef] [PubMed]
- Widdel, F.; Schnell, S.; Heising, S.; Ehrenreich, A.; Assmus, B.; Schink, B. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 1993, 362, 834–836. [Google Scholar] [CrossRef]
- Straub, K.L.; Benz, M.; Schink, B.; Widdel, F.; Straub, K.L.; Benz, M.; Schink, B.; Widdel, F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol. 1996, 62, 1458–1460. [Google Scholar] [CrossRef] [PubMed]
- Kendall, B.; Anbar, A.D.; Kappler, A.; Konhauser, K.O. Chapter 6—The Global Iron Cycle. In Fundamentals of Geobiology; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Saide, A.; Lauritano, C.; Ianora, A. A Treasure of Bioactive Compounds from the Deep Sea. Biomedicines 2021, 9, 1556. [Google Scholar] [CrossRef]
- Min, H.; Fangbai, L. Soil microbe mediated iron cycling and its environmental implication. Acta Pedol. Sin. 2014, 51, 683–698. [Google Scholar]
- Liu, T.; Chen, D.; Li, X.; Li, F. Microbially mediated coupling of nitrate reduction and Fe(II) oxidation under anoxic conditions. FEMS Microbiol. Ecol. 2019, 95, fiz030. [Google Scholar] [CrossRef]
- Robertson, G.P.; Vitousek, P.M. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annu. Rev. Environ. Resour. 2009, 34, 97–125. [Google Scholar] [CrossRef]
- Pan, Y.; Fu, Y.Y.; Zhou, K.; Tian, T.; Li, Y.S.; Yu, H.Q. Microbial mixotrophic denitrification using iron(II) as an assisted electron donor. Water Res. X 2023, 19, 100176. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Kraft, B.; Strous, M.; Tegetmeyer, H.E. Microbial nitrate respiration--genes, enzymes and environmental distribution. J. Biotechnol. 2011, 155, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.J.; Simon, J.; Rowley, G.; Bedmar, E.J.; Delgado, M.J. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms. Adv. Microb. Physiol. 2016, 68, 353–432. [Google Scholar] [PubMed]
- Zhu-Barker, X.; Cavazos, A.R.; Ostrom, N.E.; Horwath, W.R.; Glass, J.B. The importance of abiotic reactions for nitrous oxide production. Biogeochemistry 2015, 126, 251–267. [Google Scholar] [CrossRef]
- Jiao, Y.; Newman, D.K. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 2007, 189, 1765–1773. [Google Scholar] [CrossRef]
- Bose, A.; Newman, D.K. Regulation of the phototrophic iron oxidation (pio) genes in Rhodopseudomonas palustris TIE-1 is mediated by the global regulator, FixK. Mol. Microbiol. 2011, 79, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, W.; Liu, T.; Chen, L.; Chen, P.; Li, F. Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe(II) oxidation at circumneutral pH in paddy soil. Soil Biol. Biochem. 2016, 94, 70–79. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, T.; Zhang, X.; Qing, C.; Wang, J.; Yue, Z.; Liu, H.; Yang, Z. Simultaneous removal of nitrate and phosphate from wastewater by siderite based autotrophic denitrification. Chemosphere 2018, 199, 130–137. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, N.; Yu, Y.; Zheng, Z.; Yao, H. Soil carbon and nitrogen cycles driven by iron redox: A review. Sci. Total Environ. 2024, 918, 170660. [Google Scholar] [CrossRef]
- Bhave, C.; Shejwalkar, S. A review on the synthesis and applications of green rust for environmental pollutant remediation. Int. J. Environ. Sci. Technol. 2018, 15, 1243–1248. [Google Scholar] [CrossRef]
- Hafenbradl, D.; Keller, M.; Dirmeier, R.; Rachel, R.; Roßnagel, P.; Burggraf, S.; Huber, H.; Stetter, K.O. Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch. Microbiol. 1996, 166, 308. [Google Scholar] [CrossRef] [PubMed]
- Emerson, D. Biogeochemistry and microbiology of microaerobic Fe(II) oxidation. Biochem. Soc. Trans. 2012, 40, 1211–1216. [Google Scholar] [CrossRef]
- Moloantoa, K.M.; Khetsha, Z.P.; Van Heerden, E.; Castillo, J.C.; Cason, E.D. Nitrate water contamination from industrial activities and complete denitrification as a remediation option. Water 2022, 14, 799. [Google Scholar] [CrossRef]
- Pawełczyk, A. Assessment of health hazard associated with nitrogen compounds in water. Water Sci. Technol. 2012, 66, 666–672. [Google Scholar] [CrossRef]
- Alfei, S.; Orlandi, V.; Grasso, F.; Boggia, R.; Zuccari, G. Cationic polystyrene-based hydrogels: Low-cost and regenerable adsorbents to electrostatically remove nitrites from water. Toxics 2023, 11, 312. [Google Scholar] [CrossRef]
- Sorokina, A.Y.; Chernousova, E.Y.; Dubinina, G.A. Hoeflea siderophila sp. nov., a new neutrophilic iron-oxidizing bacterium. Microbiology 2012, 81, 59–66. [Google Scholar] [CrossRef]
- Peng, Z.; Shi, M.; Xia, K.; Dong, Y.; Shi, L. Degradation of 2, 2′, 4, 4′-Tetrabrominated diphenyl ether (BDE-47) via the Fenton reaction driven by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. Environ. Pollut. 2020, 266, 115413. [Google Scholar] [CrossRef]
- Shi, M.; Xia, K.; Peng, Z.; Jiang, Y.; Dong, Y.; Shi, L. Differential degradation of BDE-3 and BDE-209 by the Shewanella oneidensis MR-1-mediated Fenton reaction. Int. Biodeterior. Biodegrad. 2021, 158, 105165. [Google Scholar] [CrossRef]
- Gorby, Y.; Yanina, S.; Mclean, J.; Rosso, K.; Moyles, D.; Dohnalkova, A.; Beveridge, T.; Chang, I.; Kim, B.; Kim, K. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 2006, 103, 11358–11363. [Google Scholar] [CrossRef]
- Kieft, T.L.; Fredrickson, J.K.; Onstott, T.C.; Gorby, Y.A.; Gray, M.S. Dissimilatory Reduction of Fe(III) and Other Electron Acceptors by a Thermus Isolate. Appl. Environ. Microbiol. 1999, 65, 1214–1221. [Google Scholar] [CrossRef]
- Hou, L.; Zheng, B.; Jiang, Z.; Hu, Y.; Shi, L.; Dong, Y.; Jiang, Y. The dmsEFABGH operon encodes an essential and modular electron transfer pathway for extracellular iodate reduction by Shewanella oneidensis MR-1. Microbiol. Spectr. 2024, 12, e00512-24. [Google Scholar] [CrossRef]
- Thompson, D.K.; Beliaev, A.S.; Giometti, C.S.; Tollaksen, S.L.; Khare, T.; Lies, D.P.; Nealson, K.H.; Lim, H.; Yates, J.; Brandt, C.C. Transcriptional and Proteomic Analysis of a Ferric Uptake Regulator (Fur) Mutant of Shewanella oneidensis: Possible Involvement of Fur in Energy Metabolism, Transcriptional Regulation, and Oxidative Stress. Appl. Environ. Microbiol. 2002, 68, 881–892. [Google Scholar] [CrossRef]
- Korshunov, S.; Imlay, J.A. Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol. Microbiol. 2010, 75, 1389–1401. [Google Scholar] [CrossRef]
