forked from jswope00/AI-MicroApps
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
606 lines (522 loc) · 26.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
import openai
import google.generativeai as generativeai
import anthropic
import os
import importlib
from dotenv import load_dotenv
import re
import streamlit as st
from streamlit_extras.stylable_container import stylable_container
from streamlit_extras.let_it_rain import rain
import base64
load_dotenv()
# Define templates
templates = {"Case Study: Ebola": "config_ebola_case_study", "Demo 1": "config_demo1", "Demo 2": "config_demo2", "ai_assessment": "config", "MCQ Generator": "config_mcq_generator", "Debate an AI": "config_debate", "mSCT Tutor": "config_msct_tutor",
"Find the Incorrect Fact": "config_incorrect_fact", "Alt Text Generator": "config_alt_text", "SOAP Notes Scoring": "config_soap", "Question Feedback Generator": "config_question_feedback", "Learning Obective Generator": "config_lo_generator", "Image Quiz": "config_image_quiz", "Zodiac Symbol": "config_zodiac"}
selected_template = st.sidebar.selectbox("Select template", templates.keys())
if "template" not in st.session_state or st.session_state.template != selected_template:
st.session_state.template = selected_template
st.query_params["template"] = selected_template
# Clear all session state variables
keys_to_keep = ['template'] # Add any other keys you want to preserve
for key in list(st.session_state.keys()):
if key not in keys_to_keep:
del st.session_state[key]
st.session_state['additional_prompt'] = ""
st.session_state['chat_history'] = []
st.session_state['CURRENT_PHASE'] = 0
st.session_state['TOTAL_PRICE'] = 0
st.rerun()
config_file = templates[selected_template]
if config_file:
config_module = importlib.import_module(config_file)
for attr in dir(config_module):
if not attr.startswith("__"):
globals()[attr] = getattr(config_module, attr)
else:
from config import *
openai.api_key = os.getenv("OPENAI_API_KEY")
gemini_api_key = os.getenv('GOOGLE_API_KEY')
claude_api_key = os.getenv('CLAUDE_API_KEY')
user_input = {}
function_map = {
"text_input": st.text_input,
"text_area": st.text_area,
"warning": st.warning,
"button": st.button,
"radio": st.radio,
"markdown": st.markdown,
"selectbox": st.selectbox,
"checkbox": st.checkbox,
"slider": st.slider,
"number_input": st.number_input,
"image": st.image,
"file_uploader": st.file_uploader
}
def build_field(phase_name, fields):
for field_key, field in fields.items():
field_type = field.get("type", "")
field_label = field.get("label", "")
field_body = field.get("body", "")
field_value = field.get("value", "")
field_index = field.get("index",None)
field_max_chars = field.get("max_chars", None)
field_help = field.get("help", "")
field_on_click = field.get("on_click", None)
field_options = field.get("options", [])
field_horizontal = field.get("horizontal", False)
field_min_value = field.get("min_value",None)
field_max_value = field.get("max_value",None)
field_step = field.get("step",None)
field_height = field.get("height", None)
field_unsafe_html = field.get("unsafe_allow_html", False)
field_placeholder = field.get("placeholder", "")
field_image = field.get("image", "")
field_caption = field.get("caption", "")
field_allowed_files = field.get("allowed_files", None)
field_multiple_files = field.get("multiple_files", False)
kwargs = {}
if field_label:
kwargs['label'] = field_label
if field_body:
kwargs['body'] = field_body
if field_value:
kwargs['value'] = field_value
if field_index:
kwargs['index'] = field_index
if field_options:
kwargs['options'] = field_options
if field_max_chars:
kwargs['max_chars'] = field_max_chars
if field_help:
kwargs['help'] = field_help
if field_on_click:
kwargs['on_click'] = field_on_click
if field_horizontal:
kwargs['horizontal'] = field_horizontal
if field_min_value:
kwargs['min_value'] = field_min_value
if field_max_value:
kwargs['max_value'] = field_max_value
if field_step:
kwargs['step'] = field_step
if field_height:
kwargs['height'] = field_height
if field_unsafe_html:
kwargs['unsafe_allow_html'] = field_unsafe_html
if field_placeholder:
kwargs['placeholder'] = field_placeholder
if field_image:
kwargs['image'] = field_image
if field_caption:
kwargs['caption'] = field_caption
if field_allowed_files:
kwargs['type'] = field_allowed_files
if field_multiple_files:
kwargs['accept_multiple_files'] = field_multiple_files
key = f"{phase_name}_phase_status"
# If the user has already answered this question:
if key in st.session_state and st.session_state[key]:
# Write their answer
if f"{phase_name}_user_input_{field_key}" in st.session_state:
if field_type != "selectbox":
kwargs['value'] = st.session_state[f"{phase_name}_user_input_{field_key}"]
kwargs['disabled'] = True
my_input_function = function_map[field_type]
with stylable_container(
key="large_label",
css_styles="""
label p {
font-weight: bold;
font-size: 16px;
}
div[role="radiogroup"] label p{
font-weight: unset !important;
