forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multioutput.py
959 lines (755 loc) · 32.8 KB
/
multioutput.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
"""
This module implements multioutput regression and classification.
The estimators provided in this module are meta-estimators: they require
a base estimator to be provided in their constructor. The meta-estimator
extends single output estimators to multioutput estimators.
"""
# Author: Tim Head <[email protected]>
# Author: Hugo Bowne-Anderson <[email protected]>
# Author: Chris Rivera <[email protected]>
# Author: Michael Williamson
# Author: James Ashton Nichols <[email protected]>
#
# License: BSD 3 clause
import numpy as np
import scipy.sparse as sp
from joblib import Parallel
from abc import ABCMeta, abstractmethod
from .base import BaseEstimator, clone, MetaEstimatorMixin
from .base import RegressorMixin, ClassifierMixin, is_classifier
from .model_selection import cross_val_predict
from .utils.metaestimators import available_if
from .utils import check_random_state
from .utils.validation import check_is_fitted, has_fit_parameter, _check_fit_params
from .utils.multiclass import check_classification_targets
from .utils.fixes import delayed
__all__ = [
"MultiOutputRegressor",
"MultiOutputClassifier",
"ClassifierChain",
"RegressorChain",
]
def _fit_estimator(estimator, X, y, sample_weight=None, **fit_params):
estimator = clone(estimator)
if sample_weight is not None:
estimator.fit(X, y, sample_weight=sample_weight, **fit_params)
else:
estimator.fit(X, y, **fit_params)
return estimator
def _partial_fit_estimator(
estimator, X, y, classes=None, sample_weight=None, first_time=True
):
if first_time:
estimator = clone(estimator)
if sample_weight is not None:
if classes is not None:
estimator.partial_fit(X, y, classes=classes, sample_weight=sample_weight)
else:
estimator.partial_fit(X, y, sample_weight=sample_weight)
else:
if classes is not None:
estimator.partial_fit(X, y, classes=classes)
else:
estimator.partial_fit(X, y)
return estimator
def _available_if_estimator_has(attr):
"""Return a function to check if `estimator` or `estimators_` has `attr`.
Helper for Chain implementations.
"""
def _check(self):
return hasattr(self.estimator, attr) or all(
hasattr(est, attr) for est in self.estimators_
)
return available_if(_check)
class _MultiOutputEstimator(MetaEstimatorMixin, BaseEstimator, metaclass=ABCMeta):
@abstractmethod
def __init__(self, estimator, *, n_jobs=None):
self.estimator = estimator
self.n_jobs = n_jobs
@_available_if_estimator_has("partial_fit")
def partial_fit(self, X, y, classes=None, sample_weight=None):
"""Incrementally fit a separate model for each class output.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
y : {array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets.
classes : list of ndarray of shape (n_outputs,), default=None
Each array is unique classes for one output in str/int.
Can be obtained via
``[np.unique(y[:, i]) for i in range(y.shape[1])]``, where `y`
is the target matrix of the entire dataset.
This argument is required for the first call to partial_fit
and can be omitted in the subsequent calls.
Note that `y` doesn't need to contain all labels in `classes`.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If `None`, then samples are equally weighted.
Only supported if the underlying regressor supports sample
weights.
Returns
-------
self : object
Returns a fitted instance.
"""
first_time = not hasattr(self, "estimators_")
y = self._validate_data(X="no_validation", y=y, multi_output=True)
if y.ndim == 1:
raise ValueError(
"y must have at least two dimensions for "
"multi-output regression but has only one."
)
if sample_weight is not None and not has_fit_parameter(
self.estimator, "sample_weight"
):
raise ValueError("Underlying estimator does not support sample weights.")
first_time = not hasattr(self, "estimators_")
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_partial_fit_estimator)(
self.estimators_[i] if not first_time else self.estimator,
X,
y[:, i],
classes[i] if classes is not None else None,
sample_weight,
first_time,
)
for i in range(y.shape[1])
)
if first_time and hasattr(self.estimators_[0], "n_features_in_"):
self.n_features_in_ = self.estimators_[0].n_features_in_
if first_time and hasattr(self.estimators_[0], "feature_names_in_"):
self.feature_names_in_ = self.estimators_[0].feature_names_in_
return self
def fit(self, X, y, sample_weight=None, **fit_params):
"""Fit the model to data, separately for each output variable.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
y : {array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets. An indicator matrix turns on multilabel
estimation.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If `None`, then samples are equally weighted.
