forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreinterpretarray.jl
515 lines (466 loc) · 20.3 KB
/
reinterpretarray.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
# This file is a part of Julia. License is MIT: https://julialang.org/license
using Test
isdefined(Main, :OffsetArrays) || @eval Main include("testhelpers/OffsetArrays.jl")
using .Main.OffsetArrays
isdefined(Main, :TSlow) || @eval Main include("testhelpers/arrayindexingtypes.jl")
using .Main: TSlow, WrapperArray
A = Int64[1, 2, 3, 4]
As = TSlow(A)
Ars = Int64[1 3; 2 4]
Arss = TSlow(Ars)
B = Complex{Int64}[5+6im, 7+8im, 9+10im]
Bs = TSlow(B)
Av = [Int32[1,2], Int32[3,4]]
for Ar in (Ars, Arss)
@test @inferred(ndims(reinterpret(reshape, Complex{Int64}, Ar))) == 1
@test @inferred(axes(reinterpret(reshape, Complex{Int64}, Ar))) === (Base.OneTo(2),)
@test @inferred(size(reinterpret(reshape, Complex{Int64}, Ar))) == (2,)
end
for _B in (B, Bs)
@test @inferred(ndims(reinterpret(reshape, Int64, _B))) == 2
@test @inferred(axes(reinterpret(reshape, Int64, _B))) === (Base.OneTo(2), Base.OneTo(3))
@test @inferred(size(reinterpret(reshape, Int64, _B))) == (2, 3)
@test @inferred(ndims(reinterpret(reshape, Int128, _B))) == 1
@test @inferred(axes(reinterpret(reshape, Int128, _B))) === (Base.OneTo(3),)
@test @inferred(size(reinterpret(reshape, Int128, _B))) == (3,)
end
@test_throws ArgumentError("cannot reinterpret `Int64` as `Vector{Int64}`, type `Vector{Int64}` is not a bits type") reinterpret(Vector{Int64}, A)
@test_throws ArgumentError("cannot reinterpret `Vector{Int32}` as `Int32`, type `Vector{Int32}` is not a bits type") reinterpret(Int32, Av)
@test_throws ArgumentError("cannot reinterpret a zero-dimensional `Int64` array to `Int32` which is of a different size") reinterpret(Int32, reshape([Int64(0)]))
@test_throws ArgumentError("cannot reinterpret a zero-dimensional `Int32` array to `Int64` which is of a different size") reinterpret(Int64, reshape([Int32(0)]))
@test_throws ArgumentError("""cannot reinterpret an `$Int` array to `Tuple{$Int, $Int}` whose first dimension has size `5`.
The resulting array would have non-integral first dimension.
""") reinterpret(Tuple{Int,Int}, [1,2,3,4,5])
@test_throws ArgumentError("`reinterpret(reshape, Complex{Int64}, a)` where `eltype(a)` is Int64 requires that `axes(a, 1)` (got Base.OneTo(4)) be equal to 1:2 (from the ratio of element sizes)") reinterpret(reshape, Complex{Int64}, A)
@test_throws ArgumentError("`reinterpret(reshape, T, a)` requires that one of `sizeof(T)` (got 24) and `sizeof(eltype(a))` (got 16) be an integer multiple of the other") reinterpret(reshape, NTuple{3, Int64}, B)
@test_throws ArgumentError("cannot reinterpret `Int64` as `Vector{Int64}`, type `Vector{Int64}` is not a bits type") reinterpret(reshape, Vector{Int64}, Ars)
@test_throws ArgumentError("cannot reinterpret a zero-dimensional `UInt8` array to `UInt16` which is of a larger size") reinterpret(reshape, UInt16, reshape([0x01]))
# getindex
for _A in (A, As)
@test reinterpret(Complex{Int64}, _A) == [1 + 2im, 3 + 4im]
@test reinterpret(Float64, _A) == reinterpret.(Float64, A)
@test reinterpret(reshape, Float64, _A) == reinterpret.(Float64, A)
end
for Ar in (Ars, Arss)
@test reinterpret(reshape, Complex{Int64}, Ar) == [1 + 2im, 3 + 4im]
@test reinterpret(reshape, Float64, Ar) == reinterpret.(Float64, Ars)
end
for _B in (B, Bs)
@test reinterpret(NTuple{3, Int64}, _B) == [(5,6,7),(8,9,10)]
