forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
isotonic.py
456 lines (360 loc) · 14.9 KB
/
isotonic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# Authors: Fabian Pedregosa <[email protected]>
# Alexandre Gramfort <[email protected]>
# Nelle Varoquaux <[email protected]>
# License: BSD 3 clause
import numpy as np
from scipy import interpolate
from scipy.stats import spearmanr
import warnings
import math
from .base import BaseEstimator, TransformerMixin, RegressorMixin
from .utils import check_array, check_consistent_length
from .utils.validation import _check_sample_weight
from ._isotonic import _inplace_contiguous_isotonic_regression, _make_unique
__all__ = ["check_increasing", "isotonic_regression", "IsotonicRegression"]
def check_increasing(x, y):
"""Determine whether y is monotonically correlated with x.
y is found increasing or decreasing with respect to x based on a Spearman
correlation test.
Parameters
----------
x : array-like of shape (n_samples,)
Training data.
y : array-like of shape (n_samples,)
Training target.
Returns
-------
increasing_bool : boolean
Whether the relationship is increasing or decreasing.
Notes
-----
The Spearman correlation coefficient is estimated from the data, and the
sign of the resulting estimate is used as the result.
In the event that the 95% confidence interval based on Fisher transform
spans zero, a warning is raised.
References
----------
Fisher transformation. Wikipedia.
https://en.wikipedia.org/wiki/Fisher_transformation
"""
# Calculate Spearman rho estimate and set return accordingly.
rho, _ = spearmanr(x, y)
increasing_bool = rho >= 0
# Run Fisher transform to get the rho CI, but handle rho=+/-1
if rho not in [-1.0, 1.0] and len(x) > 3:
F = 0.5 * math.log((1.0 + rho) / (1.0 - rho))
F_se = 1 / math.sqrt(len(x) - 3)
# Use a 95% CI, i.e., +/-1.96 S.E.
# https://en.wikipedia.org/wiki/Fisher_transformation
rho_0 = math.tanh(F - 1.96 * F_se)
rho_1 = math.tanh(F + 1.96 * F_se)
# Warn if the CI spans zero.
if np.sign(rho_0) != np.sign(rho_1):
warnings.warn(
"Confidence interval of the Spearman "
"correlation coefficient spans zero. "
"Determination of ``increasing`` may be "
"suspect."
)
return increasing_bool
def isotonic_regression(
y, *, sample_weight=None, y_min=None, y_max=None, increasing=True
):
"""Solve the isotonic regression model.
Read more in the :ref:`User Guide <isotonic>`.
Parameters
----------
y : array-like of shape (n_samples,)
The data.
sample_weight : array-like of shape (n_samples,), default=None
Weights on each point of the regression.
If None, weight is set to 1 (equal weights).
y_min : float, default=None
Lower bound on the lowest predicted value (the minimum value may
still be higher). If not set, defaults to -inf.
y_max : float, default=None
Upper bound on the highest predicted value (the maximum may still be
lower). If not set, defaults to +inf.
increasing : bool, default=True
Whether to compute ``y_`` is increasing (if set to True) or decreasing
(if set to False).
Returns
-------
y_ : list of floats
Isotonic fit of y.
References
----------
"Active set algorithms for isotonic regression; A unifying framework"
by Michael J. Best and Nilotpal Chakravarti, section 3.
"""
order = np.s_[:] if increasing else np.s_[::-1]
y = check_array(y, ensure_2d=False, input_name="y", dtype=[np.float64, np.float32])
y = np.array(y[order], dtype=y.dtype)
sample_weight = _check_sample_weight(sample_weight, y, dtype=y.dtype, copy=True)
sample_weight = np.ascontiguousarray(sample_weight[order])
_inplace_contiguous_isotonic_regression(y, sample_weight)
if y_min is not None or y_max is not None:
# Older versions of np.clip don't accept None as a bound, so use np.inf
if y_min is None:
y_min = -np.inf
if y_max is None:
y_max = np.inf
np.clip(y, y_min, y_max, y)
return y[order]
class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator):
"""Isotonic regression model.
Read more in the :ref:`User Guide <isotonic>`.
.. versionadded:: 0.13
Parameters
----------
y_min : float, default=None
Lower bound on the lowest predicted value (the minimum value may
still be higher). If not set, defaults to -inf.
y_max : float, default=None
Upper bound on the highest predicted value (the maximum may still be
lower). If not set, defaults to +inf.
increasing : bool or 'auto', default=True
Determines whether the predictions should be constrained to increase
or decrease with `X`. 'auto' will decide based on the Spearman
correlation estimate's sign.
out_of_bounds : {'nan', 'clip', 'raise'}, default='nan'
Handles how `X` values outside of the training domain are handled
during prediction.
- 'nan', predictions will be NaN.
- 'clip', predictions will be set to the value corresponding to
the nearest train interval endpoint.
- 'raise', a `ValueError` is raised.
Attributes
----------
X_min_ : float
Minimum value of input array `X_` for left bound.
X_max_ : float
Maximum value of input array `X_` for right bound.
X_thresholds_ : ndarray of shape (n_thresholds,)
Unique ascending `X` values used to interpolate
the y = f(X) monotonic function.
.. versionadded:: 0.24
y_thresholds_ : ndarray of shape (n_thresholds,)
De-duplicated `y` values suitable to interpolate the y = f(X)
monotonic function.
.. versionadded:: 0.24
f_ : function
The stepwise interpolating function that covers the input domain ``X``.
increasing_ : bool
Inferred value for ``increasing``.
See Also
--------
sklearn.linear_model.LinearRegression : Ordinary least squares Linear
Regression.
sklearn.ensemble.HistGradientBoostingRegressor : Gradient boosting that
is a non-parametric model accepting monotonicity constraints.
isotonic_regression : Function to solve the isotonic regression model.
Notes
-----
Ties are broken using the secondary method from de Leeuw, 1977.
References
----------
Isotonic Median Regression: A Linear Programming Approach
Nilotpal Chakravarti
Mathematics of Operations Research
Vol. 14, No. 2 (May, 1989), pp. 303-308
Isotone Optimization in R : Pool-Adjacent-Violators
Algorithm (PAVA) and Active Set Methods
de Leeuw, Hornik, Mair
Journal of Statistical Software 2009
Correctness of Kruskal's algorithms for monotone regression with ties
de Leeuw, Psychometrica, 1977
Examples
--------
>>> from sklearn.datasets import make_regression
>>> from sklearn.isotonic import IsotonicRegression
>>> X, y = make_regression(n_samples=10, n_features=1, random_state=41)
>>> iso_reg = IsotonicRegression().fit(X, y)
>>> iso_reg.predict([.1, .2])
array([1.8628..., 3.7256...])
"""
def __init__(self, *, y_min=None, y_max=None, increasing=True, out_of_bounds="nan"):
self.y_min = y_min
self.y_max = y_max
self.increasing = increasing
self.out_of_bounds = out_of_bounds
def _check_input_data_shape(self, X):
if not (X.ndim == 1 or (X.ndim == 2 and X.shape[1] == 1)):
msg = (
"Isotonic regression input X should be a 1d array or "
"2d array with 1 feature"
)
raise ValueError(msg)
def _build_f(self, X, y):
"""Build the f_ interp1d function."""
# Handle the out_of_bounds argument by setting bounds_error
if self.out_of_bounds not in ["raise", "nan", "clip"]:
raise ValueError(
"The argument ``out_of_bounds`` must be in "
"'nan', 'clip', 'raise'; got {0}".format(self.out_of_bounds)
)
bounds_error = self.out_of_bounds == "raise"
if len(y) == 1:
# single y, constant prediction
self.f_ = lambda x: y.repeat(x.shape)
else:
self.f_ = interpolate.interp1d(
X, y, kind="linear", bounds_error=bounds_error
)
def _build_y(self, X, y, sample_weight, trim_duplicates=True):
"""Build the y_ IsotonicRegression."""
self._check_input_data_shape(X)
X = X.reshape(-1) # use 1d view
# Determine increasing if auto-determination requested
if self.increasing == "auto":
self.increasing_ = check_increasing(X, y)
else:
self.increasing_ = self.increasing
# If sample_weights is passed, removed zero-weight values and clean
# order
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
mask = sample_weight > 0
X, y, sample_weight = X[mask], y[mask], sample_weight[mask]
order = np.lexsort((y, X))
X, y, sample_weight = [array[order] for array in [X, y, sample_weight]]
unique_X, unique_y, unique_sample_weight = _make_unique(X, y, sample_weight)
X = unique_X
y = isotonic_regression(
unique_y,
sample_weight=unique_sample_weight,
y_min=self.y_min,
y_max=self.y_max,
increasing=self.increasing_,
)
# Handle the left and right bounds on X
self.X_min_, self.X_max_ = np.min(X), np.max(X)
if trim_duplicates:
# Remove unnecessary points for faster prediction
keep_data = np.ones((len(y),), dtype=bool)
