forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbench_plot_fastkmeans.py
142 lines (115 loc) · 4.32 KB
/
bench_plot_fastkmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from collections import defaultdict
from time import time
import numpy as np
from numpy import random as nr
from sklearn.cluster import KMeans, MiniBatchKMeans
def compute_bench(samples_range, features_range):
it = 0
results = defaultdict(lambda: [])
chunk = 100
max_it = len(samples_range) * len(features_range)
for n_samples in samples_range:
for n_features in features_range:
it += 1
print("==============================")
print("Iteration %03d of %03d" % (it, max_it))
print("==============================")
print()
data = nr.randint(-50, 51, (n_samples, n_features))
print("K-Means")
tstart = time()
kmeans = KMeans(init="k-means++", n_clusters=10).fit(data)
delta = time() - tstart
print("Speed: %0.3fs" % delta)
print("Inertia: %0.5f" % kmeans.inertia_)
print()
results["kmeans_speed"].append(delta)
results["kmeans_quality"].append(kmeans.inertia_)
print("Fast K-Means")
# let's prepare the data in small chunks
mbkmeans = MiniBatchKMeans(
init="k-means++", n_clusters=10, batch_size=chunk
)
tstart = time()
mbkmeans.fit(data)
delta = time() - tstart
print("Speed: %0.3fs" % delta)
print("Inertia: %f" % mbkmeans.inertia_)
print()
print()
results["MiniBatchKMeans Speed"].append(delta)
results["MiniBatchKMeans Quality"].append(mbkmeans.inertia_)
return results
def compute_bench_2(chunks):
results = defaultdict(lambda: [])
n_features = 50000
means = np.array(
[
[1, 1],
[-1, -1],
[1, -1],
[-1, 1],
[0.5, 0.5],
[0.75, -0.5],
[-1, 0.75],
[1, 0],
]
)
X = np.empty((0, 2))
for i in range(8):
X = np.r_[X, means[i] + 0.8 * np.random.randn(n_features, 2)]
max_it = len(chunks)
it = 0
for chunk in chunks:
it += 1
print("==============================")
print("Iteration %03d of %03d" % (it, max_it))
print("==============================")
print()
print("Fast K-Means")
tstart = time()
mbkmeans = MiniBatchKMeans(init="k-means++", n_clusters=8, batch_size=chunk)
mbkmeans.fit(X)
delta = time() - tstart
print("Speed: %0.3fs" % delta)
print("Inertia: %0.3fs" % mbkmeans.inertia_)
print()
results["MiniBatchKMeans Speed"].append(delta)
results["MiniBatchKMeans Quality"].append(mbkmeans.inertia_)
return results
if __name__ == "__main__":
from mpl_toolkits.mplot3d import axes3d # noqa register the 3d projection
import matplotlib.pyplot as plt
samples_range = np.linspace(50, 150, 5).astype(int)
features_range = np.linspace(150, 50000, 5).astype(int)
chunks = np.linspace(500, 10000, 15).astype(int)
results = compute_bench(samples_range, features_range)
results_2 = compute_bench_2(chunks)
max_time = max(
[max(i) for i in [t for (label, t) in results.items() if "speed" in label]]
)
max_inertia = max(
[max(i) for i in [t for (label, t) in results.items() if "speed" not in label]]
)
fig = plt.figure("scikit-learn K-Means benchmark results")
for c, (label, timings) in zip("brcy", sorted(results.items())):
if "speed" in label:
ax = fig.add_subplot(2, 2, 1, projection="3d")
ax.set_zlim3d(0.0, max_time * 1.1)
else:
ax = fig.add_subplot(2, 2, 2, projection="3d")
ax.set_zlim3d(0.0, max_inertia * 1.1)
X, Y = np.meshgrid(samples_range, features_range)
Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0])
ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.5)
ax.set_xlabel("n_samples")
ax.set_ylabel("n_features")
i = 0
for c, (label, timings) in zip("br", sorted(results_2.items())):
i += 1
ax = fig.add_subplot(2, 2, i + 2)
y = np.asarray(timings)
ax.plot(chunks, y, color=c, alpha=0.8)
ax.set_xlabel("Chunks")
ax.set_ylabel(label)
plt.show()