-
-
Notifications
You must be signed in to change notification settings - Fork 270
/
Copy pathcrc32.c
477 lines (407 loc) · 15.8 KB
/
crc32.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
/* crc32.c -- compute the CRC-32 of a data stream
* Copyright (C) 1995-2006, 2010, 2011, 2012, 2016, 2018 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*
* Thanks to Rodney Brown <[email protected]> for his contribution of faster
* CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
* tables for updating the shift register in one step with three exclusive-ors
* instead of four steps with four exclusive-ors. This results in about a
* factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
*/
/* @(#) $Id$ */
# include "zbuild.h"
# include "gzendian.h"
/*
Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
protection on the static variables used to control the first-use generation
of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
first call get_crc_table() to initialize the tables before allowing more than
one thread to use crc32().
DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. A main()
routine is also produced, so that this one source file can be compiled to an
executable.
*/
#ifdef MAKECRCH
# include <stdio.h>
# ifndef DYNAMIC_CRC_TABLE
# define DYNAMIC_CRC_TABLE
# endif /* !DYNAMIC_CRC_TABLE */
#endif /* MAKECRCH */
#include "deflate.h"
#include "functable.h"
/* Local functions for crc concatenation */
#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
static uint32_t gf2_matrix_times(const uint32_t *mat, uint32_t vec);
static uint32_t crc32_combine_(uint32_t crc1, uint32_t crc2, z_off64_t len2);
static void crc32_combine_gen_(uint32_t *op, z_off64_t len2);
/* ========================================================================= */
static uint32_t gf2_matrix_times(const uint32_t *mat, uint32_t vec) {
uint32_t sum = 0;
while (vec) {
if (vec & 1)
sum ^= *mat;
vec >>= 1;
mat++;
}
return sum;
}
#ifdef DYNAMIC_CRC_TABLE
static volatile int crc_table_empty = 1;
static uint32_t crc_table[8][256];
static uint32_t crc_comb[GF2_DIM][GF2_DIM];
static void make_crc_table(void);
static void gf2_matrix_square(uint32_t *square, const uint32_t *mat);
#ifdef MAKECRCH
static void write_table(FILE *, const uint32_t *, int);
#endif /* MAKECRCH */
/* ========================================================================= */
static void gf2_matrix_square(uint32_t *square, const uint32_t *mat) {
int n;
for (n = 0; n < GF2_DIM; n++)
square[n] = gf2_matrix_times(mat, mat[n]);
}
/*
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
Polynomials over GF(2) are represented in binary, one bit per coefficient,
with the lowest powers in the most significant bit. Then adding polynomials
is just exclusive-or, and multiplying a polynomial by x is a right shift by
one. If we call the above polynomial p, and represent a byte as the
polynomial q, also with the lowest power in the most significant bit (so the
byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
where a mod b means the remainder after dividing a by b.
This calculation is done using the shift-register method of multiplying and
taking the remainder. The register is initialized to zero, and for each
incoming bit, x^32 is added mod p to the register if the bit is a one (where
x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
x (which is shifting right by one and adding x^32 mod p if the bit shifted
out is a one). We start with the highest power (least significant bit) of
q and repeat for all eight bits of q.
The first table is simply the CRC of all possible eight bit values. This is
all the information needed to generate CRCs on data a byte at a time for all
combinations of CRC register values and incoming bytes. The remaining tables
allow for word-at-a-time CRC calculation for both big-endian and little-
endian machines, where a word is four bytes.
*/
static void make_crc_table() {
uint32_t c;
int n, k;
uint32_t poly; /* polynomial exclusive-or pattern */
/* terms of polynomial defining this crc (except x^32): */
static volatile int first = 1; /* flag to limit concurrent making */
static const unsigned char p[] = {0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26};
/* See if another task is already doing this (not thread-safe, but better
than nothing -- significantly reduces duration of vulnerability in
case the advice about DYNAMIC_CRC_TABLE is ignored) */
if (first) {
first = 0;
/* make exclusive-or pattern from polynomial (0xedb88320) */
poly = 0;
for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
poly |= (uint32_t)1 << (31 - p[n]);
/* generate a crc for every 8-bit value */
for (n = 0; n < 256; n++) {
c = (uint32_t)n;
for (k = 0; k < 8; k++)