@test reinterpret(reshape, Int64, _B) == [5 7 9; 6 8 10]
end
# setindex
for (_A, Ar, _B) in ((A, Ars, B), (As, Arss, Bs))
let Ac = copy(_A), Arsc = copy(Ar), Bc = copy(_B)
reinterpret(Complex{Int64}, Ac)[2] = -1 - 2im
@test Ac == [1, 2, -1, -2]
reinterpret(Complex{Int64}, Arsc)[2] = -1 - 2im
@test Arsc == [1 -1; 2 -2]
reinterpret(NTuple{3, Int64}, Bc)[2] = (4,5,6)
@test Bc == Complex{Int64}[5+6im, 7+4im, 5+6im]
B2 = reinterpret(NTuple{3, Int64}, Bc)
@test setindex!(B2, (1,2,3), 1) === B2
@test Bc == Complex{Int64}[1+2im, 3+4im, 5+6im]
Bc = copy(_B)
Brrs = reinterpret(reshape, Int64, Bc)
@test setindex!(Brrs, -5, 2, 3) === Brrs
@test Bc == Complex{Int64}[5+6im, 7+8im, 9-5im]
Brrs[last(eachindex(Brrs))] = 22
@test Bc == Complex{Int64}[5+6im, 7+8im, 9+22im]
A1 = reinterpret(Float64, _A)
A2 = reinterpret(ComplexF64, _A)
@test setindex!(A1, 1.0, 1) === A1
@test real(A2[1]) == 1.0
A1 = reinterpret(reshape, Float64, _A)
@test setindex!(A1, 2.5, 1) === A1
@test reinterpret(Float64, _A[1]) == 2.5
A1rs = reinterpret(Float64, Ar)
A2rs = reinterpret(ComplexF64, Ar)
@test setindex!(A1rs, 1.0, 1, 1) === A1rs
@test real(A2rs[1]) == 1.0
A1rs = reinterpret(reshape, Float64, Ar)
A2rs = reinterpret(reshape, ComplexF64, Ar)
@test setindex!(A1rs, 2.5, 1, 1) === A1rs
@test real(A2rs[1]) == 2.5
end
end
A3 = collect(reshape(1:18, 2, 3, 3))
A3r = reinterpret(reshape, Complex{Int}, A3)
@test A3r[4] === A3r[1,2] === A3r[CartesianIndex(1, 2)] === 7+8im
A3r[2,3] = -8-15im
@test A3[1,2,3] == -8
@test A3[2,2,3] == -15
A3r[4] = 100+200im
@test A3[1,1,2] == 100
@test A3[2,1,2] == 200
A3r[CartesianIndex(1,2)] = 300+400im
@test A3[1,1,2] == 300
@test A3[2,1,2] == 400
# same-size reinterpret where one of the types is non-primitive
let a = NTuple{4,UInt8}[(0x01,0x02,0x03,0x04)], ra = reinterpret(Float32, a)
@test ra[1] == reinterpret(Float32, 0x04030201)
@test setindex!(ra, 2.0) === ra
@test reinterpret(Float32, a)[1] == 2.0
end
let a = NTuple{4,UInt8}[(0x01,0x02,0x03,0x04)], ra = reinterpret(reshape, Float32, a)
@test ra[1] == reinterpret(Float32, 0x04030201)
@test setindex!(ra, 2.0) === ra
@test reinterpret(reshape, Float32, a)[1] == 2.0
end
# Pass-through indexing
B = Complex{Int64}[5+6im, 7+8im, 9+10im]
Br = reinterpret(reshape, Int64, B)
W = WrapperArray(Br)
for (b, w) in zip(5:10, W)
@test b == w
end
for (i, j) in zip(eachindex(W), 11:16)
W[i] = j
end
@test B[1] === Complex{Int64}(11+12im)
@test B[2] === Complex{Int64}(13+14im)
@test B[3] === Complex{Int64}(15+16im)
z3 = (0x00, 0x00, 0x00)
Az = [z3 z3; z3 z3]
Azr = reinterpret(reshape, UInt8, Az)
W = WrapperArray(Azr)
copyto!(W, fill(0x01, 3, 2, 2))
@test all(isequal((0x01, 0x01, 0x01)), Az)
@test eachindex(W, W) == eachindex(W)
# ensure that reinterpret arrays aren't erroneously classified as strided
let A = reshape(1:20, 5, 4)
V = view(A, :, :)
R = reinterpret(Int32, V)
R2 = reinterpret(Int32, A)
@test !(R isa StridedArray)
@test !(R2 isa StridedArray)
@test R * ones(4, 5) == R2 * ones(4,5) == copy(R) * ones(4,5) == copy(R2) * ones(4,5)
end
# but ensure that strided views of strided reinterpret arrays are still strided
let A = collect(reshape(1:20, 5, 4))
R = reinterpret(Int32, A)
@test R isa StridedArray
@test view(R, :, :) isa StridedArray
@test reshape(R, :) isa StridedArray
end
function check_strides(A::AbstractArray)
# Make sure stride(A, i) is equivalent with strides(A)[i] (if 1 <= i <= ndims(A))
dims = ntuple(identity, ndims(A))
