forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
discriminant_analysis.py
998 lines (822 loc) · 35 KB
/
discriminant_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
"""
Linear Discriminant Analysis and Quadratic Discriminant Analysis
"""
# Authors: Clemens Brunner
# Martin Billinger
# Matthieu Perrot
# Mathieu Blondel
# License: BSD 3-Clause
import warnings
import numpy as np
from scipy import linalg
from scipy.special import expit
from .base import BaseEstimator, TransformerMixin, ClassifierMixin
from .base import _ClassNamePrefixFeaturesOutMixin
from .linear_model._base import LinearClassifierMixin
from .covariance import ledoit_wolf, empirical_covariance, shrunk_covariance
from .utils.multiclass import unique_labels
from .utils.validation import check_is_fitted
from .utils.multiclass import check_classification_targets
from .utils.extmath import softmax
from .preprocessing import StandardScaler
__all__ = ["LinearDiscriminantAnalysis", "QuadraticDiscriminantAnalysis"]
def _cov(X, shrinkage=None, covariance_estimator=None):
"""Estimate covariance matrix (using optional covariance_estimator).
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.
shrinkage : {'empirical', 'auto'} or float, default=None
Shrinkage parameter, possible values:
- None or 'empirical': no shrinkage (default).
- 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
- float between 0 and 1: fixed shrinkage parameter.
Shrinkage parameter is ignored if `covariance_estimator`
is not None.
covariance_estimator : estimator, default=None
If not None, `covariance_estimator` is used to estimate
the covariance matrices instead of relying on the empirical
covariance estimator (with potential shrinkage).
The object should have a fit method and a ``covariance_`` attribute
like the estimators in :mod:`sklearn.covariance``.
if None the shrinkage parameter drives the estimate.
.. versionadded:: 0.24
Returns
-------
s : ndarray of shape (n_features, n_features)
Estimated covariance matrix.
"""
if covariance_estimator is None:
shrinkage = "empirical" if shrinkage is None else shrinkage
if isinstance(shrinkage, str):
if shrinkage == "auto":
sc = StandardScaler() # standardize features
X = sc.fit_transform(X)
s = ledoit_wolf(X)[0]
# rescale
s = sc.scale_[:, np.newaxis] * s * sc.scale_[np.newaxis, :]
elif shrinkage == "empirical":
s = empirical_covariance(X)
else:
raise ValueError("unknown shrinkage parameter")
elif isinstance(shrinkage, float) or isinstance(shrinkage, int):
if shrinkage < 0 or shrinkage > 1:
raise ValueError("shrinkage parameter must be between 0 and 1")
s = shrunk_covariance(empirical_covariance(X), shrinkage)
else:
raise TypeError("shrinkage must be a float or a string")
else:
if shrinkage is not None and shrinkage != 0:
raise ValueError(
"covariance_estimator and shrinkage parameters "
"are not None. Only one of the two can be set."
)
covariance_estimator.fit(X)
if not hasattr(covariance_estimator, "covariance_"):
raise ValueError(
"%s does not have a covariance_ attribute"
% covariance_estimator.__class__.__name__
)
s = covariance_estimator.covariance_
return s
def _class_means(X, y):
"""Compute class means.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values.
Returns
-------
means : array-like of shape (n_classes, n_features)
Class means.
"""
classes, y = np.unique(y, return_inverse=True)
cnt = np.bincount(y)
means = np.zeros(shape=(len(classes), X.shape[1]))
np.add.at(means, y, X)
means /= cnt[:, None]
return means
def _class_cov(X, y, priors, shrinkage=None, covariance_estimator=None):
"""Compute weighted within-class covariance matrix.
The per-class covariance are weighted by the class priors.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values.
priors : array-like of shape (n_classes,)
Class priors.
shrinkage : 'auto' or float, default=None
Shrinkage parameter, possible values:
- None: no shrinkage (default).
- 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
- float between 0 and 1: fixed shrinkage parameter.
Shrinkage parameter is ignored if `covariance_estimator` is not None.
covariance_estimator : estimator, default=None
If not None, `covariance_estimator` is used to estimate
the covariance matrices instead of relying the empirical
covariance estimator (with potential shrinkage).
The object should have a fit method and a ``covariance_`` attribute
like the estimators in sklearn.covariance.
If None, the shrinkage parameter drives the estimate.
