forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllvm-demote-float16.cpp
214 lines (190 loc) · 7.5 KB
/
llvm-demote-float16.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// This file is a part of Julia. License is MIT: https://julialang.org/license
// This pass finds floating-point operations on 16-bit values (half precision and bfloat),
// and replaces them by equivalent operations on 32-bit (single precision) values surrounded
// by a fpext and fptrunc. This ensures that the exact semantics of IEEE floating-point are
// preserved.
//
// Without this pass, back-ends that do not natively support half-precision (e.g. x86_64)
// similarly pattern-match half-precision operations with single-precision equivalents, but
// without truncating after every operation. Doing so breaks floating-point operations that
// assume precise semantics, such as Dekker arithmetic (as used in twiceprecision.jl).
//
// This pass is intended to run late in the pipeline, and should not be followed by
// instcombine. A run of GVN is recommended to clean-up identical conversions.
#include "llvm-version.h"
#include "support/dtypes.h"
#include "passes.h"
#include <llvm/Pass.h>
#include <llvm/ADT/Statistic.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/PassManager.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/Verifier.h>
#include <llvm/Support/Debug.h>
#include "julia.h"
#include "jitlayers.h"
#define DEBUG_TYPE "demote_float16"
using namespace llvm;
STATISTIC(TotalChanged, "Total number of instructions changed");
STATISTIC(TotalExt, "Total number of FPExt instructions inserted");
STATISTIC(TotalTrunc, "Total number of FPTrunc instructions inserted");
#define INST_STATISTIC(Opcode) STATISTIC(Opcode##Changed, "Number of " #Opcode " instructions changed")
INST_STATISTIC(FNeg);
INST_STATISTIC(FAdd);
INST_STATISTIC(FSub);
INST_STATISTIC(FMul);
INST_STATISTIC(FDiv);
INST_STATISTIC(FRem);
INST_STATISTIC(FCmp);
#undef INST_STATISTIC
extern JuliaOJIT *jl_ExecutionEngine;
namespace {
static bool have_fp16(Function &F, const Triple &TT) {
// for testing purposes
Attribute Attr = F.getFnAttribute("julia.hasfp16");
if (Attr.isValid())
return Attr.getValueAsBool();
// llvm/llvm-project#97975: on some platforms, `half` uses excessive precision
if (TT.isPPC())
return false;
return true;
}
static bool have_bf16(Function &F, const Triple &TT) {
// for testing purposes
Attribute Attr = F.getFnAttribute("julia.hasbf16");
if (Attr.isValid())
return Attr.getValueAsBool();
// https://github.com/llvm/llvm-project/issues/97975#issuecomment-2218770199:
// on current versions of LLVM, bf16 always uses TypeSoftPromoteHalf
return true;
}
static bool demoteFloat16(Function &F)
{
auto TT = Triple(F.getParent()->getTargetTriple());
auto has_fp16 = have_fp16(F, TT);
auto has_bf16 = have_bf16(F, TT);
if (has_fp16 && has_bf16)
return false;
auto &ctx = F.getContext();
auto T_float32 = Type::getFloatTy(ctx);
SmallVector<Instruction *, 0> erase;
for (auto &BB : F) {
for (auto &I : BB) {
// check whether there's any 16-bit floating point operands to extend
bool Float16 = I.getType()->getScalarType()->isHalfTy();
bool BFloat16 = I.getType()->getScalarType()->isBFloatTy();
for (size_t i = 0; !BFloat16 && !Float16 && i < I.getNumOperands(); i++) {
Value *Op = I.getOperand(i);
if (!has_fp16 && Op->getType()->getScalarType()->isHalfTy())
Float16 = true;
else if (!has_bf16 && Op->getType()->getScalarType()->isBFloatTy())
BFloat16 = true;
}
if (!Float16 && !BFloat16)
continue;
switch (I.getOpcode()) {
case Instruction::FNeg:
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::FCmp:
break;
default:
// TODO: Do calls to llvm.fma.f16 may need to go to f64 to be correct?
continue;
}
// skip @fastmath operations
// TODO: more fine-grained check (afn?)
if (I.isFast())
continue;
IRBuilder<> builder(&I);
// extend 16-bit floating point operands
SmallVector<Value *, 2> Operands(I.getNumOperands());
for (size_t i = 0; i < I.getNumOperands(); i++) {
Value *Op = I.getOperand(i);
if (!has_fp16 && Op->getType()->getScalarType()->isHalfTy()) {
// extend Float16 to Float32
++TotalExt;
Op = builder.CreateFPExt(Op, Op->getType()->getWithNewType(T_float32));
} else if (!has_bf16 && Op->getType()->getScalarType()->isBFloatTy()) {
// extend BFloat16 to Float32
++TotalExt;
Op = builder.CreateFPExt(Op, Op->getType()->getWithNewType(T_float32));
}
Operands[i] = Op;
}
// recreate the instruction if any operands changed,
// truncating the result back to the original type
Value *NewI;
++TotalChanged;
switch (I.getOpcode()) {
case Instruction::FNeg:
assert(Operands.size() == 1);
++FNegChanged;
NewI = builder.CreateFNeg(Operands[0]);
break;
case Instruction::FAdd:
assert(Operands.size() == 2);
++FAddChanged;
NewI = builder.CreateFAdd(Operands[0], Operands[1]);
break;
case Instruction::FSub:
assert(Operands.size() == 2);
++FSubChanged;
NewI = builder.CreateFSub(Operands[0], Operands[1]);
break;
case Instruction::FMul:
assert(Operands.size() == 2);
++FMulChanged;
NewI = builder.CreateFMul(Operands[0], Operands[1]);
break;
case Instruction::FDiv:
assert(Operands.size() == 2);
++FDivChanged;
NewI = builder.CreateFDiv(Operands[0], Operands[1]);
break;
case Instruction::FRem:
assert(Operands.size() == 2);
++FRemChanged;
NewI = builder.CreateFRem(Operands[0], Operands[1]);
break;
case Instruction::FCmp:
assert(Operands.size() == 2);
++FCmpChanged;
NewI = builder.CreateFCmp(cast<FCmpInst>(&I)->getPredicate(),
Operands[0], Operands[1]);
break;
default:
abort();
}
cast<Instruction>(NewI)->copyMetadata(I);
cast<Instruction>(NewI)->copyFastMathFlags(&I);
if (NewI->getType() != I.getType()) {
++TotalTrunc;
NewI = builder.CreateFPTrunc(NewI, I.getType());
}
I.replaceAllUsesWith(NewI);
erase.push_back(&I);
}
}
if (erase.size() > 0) {
for (auto V : erase)
V->eraseFromParent();
#ifdef JL_VERIFY_PASSES
assert(!verifyLLVMIR(F));
#endif
return true;
}
else
return false;
}
} // end anonymous namespace
PreservedAnalyses DemoteFloat16Pass::run(Function &F, FunctionAnalysisManager &AM)
{
if (demoteFloat16(F)) {
return PreservedAnalyses::allInSet<CFGAnalyses>();
}
return PreservedAnalyses::all();
}