-
Notifications
You must be signed in to change notification settings - Fork 24
/
utils-tests.jl
1004 lines (932 loc) · 44.8 KB
/
utils-tests.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of AstroLib.jl. License is MIT "Expat".
# Copyright (C) 2016 Mosè Giordano.
@testset "adstring" begin
@test @inferred(adstring((30.4, -1.23), truncate=true)) ==
@inferred(adstring([30.4, -1.23], truncate=true)) ==
" 02 01 35.9 -01 13 48"
@test @inferred(adstring(15, -.5)) == " 01 00 00.0 -00 30 00"
@test @inferred(adstring(19.19321, truncate=true)) == "+19 11 35.5"
@test @inferred(adstring(ten(36,24,15.015), -ten(8,24,36.0428), precision=3)) ==
" 02 25 37.0010 -08 24 36.043"
@test adstring.([30.4, -15.63], [-1.23, 48.41], precision=2) ==
[" 02 01 36.000 -01 13 48.00", " 22 57 28.800 +48 24 36.00"]
@test adstring.([(-58, 724)]) == [" 20 08 00.0 +724 00 00"]
end
@testset "airtovac" begin
@test airtovac.([1234 6056.125]) ≈ [1234.0 6057.801930991426]
@test @inferred(airtovac(2100)) ≈ 2100.666421596007
end
@testset "aitoff" begin
@test @inferred(aitoff([227.23, 130], [-8.890, -35])) ==
([-137.92196683723276, 115.17541338020645],
[-11.772527357473054, -44.491889962090085])
@test @inferred(aitoff([375], [2.437])) ==
([16.63760711611838],[2.712427279646118])
@test @inferred(aitoff((227.23, -8.890))) ==
(-137.92196683723276,-11.772527357473054)
end
@testset "altaz2hadec" begin
@test @inferred(altaz2hadec(59.086111, 133.30806, 43.07833)) ==
@inferred(altaz2hadec((59.086111, 133.30806), 43.07833)) ==
(336.68286017949157, 19.182449588316555)
@test @inferred(altaz2hadec([15, 25, 35], [25.12, 45.32, -20.3],
[-23.44, 45.0, 52.5])) ==
([324.9881067314537, 256.7468302330436, 132.4919217875949] ,
[44.38225395397647, 48.542947077386664, 67.33061196497327])
end
@testset "baryvel" begin
dvelh_o, dvelb_o = @inferred(baryvel(2000))
@test dvelh_o ≈ [1.582939967296732e-7, -1.0743272343303577e-7, -4.852410351888098e-8]
@test dvelb_o ≈ [1.583299045307303e-7, -1.0736465601278539e-7, -4.849238001189245e-8]
dvelh_o, dvelb_o = @inferred(baryvel(AstroLib.J2000, 1950))
@test dvelh_o ≈ [-29.85888093436655, -4.684571288755146, -2.0305672776315777]
@test dvelb_o ≈ [-29.849737241231153, -4.696440255370953, -2.035884790519881]
dvelh_o, dvelb_o = @inferred(baryvel(jdcnv(1987, 4, 10, 0)))
@test dvelh_o ≈ [9.514730366039178, -25.83862824722249, -11.202290688985778]
@test dvelb_o ≈ [9.51331763088569, -25.84985540772467, -11.207031996297271]
end
@testset "bprecess" begin
ra, dec = @inferred(bprecess([ten(13, 42, 12.74)*15], [ten(8, 23, 17.69)],
reshape(100*[-15*0.0257, -0.090], 2, 1)))
@test ra ≈ [204.93552515632123]
@test dec ≈ [8.641287183886163]
ra, dec = @inferred(bprecess(82, 19))
@test ra ≈ 81.26467916346334
@test dec ≈ 18.959495700195394
ra, dec = @inferred(bprecess([57], [23], 2024))
@test ra ≈ [56.26105898810067]
@test dec ≈ [22.84693298145991]
ra, dec = @inferred(bprecess([57], [23], reshape([9, 86], 2, 1), parallax=[1],
radvel=[4]))
@test ra ≈ [56.25988479854577]
@test dec ≈ [22.83493370392355]
ra, dec = @inferred(bprecess((-57, -23), 2024))
@test ra ≈ 302.2593299643789
@test dec ≈ -23.150089972802036
ra, dec = bprecess((-57, -23), [9, 86], parallax=1, radvel=4) # Inferred Type Error
