Skip to content

Latest commit

 

History

History
 
 

embeddings

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Experiments with word embeddings

1. Pretrained word2vec embeddings( https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/ ) – google_word2vec.ipynb

Optimizer: adam

Batch: 128

Model params: LSTM(128), dropout_U=0.2, dropout_W=0.2, dropout(0.4)

Train accuracy: 85.15%

Train loss: 0.3286

Validation accuracy: 82.68%

Validation loss: 0.3801

2. Pretrained Glove embeddings(http://nlp.stanford.edu/data/glove.6B.zip) – glove.py

======= n_epochs: 13

Optimizer: sgd with momentum (lr=1, momentum=0.6)

Batch: 128

Model params: LSTM(128), dropout_U=0.2, dropout_W=0.2, dropout(0.4)

Train accuracy: 85.54%

Train loss: 0.3230

Validation accuracy: 82.43%

Validation loss: 0.3801

n_epochs: 29

  1. Pretrained Glove embeddings(http://nlp.stanford.edu/data/glove.6B.zip) – glove.py

Optimizer: adam Model params: LSTM(64), dropout_U=0.2, dropout_W=0.2, dropout(0.4)

Name of Glove pretrained file Batch Train accuracy Validation accuracy
glove.6B.50d.txt 128 76.57% 77.50%
glove.6B.100d.txt 128 79.91% 80.22%
glove.6B.200d.txt 128 82.60% 81.24%
glove.6B.300d.txt 128 84.53% 81.59%

3. Pretrained Glove embeddings(http://nlp.stanford.edu/data/glove.6B.zip) – glove.py

Optimizer: adam

Model params: LSTM(128), dropout_U=0.2, dropout_W=0.2, dropout(0.4), MAX_SEQUENCE_LENGTH=50

Name of Glove pretrained file Batch Train accuracy Validation accuracy
glove.6B.100d.txt 256 81.89% 80.62%
glove.6B.300d.txt 256 85.65% 81.86%
glove.6B.100d.txt 128 82.72% 80.95%
glove.6B.300d.txt 128 85.87% 81.37%
glove.6B.100d.txt 64 83.29% 80.73%
glove.6B.300d.txt 64 86.94% 81.83%

4. Trained Glove embeddings on rotten tomatoes database (https://yadi.sk/d/UlT88tKF3Em92X)

Trained with embedding_size=300, context_size=10, min_occurrences=1, learning_rate=0.05, batch_size=512 and num_epochs=100, log_dir="log/example", summary_batch_interval=1000

Optimizer: adam

Model params: LSTM(128), dropout_U=0.2, dropout_W=0.2, dropout(0.4), batch_size=64

Name of Glove pretrained file Batch Train accuracy Validation accuracy
my_glove.txt 64 84.14% 79.14%

Optimizer: adam

Model params: LSTM(128), dropout_U=0.2, dropout_W=0.2

MAX_SEQUENCE_LENGTH Batch Dropout Train accuracy Validation accuracy Test accuracy Epochs
50 128 0.4 90.44% 85.01% 76.17% 10
50 2000 0.4 85.76% 83.40% 74.18% 35
50 128 0.2 86.56% 84.32% 76.37% 27
100 128 0.4 91.16% 88.81% 76.29% 27
100 2000 0.4 89.85% 88.09% 76.32% 68

6. Optimizers comparisons on rotten tomatoes database (https://yadi.sk/d/UlT88tKF3Em92X)

| Optimizer | Train accuracy | Validation accuracy | Epochs | | ------------- |:-------------:| -----:| -----:| -----:| | SGD nesterov momentum | 85.79% | 82.33% | 46| | RMSprop | 87.55% | 82.90% | 23| | Adam | 89.03% | 82.80% | 26| | Adamax | 87.40% | 82.99% | 30| | Nadam | 88.12% | 82.65% | 14| | Adadelta | 83.70% | 82.50% | 58| | Adadelta | 83.59% | 81.89% | 68|

Validation accuracy plot

alt text

Validation loss plot

alt text