font-size: unset !important;
}
""",
):
user_input[field_key] = my_input_function(**kwargs)
def call_openai_completions(phase_instructions, user_prompt, image_urls=None):
selected_llm = st.session_state['selected_llm']
llm_configuration = st.session_state['llm_config']
chat_history = st.session_state["chat_history"]
if image_urls and selected_llm not in ["gpt-4o-mini", "gpt-4-turbo", "gpt-4o"]:
return "ERROR: This model does not support image recognition"
message_history = []
message_history_gemini = []
if len(chat_history) > 0:
for history in chat_history:
user_content = history["user"]
assistant_content = history["assistant"]
message_history.extend(
[{"role": "user", "content": user_content}, {"role": "assistant", "content": assistant_content}])
message_history_gemini.extend(
[{"role": "user", "parts": [user_content]}, {"role": "model", "parts": [assistant_content]}])
if image_urls:
messages_openai = [
{"role": "system", "content": SYSTEM_PROMPT + "\n" + phase_instructions},
{"role": "user", "content": [{"type": "image_url", "image_url": {"url": url}} for url in image_urls]},
{"role": "user", "content": user_prompt}
]
else:
messages_openai = [
{"role": "system", "content": SYSTEM_PROMPT + "\n" + phase_instructions},
{"role": "user", "content": user_prompt}
]
if selected_llm in ["gpt-3.5-turbo", "gpt-4o-mini", "gpt-4-turbo", "gpt-4o"]:
try:
response = openai.chat.completions.create(
model=llm_configuration["model"],
messages= message_history+messages_openai,
max_tokens=llm_configuration.get("max_tokens", 1000),
temperature=llm_configuration.get("temperature", 1),
top_p=llm_configuration.get("top_p", 1),
frequency_penalty=llm_configuration.get("frequency_penalty", 0),
presence_penalty=llm_configuration.get("presence_penalty", 0)
)
input_price = int(response.usage.prompt_tokens) * llm_configuration["price_input_token_1M"] / 1000000
output_price = int(response.usage.completion_tokens) * llm_configuration[
"price_output_token_1M"] / 1000000
total_price = input_price + output_price
st.session_state['TOTAL_PRICE'] += total_price
return response.choices[0].message.content
except Exception as e:
st.write(f"**OpenAI Error Response:** {selected_llm}")
st.error(f"Error: {e}")
if selected_llm in ["gemini-1.0-pro", "gemini-1.5-flash", "gemini-1.5-pro"]:
try:
generativeai.configure(api_key=gemini_api_key)
generation_config = {
"temperature": llm_configuration["temperature"],
"top_p": llm_configuration.get("top_p", 1),
"max_output_tokens": llm_configuration.get("max_tokens", 1000),
"response_mime_type": "text/plain",
}
model = generativeai.GenerativeModel(
llm_configuration["model"],
generation_config=generation_config,
system_instruction=SYSTEM_PROMPT + "\n" + phase_instructions,
)
chat_session = model.start_chat(
history= message_history_gemini
)
gemini_response = chat_session.send_message(user_prompt)
gemini_response_text = gemini_response.text
return gemini_response_text
except Exception as e:
st.write("**Gemini Error Response:**")
st.error(f"Error: {e}")
if selected_llm in ["claude-opus", "claude-sonnet", "claude-haiku", "claude-3.5-sonnet"]:
try:
client = anthropic.Anthropic(api_key=claude_api_key)
anthropic_response = client.messages.create(
model=llm_configuration["model"],
max_tokens=llm_configuration["max_tokens"],
temperature=llm_configuration["temperature"],
system=SYSTEM_PROMPT + "\n" + phase_instructions,
messages= message_history+[
{"role": "user", "content": [{"type": "text", "text": user_prompt}]},
]
)
input_price = int(anthropic_response.usage.input_tokens) * llm_configuration[
"price_input_token_1M"] / 1000000
output_price = int(anthropic_response.usage.output_tokens) * llm_configuration[
"price_output_token_1M"] / 1000000
total_price = input_price + output_price
response_cleaned = '\n'.join([block.text for block in anthropic_response.content if block.type == 'text'])
st.session_state['TOTAL_PRICE'] += total_price
return response_cleaned
except Exception as e:
st.write(f"**Anthropic Error Response: {selected_llm}**")
st.error(f"Error: {e}")
def format_user_prompt(prompt, user_input, phase_name=None):
try:
prompt = prompt_conditionals(prompt,user_input, phase_name)
formatted_user_prompt = prompt.format(**user_input)
return formatted_user_prompt
except Exception as e:
print("Error occurred:", e)
formatted_user_prompt = prompt.format(**user_input)
return formatted_user_prompt
def st_store(input, phase_name, phase_key, field_key=""):
if field_key:
key = f"{phase_name}_{field_key}_{phase_key}"
else:
key = f"{phase_name}_{phase_key}"
st.session_state[key] = input
def build_scoring_instructions(rubric):
scoring_instructions = f"""
Please score the user's previous response based on the following rubric: \n{rubric}
\n\nPlease output your response as JSON, using this format: {{ "[criteria 1]": "[score 1]", "[criteria 2]": "[score 2]", "total": "[total score]" }}
"""
return scoring_instructions
def extract_score(text):
pattern = r'"total":\s*"?(\d+)"?'
