Deep Learning with PyTorch, Second Edition you own this product

'); $(document.body).append('
loading reading lists ...
'); function adjustReadingListIcon(isInReadingList){ $readingListToggle.toggleClass("fa-plus", !isInReadingList); $readingListToggle.toggleClass("fa-check", isInReadingList); var tooltipMessage = isInReadingList ? "edit in reading lists" : "add to reading list"; $readingListToggle.attr("title", tooltipMessage); $readingListToggle.attr("data-original-title", tooltipMessage); } $.ajax({ url: "/readingList/isInReadingList", data: { productId: 2704 } }).done(function (data) { adjustReadingListIcon(data && data.hasProductInReadingList); }).catch(function(e){ console.log(e); adjustReadingListIcon(false); }); $readingListToggle.on("click", function(){ if(codePromise == null){ showToast() } loadCode().then(function(store){ store.requestReadingListSpecificationForProduct({ id: window.readingListsServerVars.externalId, manningId: window.readingListsServerVars.productId, title: window.readingListsServerVars.title }); ReadingLists.ReactDOM.render( ReadingLists.React.createElement(ReadingLists.ManningOnlineReadingListModal, { store: store, }), document.getElementById("reading-lists-modal") ); }).catch(function(e){ console.log("Error loading code reading list code"); }); }); var codePromise var readingListStore function loadCode(){ if(codePromise) { return codePromise } return codePromise = new Promise(function (resolve, reject){ $.getScript(window.readingListsServerVars.libraryLocation).done(function(){ hideToast() readingListStore = new ReadingLists.ReadingListStore( new ReadingLists.ReadingListProvider( new ReadingLists.ReadingListWebProvider( ReadingLists.SourceApp.marketplace, getDeploymentType() ) ) ); readingListStore.onReadingListChange(handleChange); readingListStore.onReadingListModalChange(handleChange); resolve(readingListStore); }).catch(function(){ hideToast(); console.log("Error downloading reading lists source"); $readingListToggle.css("display", "none"); reject(); }); }); } function handleChange(){ if(readingListStore != null) { adjustReadingListIcon(readingListStore.isInAtLeastOneReadingList({ id: window.readingListsServerVars.externalId, manningId: window.readingListsServerVars.productId })); } } var $readingListToast = $("#reading-list-toast"); function showToast(){ $readingListToast.css("display", "flex"); setTimeout(function(){ $readingListToast.addClass("shown"); }, 16); } function hideToast(){ $readingListToast.removeClass("shown"); setTimeout(function(){ $readingListToast.css("display", "none"); }, 150); } function getDeploymentType(){ switch(window.readingListsServerVars.deploymentType){ case "development": case "test": return ReadingLists.DeploymentType.dev; case "qa": return ReadingLists.DeploymentType.qa; case "production": return ReadingLists.DeploymentType.prod; case "docker": return ReadingLists.DeploymentType.docker; default: console.error("Unknown deployment environment, defaulting to production"); return ReadingLists.DeploymentType.prod; } } }); } });
Luca Antiga, Eli Stevens, Howard Huang, Thomas Viehmann
  • MEAP began December 2023
  • Publication in Summer 2025 (estimated)
  • ISBN 9781633438859
  • 600 pages (estimated)
  • printed in black & white
  • includes free previous edition eBook

pro $24.99 per month

  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose one free eBook per month to keep
  • exclusive 50% discount on all purchases

lite $19.99 per month

  • access to all Manning books, including MEAPs!

team

5, 10 or 20 seats+ for your team - learn more


Look inside
Everything you need to create neural networks with PyTorch, including Large Language and diffusion models.

Deep Learning with PyTorch, Second Edition updates the bestselling original guide with new insights into the transformers architecture and generative AI models. Instantly familiar to anyone who knows PyData tools like NumPy and scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features.

In Deep Learning with PyTorch, Second Edition you’ll find:

  • Deep learning fundamentals reinforced with hands-on projects
  • Mastering PyTorch's flexible APIs for neural network development
  • Implementing CNNs, RNNs and Transformers
  • Optimizing models for training and deployment
  • Generative AI models to create images and text

In Deep Learning with PyTorch, Second Edition you’ll learn how to create your own neural network and deep learning systems and take full advantage of PyTorch’s built-in tools for automatic differentiation, hardware acceleration, distributed training, and more. PyTorch makes it easy to build the powerful neural networks that underpin many modern advances in artificial intelligence. This second edition has been thoroughly revised by PyTorch core developer Howard Huang to cover the latest features and applications, including generative AI models.

about the book

Deep Learning with PyTorch, Second Edition is a hands-on guide to modern machine learning with PyTorch. You’ll discover how easy PyTorch makes it to build your entire DL pipeline, including using the PyTorch Tensor API, loading data in Python, monitoring training, and visualizing results. Each new technique you learn is put into action to build a full-size medical image classifier chapter-by-chapter.