- Reed, J.L.; Fredrickson, J.K.; Romine, M.F.; Beliaev, A.S.; Auchtung, J.M.; Driscoll, M.E.; Gardner, T.S.; Nealson, K.H.; Osterman, A.L.; Pinchuk, G. Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 2008, 6, 592–603. [Google Scholar]
- Lemaire, O.N.; Vincent, M.; Chantal, I.N. The Shewanella genus: Ubiquitous organisms sustaining and preserving aquatic ecosystems. FEMS Microbiol. Rev. 2020, 44, 155–170. [Google Scholar] [CrossRef]
- Lin, X.; Kennedy, D.; Peacock, A.; Mckinley, J.; Resch, C.T.; Fredrickson, J.; Konopka, A. Distribution of Microbial Biomass and Potential for Anaerobic Respiration in Hanford Site 300 Area Subsurface Sediment. Appl. Environ. Microbiol. 2012, 78, 759. [Google Scholar] [CrossRef]
- Shi, L.; Belchik, S.M.; Wang, Z.; Kennedy, D.W.; Fredrickson, J.K. Identification and Characterization of UndAHRCR-6, an Outer Membrane Endecaheme c-Type Cytochrome of Shewanella sp. Strain HRCR-6. Appl. Environ. Microbiol. 2011, 77, 5521–5523. [Google Scholar] [CrossRef]
- Shi, L.; Dong, H.; Reguera, G.; Beyenal, H.; Lu, A.; Liu, J.; Yu, H.Q.; Fredrickson, J.K. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 2016, 44, 651–662. [Google Scholar] [CrossRef]
- Croal, L.R.; Gralnick, J.A.; Malasarn, D.; Newman, D.K. The genetics of geochemistry. Annu. Rev. Genet. 2004, 38, 175–202. [Google Scholar] [CrossRef]
- Fredrickson, J.K.; Romine, M.F. Genome-assisted analysis of dissimilatory metal-reducing bacteria. Curr. Opin. Biotechnol. 2005, 16, 269–274. [Google Scholar] [CrossRef]
- Lovley, D.R.P.; Phillips, E.J.P. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese. Appl. Environ. Microbiol. 1988, 54, 1472–1480. [Google Scholar] [CrossRef]
- Fengping, W.; Jianbin, W.; Huahua, J.; Bing, Z.; Shengkang, L.; Feng, W.; Xiaowei, Z.; Lei, G.; Hoyt, B.D.; Jun, Y. Environmental Adaptation: Genomic Analysis of the Piezotolerant and Psychrotolerant Deep-Sea Iron Reducing Bacterium Shewanella piezotolerans WP3. PLoS ONE 2008, 3, e1937. [Google Scholar]
- Gralnick, J.A.; Vali, H.; Lies, D.P.; Newman, D.K. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc. Natl. Acad. Sci. USA 2006, 103, 4669–4674. [Google Scholar] [CrossRef]
- Liang, S.; Rosso, K.M.; Clarke, T.A.; Richardson, D.J.; Zachara, J.M.; Fredrickson, J.K. Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1. Front. Microbiol. 2012, 3, 50. [Google Scholar]
- Kappler, U.; Schäfer, H. Transformations of dimethylsulfide. Met. Ions Life Sci. 2014, 14, 279. [Google Scholar]
- Fernández-López, J.A.; Alacid, M.; Obón, J.M.; Martínez-Vives, R.; Angosto, J.M. Nitrate-Polluted Waterbodies Remediation: Global Insights into Treatments for Compliance. Appl. Sci. 2023, 13, 4154. [Google Scholar] [CrossRef]
- Redaschi, N.; Bickle, T.A. Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed.; Amer Society for Microbiology: Washington, DC, USA, 1996. [Google Scholar]
- Cruz-García, C.; Murray, A.E.; Klappenbach, J.A.; Stewart, V.; Tiedje, J.M. Respiratory Nitrate Ammonification by Shewanella oneidensis MR-1. J. Bacteriol. 2007, 189, 656–662. [Google Scholar] [CrossRef]
- Yang, G.; Gong, M.; Zheng, X.; Lin, L.; Fan, J.; Liu, F.; Meng, J. A review of microbial corrosion in reclaimed water pipelines: Challenges and mitigation strategies. Water Pract. Technol. 2022, 17, 731–748. [Google Scholar] [CrossRef]