.. versionadded:: 0.24
Returns
-------
cov : array-like of shape (n_features, n_features)
Weighted within-class covariance matrix
"""
classes = np.unique(y)
cov = np.zeros(shape=(X.shape[1], X.shape[1]))
for idx, group in enumerate(classes):
Xg = X[y == group, :]
cov += priors[idx] * np.atleast_2d(_cov(Xg, shrinkage, covariance_estimator))
return cov
class LinearDiscriminantAnalysis(
_ClassNamePrefixFeaturesOutMixin,
LinearClassifierMixin,
TransformerMixin,
BaseEstimator,
):
"""Linear Discriminant Analysis.
A classifier with a linear decision boundary, generated by fitting class
conditional densities to the data and using Bayes' rule.
The model fits a Gaussian density to each class, assuming that all classes
share the same covariance matrix.
The fitted model can also be used to reduce the dimensionality of the input
by projecting it to the most discriminative directions, using the
`transform` method.
.. versionadded:: 0.17
*LinearDiscriminantAnalysis*.
Read more in the :ref:`User Guide <lda_qda>`.
Parameters
----------
solver : {'svd', 'lsqr', 'eigen'}, default='svd'
Solver to use, possible values:
- 'svd': Singular value decomposition (default).
Does not compute the covariance matrix, therefore this solver is
recommended for data with a large number of features.
- 'lsqr': Least squares solution.
Can be combined with shrinkage or custom covariance estimator.
- 'eigen': Eigenvalue decomposition.
Can be combined with shrinkage or custom covariance estimator.
shrinkage : 'auto' or float, default=None
Shrinkage parameter, possible values:
- None: no shrinkage (default).
- 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
- float between 0 and 1: fixed shrinkage parameter.
This should be left to None if `covariance_estimator` is used.
Note that shrinkage works only with 'lsqr' and 'eigen' solvers.
priors : array-like of shape (n_classes,), default=None
The class prior probabilities. By default, the class proportions are
inferred from the training data.
n_components : int, default=None
Number of components (<= min(n_classes - 1, n_features)) for
dimensionality reduction. If None, will be set to
min(n_classes - 1, n_features). This parameter only affects the
`transform` method.
store_covariance : bool, default=False
If True, explicitly compute the weighted within-class covariance
matrix when solver is 'svd'. The matrix is always computed
and stored for the other solvers.
.. versionadded:: 0.17
tol : float, default=1.0e-4
Absolute threshold for a singular value of X to be considered
significant, used to estimate the rank of X. Dimensions whose
singular values are non-significant are discarded. Only used if
solver is 'svd'.
.. versionadded:: 0.17
covariance_estimator : covariance estimator, default=None
If not None, `covariance_estimator` is used to estimate
the covariance matrices instead of relying on the empirical
covariance estimator (with potential shrinkage).
The object should have a fit method and a ``covariance_`` attribute
like the estimators in :mod:`sklearn.covariance`.
if None the shrinkage parameter drives the estimate.
This should be left to None if `shrinkage` is used.
Note that `covariance_estimator` works only with 'lsqr' and 'eigen'
solvers.
.. versionadded:: 0.24
Attributes
----------
coef_ : ndarray of shape (n_features,) or (n_classes, n_features)
Weight vector(s).
intercept_ : ndarray of shape (n_classes,)
Intercept term.
covariance_ : array-like of shape (n_features, n_features)
Weighted within-class covariance matrix. It corresponds to
`sum_k prior_k * C_k` where `C_k` is the covariance matrix of the
samples in class `k`. The `C_k` are estimated using the (potentially
shrunk) biased estimator of covariance. If solver is 'svd', only
exists when `store_covariance` is True.
explained_variance_ratio_ : ndarray of shape (n_components,)
Percentage of variance explained by each of the selected components.
If ``n_components`` is not set then all components are stored and the
sum of explained variances is equal to 1.0. Only available when eigen
or svd solver is used.
means_ : array-like of shape (n_classes, n_features)
Class-wise means.
priors_ : array-like of shape (n_classes,)
Class priors (sum to 1).
scalings_ : array-like of shape (rank, n_classes - 1)
Scaling of the features in the space spanned by the class centroids.
Only available for 'svd' and 'eigen' solvers.
xbar_ : array-like of shape (n_features,)
Overall mean. Only present if solver is 'svd'.
classes_ : array-like of shape (n_classes,)
Unique class labels.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
QuadraticDiscriminantAnalysis : Quadratic Discriminant Analysis.