Only supported if the underlying regressor supports sample
weights.
**fit_params : dict of string -> object
Parameters passed to the ``estimator.fit`` method of each step.
.. versionadded:: 0.23
Returns
-------
self : object
Returns a fitted instance.
"""
if not hasattr(self.estimator, "fit"):
raise ValueError("The base estimator should implement a fit method")
y = self._validate_data(X="no_validation", y=y, multi_output=True)
if is_classifier(self):
check_classification_targets(y)
if y.ndim == 1:
raise ValueError(
"y must have at least two dimensions for "
"multi-output regression but has only one."
)
if sample_weight is not None and not has_fit_parameter(
self.estimator, "sample_weight"
):
raise ValueError("Underlying estimator does not support sample weights.")
fit_params_validated = _check_fit_params(X, fit_params)
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_fit_estimator)(
self.estimator, X, y[:, i], sample_weight, **fit_params_validated
)
for i in range(y.shape[1])
)
if hasattr(self.estimators_[0], "n_features_in_"):
self.n_features_in_ = self.estimators_[0].n_features_in_
if hasattr(self.estimators_[0], "feature_names_in_"):
self.feature_names_in_ = self.estimators_[0].feature_names_in_
return self
def predict(self, X):
"""Predict multi-output variable using model for each target variable.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Returns
-------
y : {array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets predicted across multiple predictors.
Note: Separate models are generated for each predictor.
"""
check_is_fitted(self)
if not hasattr(self.estimators_[0], "predict"):
raise ValueError("The base estimator should implement a predict method")
y = Parallel(n_jobs=self.n_jobs)(
delayed(e.predict)(X) for e in self.estimators_
)
return np.asarray(y).T
def _more_tags(self):
return {"multioutput_only": True}
class MultiOutputRegressor(RegressorMixin, _MultiOutputEstimator):
"""Multi target regression.
This strategy consists of fitting one regressor per target. This is a
simple strategy for extending regressors that do not natively support
multi-target regression.
.. versionadded:: 0.18
Parameters
----------
estimator : estimator object
An estimator object implementing :term:`fit` and :term:`predict`.
n_jobs : int or None, optional (default=None)
The number of jobs to run in parallel.
:meth:`fit`, :meth:`predict` and :meth:`partial_fit` (if supported
by the passed estimator) will be parallelized for each target.
When individual estimators are fast to train or predict,
using ``n_jobs > 1`` can result in slower performance due
to the parallelism overhead.
``None`` means `1` unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all available processes / threads.
See :term:`Glossary <n_jobs>` for more details.
.. versionchanged:: 0.20
`n_jobs` default changed from `1` to `None`.
Attributes
----------
estimators_ : list of ``n_output`` estimators
Estimators used for predictions.
n_features_in_ : int
Number of features seen during :term:`fit`. Only defined if the
underlying `estimator` exposes such an attribute when fit.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Only defined if the
underlying estimators expose such an attribute when fit.
.. versionadded:: 1.0
See Also
--------
RegressorChain : A multi-label model that arranges regressions into a
chain.
MultiOutputClassifier : Classifies each output independently rather than
chaining.
Examples
--------
>>> import numpy as np
>>> from sklearn.datasets import load_linnerud
>>> from sklearn.multioutput import MultiOutputRegressor
>>> from sklearn.linear_model import Ridge
>>> X, y = load_linnerud(return_X_y=True)
>>> regr = MultiOutputRegressor(Ridge(random_state=123)).fit(X, y)
>>> regr.predict(X[[0]])
array([[176..., 35..., 57...]])
"""
def __init__(self, estimator, *, n_jobs=None):
super().__init__(estimator, n_jobs=n_jobs)
@_available_if_estimator_has("partial_fit")
def partial_fit(self, X, y, sample_weight=None):
"""Incrementally fit the model to data, for each output variable.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
y : {array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If `None`, then samples are equally weighted.
Only supported if the underlying regressor supports sample
weights.