In this modernized second edition, you’ll find new coverage of how to develop and train groundbreaking generative AI models. You’ll learn about the foundational building blocks of transformers to create large language models and generate exciting images by building your own diffusion model. Plus, you'll discover ways to improve your results by training with augmented data, make improvements to the model architecture, and perform fine tuning.

about the reader

For Python programmers with an interest in machine learning.

about the authors

Howard Huang is a software engineer and developer on the PyTorch library. During his tenure at PyTorch he has focused on large scale, distributed training. Eli Stevens, Luca Antiga, and Thomas Viehmann authored the first edition of Deep Learning with PyTorch.

choose your plan

team

monthly
annual
$49.99
$399.99
only $33.33 per month
  • five seats for your team
  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose another free product every time you renew
  • choose twelve free products per year
  • exclusive 50% discount on all purchases
  • Deep Learning with PyTorch, Second Edition ebook for free

choose your plan

team

monthly
annual
$49.99
$399.99
only $33.33 per month
  • five seats for your team
  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose another free product every time you renew
  • choose twelve free products per year
  • exclusive 50% discount on all purchases
  • Deep Learning with PyTorch, Second Edition ebook for free

You can see this entire book for free. Click anywhere in the table of contents to start reading detailed TOC'; var tocServerVars = { productId: 2704, getTocUrl: "/ajax/getTocHtml" } var tocStatusResolved = false; $(document).ready(loadTocIfVisible); function loadTocIfVisible(){ if(tocStatusResolved) { return; } if($('.toc-loading-container').isInViewport()){ window.removeEventListener("scroll", loadTocIfVisible); $(window).off("scroll", loadTocIfVisible); loadToc(); } } try { window.addEventListener("scroll", loadTocIfVisible, { passive: true}); } catch(e){ $(window).on("scroll", loadTocIfVisible); } function loadToc(){ tocStatusResolved = true; window.TocProvider.getToc(function (tocHtml) { var $tocLoadingContainer = $('.toc-loading-container'); $tocLoadingContainer.closest(".table-of-contents").prepend(titleHtml); $tocLoadingContainer.replaceWith(tocHtml); initializeToc(); }, function(){ $('.toc-loading-container').remove() }); } window.TocProvider = { toc: "", getToc: function(success, failure){ if(this.toc) { success && success(this.toc); return; } $.ajax({ url: tocServerVars.getTocUrl, data: { id: tocServerVars.productId } }).done(function(data){ if(data && data.tocHtml){ this.toc = data.tocHtml; success && success(this.toc); } else { failure && failure(); } }).fail(function(error){ failure && failure(); }); } }; } catch (e) {} })(); function initializeToc(){ // Append this only when children of their sectionbody siblings exist (appendices generally aren't expandable) $(".sectionbody *").children("*").parents(".sectionbody").siblings("h2").wrapInner("").append(controllo); $(".toc h2 > .chap-link, .toc h1, .toc h3, .toc h4").each(function() { $(this).html($(this).html().replace(/^(\b\w[0-9A-Z]{0,1}\b\.?)+\s/gi, "$&")); }); $(".sectionbody").addClass("hidden-toc"); $("body").on("click", ".toc-expando", function(e) { e.stopPropagation(); $(this).removeClass("toc-expando").addClass("toc-retracto").closest(".sect1").find(".sectionbody").removeClass("hidden-toc").addClass("shown-toc"); }); $("body").on("click", ".toc-retracto", function(e) { e.stopPropagation(); $(this).removeClass("toc-retracto").addClass("toc-expando").closest(".sect1").find(".sectionbody").removeClass("shown-toc").addClass("hidden-toc"); }); $("body").on("click", ".available h2", function() { $(this).find(".toc-controllo").click(); }); $("body").on("click", "#show-hide", function() { if ($("#show-hide").hasClass("hide-full-toc")) { $(".table-of-contents .sect2, .table-of-contents .sect3").removeClass("shown-toc").addClass("hidden-toc"); $("#show-hide").removeClass("hide-full-toc").html(" detailed TOC"); $(".table-of-contents .body").removeClass("full-toc"); $(".toc-retracto").click(); } else { $(".table-of-contents .sect2, .table-of-contents .sect3").addClass("shown-toc").removeClass("hidden-toc"); $("#show-hide").addClass("hide-full-toc").html(" detailed TOC"); $(".table-of-contents .body").addClass("full-toc"); $(".toc-expando").click(); } }); var wrapTocWithLink = function(tocElement, livebookUrl, chapterNumber) { var urlParams = "?origin=product-toc"; $(tocElement).children(".chap-link").wrap(""); if (!$(tocElement).children().length) { $(tocElement).html("" + $(tocElement).text() + ""); } $(tocElement).parent().prepend('Read in liveBook'); $(tocElement).parent().children("div[class*='sectionbody']").each(function(j, sectionsParent) { $(sectionsParent).children().each(function(k, sectionParent) { $(sectionParent).children("h3").each(function(l, section) { //wrap section in an a tag linking to livebook section k + 1 var sectionUrl = livebookUrl + "/section-" + chapterNumber + "-" + (k + 1); $(section).wrap(""); }); $(sectionParent).children("div[class='sect3']").each(function(m, subsectionParent) { $(subsectionParent).children("h4").each(function(n, subsection) { //wrap section in an a tag linking to livebook subsection m + 1 var subsectionUrl = livebookUrl + "/section-" + chapterNumber + "-" + (k + 1) + "-" + (m + 1); $(subsection).wrap(""); }); }); }); }); }; var $availableChapters = $("h2[id*='chapter_id_']").filter(function(i, chapter) { return $(chapter).parent().hasClass('available'); }); // All elements containing an '_' filtering out those starting by chapter_id_ and not having their parent the class available. var $availableNonChapterElements = $("h2[id*='_']").filter(function(i, element) { return !element.id.match(/^chapter_id_/) && $(element).parent().hasClass('available'); }); $availableChapters.each(function(i, chapter) { var chapterNumber = chapter.id.split(/_/).pop(); var livebookUrl = "https://livebook.manning.com/book/deep-learning-with-pytorch-second-edition/chapter-" + chapterNumber; wrapTocWithLink(chapter, livebookUrl, chapterNumber); }); var isSingleAppendix = $("h2[id*='_']").filter(function(i, element) { return !element.id.match(/^chapter_id_/) ; }).length === 1; $availableNonChapterElements.each(function(i, appendix) { var appendixGroups = appendix.textContent.match(/[aA]ppendix (\w)/); // i.e "Appendix A: Installation => ['Appendix A', 'A', index:0, input: 'Appendix A: Installation'] var section = isSingleAppendix ? 'a' : appendixGroups && appendixGroups.length === 2 && appendixGroups[1].toLowerCase(); var appendixPathName = isSingleAppendix ? 'appendix' : 'appendix-' + section; var livebookUrl = "https://livebook.manning.com/book/deep-learning-with-pytorch-second-edition/" + appendixPathName; wrapTocWithLink(appendix, livebookUrl, section); }); var $availableMiscElements = $("h2[id='foreword'], h2[id='preface'], h2[id='epilogue']").filter(function(i, element) { return $(element).parent().hasClass('available'); }); $availableMiscElements.each(function(i, miscElement){ var livebookUrl = "https://livebook.manning.com/book/deep-learning-with-pytorch-second-edition/" + $(miscElement).attr("id"); wrapTocWithLink(miscElement, livebookUrl, ""); }); $(".available h2, .available h3").attr("data-toggle", "tooltip"); $(".available h2, .available h3").attr("data-placement", "left"); $(".available h2, .available h3").attr("title", "Available"); $('[data-toggle="tooltip"]').tooltip(); } var addToWishlistUrl = "/wishList/addItemFromPage" + "?"; var removeFromWishlistUrl = "/wishList/removeItemFromPage" + "?"; $("body").on("click", ".wishlist-login", function() { localStorage.removeItem('dynamicloadcache'); }); $("body").on("click", ".wishlist-toggle.wishlist-add, .wishlist-toggle.wishlist-remove", function() { var productId = $(this).data("product-id"); var url = addToWishlistUrl; if ($(this).hasClass("wishlist-remove")) { url = removeFromWishlistUrl; $(".wishlist-container").removeClass("on-wishlist"); } else { $(".wishlist-container").addClass("on-wishlist"); } $.ajax({ type: "GET", url: url + "id=" + productId, timeout: 3000, dataType: "json", headers: { 'accept': "application/json" } }); }); $(document).trigger('activity-product-browse', {productId: '2704'}); })(jQuery); }

RECENTLY VIEWED