Examples
--------
>>> import numpy as np
>>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = LinearDiscriminantAnalysis()
>>> clf.fit(X, y)
LinearDiscriminantAnalysis()
>>> print(clf.predict([[-0.8, -1]]))
[1]
"""
def __init__(
self,
solver="svd",
shrinkage=None,
priors=None,
n_components=None,
store_covariance=False,
tol=1e-4,
covariance_estimator=None,
):
self.solver = solver
self.shrinkage = shrinkage
self.priors = priors
self.n_components = n_components
self.store_covariance = store_covariance # used only in svd solver
self.tol = tol # used only in svd solver
self.covariance_estimator = covariance_estimator
def _solve_lsqr(self, X, y, shrinkage, covariance_estimator):
"""Least squares solver.
The least squares solver computes a straightforward solution of the
optimal decision rule based directly on the discriminant functions. It
can only be used for classification (with any covariance estimator),
because
estimation of eigenvectors is not performed. Therefore, dimensionality
reduction with the transform is not supported.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,) or (n_samples, n_classes)
Target values.
shrinkage : 'auto', float or None
Shrinkage parameter, possible values:
- None: no shrinkage.
- 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
- float between 0 and 1: fixed shrinkage parameter.
Shrinkage parameter is ignored if `covariance_estimator` i
not None
covariance_estimator : estimator, default=None
If not None, `covariance_estimator` is used to estimate
the covariance matrices instead of relying the empirical
covariance estimator (with potential shrinkage).
The object should have a fit method and a ``covariance_`` attribute
like the estimators in sklearn.covariance.
if None the shrinkage parameter drives the estimate.
.. versionadded:: 0.24
Notes
-----
This solver is based on [1]_, section 2.6.2, pp. 39-41.
References
----------
.. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification
(Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN
0-471-05669-3.
"""
self.means_ = _class_means(X, y)
self.covariance_ = _class_cov(
X, y, self.priors_, shrinkage, covariance_estimator
)
self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T
self.intercept_ = -0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(
self.priors_
)
def _solve_eigen(self, X, y, shrinkage, covariance_estimator):
"""Eigenvalue solver.
The eigenvalue solver computes the optimal solution of the Rayleigh
coefficient (basically the ratio of between class scatter to within
class scatter). This solver supports both classification and
dimensionality reduction (with any covariance estimator).
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values.
shrinkage : 'auto', float or None
Shrinkage parameter, possible values:
- None: no shrinkage.
- 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
- float between 0 and 1: fixed shrinkage constant.
Shrinkage parameter is ignored if `covariance_estimator` i
not None
covariance_estimator : estimator, default=None
If not None, `covariance_estimator` is used to estimate
the covariance matrices instead of relying the empirical
covariance estimator (with potential shrinkage).
The object should have a fit method and a ``covariance_`` attribute
like the estimators in sklearn.covariance.
if None the shrinkage parameter drives the estimate.
.. versionadded:: 0.24
Notes
-----
This solver is based on [1]_, section 3.8.3, pp. 121-124.
References
----------
.. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification
(Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN
0-471-05669-3.
"""
self.means_ = _class_means(X, y)
self.covariance_ = _class_cov(
X, y, self.priors_, shrinkage, covariance_estimator
)
Sw = self.covariance_ # within scatter
St = _cov(X, shrinkage, covariance_estimator) # total scatter
Sb = St - Sw # between scatter
evals, evecs = linalg.eigh(Sb, Sw)
self.explained_variance_ratio_ = np.sort(evals / np.sum(evals))[::-1][
: self._max_components
]
evecs = evecs[:, np.argsort(evals)[::-1]] # sort eigenvectors
self.scalings_ = evecs
self.coef_ = np.dot(self.means_, evecs).dot(evecs.T)
self.intercept_ = -0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(
self.priors_
)
def _solve_svd(self, X, y):
"""SVD solver.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values.