map(i -> stride(A, i), dims) == strides(A) || return false
# Test strides via value check.
for i in eachindex(IndexLinear(), A)
A[i] === Base.unsafe_load(pointer(A, i)) || return false
end
return true
end
@testset "strides for NonReshapedReinterpretArray" begin
A = Array{Int32}(reshape(1:88, 11, 8))
for viewax2 in (1:8, 1:2:6, 7:-1:1, 5:-2:1, 2:3:8, 7:-6:1, 3:5:11)
# dim1 is contiguous
for T in (Int16, Float32)
@test check_strides(reinterpret(T, view(A, 1:8, viewax2)))
end
if mod(step(viewax2), 2) == 0
@test check_strides(reinterpret(Int64, view(A, 1:8, viewax2)))
else
@test_throws "Parent's strides" strides(reinterpret(Int64, view(A, 1:8, viewax2)))
end
# non-integer-multiplied classified
if mod(step(viewax2), 3) == 0
@test check_strides(reinterpret(NTuple{3,Int16}, view(A, 2:7, viewax2)))
else
@test_throws "Parent's strides" strides(reinterpret(NTuple{3,Int16}, view(A, 2:7, viewax2)))
end
if mod(step(viewax2), 5) == 0
@test check_strides(reinterpret(NTuple{5,Int16}, view(A, 2:11, viewax2)))
else
@test_throws "Parent's strides" strides(reinterpret(NTuple{5,Int16}, view(A, 2:11, viewax2)))
end
# dim1 is not contiguous
for T in (Int16, Int64)
@test_throws "Parent must" strides(reinterpret(T, view(A, 8:-1:1, viewax2)))
end
@test check_strides(reinterpret(Float32, view(A, 8:-1:1, viewax2)))
end
# issue 46113
A = reinterpret(Int8, reinterpret(reshape, Int16, rand(Int8, 2, 3, 3)))
@test check_strides(A)
end
@testset "strides for ReshapedReinterpretArray" begin
A = Array{Int32}(reshape(1:192, 3, 8, 8))
for viewax1 in (1:8, 1:2:8, 8:-1:1, 8:-2:1), viewax2 in (1:2, 4:-1:1)
for T in (Int16, Float32)
@test check_strides(reinterpret(reshape, T, view(A, 1:2, viewax1, viewax2)))
@test check_strides(reinterpret(reshape, T, view(A, 1:2:3, viewax1, viewax2)))
end
if mod(step(viewax1), 2) == 0
@test check_strides(reinterpret(reshape, Int64, view(A, 1:2, viewax1, viewax2)))
else
@test_throws "Parent's strides" strides(reinterpret(reshape, Int64, view(A, 1:2, viewax1, viewax2)))
end
@test_throws "Parent must" strides(reinterpret(reshape, Int64, view(A, 1:2:3, viewax1, viewax2)))
end
end
@testset "strides" begin
a = rand(10)
b = view(a,2:2:10)
A = rand(10,10)
B = view(A, 2:2:10, 2:2:10)
@test strides(a) == (1,)
@test strides(b) == (2,)
@test strides(A) == (1,10)
@test strides(B) == (2,20)
for M in (a, b, A, B)
@inferred strides(M)
strides_M = strides(M)
for (i, _stride) in enumerate(collect(strides_M))
@test _stride == stride(M, i)
end
end
end
# IndexStyle
let a = fill(1.0, 5, 3)
r = reinterpret(Int64, a)
@test @inferred(IndexStyle(r)) == IndexLinear()
fill!(r, 2)
@test all(a .=== reinterpret(Float64, [Int64(2)])[1])
@test all(r .=== Int64(2))
for badinds in (0, 16, (0,1), (1,0), (6,3), (5,4))
@test_throws BoundsError r[badinds...]
