Skip to content

columns that are not present during prediction that are not targets #1009

Open
@mb706

Description

How do we / should we handle columns that could give additional information during training that are not present for prediction? Example would be to use biological quantities that are hard / expensive to measure in addition to normal patient information to predict disease outcome. One could then build a pipeline that uses a LearnerCV to predict the expensive biological quantities first, and integrates that into the prediction of outcomes. In resampling, the expensive quantities would then need to be handled like target columns to some degree, insofar as they should be absent during prediction. Does something like this exist already?

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions