A Note on Generalized k-Order F&L Hybrinomials
Abstract
:1. Introduction
Equality: | only if |
Addition: | |
Subtraction: | |
Multiplication by scalar |
2. Generalized k-Order F&L Polynomials
- For , we obtain the following table:
- For and , we obtain Tribonacci polynomials. The recurrence relation of Tribonacci polynomials is
- For and , we obtain -order Fibonacci polynomials.
- For and , we obtain -order Lucas polynomials.
- For and , we obtain -order Pell polynomials.
- For and , we obtain -order Pell–Lucas polynomials.
- For and , we obtain -order Jacobsthal polynomials.
- For and , we obtain -order Jacobsthal–Lucas polynomials.
3. Generalized k-Order Fibonacci and Lucas Hybrinomials
- For and , we obtain Tribonacci hybrinomials.
- i.
- where is the generalized -order F&L polynomials,
- ii.
- ,
- iii.
- ,
- ii.
- Using , and the multiplication of hybrid numbers, we obtain
- iii.
- First, we obtain as follows:
4. Matrix Representations of the Generalized k-Order Fibonacci and Lucas Hybrinomials
- ❖
- For the first row, we obtain the following:
- ❖
- For the second row, we obtain the following:
- ❖
- For the th row, we obtain the following:
- For and , Fibonacci hybrinomials;
- For and , Lucas hybrinomials;
- For and , Pell hybrinomials;
- For and , Pell–Lucas hybrinomials;
- For and , Jacobsthal hybrinomials;
- For and , Jacobsthal–Lucas hybrinomials.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bona, M. Introduction to Enumerative Combinatorics; The McGraw-Hill Companies Inc.: New York, NY, USA, 2007. [Google Scholar]
- Conway, J.H.; Guy, R.K. The Book of Numbers; Springer: New York, NY, USA, 1996. [Google Scholar]
- Djordjević, G.B.; Milovanović, G.V. Special Classes of Polynomials; University of Niš Faculty of Technology: Leskovac, Serbia, 2014. [Google Scholar]
- Flajolet, P.; Odlyzko, A. Singularity analysis of generating functions. SIAM J. Discret. Math. 1990, 3, 216–240. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Lyapin, A.; Akhtamova, S.S. Recurrence relations for the sections of the generating series of the solution to the multidimensional difference equation. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauk. 2021, 31, 414–423. [Google Scholar] [CrossRef]
- Carlitz, L. Eulerian numbers and polynomials. Mat. Mag. 1959, 32, 164–171. [Google Scholar] [CrossRef]
- Altassan, A.; Alan, M. On mixed concatenations of Fibonacci and Lucas numbers which are Fibonacci numbers. Math. Slovaca 2022, 74, 563–576. [Google Scholar] [CrossRef]
- Koshy, T. Fibonacci and Lucas Numbers with Applications, 2nd ed.; John Wiley: New York, NY, USA, 2018. [Google Scholar]
- Vajda, S. Fibonacci and Lucas Numbers and the Golden Section: Theory and Applications; Ellis Harwood Limited: Bolton, UK, 1969. [Google Scholar]
- Gould, H.W. A history of the Fibonacci Q-matrix and a higher-dimensional problem. Fibonacci Quart. 1981, 19, 250–257. [Google Scholar] [CrossRef]
- Stakhov, A.P. A generalization of the Q-matrix. Rep. Natl. Acad. Sci. Ukr. 1999, 9, 46–49. [Google Scholar]
- Ulrych, S. Relativistic quantum physics with hyperbolic numbers. Phys. Lett. 2005, 625, 313–323. [Google Scholar] [CrossRef]
- Branicky, M. Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems. IEEE Trans. Autom. Control. 1998, 43, 475–482. [Google Scholar] [CrossRef]
- Özdemir, M. Introduction to hybrid numbers. Adv. Appl. Clifford Algebra. 2018, 28, 1–32. [Google Scholar] [CrossRef]
- Szynal-Liana, A. The Horadam hybrid numbers. Discuss. Math. Gen. Algebra Appl. 2018, 38, 91–98. [Google Scholar] [CrossRef]
- Szynal-Liana, A.; Wloch, I. The Fibonacci hybrid numbers. Util. Math. 2019, 110, 3–10. [Google Scholar]
- Kızılateş, C. A note on Horadam hybrinomials. Fundam. J. Math. Appl. 2022, 5, 1–9. [Google Scholar] [CrossRef]
- Özkoç, A. Binomial Transforms for Hybrid Numbers Defined Through Fibonacci and Lucas Number Components. Konuralp J. Math. 2022, 10, 282–292. [Google Scholar]
- Szynal-Liana, A.; Wloch, I. Introduction to Fibonacci and Lucas hybrinomials. Complex Var. Elliptic Equ. 2020, 65, 1736–1747. [Google Scholar] [CrossRef]
- Liana, M.; Szynal-Liana, A.; Wloch, I. On Pell hybrinomials. Miscolc Math. Notes 2019, 20, 1051–1062. [Google Scholar] [CrossRef]
- Szynal-Liana, A.; Wloch, I. On Jacobsthal and Jacobsthal-Lucas hybrid numbers. Ann. Math. Sil. 2019, 33, 276–283. [Google Scholar] [CrossRef]
- Bród, D.; Michalski, A. On Generalized Jacobsthal and Jacobsthal–Lucas Numbers. Ann. Math. Sil. 2022, 36, 115–128. [Google Scholar] [CrossRef]
- Ganie, A.H.; AlBaidani, M.M. Matrix Structure of Jacobsthal Numbers. J. Funct. Spaces 2021, 2021, 2888840. [Google Scholar] [CrossRef]
- Gong, Y.; Jiang, Z.; Gao, Y. On Jacobsthal and Jacobsthal-Lucas Circulant Type Matrices. Abstr. Appl. Anal. 2015, 2015, 418293. [Google Scholar] [CrossRef]
- Karadeniz Gözeri, G. On Pell, Pell-Lucas, and balancing numbers. J. Inequal. Appl. 2018, 2018, 3. [Google Scholar] [CrossRef]
- Cerda Moreles, G. Introduction to third-order Jacobsthal and modified third-order Jacobsthal hybrinomials. Discuss. Math. Gen. Algebra Appl. 2021, 41, 139–152. [Google Scholar] [CrossRef]
- Kızılateş, C. A new generalization of Fibonacci hybrid and Lucas hybrid numbers. Chaos Solitons Fractals 2020, 130, 109449. [Google Scholar] [CrossRef]
- Asci, M.; Aydinyuz, S. Generalized order Fibonacci and Lucas hybrid numbers. J. Inf. Optim. Sci. 2021, 42, 1765–1782. [Google Scholar] [CrossRef]
Special Polynomials | |||
---|---|---|---|
1 | 1 | 2 | Lucas polynomials |
2 | 1 | 1 | Pell polynomials |
2 | 1 | 2 | Pell–Lucas polynomials |
1 | 2 | 1 | Jacobsthal polynomials |
1 | 2 | 2 | Jacobsthal–Lucas polynomials |
Special Hybrinomials | |||
---|---|---|---|
1 | 1 | 1 | Fibonacci hybrinomials |
1 | 1 | 2 | Lucas hybrinomials |
2 | 1 | 1 | Pell hybrinomials |
2 | 1 | 2 | Pell–Lucas hybrinomials |
1 | 2 | 1 | Jacobsthal hybrinomials |
1 | 2 | 2 | Jacobsthal–Lucas hybrinomials |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydınyüz, S.; Gözeri, G.K. A Note on Generalized k-Order F&L Hybrinomials. Axioms 2025, 14, 41. https://doi.org/10.3390/axioms14010041
Aydınyüz S, Gözeri GK. A Note on Generalized k-Order F&L Hybrinomials. Axioms. 2025; 14(1):41. https://doi.org/10.3390/axioms14010041
Chicago/Turabian StyleAydınyüz, Süleyman, and Gül Karadeniz Gözeri. 2025. "A Note on Generalized k-Order F&L Hybrinomials" Axioms 14, no. 1: 41. https://doi.org/10.3390/axioms14010041
APA StyleAydınyüz, S., & Gözeri, G. K. (2025). A Note on Generalized k-Order F&L Hybrinomials. Axioms, 14(1), 41. https://doi.org/10.3390/axioms14010041