match = re.search(pattern, text)
if match:
return int(match.group(1))
else:
return 0
def check_score(PHASE_NAME):
score = st.session_state[f"{PHASE_NAME}_ai_score"]
try:
if score >= PHASES[PHASE_NAME]["minimum_score"]:
st.session_state[f"{PHASE_NAME}_phase_status"] = True
return True
else:
st.session_state[f"{PHASE_NAME}_phase_status"] = False
return False
except:
st.session_state[f"{PHASE_NAME}_phase_status"] = False
return False
def skip_phase(PHASE_NAME, No_Submit=False):
phase_fields = PHASES[PHASE_NAME]["fields"]
for field_key in phase_fields:
st_store(user_input[field_key], PHASE_NAME, "user_input", field_key)
if not No_Submit:
st.session_state[f"{PHASE_NAME}_ai_response"] = "This phase was skipped."
st.session_state[f"{PHASE_NAME}_phase_status"] = True
st.session_state['CURRENT_PHASE'] = min(st.session_state['CURRENT_PHASE'] + 1, len(PHASES) - 1)
def celebration():
rain(
emoji="🥳",
font_size=54,
falling_speed=5,
animation_length=1,
)
# Function to find the image URL
def find_image_urls(fields):
image_urls = []
for key, value in fields.items():
if 'image' in value:
image_urls.append(value['image'])
if 'file_uploader' in value.values():
uploaded_files = user_input[key]
if not isinstance(uploaded_files, list):
uploaded_files = [uploaded_files]
for uploaded_file in uploaded_files:
if uploaded_file:
file_content = uploaded_file.read()
base64_encoded_content = base64.b64encode(file_content).decode('utf-8')
image_url = f"data:image/jpeg;base64,{base64_encoded_content}"
image_urls.append(image_url)
return image_urls
def main():
if 'TOTAL_PRICE' not in st.session_state:
st.session_state['TOTAL_PRICE'] = 0
with st.sidebar:
selected_llm = st.selectbox("Select Language Model", options=LLM_CONFIGURATIONS.keys(), key="selected_llm")
# Get the initial LLM configuration from the selected model
initial_config = LLM_CONFIGURATIONS[selected_llm]
# Parameter adjustment inputs
st.session_state['llm_config'] = {
"model": initial_config["model"],
"temperature": st.slider("Temperature", min_value=0.0, max_value=1.0,
value=float(initial_config.get("temperature", 1.0)), step=0.01),
"max_tokens": st.slider("Max Tokens", min_value=50, max_value=4000,
value=int(initial_config.get("max_tokens", 1000)), step=50),
"top_p": st.slider("Top P", min_value=0.0, max_value=1.0, value=float(initial_config.get("top_p", 1.0)), step=0.1),
"frequency_penalty": st.slider("Frequency Penalty", min_value=0.0, max_value=1.0,
value=float(initial_config.get("frequency_penalty", 0.0)), step=0.01),
"presence_penalty": st.slider("Presence Penalty", min_value=0.0, max_value=1.0,
value=float(initial_config.get("presence_penalty", 0.0)), step=0.01),
"price_input_token_1M": st.number_input("Input Token Price 1M", value=initial_config.get("price_input_token_1M", 0)),
"price_output_token_1M": st.number_input("Output Token Price 1M", value=initial_config.get("price_output_token_1M", 0))
}
if DISPLAY_COST:
st.write("Price : ${:.6f}".format(st.session_state['TOTAL_PRICE']))
with st.sidebar:
st.subheader("Chat History")
for history in st.session_state['chat_history']:
st.markdown(f"**User:** {history['user']}")
if 'images' in history:
for image in history['images']:
st.image(image)
st.markdown(f"**AI:** {history['assistant']}")
st.markdown("---")
if 'CURRENT_PHASE' not in st.session_state:
st.session_state['CURRENT_PHASE'] = 0
st.title(APP_TITLE)
st.markdown(APP_INTRO)
if APP_HOW_IT_WORKS:
with st.expander("Learn how this works", expanded=False):
st.markdown(APP_HOW_IT_WORKS)
if SHARED_ASSET:
with open(SHARED_ASSET["path"], "rb") as asset_file:
st.download_button(label=SHARED_ASSET["button_text"],
data=asset_file,
file_name=SHARED_ASSET["name"],
mime="application/octet-stream")
if HTML_BUTTON:
st.link_button(label=HTML_BUTTON["button_text"], url=HTML_BUTTON["url"])
i = 0
while i <= st.session_state['CURRENT_PHASE']:
submit_button = False
skip_button = False
final_phase_name = list(PHASES.keys())[-1]
final_key = f"{final_phase_name}_ai_response"
PHASE_NAME = list(PHASES.keys())[i]
PHASE_DICT = PHASES[PHASE_NAME]
fields = PHASE_DICT["fields"]
st.write(f"#### Phase {i + 1}: {PHASE_DICT['name']}")
build_field(PHASE_NAME, fields)
key = f"{PHASE_NAME}_phase_status"
user_prompt_template = PHASE_DICT.get("user_prompt", "")
if PHASE_DICT.get("show_prompt", False):
with st.expander("View/edit full prompt"):
formatted_user_prompt = st.text_area(
label="Prompt",
height=100,
max_chars=50000,
value=format_user_prompt(user_prompt_template, user_input, PHASE_NAME),
disabled=PHASE_DICT.get("read_only_prompt",False)
)
else:
formatted_user_prompt = format_user_prompt(user_prompt_template, user_input, PHASE_NAME)
if PHASE_DICT.get("no_submission", False):
if key not in st.session_state:
st.session_state[key] = True
st.session_state['CURRENT_PHASE'] = min(st.session_state['CURRENT_PHASE'] + 1, len(PHASES) - 1)
st.session_state[f"{PHASE_NAME}_phase_completed"] = True
st.rerun()
if key not in st.session_state:
st.session_state[key] = False
if not st.session_state.get(f"{PHASE_NAME}_phase_completed", False):
with st.container():
col1, col2 = st.columns(2)
with col1:
submit_button = st.button(label=PHASE_DICT.get("button_label", "Submit"), type="primary",
key=f"submit {i}")
with col2:
if PHASE_DICT.get("allow_skip", False):
skip_button = st.button(label="Skip Question", key=f"skip {i}")
key = f"{PHASE_NAME}_ai_response"
if key in st.session_state and st.session_state[key]:
st.info(st.session_state[key], icon="🤖")
key = f"{PHASE_NAME}_ai_score_debug"
if key in st.session_state and st.session_state[key]:
st.info(st.session_state[key], icon="🤖")
key = f"{PHASE_NAME}_ai_response_revision_1"
# If there are any revisions, enter the loop
if key in st.session_state and st.session_state[key]:
z = 1
while z <= PHASE_DICT.get("max_revisions",10):
key = f"{PHASE_NAME}_ai_response_revision_{z}"
if key in st.session_state and st.session_state[key]:
st.info(st.session_state[key], icon="🤖")
z += 1
if submit_button:
for field_key, field in fields.items():
st_store(user_input[field_key], PHASE_NAME, "user_input", field_key)
phase_instructions = PHASE_DICT.get("phase_instructions", "")
image_urls = find_image_urls(PHASE_DICT.get('fields', {}))
if PHASE_DICT.get("ai_response", True):
if PHASE_DICT.get("scored_phase", False):
if "rubric" in PHASE_DICT:
scoring_instructions = build_scoring_instructions(PHASE_DICT["rubric"])
ai_feedback = call_openai_completions(phase_instructions, formatted_user_prompt, image_urls)
st.info(body=ai_feedback, icon="🤖")
ai_score = call_openai_completions(scoring_instructions, ai_feedback)
st.info(ai_score, icon="🤖")
st_store(ai_feedback, PHASE_NAME, "ai_response")
st_store(ai_score, PHASE_NAME, "ai_score_debug")
score = extract_score(ai_score)
st_store(score, PHASE_NAME, "ai_score")
chat_history_entry = {
"user": formatted_user_prompt,
"assistant": ai_feedback
}
if image_urls:
chat_history_entry["images"] = image_urls
st.session_state['chat_history'].append(chat_history_entry)
st.session_state["ai_score"] = ai_score
st.session_state['score'] = score
if check_score(PHASE_NAME):
st.session_state['CURRENT_PHASE'] = min(st.session_state['CURRENT_PHASE'] + 1, len(PHASES) - 1)
st.session_state[f"{PHASE_NAME}_phase_completed"] = True
st.rerun()
else:
st.warning("You haven't passed. Please try again.")
else:
st.error('You need to include a rubric for a scored phase', icon="🚨")
else:
ai_feedback = call_openai_completions(phase_instructions, formatted_user_prompt, image_urls)
st_store(ai_feedback, PHASE_NAME, "ai_response")
chat_history_entry = {
"user": formatted_user_prompt,
"assistant": ai_feedback
}
if image_urls:
chat_history_entry["images"] = image_urls
st.session_state['chat_history'].append(chat_history_entry)
st.session_state['CURRENT_PHASE'] = min(st.session_state['CURRENT_PHASE'] + 1, len(PHASES) - 1)
st.session_state[f"{PHASE_NAME}_phase_completed"] = True
st.rerun()
else:
res_box = st.info(body="", icon="🤖")
result = ""
hard_coded_message = PHASE_DICT.get('custom_response', None)
hard_coded_message = format_user_prompt(hard_coded_message, user_input, PHASE_NAME)
for char in hard_coded_message:
result += char
res_box.info(body=result, icon="🤖")
st.session_state[f"{PHASE_NAME}_ai_response"] = hard_coded_message
chat_history_entry = {
"user": formatted_user_prompt,
"assistant": hard_coded_message
}
if image_urls:
chat_history_entry["images"] = image_urls
st.session_state['chat_history'].append(chat_history_entry)
st.session_state['CURRENT_PHASE'] = min(st.session_state['CURRENT_PHASE'] + 1, len(PHASES) - 1)
st.session_state[f"{PHASE_NAME}_phase_completed"] = True
st.rerun()
if PHASE_DICT.get("allow_revisions", False):
if f"{PHASE_NAME}_ai_response" in st.session_state:
# Check if the current phase is the latest completed phase
is_latest_completed_phase = i == st.session_state['CURRENT_PHASE'] or (
i == st.session_state['CURRENT_PHASE'] - 1 and not st.session_state.get(
f"{list(PHASES.keys())[i + 1]}_phase_completed", False))
# Check if it's not the last phase and the phase wasn't skipped
is_not_last_phase = PHASE_NAME != final_phase_name
is_not_skipped = not st.session_state.get(f"{PHASE_NAME}_skipped", False)
if is_latest_completed_phase and is_not_last_phase and is_not_skipped:
with st.expander("Revise this response?"):
max_revisions = PHASE_DICT.get("max_revisions", 10)
if f"{PHASE_NAME}_revision_count" not in st.session_state:
st_store(0, PHASE_NAME, "revision_count")
if st.session_state[f"{PHASE_NAME}_revision_count"] < max_revisions:
st.session_state['additional_prompt'] = st.text_input("Enter additional prompt", value="",
key=PHASE_NAME)
if st.button("Revise", key=f"revise_{i}"):
st.session_state[f"{PHASE_NAME}_revision_count"] += 1
phase_instructions = PHASE_DICT.get("phase_instructions", "")
user_prompt_template = PHASE_DICT.get("user_prompt", "")
formatted_user_prompt = format_user_prompt(user_prompt_template, user_input, PHASE_NAME)
formatted_user_prompt += st.session_state['additional_prompt']
ai_feedback = call_openai_completions(phase_instructions, formatted_user_prompt)
st_store(ai_feedback, PHASE_NAME, "ai_response_revision_" + str(
st.session_state[f"{PHASE_NAME}_revision_count"]))
chat_history_entry = {
"user": formatted_user_prompt,
"assistant": ai_feedback
}
if image_urls:
chat_history_entry["images"] = image_urls
st.session_state['chat_history'].append(chat_history_entry)
st.rerun()
else:
st.warning("Revision limits exceeded")
if skip_button:
skip_phase(PHASE_NAME)
st.session_state[f"{PHASE_NAME}_phase_completed"] = True
st.session_state[f"{PHASE_NAME}_skipped"] = True
st.rerun()
if final_key in st.session_state and i == st.session_state['CURRENT_PHASE']:
st.success(COMPLETION_MESSAGE)
if COMPLETION_CELEBRATION:
celebration()
i = min(i + 1, len(PHASES))
if __name__ == "__main__":
main()