Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

when run python main.py,it has error #79

Open
zhanghaoboyibo opened this issue Apr 30, 2021 · 1 comment
Open

when run python main.py,it has error #79

zhanghaoboyibo opened this issue Apr 30, 2021 · 1 comment

Comments

@zhanghaoboyibo
Copy link

Hello,while running main.py, I got some error. Any solutions or suggestions for this issue?
My enviroment:ubuntu16.04 + NVIDIA GTX 960M+anaconda3+ python3.6+pytorch1.0.0+CoppeliaSim4.0. And I use the code for pytorch 1.0.0,
`Connected to simulation.
CUDA detected. Running with GPU acceleration.
/home/zhb/anaconda3/envs/work/lib/python3.6/site-packages/torchvision/models/densenet.py:212: UserWarning: nn.init.kaiming_normal is now deprecated in favor of nn.init.kaiming_normal_.
nn.init.kaiming_normal(m.weight.data)
/home/zhb/zhb_ws/src/visual-pushing-grasping/models.py:203: UserWarning: nn.init.kaiming_normal is now deprecated in favor of nn.init.kaiming_normal_.
nn.init.kaiming_normal(m[1].weight.data)
/home/zhb/anaconda3/envs/work/lib/python3.6/site-packages/torch/nn/_reduction.py:49: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
Creating data logging session: /home/zhb/zhb_ws/src/visual-pushing-grasping/logs/2021-04-30.21:00:29

Training iteration: 0
/home/zhb/zhb_ws/src/visual-pushing-grasping/models.py:235: UserWarning: volatile was removed and now has no effect. Use with torch.no_grad(): instead.
rotate_color = F.grid_sample(Variable(input_color_data, volatile=True).cuda(), flow_grid_before, mode='nearest')
/home/zhb/zhb_ws/src/visual-pushing-grasping/models.py:236: UserWarning: volatile was removed and now has no effect. Use with torch.no_grad(): instead.
rotate_depth = F.grid_sample(Variable(input_depth_data, volatile=True).cuda(), flow_grid_before, mode='nearest')
/home/zhb/anaconda3/envs/work/lib/python3.6/site-packages/torch/nn/modules/upsampling.py:129: UserWarning: nn.Upsample is deprecated. Use nn.functional.interpolate instead.
warnings.warn("nn.{} is deprecated. Use nn.functional.interpolate instead.".format(self.name))
/home/zhb/anaconda3/envs/work/lib/python3.6/site-packages/torch/nn/functional.py:2423: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
"See the documentation of nn.Upsample for details.".format(mode))
Primitive confidence scores: 1.670718 (push), 3.414888 (grasp)
Strategy: exploit (exploration probability: 0.500000)
Action: grasp at (12, 103, 183)
Executing: grasp at (-0.358000, -0.018000, 0.050978)
Grasp successful: False
Time elapsed: 20.776577

Training iteration: 1
Change detected: False (value: 258)
Current reward: 0.000000
Future reward: 0.000000
Expected reward: 0.000000 + 0.500000 x 0.000000 = 0.000000
Primitive confidence scores: 1.596479 (push), 2.667503 (grasp)
Strategy: exploit (exploration probability: 0.500000)
Action: grasp at (6, 119, 183)
Traceback (most recent call last):
File "main.py", line 450, in
main(args)
File "main.py", line 301, in main
trainer.backprop(prev_color_heightmap, prev_valid_depth_heightmap, prev_primitive_action, prev_best_pix_ind, label_value)
File "/home/zhb/zhb_ws/src/visual-pushing-grasping/trainer.py", line 342, in backprop
push_predictions, grasp_predictions, state_feat = self.forward(color_heightmap, depth_heightmap, is_volatile=False, specific_rotation=best_pix_ind[0])
File "/home/zhb/zhb_ws/src/visual-pushing-grasping/trainer.py", line 163, in forward
output_prob, state_feat = self.model.forward(input_color_data, input_depth_data, is_volatile, specific_rotation)
File "/home/zhb/zhb_ws/src/visual-pushing-grasping/models.py", line 292, in forward
interm_push_color_feat = self.push_color_trunk.features(rotate_color)
File "/home/zhb/anaconda3/envs/work/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call
result = self.forward(*input, **kwargs)
File "/home/zhb/anaconda3/envs/work/lib/python3.6/site-packages/torch/nn/modules/container.py", line 92, in forward
input = module(input)
File "/home/zhb/anaconda3/envs/work/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call
result = self.forward(*input, **kwargs)
File "/home/zhb/anaconda3/envs/work/lib/python3.6/site-packages/torch/nn/modules/container.py", line 92, in forward
input = module(input)
File "/home/zhb/anaconda3/envs/work/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call
result = self.forward(*input, **kwargs)
File "/home/zhb/anaconda3/envs/work/lib/python3.6/site-packages/torchvision/models/densenet.py", line 141, in forward
new_features = super(_DenseLayer, self).forward(x)
File "/home/zhb/anaconda3/envs/work/lib/python3.6/site-packages/torch/nn/modules/container.py", line 92, in forward
input = module(input)
File "/home/zhb/anaconda3/envs/work/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call
result = self.forward(*input, **kwargs)
File "/home/zhb/anaconda3/envs/work/lib/python3.6/site-packages/torch/nn/modules/batchnorm.py", line 76, in forward
exponential_average_factor, self.eps)
File "/home/zhb/anaconda3/envs/work/lib/python3.6/site-packages/torch/nn/functional.py", line 1623, in batch_norm
training, momentum, eps, torch.backends.cudnn.enabled
RuntimeError: CUDA out of memory. Tried to allocate 5.12 MiB (GPU 0; 1.96 GiB total capacity; 1.09 GiB already allocated; 1.94 MiB free; 27.21 MiB cached)
`

@abdul-mannan-khan
Copy link

I am having the same problem. Is there any possible solution?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants