1. Pretrained word2vec embeddings( https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/ ) – google_word2vec.ipynb
Optimizer: adam
Batch: 128
Model params: LSTM(128), dropout_U=0.2, dropout_W=0.2, dropout(0.4)
Train accuracy: 85.15%
Train loss: 0.3286
Validation accuracy: 82.68%
Validation loss: 0.3801
2. Pretrained Glove embeddings(http://nlp.stanford.edu/data/glove.6B.zip) – glove.py
======= n_epochs: 13
Optimizer: sgd with momentum (lr=1, momentum=0.6)
Batch: 128
Model params: LSTM(128), dropout_U=0.2, dropout_W=0.2, dropout(0.4)
Train accuracy: 85.54%
Train loss: 0.3230
Validation accuracy: 82.43%
Validation loss: 0.3801
n_epochs: 29
- Pretrained Glove embeddings(http://nlp.stanford.edu/data/glove.6B.zip) – glove.py
Optimizer: adam Model params: LSTM(64), dropout_U=0.2, dropout_W=0.2, dropout(0.4)
Name of Glove pretrained file | Batch | Train accuracy | Validation accuracy |
---|---|---|---|
glove.6B.50d.txt | 128 | 76.57% | 77.50% |
glove.6B.100d.txt | 128 | 79.91% | 80.22% |
glove.6B.200d.txt | 128 | 82.60% | 81.24% |
glove.6B.300d.txt | 128 | 84.53% | 81.59% |
3. Pretrained Glove embeddings(http://nlp.stanford.edu/data/glove.6B.zip) – glove.py
Optimizer: adam
Model params: LSTM(128), dropout_U=0.2, dropout_W=0.2, dropout(0.4), MAX_SEQUENCE_LENGTH=50
Name of Glove pretrained file | Batch | Train accuracy | Validation accuracy |
---|---|---|---|
glove.6B.100d.txt | 256 | 81.89% | 80.62% |
glove.6B.300d.txt | 256 | 85.65% | 81.86% |
glove.6B.100d.txt | 128 | 82.72% | 80.95% |
glove.6B.300d.txt | 128 | 85.87% | 81.37% |
glove.6B.100d.txt | 64 | 83.29% | 80.73% |
glove.6B.300d.txt | 64 | 86.94% | 81.83% |
4. Trained Glove embeddings on rotten tomatoes database (https://yadi.sk/d/UlT88tKF3Em92X)
Trained with embedding_size=300, context_size=10, min_occurrences=1, learning_rate=0.05, batch_size=512 and num_epochs=100, log_dir="log/example", summary_batch_interval=1000
Optimizer: adam
Model params: LSTM(128), dropout_U=0.2, dropout_W=0.2, dropout(0.4), batch_size=64
Name of Glove pretrained file | Batch | Train accuracy | Validation accuracy |
---|---|---|---|
my_glove.txt | 64 | 84.14% | 79.14% |
5. Pretrained word2vec embeddings( https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/ )
Optimizer: adam
Model params: LSTM(128), dropout_U=0.2, dropout_W=0.2
MAX_SEQUENCE_LENGTH | Batch | Dropout | Train accuracy | Validation accuracy | Test accuracy | Epochs |
---|---|---|---|---|---|---|
50 | 128 | 0.4 | 90.44% | 85.01% | 76.17% | 10 |
50 | 2000 | 0.4 | 85.76% | 83.40% | 74.18% | 35 |
50 | 128 | 0.2 | 86.56% | 84.32% | 76.37% | 27 |
100 | 128 | 0.4 | 91.16% | 88.81% | 76.29% | 27 |
100 | 2000 | 0.4 | 89.85% | 88.09% | 76.32% | 68 |
6. Optimizers comparisons on rotten tomatoes database (https://yadi.sk/d/UlT88tKF3Em92X)
| Optimizer | Train accuracy | Validation accuracy | Epochs | | ------------- |:-------------:| -----:| -----:| -----:| | SGD nesterov momentum | 85.79% | 82.33% | 46| | RMSprop | 87.55% | 82.90% | 23| | Adam | 89.03% | 82.80% | 26| | Adamax | 87.40% | 82.99% | 30| | Nadam | 88.12% | 82.65% | 14| | Adadelta | 83.70% | 82.50% | 58| | Adadelta | 83.59% | 81.89% | 68|
Validation accuracy plot
Validation loss plot