forked from BloodAxe/OpenCV-Features-Comparison
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AlgorithmEstimation.cpp
234 lines (184 loc) · 7.57 KB
/
AlgorithmEstimation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#include "AlgorithmEstimation.hpp"
#include <fstream>
#include <iterator>
#include <cstdint>
bool computeMatchesDistanceStatistics(const Matches& matches, float& meanDistance, float& stdDev)
{
if (matches.empty())
return false;
std::vector<float> distances(matches.size());
for (size_t i=0; i<matches.size(); i++)
distances[i] = matches[i].distance;
cv::Scalar mean, dev;
cv::meanStdDev(distances, mean, dev);
meanDistance = static_cast<float>(mean.val[0]);
stdDev = static_cast<float>(dev.val[0]);
return false;
}
float distance(const cv::Point2f a, const cv::Point2f b)
{
return sqrt((a - b).dot(a-b));
}
cv::Scalar computeReprojectionError(const Keypoints& source, const Keypoints& query, const Matches& matches, const cv::Mat& homography);
bool performEstimation
(
const FeatureAlgorithm& alg,
const ImageTransformation& transformation,
const cv::Mat& sourceImage,
std::vector<FrameMatchingStatistics>& stat
)
{
Keypoints sourceKp;
Descriptors sourceDesc;
cv::Mat gray;
if (sourceImage.channels() == 3)
{
cv::cvtColor(sourceImage, gray, cv::COLOR_BGR2GRAY);
}
else if (sourceImage.channels() == 4)
{
cv::cvtColor(sourceImage, gray, cv::COLOR_BGRA2GRAY);
}
else if(sourceImage.channels() == 1)
{
gray = sourceImage;
}
if (!alg.extractFeatures(gray, sourceKp, sourceDesc))
return false;
std::vector<float> x = transformation.getX();
stat.resize(x.size());
const int count = x.size();
Keypoints resKpReal;
Descriptors resDesc;
Matches matches;
// To convert ticks to milliseconds
const double toMsMul = 1000. / cv::getTickFrequency();
//#pragma omp parallel for private(resKpReal, resDesc, matches) schedule(dynamic, 5)
for (int i = 0; i < count; i++)
{
float arg = x[i];
FrameMatchingStatistics& s = stat[i];
cv::Mat transformedImage;
transformation.transform(arg, gray, transformedImage);
if (0)
{
std::ostringstream image_name;
image_name << "image_dump_" << transformation.name << "_" << i << ".bin";
std::ofstream dump(image_name.str().c_str(), std::ios::binary);
std::copy(transformedImage.datastart, transformedImage.dataend, std::ostream_iterator<uint8_t>(dump));
}
cv::Mat expectedHomography = transformation.getHomography(arg, gray);
int64 start = cv::getTickCount();
alg.extractFeatures(transformedImage, resKpReal, resDesc);
// Initialize required fields
s.isValid = resKpReal.size() > 0;
s.argumentValue = arg;
if (!s.isValid)
continue;
alg.matchFeatures(sourceDesc, resDesc, matches);
int64 end = cv::getTickCount();
std::vector<cv::Point2f> sourcePoints, sourcePointsInFrame;
cv::KeyPoint::convert(sourceKp, sourcePoints);
cv::perspectiveTransform(sourcePoints, sourcePointsInFrame, expectedHomography);
cv::Mat homography;
//so, we have :
//N - number of keypoints in the first image that are also visible
// (after transformation) on the second image
// N1 - number of keypoints in the first image that have been matched.
// n - number of the correct matches found by the matcher
// n / N1 - precision
// n / N - recall(? )
int visibleFeatures = 0;
int correctMatches = 0;
int matchesCount = matches.size();
for (int i = 0; i < sourcePoints.size(); i++)
{
if (sourcePointsInFrame[i].x > 0 &&
sourcePointsInFrame[i].y > 0 &&
sourcePointsInFrame[i].x < transformedImage.cols &&
sourcePointsInFrame[i].y < transformedImage.rows)
{
visibleFeatures++;
}
}
for (int i = 0; i < matches.size(); i++)
{
cv::Point2f expected = sourcePointsInFrame[matches[i].trainIdx];
cv::Point2f actual = resKpReal[matches[i].queryIdx].pt;
if (distance(expected, actual) < 3.0)
{
correctMatches++;
}
}
//bool homographyFound = ImageTransformation::findHomography(sourceKp, resKpReal, matches, correctMatches, homography);
// Some simple stat:
//s.isValid = homographyFound;
s.totalKeypoints = resKpReal.size();
s.consumedTimeMs = (end - start) * toMsMul;
s.precision = correctMatches / (float) matchesCount;
s.recall = correctMatches / (float) visibleFeatures;
// Compute matching statistics
//if (homographyFound)
//{
// cv::Mat r = expectedHomography * homography.inv();
// float error = cv::norm(cv::Mat::eye(3,3, CV_64FC1) - r, cv::NORM_INF);
// computeMatchesDistanceStatistics(correctMatches, s.meanDistance, s.stdDevDistance);
// s.reprojectionError = computeReprojectionError(sourceKp, resKpReal, correctMatches, homography);
// s.homographyError = std::min(error, 1.0f);
// if (0 && error >= 1)
// {
// std::cout << "H expected:" << expectedHomography << std::endl;
// std::cout << "H actual:" << homography << std::endl;
// std::cout << "H error:" << error << std::endl;
// std::cout << "R error:" << s.reprojectionError(0) << ";"
// << s.reprojectionError(1) << ";"
// << s.reprojectionError(2) << ";"
// << s.reprojectionError(3) << std::endl;
//
// cv::Mat matchesImg;
// cv::drawMatches(transformedImage,
// resKpReal,
// gray,
// sourceKp,
// correctMatches,
// matchesImg,
// cv::Scalar::all(-1),
// cv::Scalar::all(-1),
// std::vector<char>(),
// cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
//
// cv::imshow("Matches", matchesImg);
// cv::waitKey(-1);
// }
//}
}
return true;
}
cv::Scalar computeReprojectionError(const Keypoints& source, const Keypoints& query, const Matches& matches, const cv::Mat& homography)
{
assert(matches.size() > 0);
const int pointsCount = matches.size();
std::vector<cv::Point2f> srcPoints, dstPoints;
std::vector<float> distances;
for (int i = 0; i < pointsCount; i++)
{
srcPoints.push_back(source[matches[i].trainIdx].pt);
dstPoints.push_back(query[matches[i].queryIdx].pt);
}
cv::perspectiveTransform(dstPoints, dstPoints, homography.inv());
for (int i = 0; i < pointsCount; i++)
{
const cv::Point2f& src = srcPoints[i];
const cv::Point2f& dst = dstPoints[i];
cv::Point2f v = src - dst;
distances.push_back(sqrtf(v.dot(v)));
}
cv::Scalar mean, dev;
cv::meanStdDev(distances, mean, dev);
cv::Scalar result;
result(0) = mean(0);
result(1) = dev(0);
result(2) = *std::max_element(distances.begin(), distances.end());
result(3) = *std::min_element(distances.begin(), distances.end());
return result;
}