@test_throws BoundsError r[badinds...] = -2
end
for goodinds in (1, 15, (1,1), (5,3))
@test setindex!(r, -2, goodinds...) === r
@test r[goodinds...] == -2
end
r = reinterpret(Int32, a)
@test @inferred(IndexStyle(r)) == IndexLinear()
fill!(r, 3)
@test all(a .=== reinterpret(Float64, [(Int32(3), Int32(3))])[1])
@test all(r .=== Int32(3))
for badinds in (0, 31, (0,1), (1,0), (11,3), (10,4))
@test_throws BoundsError r[badinds...]
@test_throws BoundsError r[badinds...] = -3
end
for goodinds in (1, 30, (1,1), (10,3))
@test setindex!(r, -3, goodinds...) === r
@test r[goodinds...] == -3
end
r = reinterpret(Int64, view(a, 1:2:5, :))
@test @inferred(IndexStyle(r)) == IndexCartesian()
fill!(r, 4)
@test all(a[1:2:5,:] .=== reinterpret(Float64, [Int64(4)])[1])
@test all(r .=== Int64(4))
for badinds in (0, 10, (0,1), (1,0), (4,3), (3,4))
@test_throws BoundsError r[badinds...]
@test_throws BoundsError r[badinds...] = -4
end
for goodinds in (1, 9, (1,1), (3,3))
@test setindex!(r, -4, goodinds...) === r
@test r[goodinds...] == -4
end
r = reinterpret(Int32, view(a, 1:2:5, :))
@test @inferred(IndexStyle(r)) == IndexCartesian()
fill!(r, 5)
@test all(a[1:2:5,:] .=== reinterpret(Float64, [(Int32(5), Int32(5))])[1])
@test all(r .=== Int32(5))
for badinds in (0, 19, (0,1), (1,0), (7,3), (6,4))
@test_throws BoundsError r[badinds...]
@test_throws BoundsError r[badinds...] = -5
end
for goodinds in (1, 18, (1,1), (6,3))
@test setindex!(r, -5, goodinds...) === r
@test r[goodinds...] == -5
end
ar = [(1,2), (3,4)]
arr = reinterpret(reshape, Int, ar)
@test @inferred(IndexStyle(arr)) == Base.IndexSCartesian2{2}()
@test @inferred(eachindex(arr)) == Base.SCartesianIndices2{2}(Base.OneTo(2))
@test @inferred(eachindex(arr, arr)) == Base.SCartesianIndices2{2}(Base.OneTo(2))
end
# Error on reinterprets that would expose padding
struct S1
a::Int8
b::Int64
end
struct S2
a::Int16
b::Int64
end
A1 = S1[S1(0, 0)]
A2 = S2[S2(0, 0)]
@test reinterpret(S1, A2)[1] == S1(0, 0)
@test_throws Base.PaddingError (reinterpret(S1, A2)[1] = S2(1, 2))
@test_throws Base.PaddingError reinterpret(S2, A1)[1]
reinterpret(S2, A1)[1] = S2(1, 2)
@test A1[1] == S1(1, 2)
# Unconventional axes
let a = [0.1 0.2; 0.3 0.4], at = reshape([(i,i+1) for i = 1:2:8], 2, 2)
v = OffsetArray(a, (-1, 1))
r = reinterpret(Int64, v)
@test axes(r) === axes(v)
@test r[0,2] === reinterpret(Int64, v[0,2])
@test r[1,2] === reinterpret(Int64, v[1,2])
@test r[0,3] === reinterpret(Int64, v[0,3])
@test r[1,3] === reinterpret(Int64, v[1,3])
@test_throws ArgumentError("cannot reinterpret a `Float64` array to `UInt32` when the first axis is $(repr(axes(v,1))). Try reshaping first.") reinterpret(UInt32, v)
@test_throws ArgumentError("`reinterpret(reshape, Tuple{Float64, Float64}, a)` where `eltype(a)` is Float64 requires that `axes(a, 1)` (got $(repr(axes(v,1)))) be equal to 1:2 (from the ratio of element sizes)") reinterpret(reshape, Tuple{Float64,Float64}, v)
v = OffsetArray(a, (0, 1))
@test axes(reinterpret(reshape, Tuple{Float64,Float64}, v)) === (OffsetArrays.IdOffsetRange(Base.OneTo(2), 1),)
r = reinterpret(UInt32, v)
axsv = axes(v)
@test axes(r) === (oftype(axsv[1], 1:4), axsv[2])
for i = 1:2
rval = reinterpret(Tuple{UInt32,UInt32}, [v[i,2]])[1]
@test r[2i-1,2] == rval[1]
@test r[2i,2] == rval[2]
rval = reinterpret(Tuple{UInt32,UInt32}, [v[i,3]])[1]
@test r[2i-1,3] == rval[1]
@test r[2i,3] == rval[2]
end
r[4,2] = 7
@test r[4,2] === UInt32(7)
@test a[2,1] === reinterpret(Float64, [0x33333333, UInt32(7)])[1]
offsetvt = (-2, 4)
vt = OffsetArray(at, offsetvt)
istr = string(Int)
@test_throws ArgumentError("cannot reinterpret a `Tuple{$istr, $istr}` array to `$istr` when the first axis is $(repr(axes(vt,1))). Try reshaping first.") reinterpret(Int, vt)
vt = reshape(vt, 1:1, axes(vt)...)