c = c & 1 ? poly ^ (c >> 1) : c >> 1;
crc_table[0][n] = c;
}
/* generate crc for each value followed by one, two, and three zeros,
and then the byte reversal of those as well as the first table */
for (n = 0; n < 256; n++) {
c = crc_table[0][n];
crc_table[4][n] = ZSWAP32(c);
for (k = 1; k < 4; k++) {
c = crc_table[0][c & 0xff] ^ (c >> 8);
crc_table[k][n] = c;
crc_table[k + 4][n] = ZSWAP32(c);
}
}
/* generate zero operators table for crc32_combine() */
/* generate the operator to apply a single zero bit to a CRC -- the
first row adds the polynomial if the low bit is a 1, and the
remaining rows shift the CRC right one bit */
k = GF2_DIM - 3;
crc_comb[k][0] = 0xedb88320UL; /* CRC-32 polynomial */
uint32_t row = 1;
for (n = 1; n < GF2_DIM; n++) {
crc_comb[k][n] = row;
row <<= 1;
}
/* generate operators that apply 2, 4, and 8 zeros to a CRC, putting
the last one, the operator for one zero byte, at the 0 position */
gf2_matrix_square(crc_comb[k + 1], crc_comb[k]);
gf2_matrix_square(crc_comb[k + 2], crc_comb[k + 1]);
gf2_matrix_square(crc_comb[0], crc_comb[k + 2]);
/* generate operators for applying 2^n zero bytes to a CRC, filling out
the remainder of the table -- the operators repeat after GF2_DIM
values of n, so the table only needs GF2_DIM entries, regardless of
the size of the length being processed */
for (n = 1; n < k; n++)
gf2_matrix_square(crc_comb[n], crc_comb[n - 1]);
/* mark tables as complete, in case someone else is waiting */
crc_table_empty = 0;
} else { /* not first */
/* wait for the other guy to finish (not efficient, but rare) */
while (crc_table_empty)
{}
}
#ifdef MAKECRCH
{
FILE *out;
out = fopen("crc32.h", "w");
if (out == NULL) return;
/* write out CRC table to crc32.h */
fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
fprintf(out, "static const uint32_t ");
fprintf(out, "crc_table[8][256] =\n{\n {\n");
write_table(out, crc_table[0], 256);
for (k = 1; k < 8; k++) {
fprintf(out, " },\n {\n");
write_table(out, crc_table[k], 256);
}
fprintf(out, " }\n};\n");
/* write out zero operator table to crc32.h */
fprintf(out, "\nstatic const uint32_t ");
fprintf(out, "crc_comb[%d][%d] =\n{\n {\n", GF2_DIM, GF2_DIM);
write_table(out, crc_comb[0], GF2_DIM);
for (k = 1; k < GF2_DIM; k++) {
fprintf(out, " },\n {\n");
write_table(out, crc_comb[k], GF2_DIM);
}
fprintf(out, " }\n};\n");
fclose(out);
}
#endif /* MAKECRCH */
}
#ifdef MAKECRCH
static void write_table(FILE *out, const uint32_t *table, int k) {
int n;
for (n = 0; n < k; n++)
fprintf(out, "%s0x%08lx%s", n % 5 ? "" : " ",
(uint32_t)(table[n]),
n == k - 1 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
}
int main()
{
make_crc_table();
return 0;
}
#endif /* MAKECRCH */
#else /* !DYNAMIC_CRC_TABLE */
/* ========================================================================
* Tables of CRC-32s of all single-byte values, made by make_crc_table(),
* and tables of zero operator matrices for crc32_combine().
*/
#include "crc32.h"
#endif /* DYNAMIC_CRC_TABLE */
/* =========================================================================
* This function can be used by asm versions of crc32()
*/
const uint32_t * ZEXPORT PREFIX(get_crc_table)(void) {
#ifdef DYNAMIC_CRC_TABLE
if (crc_table_empty)
make_crc_table();
#endif /* DYNAMIC_CRC_TABLE */
return (const uint32_t *)crc_table;
}
uint32_t ZEXPORT PREFIX(crc32_z)(uint32_t crc, const unsigned char *buf, size_t len) {
if (buf == NULL) return 0;
return functable.crc32(crc, buf, len);
}
/* ========================================================================= */
#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
#define DO4 DO1; DO1; DO1; DO1
/* ========================================================================= */
ZLIB_INTERNAL uint32_t crc32_generic(uint32_t crc, const unsigned char *buf, uint64_t len)
{
crc = crc ^ 0xffffffff;
#ifdef UNROLL_LESS
while (len >= 4) {
DO4;
len -= 4;
}
#else
while (len >= 8) {
DO8;
len -= 8;
}
#endif
if (len) do {
DO1;
} while (--len);
return crc ^ 0xffffffff;
}
uint32_t ZEXPORT PREFIX(crc32)(uint32_t crc, const unsigned char *buf, uint32_t len) {
return PREFIX(crc32_z)(crc, buf, len);
}
/*
This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit
integer pointer type. This violates the strict aliasing rule, where a
compiler can assume, for optimization purposes, that two pointers to
fundamentally different types won't ever point to the same memory. This can
manifest as a problem only if one of the pointers is written to. This code
only reads from those pointers. So long as this code remains isolated in
this compilation unit, there won't be a problem. For this reason, this code
should not be copied and pasted into a compilation unit in which other code
writes to the buffer that is passed to these routines.
*/
/* ========================================================================= */
#if BYTE_ORDER == LITTLE_ENDIAN
#define DOLIT4 c ^= *buf4++; \
c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
/* ========================================================================= */
ZLIB_INTERNAL uint32_t crc32_little(uint32_t crc, const unsigned char *buf, uint64_t len) {
register uint32_t c;
register const uint32_t *buf4;
c = crc;
c = ~c;
while (len && ((ptrdiff_t)buf & 3)) {
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
len--;
}
buf4 = (const uint32_t *)(const void *)buf;
#ifndef UNROLL_LESS
while (len >= 32) {
DOLIT32;
len -= 32;
}
#endif
while (len >= 4) {
DOLIT4;
len -= 4;
}
buf = (const unsigned char *)buf4;
if (len) do {
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
} while (--len);
c = ~c;
return c;
}
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
/* ========================================================================= */
#if BYTE_ORDER == BIG_ENDIAN
#define DOBIG4 c ^= *buf4++; \
c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
/* ========================================================================= */
ZLIB_INTERNAL uint32_t crc32_big(uint32_t crc, const unsigned char *buf, uint64_t len) {
register uint32_t c;
register const uint32_t *buf4;
c = ZSWAP32(crc);
c = ~c;
while (len && ((ptrdiff_t)buf & 3)) {
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
len--;
}
buf4 = (const uint32_t *)(const void *)buf;
#ifndef UNROLL_LESS
while (len >= 32) {
DOBIG32;
len -= 32;
}
#endif
while (len >= 4) {
DOBIG4;
len -= 4;
}
buf = (const unsigned char *)buf4;
if (len) do {
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
} while (--len);
c = ~c;
return ZSWAP32(c);
}
#endif /* BYTE_ORDER == BIG_ENDIAN */
/* ========================================================================= */
static uint32_t crc32_combine_(uint32_t crc1, uint32_t crc2, z_off64_t len2) {
int n;
#ifdef DYNAMIC_CRC_TABLE
if (crc_table_empty)
make_crc_table();
#endif /* DYNAMIC_CRC_TABLE */
if (len2 > 0)
/* operator for 2^n zeros repeats every GF2_DIM n values */
for (n = 0; len2; n = (n + 1) % GF2_DIM, len2 >>= 1)
if (len2 & 1)
crc1 = gf2_matrix_times(crc_comb[n], crc1);
return crc1 ^ crc2;
}
/* ========================================================================= */
uint32_t ZEXPORT PREFIX(crc32_combine)(uint32_t crc1, uint32_t crc2, z_off_t len2) {
return crc32_combine_(crc1, crc2, len2);
}
uint32_t ZEXPORT PREFIX(crc32_combine64)(uint32_t crc1, uint32_t crc2, z_off64_t len2) {
return crc32_combine_(crc1, crc2, len2);
}
#ifndef X86_PCLMULQDQ_CRC
ZLIB_INTERNAL void crc_reset(deflate_state *const s) {
s->strm->adler = PREFIX(crc32)(0L, NULL, 0);
}
ZLIB_INTERNAL void copy_with_crc(PREFIX3(stream) *strm, unsigned char *dst, unsigned long size) {
memcpy(dst, strm->next_in, size);
strm->adler = PREFIX(crc32)(strm->adler, dst, size);
}
#endif
/* ========================================================================= */
static void crc32_combine_gen_(uint32_t *op, z_off64_t len2)
{
uint32_t row;
int j;
unsigned i;
#ifdef DYNAMIC_CRC_TABLE
if (crc_table_empty)
make_crc_table();
#endif /* DYNAMIC_CRC_TABLE */
/* if len2 is zero or negative, return the identity matrix */
if (len2 <= 0) {
row = 1;
for (j = 0; j < GF2_DIM; j++) {
op[j] = row;
row <<= 1;
}
return;
}
/* at least one bit in len2 is set -- find it, and copy the operator
corresponding to that position into op */
i = 0;
for (;;) {
if (len2 & 1) {
for (j = 0; j < GF2_DIM; j++)
op[j] = crc_comb[i][j];
break;
}
len2 >>= 1;
i = (i + 1) % GF2_DIM;
}
/* for each remaining bit set in len2 (if any), multiply op by the operator
corresponding to that position */
for (;;) {
len2 >>= 1;
i = (i + 1) % GF2_DIM;
if (len2 == 0)
break;
if (len2 & 1)
for (j = 0; j < GF2_DIM; j++)
op[j] = gf2_matrix_times(crc_comb[i], op[j]);
}
}
/* ========================================================================= */
void ZEXPORT PREFIX(crc32_combine_gen)(uint32_t *op, z_off_t len2)
{
crc32_combine_gen_(op, len2);
}
void ZEXPORT PREFIX(crc32_combine_gen64)(uint32_t *op, z_off64_t len2)
{
crc32_combine_gen_(op, len2);
}
/* ========================================================================= */
uint32_t ZEXPORT PREFIX(crc32_combine_op)(uint32_t crc1, uint32_t crc2, const uint32_t *op)
{
return gf2_matrix_times(op, crc1) ^ crc2;
}