- Song, X.; Zhang, G.; Zhou, Y.; Li, W. Behaviors and mechanisms of microbially-induced corrosion in metal-based water supply pipelines: A review. Sci. Total Environ. 2023, 895, 165034. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.; Kimber, R.L.; Singh, V.K.; Shende, S.; Behal, A.; Sushkova, S.; Mandzhieva, S.; Lloyd, J.R. Insights into the Biosynthesis of Nanoparticles by the Genus Shewanella. Appl. Environ. Microbiol. 2021, 87, e0139021. [Google Scholar] [CrossRef]
- Coursolle, D.; Gralnick, J.A. Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Mol. Microbiol. 2010, 77, 995–1008. [Google Scholar] [CrossRef]
- Mclean, J.S.; Pinchuk, G.E.; Geydebrekht, O.V.; Bilskis, C.L.; Beliaev, A.S. Oxygen-dependent autoaggregation in Shewanella onidensis MR-1. Environ. Microbiol. 2008, 10, 1861–1876. [Google Scholar] [CrossRef] [PubMed]
- Stookey, L.L. Ferrozine—A new spectrophotometric reagent for Iron. Anal. Chem. 1970, 42, 779–781. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, Y.; Hu, Y.; Jiang, Z.; Dong, Y.; Shi, L. The roles of DmsEFAB and MtrCAB in extracellular reduction of iodate by Shewanella oneidensis MR-1 with lactate as the sole electron donor. Environ. Microbiol. 2022, 24, 5039–5050. [Google Scholar] [CrossRef] [PubMed]
- Cheong, C.; Suzuki, T.; Miura, T.; Hioki, A. Comparison of continuous flow analysis and ion chromatography for determinations of nitrate, nitrite and phosphate ions in seawater and development of related seawater certified reference materials. Accredit. Qual. Assur. 2024, 29, 243–251. [Google Scholar] [CrossRef]
- Mahu, S.; Şpac, A.; Ciobanu, C.; Hancianu, M.; Agoroaei, L.; Butnaru, E. Quantitative Determination of Bisoprolol Fumarate by HPLC. I. Method Validation. Rev. Chim.-Buchar. 2016, 67, 414–417. [Google Scholar]
- Stewart, V.; Lu, Y.; Darwin, A.J. Periplasmic Nitrate Reductase (NapABC Enzyme) Supports Anaerobic Respiration by Escherichia coli K-12. J. Bacteriol. 2002, 184, 1314–1323. [Google Scholar] [CrossRef]
- Wang, X.N.; Sun, G.X.; Zhu, Y.G. Thermodynamic energy of anaerobic microbial redox reactions couples elemental biogeochemical cycles. J. Soils Sediments 2017, 106, 1–16. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Liu, T.; Li, F.; Shen, W. Competitive reduction of nitrate and iron oxides by Shewanella putrefaciens 200 under anoxic conditions. Colloids Surf. A Physicochem. Eng. Asp. 2014, 445, 97–104. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, F.; Xu, J.; Mehmood, M.A.; Xiao, X. Physiological and evolutionary studies of NAP systems in Shewanella piezotolerans WP3. ISME J. 2010, 5, 843–855. [Google Scholar] [CrossRef]
- Li, B.-B.; Cheng, Y.-Y.; Wu, C.; Li, W.-W.; Yang, Z.-C.; Yu, H.-Q. Interaction between ferrihydrite and nitrate respirations by Shewanella oneidensis MR-1. Process Biochem. 2015, 50, 1942–1946. [Google Scholar] [CrossRef]