r = reinterpret(Int, vt)
@test r == OffsetArray(reshape(1:8, 2, 2, 2), (0, offsetvt...))
end
@testset "potentially aliased copies" begin
buffer = UInt8[1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0]
mid = length(buffer) ÷ 2
x1 = reinterpret(Int64, @view buffer[1:mid])
x2 = reinterpret(Int64, @view buffer[mid+1:end])
x1 .= x2
@test x1 == x2 == [2]
@test x1[] === x2[] === Int64(2)
end
# avoid nesting
@test parent(reinterpret(eltype(A), reinterpret(eltype(B), A))) === A
# Test 0-dimensional Arrays
A = zeros(UInt32)
B = reinterpret(Int32, A)
Brs = reinterpret(reshape,Int32, A)
C = reinterpret(Tuple{UInt32}, A) # non-primitive type
Crs = reinterpret(reshape, Tuple{UInt32}, A) # non-primitive type
@test size(B) == size(Brs) == size(C) == size(Crs) == ()
@test axes(B) == axes(Brs) == axes(C) == axes(Crs) == ()
@test setindex!(B, Int32(5)) === B
@test B[] === Int32(5)
@test Brs[] === Int32(5)
@test C[] === (UInt32(5),)
@test Crs[] === (UInt32(5),)
@test A[] === UInt32(5)
@test setindex!(Brs, Int32(12)) === Brs
@test A[] === UInt32(12)
@test setindex!(C, (UInt32(7),)) === C
@test A[] === UInt32(7)
@test setindex!(Crs, (UInt32(3),)) === Crs
@test A[] === UInt32(3)
a = [(1.0,2.0)]
af = @inferred(reinterpret(reshape, Float64, a))
anew = @inferred(reinterpret(reshape, Tuple{Float64,Float64}, vec(af)))
@test anew[1] == a[1]
@test ndims(anew) == 0
# re-reinterpret
a0 = reshape([0x22, 0x44, 0x88, 0xf0, 0x01, 0x02, 0x03, 0x04], 4, 2)
a = reinterpret(reshape, NTuple{4,UInt8}, a0)
@test a == [(0x22, 0x44, 0x88, 0xf0), (0x01, 0x02, 0x03, 0x04)]
@test reinterpret(UInt8, a) == [0x22, 0x44, 0x88, 0xf0, 0x01, 0x02, 0x03, 0x04]
@test reinterpret(reshape, UInt8, a) === a0
# reductions
a = [(1,2,3), (4,5,6)]
ars = reinterpret(reshape, Int, a)
@test sum(ars) == 21
@test sum(ars; dims=1) == [6 15]
@test sum(ars; dims=2) == reshape([5,7,9], (3, 1))
@test sum(ars; dims=(1,2)) == reshape([21], (1, 1))
# also test large sizes for the pairwise algorithm
a = [(k,k+1,k+2) for k = 1:3:4000]
ars = reinterpret(reshape, Int, a)
@test sum(ars) == 8010003
@testset "similar(::ReinterpretArray)" begin
a = reinterpret(NTuple{2,Float64}, TSlow(rand(Float64, 4, 4)))
as = similar(a)
@test as isa TSlow{NTuple{2,Float64},2}
@test size(as) == (2, 4)
as = similar(a, Int, (3, 5, 1))
@test as isa TSlow{Int,3}
@test size(as) == (3, 5, 1)
a = reinterpret(reshape, NTuple{4,Float64}, TSlow(rand(Float64, 4, 4)))
as = similar(a)
@test as isa TSlow{NTuple{4,Float64},1}
@test size(as) == (4,)
end
@testset "aliasing" begin
a = reinterpret(NTuple{2,Float64}, rand(Float64, 4, 4))
@test typeof(Base.unaliascopy(a)) === typeof(a)
a = reinterpret(reshape, NTuple{4,Float64}, rand(Float64, 4, 4))
@test typeof(Base.unaliascopy(a)) === typeof(a)
end
@testset "singleton types" begin
mutable struct NotASingleton end # not a singleton because it is mutable
struct SomeSingleton