"""
n_samples, n_features = X.shape
n_classes = len(self.classes_)
self.means_ = _class_means(X, y)
if self.store_covariance:
self.covariance_ = _class_cov(X, y, self.priors_)
Xc = []
for idx, group in enumerate(self.classes_):
Xg = X[y == group, :]
Xc.append(Xg - self.means_[idx])
self.xbar_ = np.dot(self.priors_, self.means_)
Xc = np.concatenate(Xc, axis=0)
# 1) within (univariate) scaling by with classes std-dev
std = Xc.std(axis=0)
# avoid division by zero in normalization
std[std == 0] = 1.0
fac = 1.0 / (n_samples - n_classes)
# 2) Within variance scaling
X = np.sqrt(fac) * (Xc / std)
# SVD of centered (within)scaled data
U, S, Vt = linalg.svd(X, full_matrices=False)
rank = np.sum(S > self.tol)
# Scaling of within covariance is: V' 1/S
scalings = (Vt[:rank] / std).T / S[:rank]
fac = 1.0 if n_classes == 1 else 1.0 / (n_classes - 1)
# 3) Between variance scaling
# Scale weighted centers
X = np.dot(
(
(np.sqrt((n_samples * self.priors_) * fac))
* (self.means_ - self.xbar_).T
).T,
scalings,
)
# Centers are living in a space with n_classes-1 dim (maximum)
# Use SVD to find projection in the space spanned by the
# (n_classes) centers
_, S, Vt = linalg.svd(X, full_matrices=0)
if self._max_components == 0:
self.explained_variance_ratio_ = np.empty((0,), dtype=S.dtype)
else:
self.explained_variance_ratio_ = (S**2 / np.sum(S**2))[
: self._max_components
]
rank = np.sum(S > self.tol * S[0])
self.scalings_ = np.dot(scalings, Vt.T[:, :rank])
coef = np.dot(self.means_ - self.xbar_, self.scalings_)
self.intercept_ = -0.5 * np.sum(coef**2, axis=1) + np.log(self.priors_)
self.coef_ = np.dot(coef, self.scalings_.T)
self.intercept_ -= np.dot(self.xbar_, self.coef_.T)
def fit(self, X, y):
"""Fit the Linear Discriminant Analysis model.
.. versionchanged:: 0.19
*store_covariance* has been moved to main constructor.
.. versionchanged:: 0.19
*tol* has been moved to main constructor.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,)
Target values.
Returns
-------
self : object
Fitted estimator.
"""
X, y = self._validate_data(
X, y, ensure_min_samples=2, dtype=[np.float64, np.float32]
)
self.classes_ = unique_labels(y)
n_samples, _ = X.shape
n_classes = len(self.classes_)
if n_samples == n_classes:
raise ValueError(
"The number of samples must be more than the number of classes."
)
if self.priors is None: # estimate priors from sample
_, y_t = np.unique(y, return_inverse=True) # non-negative ints
self.priors_ = np.bincount(y_t) / float(len(y))
else:
self.priors_ = np.asarray(self.priors)
if (self.priors_ < 0).any():
raise ValueError("priors must be non-negative")
if not np.isclose(self.priors_.sum(), 1.0):
warnings.warn("The priors do not sum to 1. Renormalizing", UserWarning)
self.priors_ = self.priors_ / self.priors_.sum()
# Maximum number of components no matter what n_components is
# specified:
max_components = min(len(self.classes_) - 1, X.shape[1])
if self.n_components is None:
self._max_components = max_components
else:
if self.n_components > max_components:
raise ValueError(
"n_components cannot be larger than min(n_features, n_classes - 1)."
)
self._max_components = self.n_components
if self.solver == "svd":
if self.shrinkage is not None:
raise NotImplementedError("shrinkage not supported")
if self.covariance_estimator is not None:
raise ValueError(
"covariance estimator "
"is not supported "
"with svd solver. Try another solver"
)
self._solve_svd(X, y)
elif self.solver == "lsqr":
self._solve_lsqr(
X,
y,
shrinkage=self.shrinkage,
covariance_estimator=self.covariance_estimator,
)
elif self.solver == "eigen":
self._solve_eigen(
X,
y,
shrinkage=self.shrinkage,
covariance_estimator=self.covariance_estimator,
)
else:
raise ValueError(
"unknown solver {} (valid solvers are 'svd', "
"'lsqr', and 'eigen').".format(self.solver)
)
if self.classes_.size == 2: # treat binary case as a special case
self.coef_ = np.array(
self.coef_[1, :] - self.coef_[0, :], ndmin=2, dtype=X.dtype
)
self.intercept_ = np.array(
self.intercept_[1] - self.intercept_[0], ndmin=1, dtype=X.dtype
)
self._n_features_out = self._max_components
return self
def transform(self, X):
"""Project data to maximize class separation.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.
Returns
-------
X_new : ndarray of shape (n_samples, n_components) or \
(n_samples, min(rank, n_components))
Transformed data. In the case of the 'svd' solver, the shape
is (n_samples, min(rank, n_components)).
"""
if self.solver == "lsqr":
raise NotImplementedError(
"transform not implemented for 'lsqr' solver (use 'svd' or 'eigen')."