# Aside from the 1st and last point, remove points whose y values
# are equal to both the point before and the point after it.
keep_data[1:-1] = np.logical_or(
np.not_equal(y[1:-1], y[:-2]), np.not_equal(y[1:-1], y[2:])
)
return X[keep_data], y[keep_data]
else:
# The ability to turn off trim_duplicates is only used to it make
# easier to unit test that removing duplicates in y does not have
# any impact the resulting interpolation function (besides
# prediction speed).
return X, y
def fit(self, X, y, sample_weight=None):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like of shape (n_samples,) or (n_samples, 1)
Training data.
.. versionchanged:: 0.24
Also accepts 2d array with 1 feature.
y : array-like of shape (n_samples,)
Training target.
sample_weight : array-like of shape (n_samples,), default=None
Weights. If set to None, all weights will be set to 1 (equal
weights).
Returns
-------
self : object
Returns an instance of self.
Notes
-----
X is stored for future use, as :meth:`transform` needs X to interpolate
new input data.
"""
check_params = dict(accept_sparse=False, ensure_2d=False)
X = check_array(
X, input_name="X", dtype=[np.float64, np.float32], **check_params
)
y = check_array(y, input_name="y", dtype=X.dtype, **check_params)
check_consistent_length(X, y, sample_weight)
# Transform y by running the isotonic regression algorithm and
# transform X accordingly.
X, y = self._build_y(X, y, sample_weight)
# It is necessary to store the non-redundant part of the training set
# on the model to make it possible to support model persistence via
# the pickle module as the object built by scipy.interp1d is not
# picklable directly.
self.X_thresholds_, self.y_thresholds_ = X, y
# Build the interpolation function
self._build_f(X, y)
return self
def transform(self, T):
"""Transform new data by linear interpolation.
Parameters
----------
T : array-like of shape (n_samples,) or (n_samples, 1)
Data to transform.
.. versionchanged:: 0.24
Also accepts 2d array with 1 feature.
Returns
-------
y_pred : ndarray of shape (n_samples,)
The transformed data.
"""
if hasattr(self, "X_thresholds_"):
dtype = self.X_thresholds_.dtype
else:
dtype = np.float64
T = check_array(T, dtype=dtype, ensure_2d=False)
self._check_input_data_shape(T)
T = T.reshape(-1) # use 1d view
# Handle the out_of_bounds argument by clipping if needed
if self.out_of_bounds not in ["raise", "nan", "clip"]:
raise ValueError(
"The argument ``out_of_bounds`` must be in "
"'nan', 'clip', 'raise'; got {0}".format(self.out_of_bounds)
)
if self.out_of_bounds == "clip":
T = np.clip(T, self.X_min_, self.X_max_)
res = self.f_(T)
# on scipy 0.17, interp1d up-casts to float64, so we cast back
res = res.astype(T.dtype)
return res
def predict(self, T):
"""Predict new data by linear interpolation.
Parameters
----------
T : array-like of shape (n_samples,) or (n_samples, 1)
Data to transform.
Returns
-------
y_pred : ndarray of shape (n_samples,)
Transformed data.
"""
return self.transform(T)
# We implement get_feature_names_out here instead of using
# `_ClassNamePrefixFeaturesOutMixin`` because `input_features` are ignored.
# `input_features` are ignored because `IsotonicRegression` accepts 1d
# arrays and the semantics of `feature_names_in_` are not clear for 1d arrays.
def get_feature_names_out(self, input_features=None):
"""Get output feature names for transformation.
Parameters
----------
input_features : array-like of str or None, default=None
Ignored.
Returns
-------
feature_names_out : ndarray of str objects
An ndarray with one string i.e. ["isotonicregression0"].
"""
class_name = self.__class__.__name__.lower()
return np.asarray([f"{class_name}0"], dtype=object)
def __getstate__(self):
"""Pickle-protocol - return state of the estimator."""
state = super().__getstate__()
# remove interpolation method
state.pop("f_", None)
return state
def __setstate__(self, state):
"""Pickle-protocol - set state of the estimator.
We need to rebuild the interpolation function.
"""
super().__setstate__(state)
if hasattr(self, "X_thresholds_") and hasattr(self, "y_thresholds_"):
self._build_f(self.X_thresholds_, self.y_thresholds_)
def _more_tags(self):
return {"X_types": ["1darray"]}