# A singleton type that does not have the internal constructor SomeSingleton()
SomeSingleton(x) = new()
end
@test_throws ErrorException reinterpret(Int, nothing)
@test_throws ErrorException reinterpret(Missing, 3)
@test_throws ErrorException reinterpret(Missing, NotASingleton())
@test_throws ErrorException reinterpret(NotASingleton, ())
@test_throws ArgumentError reinterpret(NotASingleton, fill(nothing, ()))
@test_throws ArgumentError reinterpret(reshape, NotASingleton, fill(missing, 3))
@test_throws ArgumentError reinterpret(Tuple{}, fill(NotASingleton(), 2))
@test_throws ArgumentError reinterpret(reshape, Nothing, fill(NotASingleton(), ()))
t = fill(nothing, 3, 5)
@test reinterpret(SomeSingleton, t) == reinterpret(reshape, SomeSingleton, t)
@test reinterpret(SomeSingleton, t) == [SomeSingleton(i*j) for i in 1:3, j in 1:5]
@test reinterpret(Int, t) == fill(17, 0, 5)
@test_throws ArgumentError reinterpret(reshape, Float64, t)
@test_throws ArgumentError reinterpret(Nothing, 1:6)
@test_throws ArgumentError reinterpret(reshape, Missing, [0.0])
# reinterpret of empty array
@test reinterpret(reshape, Nothing, fill(missing, (1,0,3))) == fill(nothing, (1,0,3))
@test reinterpret(reshape, Missing, fill((), (0,))) == fill(missing, (0,))
@test_throws ArgumentError reinterpret(reshape, Nothing, fill(3.2, (0,0)))
@test_throws ArgumentError reinterpret(Missing, fill(77, (0,1)))
@test_throws ArgumentError reinterpret(reshape, Float64, fill(nothing, 0))
# reinterpret of 0-dimensional array
z = reinterpret(Tuple{}, fill(missing, ()))
@test z == fill((), ())
@test z == reinterpret(reshape, Tuple{}, fill(nothing, ()))
@test z[] == ()
@test setindex!(z, ()) === z
@test_throws BoundsError z[2]
@test_throws BoundsError z[3] = ()
@test_throws ArgumentError reinterpret(UInt8, fill(nothing, ()))
@test_throws ArgumentError reinterpret(Missing, fill(1f0, ()))
@test_throws ArgumentError reinterpret(reshape, Float64, fill(nothing, ()))
@test_throws ArgumentError reinterpret(reshape, Nothing, fill(17, ()))
@test_throws MethodError z[] = nothing
@test @inferred(ndims(reinterpret(reshape, SomeSingleton, t))) == 2
@test @inferred(axes(reinterpret(reshape, Tuple{}, t))) == (Base.OneTo(3),Base.OneTo(5))
@test @inferred(size(reinterpret(reshape, Missing, t))) == (3,5)
x = reinterpret(Tuple{}, t)
@test x == reinterpret(reshape, Tuple{}, t)
@test x[3,5] === ()
x1 = fill((), 3, 5)
@test setindex!(x, (), 1, 1) == x1
@test_throws BoundsError x[17]
@test_throws BoundsError x[4,2]
@test_throws BoundsError x[1,2,3]
@test_throws BoundsError x[18] = ()
@test_throws MethodError x[1,3] = missing
@test x == fill((), (3, 5))
x = reinterpret(reshape, SomeSingleton, t)
@test_throws BoundsError x[19]
@test_throws BoundsError x[2,6] = SomeSingleton(0xa)
@test x[2,3] === SomeSingleton(:x)
x2 = fill(SomeSingleton(0.7), 3, 5)
@test x == x2
@test setindex!(x, SomeSingleton(:), 3, 5) == x2
@test_throws MethodError x[2,4] = nothing
end