Returns
-------
self : object
Returns a fitted instance.
"""
super().partial_fit(X, y, sample_weight=sample_weight)
class MultiOutputClassifier(ClassifierMixin, _MultiOutputEstimator):
"""Multi target classification.
This strategy consists of fitting one classifier per target. This is a
simple strategy for extending classifiers that do not natively support
multi-target classification.
Parameters
----------
estimator : estimator object
An estimator object implementing :term:`fit`, :term:`score` and
:term:`predict_proba`.
n_jobs : int or None, optional (default=None)
The number of jobs to run in parallel.
:meth:`fit`, :meth:`predict` and :meth:`partial_fit` (if supported
by the passed estimator) will be parallelized for each target.
When individual estimators are fast to train or predict,
using ``n_jobs > 1`` can result in slower performance due
to the parallelism overhead.
``None`` means `1` unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all available processes / threads.
See :term:`Glossary <n_jobs>` for more details.
.. versionchanged:: 0.20
`n_jobs` default changed from `1` to `None`.
Attributes
----------
classes_ : ndarray of shape (n_classes,)
Class labels.
estimators_ : list of ``n_output`` estimators
Estimators used for predictions.
n_features_in_ : int
Number of features seen during :term:`fit`. Only defined if the
underlying `estimator` exposes such an attribute when fit.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Only defined if the
underlying estimators expose such an attribute when fit.
.. versionadded:: 1.0
See Also
--------
ClassifierChain : A multi-label model that arranges binary classifiers
into a chain.
MultiOutputRegressor : Fits one regressor per target variable.
Examples
--------
>>> import numpy as np
>>> from sklearn.datasets import make_multilabel_classification
>>> from sklearn.multioutput import MultiOutputClassifier
>>> from sklearn.linear_model import LogisticRegression
>>> X, y = make_multilabel_classification(n_classes=3, random_state=0)
>>> clf = MultiOutputClassifier(LogisticRegression()).fit(X, y)
>>> clf.predict(X[-2:])
array([[1, 1, 1],
[1, 0, 1]])
"""
def __init__(self, estimator, *, n_jobs=None):
super().__init__(estimator, n_jobs=n_jobs)
def fit(self, X, Y, sample_weight=None, **fit_params):
"""Fit the model to data matrix X and targets Y.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Y : array-like of shape (n_samples, n_classes)
The target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If `None`, then samples are equally weighted.
Only supported if the underlying classifier supports sample
weights.
**fit_params : dict of string -> object
Parameters passed to the ``estimator.fit`` method of each step.
.. versionadded:: 0.23
Returns
-------
self : object
Returns a fitted instance.
"""
super().fit(X, Y, sample_weight, **fit_params)
self.classes_ = [estimator.classes_ for estimator in self.estimators_]
return self
def _check_predict_proba(self):
if hasattr(self, "estimators_"):
# raise an AttributeError if `predict_proba` does not exist for
# each estimator
[getattr(est, "predict_proba") for est in self.estimators_]
return True
# raise an AttributeError if `predict_proba` does not exist for the
# unfitted estimator
getattr(self.estimator, "predict_proba")
return True
@available_if(_check_predict_proba)
def predict_proba(self, X):
"""Return prediction probabilities for each class of each output.
This method will raise a ``ValueError`` if any of the
estimators do not have ``predict_proba``.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input data.
Returns
-------
p : array of shape (n_samples, n_classes), or a list of n_outputs \
such arrays if n_outputs > 1.
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
.. versionchanged:: 0.19
This function now returns a list of arrays where the length of
the list is ``n_outputs``, and each array is (``n_samples``,
``n_classes``) for that particular output.
"""
check_is_fitted(self)
results = [estimator.predict_proba(X) for estimator in self.estimators_]
return results
def score(self, X, y):
"""Return the mean accuracy on the given test data and labels.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Test samples.
y : array-like of shape (n_samples, n_outputs)
True values for X.
Returns
-------
scores : float
Mean accuracy of predicted target versus true target.
