Skip to content
\n

\"image\"

","upvoteCount":1,"answerCount":2,"acceptedAnswer":{"@type":"Answer","text":"

Please have a look at the comments in the code-block:

\n
import trusspy as tp\n\nM = tp.Model(log=0)\n\n# create nodes\nwith M.Nodes as MN:\n    MN.add_node(1, (0, 0, 0))  # mm\n    MN.add_node(2, (0, 0, 3000))  # mm\n    MN.add_node(3, (-4000, 0, 3000))  # mm\n    MN.add_node(4, (-4000, 0, 6000))  # mm\n\n# create element\nwith M.Elements as ME:\n    ME.add_element(1, [2, 1])\n    ME.add_element(2, [2, 3])\n    ME.add_element(3, [2, 4])\n    ME.assign_geometry(\"all\", [1000])  # Area mm²\n    ME.assign_material(\"all\", [1000])  # E-Modulus N/mm²\n\n\n# create displacement (U) boundary conditions\nwith M.Boundaries as MB:\n    MB.add_bound_U(1, (0, 0, 0))  # support\n    MB.add_bound_U(2, (1, 0, 1))  # smooth pin\n    MB.add_bound_U(3, (0, 0, 0))  # support\n    MB.add_bound_U(4, (0, 0, 0))  # support\n\n\n# create external forces\nwith M.ExtForces as MF:\n    MF.add_force(2, (100000, 0, -100000))  # N\n\n# TrussPy is a nonlinear truss analysis - it incrementally searches for the equilbrium\n# by scaling given external forces. If you are not interested in the deformation path,\n# set the number of increments ``incs`` to one, the allowed increase in displacements to\n# infinity or a high value ``du`` and the increase of the load-proportionality-factor\n#  ``dlpf`` to one.\nM.Settings.incs = 1  # evaluate only one increment\nM.Settings.du = 1e8  # turn off max. incremental displacement\nM.Settings.dlpf = 1  # apply the load proportionality factor in one increment\n\nM.build()\nfig, ax = M.plot_model(force_scale=0.01, view=\"xz\")\n\nM.run()\n\n# results of last solution\nres = M.Results.R[-1]  \n\n# verify the applied load-proportionality-factor of the result\n# assert res.lpf == 1.0  \n\n# (element) truss forces in N\n# see https://trusspy.readthedocs.io/en/latest/theory/truss.html#kinetics\nres.element_force\n\n# (nodal) displacements in mm\n# see e.g. https://trusspy.readthedocs.io/en/latest/theory/equilibrium.html\nres.U\n\n# (nodal) fixing forces in N\n# see https://trusspy.readthedocs.io/en/latest/theory/assembly.html\nres.r
","upvoteCount":1,"url":"https://github.com/adtzlr/trusspy/discussions/59#discussioncomment-7527383"}}}

How can I get the internal forces, forces, reaction and displacement? #59

Answered by adtzlr
Martin15135215 asked this question in Q&A
Discussion options

You must be logged in to vote

Please have a look at the comments in the code-block:

import trusspy as tp

M = tp.Model(log=0)

# create nodes
with M.Nodes as MN:
    MN.add_node(1, (0, 0, 0))  # mm
    MN.add_node(2, (0, 0, 3000))  # mm
    MN.add_node(3, (-4000, 0, 3000))  # mm
    MN.add_node(4, (-4000, 0, 6000))  # mm

# create element
with M.Elements as ME:
    ME.add_element(1, [2, 1])
    ME.add_element(2, [2, 3])
    ME.add_element(3, [2, 4])
    ME.assign_geometry("all", [1000])  # Area mm²
    ME.assign_material("all", [1000])  # E-Modulus N/mm²


# create displacement (U) boundary conditions
with M.Boundaries as MB:
    MB.add_bound_U(1, (0, 0, 0))  # support
    MB.add_bound_U(2, (1, 0, 1))  # smooth pin
    

Replies: 2 comments 1 reply

Comment options

You must be logged in to vote
0 replies
Comment options

You must be logged in to vote
1 reply
@Martin15135215
Comment options

Answer selected by Martin15135215
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Category
Q&A
Labels
None yet
2 participants