)
check_is_fitted(self)
X = self._validate_data(X, reset=False)
if self.solver == "svd":
X_new = np.dot(X - self.xbar_, self.scalings_)
elif self.solver == "eigen":
X_new = np.dot(X, self.scalings_)
return X_new[:, : self._max_components]
def predict_proba(self, X):
"""Estimate probability.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.
Returns
-------
C : ndarray of shape (n_samples, n_classes)
Estimated probabilities.
"""
check_is_fitted(self)
decision = self.decision_function(X)
if self.classes_.size == 2:
proba = expit(decision)
return np.vstack([1 - proba, proba]).T
else:
return softmax(decision)
def predict_log_proba(self, X):
"""Estimate log probability.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.
Returns
-------
C : ndarray of shape (n_samples, n_classes)
Estimated log probabilities.
"""
prediction = self.predict_proba(X)
prediction[prediction == 0.0] += np.finfo(prediction.dtype).tiny
return np.log(prediction)
def decision_function(self, X):
"""Apply decision function to an array of samples.
The decision function is equal (up to a constant factor) to the
log-posterior of the model, i.e. `log p(y = k | x)`. In a binary
classification setting this instead corresponds to the difference
`log p(y = 1 | x) - log p(y = 0 | x)`. See :ref:`lda_qda_math`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Array of samples (test vectors).
Returns
-------
C : ndarray of shape (n_samples,) or (n_samples, n_classes)
Decision function values related to each class, per sample.
In the two-class case, the shape is (n_samples,), giving the
log likelihood ratio of the positive class.
"""
# Only override for the doc
return super().decision_function(X)
class QuadraticDiscriminantAnalysis(ClassifierMixin, BaseEstimator):
"""Quadratic Discriminant Analysis.
A classifier with a quadratic decision boundary, generated
by fitting class conditional densities to the data
and using Bayes' rule.
The model fits a Gaussian density to each class.
.. versionadded:: 0.17
*QuadraticDiscriminantAnalysis*
Read more in the :ref:`User Guide <lda_qda>`.
Parameters
----------
priors : ndarray of shape (n_classes,), default=None
Class priors. By default, the class proportions are inferred from the
training data.
reg_param : float, default=0.0
Regularizes the per-class covariance estimates by transforming S2 as
``S2 = (1 - reg_param) * S2 + reg_param * np.eye(n_features)``,
where S2 corresponds to the `scaling_` attribute of a given class.
store_covariance : bool, default=False
If True, the class covariance matrices are explicitly computed and
stored in the `self.covariance_` attribute.
.. versionadded:: 0.17
tol : float, default=1.0e-4
Absolute threshold for a singular value to be considered significant,
used to estimate the rank of `Xk` where `Xk` is the centered matrix
of samples in class k. This parameter does not affect the
predictions. It only controls a warning that is raised when features
are considered to be colinear.
.. versionadded:: 0.17
Attributes
----------
covariance_ : list of len n_classes of ndarray \
of shape (n_features, n_features)
For each class, gives the covariance matrix estimated using the
samples of that class. The estimations are unbiased. Only present if
`store_covariance` is True.
means_ : array-like of shape (n_classes, n_features)
Class-wise means.
priors_ : array-like of shape (n_classes,)
Class priors (sum to 1).
rotations_ : list of len n_classes of ndarray of shape (n_features, n_k)
For each class k an array of shape (n_features, n_k), where
``n_k = min(n_features, number of elements in class k)``
It is the rotation of the Gaussian distribution, i.e. its
principal axis. It corresponds to `V`, the matrix of eigenvectors
coming from the SVD of `Xk = U S Vt` where `Xk` is the centered
matrix of samples from class k.
scalings_ : list of len n_classes of ndarray of shape (n_k,)
For each class, contains the scaling of
the Gaussian distributions along its principal axes, i.e. the
variance in the rotated coordinate system. It corresponds to `S^2 /
(n_samples - 1)`, where `S` is the diagonal matrix of singular values
from the SVD of `Xk`, where `Xk` is the centered matrix of samples
from class k.
classes_ : ndarray of shape (n_classes,)
Unique class labels.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
LinearDiscriminantAnalysis : Linear Discriminant Analysis.
Examples
--------
>>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = QuadraticDiscriminantAnalysis()
>>> clf.fit(X, y)
QuadraticDiscriminantAnalysis()
>>> print(clf.predict([[-0.8, -1]]))
[1]
"""
def __init__(
self, *, priors=None, reg_param=0.0, store_covariance=False, tol=1.0e-4
):
self.priors = np.asarray(priors) if priors is not None else None
self.reg_param = reg_param
self.store_covariance = store_covariance
self.tol = tol
def fit(self, X, y):
"""Fit the model according to the given training data and parameters.