- Coby, A.J.; Picardal, F.W. Inhibition of NO3− and NO2− Reduction by Microbial Fe(III) Reduction: Evidence of a Reaction between NO2− and Cell Surface-Bound Fe2+. Appl. Environ. Microbiol. 2005, 71, 5267–5274. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chen, D.; Luo, X.; Li, X.; Li, F. Microbially mediated nitrate-reducing Fe(II) oxidation: Quantification of chemodenitrification and biological reactions. Geochim. Cosmochim. Acta 2018, 256, 97–115. [Google Scholar] [CrossRef]
- Yoon, S.; Cruz-García, C.; Sanford, R.; Ritalahti, K.M.; Löffler, F.E. Denitrification versus respiratory ammonification: Environmental controls of two competing dissimilatory NO3(-)/NO2(-) reduction pathways in Shewanella loihica strain PV-4. ISME J. 2014, 9, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Beliaev, A.S.; Klingeman, D.M.; Klappenbach, J.A.; Wu, L.; Zhou, J. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J. Bacteriol. 2005, 187, 7138–7145. [Google Scholar] [CrossRef]
- Chen, D.; Liu, T.; Li, X.; Li, F.; Luo, X.; Wu, Y.; Wang, Y. Biological and chemical processes of microbially mediated nitrate-reducing Fe(II) oxidation by Pseudogulbenkiania sp. strain 2002. Chem. Geol. 2017, 476, 59–69. [Google Scholar]
- Beliaev, A.S.; Thompson, D.K.; Khare, T.; Lim, H.; Brandt, C.C.; Li, G.; Murray, A.E.; Heidelberg, J.F.; Giometti, C.S.; Yates, J. Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors. Omics J. Integr. Biol. 2001, 6, 39. [Google Scholar]
- Gao, H.; Yang, Z.K.; Barua, S.; Reed, S.B.; Zhou, J. Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA. ISME J. 2009, 3, 966–976. [Google Scholar] [CrossRef] [PubMed]
- Flynn, P. Abiotic and Microbial Interactions during Anaerobic Transformations of Fe(II) and NOX. Front. Microbiol. 2012, 3, 112. [Google Scholar]
- Lu, Y.; Xu, L.; Shu, W.; Zhou, J.; Chen, X.; Xu, Y.; Qian, G. Microbial mediated iron redox cycling in Fe (hydr)oxides for nitrite removal. Bioresour. Technol. 2017, 224, 34–40. [Google Scholar] [CrossRef]
- Pandey, A.; Suter, H.; He, J.Z.; Hu, H.W.; Chen, D. Dissimilatory nitrate reduction to ammonium dominates nitrate reduction in long-term low nitrogen fertilized rice paddies. Soil Biol. Biochem. 2019, 131, 149–156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, L.; Bai, X.; Sima, Z.; Zhang, J.; Yan, L.; Li, D.; Jiang, Y. Biological and Chemical Processes of Nitrate Reduction and Ferrous Oxidation Mediated by Shewanella oneidensis MR-1. Microorganisms 2024, 12, 2454. https://doi.org/10.3390/microorganisms12122454
Hou L, Bai X, Sima Z, Zhang J, Yan L, Li D, Jiang Y. Biological and Chemical Processes of Nitrate Reduction and Ferrous Oxidation Mediated by Shewanella oneidensis MR-1. Microorganisms. 2024; 12(12):2454. https://doi.org/10.3390/microorganisms12122454
Chicago/Turabian StyleHou, Lingyu, Xiangyu Bai, Zihe Sima, Jiani Zhang, Luyao Yan, Ding Li, and Yongguang Jiang. 2024. "Biological and Chemical Processes of Nitrate Reduction and Ferrous Oxidation Mediated by Shewanella oneidensis MR-1" Microorganisms 12, no. 12: 2454. https://doi.org/10.3390/microorganisms12122454
APA StyleHou, L., Bai, X., Sima, Z., Zhang, J., Yan, L., Li, D., & Jiang, Y. (2024). Biological and Chemical Processes of Nitrate Reduction and Ferrous Oxidation Mediated by Shewanella oneidensis MR-1. Microorganisms, 12(12), 2454. https://doi.org/10.3390/microorganisms12122454