"""
check_is_fitted(self)
n_outputs_ = len(self.estimators_)
if y.ndim == 1:
raise ValueError(
"y must have at least two dimensions for "
"multi target classification but has only one"
)
if y.shape[1] != n_outputs_:
raise ValueError(
"The number of outputs of Y for fit {0} and"
" score {1} should be same".format(n_outputs_, y.shape[1])
)
y_pred = self.predict(X)
return np.mean(np.all(y == y_pred, axis=1))
def _more_tags(self):
# FIXME
return {"_skip_test": True}
def _available_if_base_estimator_has(attr):
"""Return a function to check if `base_estimator` or `estimators_` has `attr`.
Helper for Chain implementations.
"""
def _check(self):
return hasattr(self.base_estimator, attr) or all(
hasattr(est, attr) for est in self.estimators_
)
return available_if(_check)
class _BaseChain(BaseEstimator, metaclass=ABCMeta):
def __init__(self, base_estimator, *, order=None, cv=None, random_state=None):
self.base_estimator = base_estimator
self.order = order
self.cv = cv
self.random_state = random_state
@abstractmethod
def fit(self, X, Y, **fit_params):
"""Fit the model to data matrix X and targets Y.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Y : array-like of shape (n_samples, n_classes)
The target values.
**fit_params : dict of string -> object
Parameters passed to the `fit` method of each step.
.. versionadded:: 0.23
Returns
-------
self : object
Returns a fitted instance.
"""
X, Y = self._validate_data(X, Y, multi_output=True, accept_sparse=True)
random_state = check_random_state(self.random_state)
self.order_ = self.order
if isinstance(self.order_, tuple):
self.order_ = np.array(self.order_)
if self.order_ is None:
self.order_ = np.array(range(Y.shape[1]))
elif isinstance(self.order_, str):
if self.order_ == "random":
self.order_ = random_state.permutation(Y.shape[1])
elif sorted(self.order_) != list(range(Y.shape[1])):
raise ValueError("invalid order")
self.estimators_ = [clone(self.base_estimator) for _ in range(Y.shape[1])]
if self.cv is None:
Y_pred_chain = Y[:, self.order_]
if sp.issparse(X):
X_aug = sp.hstack((X, Y_pred_chain), format="lil")
X_aug = X_aug.tocsr()
else:
X_aug = np.hstack((X, Y_pred_chain))
elif sp.issparse(X):
Y_pred_chain = sp.lil_matrix((X.shape[0], Y.shape[1]))
X_aug = sp.hstack((X, Y_pred_chain), format="lil")
else:
Y_pred_chain = np.zeros((X.shape[0], Y.shape[1]))
X_aug = np.hstack((X, Y_pred_chain))
del Y_pred_chain
for chain_idx, estimator in enumerate(self.estimators_):
y = Y[:, self.order_[chain_idx]]
estimator.fit(X_aug[:, : (X.shape[1] + chain_idx)], y, **fit_params)
if self.cv is not None and chain_idx < len(self.estimators_) - 1:
col_idx = X.shape[1] + chain_idx
cv_result = cross_val_predict(
self.base_estimator, X_aug[:, :col_idx], y=y, cv=self.cv
)
if sp.issparse(X_aug):
X_aug[:, col_idx] = np.expand_dims(cv_result, 1)
else:
X_aug[:, col_idx] = cv_result
return self
def predict(self, X):
"""Predict on the data matrix X using the ClassifierChain model.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Returns
-------
Y_pred : array-like of shape (n_samples, n_classes)
The predicted values.
"""
check_is_fitted(self)
X = self._validate_data(X, accept_sparse=True, reset=False)
Y_pred_chain = np.zeros((X.shape[0], len(self.estimators_)))
for chain_idx, estimator in enumerate(self.estimators_):
previous_predictions = Y_pred_chain[:, :chain_idx]
if sp.issparse(X):
if chain_idx == 0:
X_aug = X
else:
X_aug = sp.hstack((X, previous_predictions))
else:
X_aug = np.hstack((X, previous_predictions))
Y_pred_chain[:, chain_idx] = estimator.predict(X_aug)
inv_order = np.empty_like(self.order_)
inv_order[self.order_] = np.arange(len(self.order_))
Y_pred = Y_pred_chain[:, inv_order]
return Y_pred
class ClassifierChain(MetaEstimatorMixin, ClassifierMixin, _BaseChain):
"""A multi-label model that arranges binary classifiers into a chain.
