-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpbim.py
64 lines (43 loc) · 1.45 KB
/
interpbim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import argparse
import logging
import sys
import numpy as np
import pandas as pd
logging.basicConfig(level=logging.INFO)
def parse_args(argv):
parser = argparse.ArgumentParser(description="fit LAD decay curve")
parser.add_argument("--cm-map", help="Genetic map")
parser.add_argument("--bim", help="bim path")
parser.add_argument("--out", help="output bim")
return parser.parse_args(argv)
def interpolate_bim(bim: pd.DataFrame, cm_map: pd.DataFrame) -> pd.DataFrame:
"""Fill genetic distance in .bim given genetic map
Parameters
----------
bim:
DataFrame read from plink .bim file
https://www.cog-genomics.org/plink/1.9/formats#bim
cm_map:
DataFrame of genetic map
chrom, position, cM.
No header
tab-delimited
Returns
-------
DataFrame in plink .bim file. Genetic distance are interpolated
"""
chrom = bim.iloc[0, 0]
cm_map = cm_map[cm_map.iloc[:, 0] == chrom]
interp_cM = np.interp(bim[3].values, cm_map.iloc[:, 1], cm_map.iloc[:, 2])
bim_out = bim.copy()
bim_out.iloc[:, 2] = interp_cM
return bim_out
def main(argv):
args = parse_args(argv)
bim = pd.read_csv(args.bim, sep="\t", header=None)
cm_map = pd.read_csv(args.cm_map, sep="\t", header=None)
bim_fill = interpolate_bim(bim, cm_map)
bim_fill.to_csv(args.out, sep="\t", header=None, index=False)
sys.exit(0)
if __name__ == "__main__":
main(sys.argv[1:])