.. versionchanged:: 0.19
``store_covariances`` has been moved to main constructor as
``store_covariance``
.. versionchanged:: 0.19
``tol`` has been moved to main constructor.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vector, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,)
Target values (integers).
Returns
-------
self : object
Fitted estimator.
"""
X, y = self._validate_data(X, y)
check_classification_targets(y)
self.classes_, y = np.unique(y, return_inverse=True)
n_samples, n_features = X.shape
n_classes = len(self.classes_)
if n_classes < 2:
raise ValueError(
"The number of classes has to be greater than one; got %d class"
% (n_classes)
)
if self.priors is None:
self.priors_ = np.bincount(y) / float(n_samples)
else:
self.priors_ = self.priors
cov = None
store_covariance = self.store_covariance
if store_covariance:
cov = []
means = []
scalings = []
rotations = []
for ind in range(n_classes):
Xg = X[y == ind, :]
meang = Xg.mean(0)
means.append(meang)
if len(Xg) == 1:
raise ValueError(
"y has only 1 sample in class %s, covariance is ill defined."
% str(self.classes_[ind])
)
Xgc = Xg - meang
# Xgc = U * S * V.T
_, S, Vt = np.linalg.svd(Xgc, full_matrices=False)
rank = np.sum(S > self.tol)
if rank < n_features:
warnings.warn("Variables are collinear")
S2 = (S**2) / (len(Xg) - 1)
S2 = ((1 - self.reg_param) * S2) + self.reg_param
if self.store_covariance or store_covariance:
# cov = V * (S^2 / (n-1)) * V.T
cov.append(np.dot(S2 * Vt.T, Vt))
scalings.append(S2)
rotations.append(Vt.T)
if self.store_covariance or store_covariance:
self.covariance_ = cov
self.means_ = np.asarray(means)
self.scalings_ = scalings
self.rotations_ = rotations
return self
def _decision_function(self, X):
# return log posterior, see eq (4.12) p. 110 of the ESL.
check_is_fitted(self)
X = self._validate_data(X, reset=False)
norm2 = []
for i in range(len(self.classes_)):
R = self.rotations_[i]
S = self.scalings_[i]
Xm = X - self.means_[i]
X2 = np.dot(Xm, R * (S ** (-0.5)))
norm2.append(np.sum(X2**2, axis=1))
norm2 = np.array(norm2).T # shape = [len(X), n_classes]
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
return -0.5 * (norm2 + u) + np.log(self.priors_)
def decision_function(self, X):
"""Apply decision function to an array of samples.
The decision function is equal (up to a constant factor) to the
log-posterior of the model, i.e. `log p(y = k | x)`. In a binary
classification setting this instead corresponds to the difference
`log p(y = 1 | x) - log p(y = 0 | x)`. See :ref:`lda_qda_math`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Array of samples (test vectors).
Returns
-------
C : ndarray of shape (n_samples,) or (n_samples, n_classes)
Decision function values related to each class, per sample.
In the two-class case, the shape is (n_samples,), giving the
log likelihood ratio of the positive class.
"""
dec_func = self._decision_function(X)
# handle special case of two classes
if len(self.classes_) == 2:
return dec_func[:, 1] - dec_func[:, 0]
return dec_func
def predict(self, X):
"""Perform classification on an array of test vectors X.
The predicted class C for each sample in X is returned.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Vector to be scored, where `n_samples` is the number of samples and
`n_features` is the number of features.
Returns
-------
C : ndarray of shape (n_samples,)
Estimated probabilities.
"""
d = self._decision_function(X)
y_pred = self.classes_.take(d.argmax(1))
return y_pred
def predict_proba(self, X):
"""Return posterior probabilities of classification.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Array of samples/test vectors.
Returns
-------
C : ndarray of shape (n_samples, n_classes)
Posterior probabilities of classification per class.
"""
values = self._decision_function(X)
# compute the likelihood of the underlying gaussian models
# up to a multiplicative constant.
likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis])
# compute posterior probabilities
return likelihood / likelihood.sum(axis=1)[:, np.newaxis]
def predict_log_proba(self, X):
"""Return log of posterior probabilities of classification.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Array of samples/test vectors.
Returns
-------
C : ndarray of shape (n_samples, n_classes)
Posterior log-probabilities of classification per class.
"""
# XXX : can do better to avoid precision overflows
probas_ = self.predict_proba(X)
return np.log(probas_)