Each model makes a prediction in the order specified by the chain using
all of the available features provided to the model plus the predictions
of models that are earlier in the chain.
Read more in the :ref:`User Guide <classifierchain>`.
.. versionadded:: 0.19
Parameters
----------
base_estimator : estimator
The base estimator from which the classifier chain is built.
order : array-like of shape (n_outputs,) or 'random', default=None
If `None`, the order will be determined by the order of columns in
the label matrix Y.::
order = [0, 1, 2, ..., Y.shape[1] - 1]
The order of the chain can be explicitly set by providing a list of
integers. For example, for a chain of length 5.::
order = [1, 3, 2, 4, 0]
means that the first model in the chain will make predictions for
column 1 in the Y matrix, the second model will make predictions
for column 3, etc.
If order is `random` a random ordering will be used.
cv : int, cross-validation generator or an iterable, default=None
Determines whether to use cross validated predictions or true
labels for the results of previous estimators in the chain.
Possible inputs for cv are:
- None, to use true labels when fitting,
- integer, to specify the number of folds in a (Stratified)KFold,
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
random_state : int, RandomState instance or None, optional (default=None)
If ``order='random'``, determines random number generation for the
chain order.
In addition, it controls the random seed given at each `base_estimator`
at each chaining iteration. Thus, it is only used when `base_estimator`
exposes a `random_state`.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Attributes
----------
classes_ : list
A list of arrays of length ``len(estimators_)`` containing the
class labels for each estimator in the chain.
estimators_ : list
A list of clones of base_estimator.
order_ : list
The order of labels in the classifier chain.
n_features_in_ : int
Number of features seen during :term:`fit`. Only defined if the
underlying `base_estimator` exposes such an attribute when fit.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
RegressorChain : Equivalent for regression.
MultioutputClassifier : Classifies each output independently rather than
chaining.
References
----------
Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank, "Classifier
Chains for Multi-label Classification", 2009.
Examples
--------
>>> from sklearn.datasets import make_multilabel_classification
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.multioutput import ClassifierChain
>>> X, Y = make_multilabel_classification(
... n_samples=12, n_classes=3, random_state=0
... )
>>> X_train, X_test, Y_train, Y_test = train_test_split(
... X, Y, random_state=0
... )
>>> base_lr = LogisticRegression(solver='lbfgs', random_state=0)
>>> chain = ClassifierChain(base_lr, order='random', random_state=0)
>>> chain.fit(X_train, Y_train).predict(X_test)
array([[1., 1., 0.],
[1., 0., 0.],
[0., 1., 0.]])
>>> chain.predict_proba(X_test)
array([[0.8387..., 0.9431..., 0.4576...],
[0.8878..., 0.3684..., 0.2640...],
[0.0321..., 0.9935..., 0.0625...]])
"""
def fit(self, X, Y):
"""Fit the model to data matrix X and targets Y.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Y : array-like of shape (n_samples, n_classes)
The target values.
Returns
-------
self : object
Class instance.
"""
super().fit(X, Y)
self.classes_ = [
estimator.classes_ for chain_idx, estimator in enumerate(self.estimators_)
]
return self
@_available_if_base_estimator_has("predict_proba")
def predict_proba(self, X):
"""Predict probability estimates.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Returns
-------
Y_prob : array-like of shape (n_samples, n_classes)
The predicted probabilities.
"""
X = self._validate_data(X, accept_sparse=True, reset=False)
Y_prob_chain = np.zeros((X.shape[0], len(self.estimators_)))
Y_pred_chain = np.zeros((X.shape[0], len(self.estimators_)))
for chain_idx, estimator in enumerate(self.estimators_):
previous_predictions = Y_pred_chain[:, :chain_idx]
if sp.issparse(X):
X_aug = sp.hstack((X, previous_predictions))
else:
X_aug = np.hstack((X, previous_predictions))
Y_prob_chain[:, chain_idx] = estimator.predict_proba(X_aug)[:, 1]
Y_pred_chain[:, chain_idx] = estimator.predict(X_aug)
inv_order = np.empty_like(self.order_)
inv_order[self.order_] = np.arange(len(self.order_))
Y_prob = Y_prob_chain[:, inv_order]
return Y_prob
@_available_if_base_estimator_has("decision_function")
def decision_function(self, X):
"""Evaluate the decision_function of the models in the chain.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input data.
Returns
-------
Y_decision : array-like of shape (n_samples, n_classes)
Returns the decision function of the sample for each model
in the chain.
"""
X = self._validate_data(X, accept_sparse=True, reset=False)
Y_decision_chain = np.zeros((X.shape[0], len(self.estimators_)))
Y_pred_chain = np.zeros((X.shape[0], len(self.estimators_)))
for chain_idx, estimator in enumerate(self.estimators_):
previous_predictions = Y_pred_chain[:, :chain_idx]
if sp.issparse(X):
X_aug = sp.hstack((X, previous_predictions))
else:
X_aug = np.hstack((X, previous_predictions))
Y_decision_chain[:, chain_idx] = estimator.decision_function(X_aug)
Y_pred_chain[:, chain_idx] = estimator.predict(X_aug)
inv_order = np.empty_like(self.order_)
inv_order[self.order_] = np.arange(len(self.order_))
Y_decision = Y_decision_chain[:, inv_order]
return Y_decision
def _more_tags(self):
return {"_skip_test": True, "multioutput_only": True}
class RegressorChain(MetaEstimatorMixin, RegressorMixin, _BaseChain):
"""A multi-label model that arranges regressions into a chain.
Each model makes a prediction in the order specified by the chain using
all of the available features provided to the model plus the predictions
of models that are earlier in the chain.
Read more in the :ref:`User Guide <regressorchain>`.
.. versionadded:: 0.20
Parameters
----------
base_estimator : estimator
The base estimator from which the classifier chain is built.
order : array-like of shape (n_outputs,) or 'random', default=None
If `None`, the order will be determined by the order of columns in
the label matrix Y.::
order = [0, 1, 2, ..., Y.shape[1] - 1]
The order of the chain can be explicitly set by providing a list of
integers. For example, for a chain of length 5.::
order = [1, 3, 2, 4, 0]
means that the first model in the chain will make predictions for
column 1 in the Y matrix, the second model will make predictions
for column 3, etc.
If order is 'random' a random ordering will be used.
cv : int, cross-validation generator or an iterable, default=None
Determines whether to use cross validated predictions or true
labels for the results of previous estimators in the chain.
Possible inputs for cv are:
- None, to use true labels when fitting,
- integer, to specify the number of folds in a (Stratified)KFold,
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
random_state : int, RandomState instance or None, optional (default=None)
If ``order='random'``, determines random number generation for the
chain order.
In addition, it controls the random seed given at each `base_estimator`
at each chaining iteration. Thus, it is only used when `base_estimator`
exposes a `random_state`.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Attributes
----------
estimators_ : list
A list of clones of base_estimator.
order_ : list
The order of labels in the classifier chain.
n_features_in_ : int
Number of features seen during :term:`fit`. Only defined if the
underlying `base_estimator` exposes such an attribute when fit.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
ClassifierChain : Equivalent for classification.
MultiOutputRegressor : Learns each output independently rather than
chaining.
Examples
--------
>>> from sklearn.multioutput import RegressorChain
>>> from sklearn.linear_model import LogisticRegression
>>> logreg = LogisticRegression(solver='lbfgs',multi_class='multinomial')
>>> X, Y = [[1, 0], [0, 1], [1, 1]], [[0, 2], [1, 1], [2, 0]]
>>> chain = RegressorChain(base_estimator=logreg, order=[0, 1]).fit(X, Y)
>>> chain.predict(X)
array([[0., 2.],
[1., 1.],
[2., 0.]])
"""
def fit(self, X, Y, **fit_params):
"""Fit the model to data matrix X and targets Y.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Y : array-like of shape (n_samples, n_classes)
The target values.
**fit_params : dict of string -> object
Parameters passed to the `fit` method at each step
of the regressor chain.
.. versionadded:: 0.23
Returns
-------
self : object
Returns a fitted instance.
"""
super().fit(X, Y, **fit_params)
return self
def _more_tags(self):
return {"multioutput_only": True}