@test ra ≈ 302.2580376402947
@test dec ≈ -23.16208183899836
end
@testset "calz_unred" begin
@test calz_unred.(collect(900:1000:9900), ones(Float64, 10), -0.1) ≈
[1.0, 0.43189326452379095, 0.5203675483533704, 0.594996469192435,
0.6569506252451913, 0.7080829505773865, 0.7502392743978797, 0.7861262388745882,
0.8151258710444882,0.8390325371659836]
end
# The values used for the testset are from running the code. They are slightly
# different from the output of the co_aberration routine of IDL AstroLib, as
# the function here uses an updated method to find mean obliquity
@testset "co_aberration" begin
d_ra, d_dec = @inferred(co_aberration(jdcnv(1987, 4, 10, 0), ten(2,46,11.331)*15,
ten(49,20,54.54), 1))
@test d_ra ≈ -18.692441865574867
@test d_dec ≈ -9.070782150537646
ao, bo = @inferred(co_aberration([57555.0, -6.44311e5], [302.282, 69.5667],
[37.1519, 20.6847]))
@test ao[1] ≈ 21.673056337579048
@test ao[2] ≈ 18.496516329468466
@test bo[1] ≈ -6.773070772568567
@test bo[2] ≈ 2.9205843718089457
end
# The values used for the testset are from running the code. They are slightly
# different from the output of the co_aberration routine of IDL AstroLib, as
# the function here uses an updated method to find mean obliquity
@testset "co_nutate" begin
an,bn,cn,dn,en = @inferred(co_nutate([jdcnv(2028,11,13,4,56), jdcnv(2013, 4, 16)],
[10, 160],[80,30]))
@test an ≈ [0.001209279097382776, 0.002465026741191423 ]
@test bn ≈ [0.0017471459185713911, -0.0018134211486149354]
@test cn ≈ [0.40904016038217567, 0.4090340058477726 ]
@test dn ≈ [14.8593894278967, 12.102640377483143 ]
@test en ≈ [2.7038090372351267, -5.86229256359996 ]
ra_out, dec_out, eps_out, d_psi_out, d_eps_out = @inferred(co_nutate(2.451545e6,
325, 0))
@test ra_out ≈ -0.0035484441576727477
@test dec_out ≈ -0.00034017946720967174
@test eps_out ≈ 0.4090646078966446
@test d_psi_out ≈ -13.923152677481191
@test d_eps_out ≈ -5.773909654153591
end
@testset "co_refract" begin
@test @inferred(co_refract(0.8)) ≈ 0.3714184384944585
@test co_refract.([5.86,20], 50, 568.967, 273, 0.15, to_observe=true) ≈
[5.94252628176525 , 20.02627520026167]
@test @inferred(co_refract(14, 15000)) ≈ 13.990329255193124
end
@testset "ct2lst" begin
@test ct2lst.(-76.72, -4, [DateTime(2008, 7, 30, 15, 53)]) ≈ [11.356505172312609]
@test ct2lst.(9, [jdcnv(2015, 11, 24, 12, 21)]) ≈ [17.159574059885927]
end
# Test daycnv with Gregorian Calendar in force.
@testset "daycnv" begin
@test @inferred(daycnv(2440000.0)) == DateTime(1968, 05, 23, 12)
# Test daycnv with Julian Calendar in force (same result as IDL AstroLib's
# daycnv).
@test @inferred(daycnv(2000000.0)) == DateTime(763, 09, 18, 12)
@test @inferred(daycnv(0.0)) == DateTime(-4713, 11, 24, 12)
end
@testset "deredd" begin
by0, m0, c0, ub0 = @inferred(deredd([0.5, -0.5], [0.2, 0.5], [1, 1], [1, 1],
[0.1, 0.3]))
@test by0 ≈ [-0.3,0.5]
@test m0 ≈ [1.165,1.0]
@test c0 ≈ [0.905,1.0]
@test ub0 ≈ [-0.665,0.3]
end
@testset "eci2geo" begin
lat, long, alt = @inferred(eci2geo([0], [0], [0], [2452343]))
@test lat ≈ [0]
@test long ≈ [12.992783145436988]
@test alt ≈ [-6378.137]
lat, long, alt = @inferred(eci2geo((6978.137, 0, 0), jdcnv("2015-06-30T14:03:12.857")))
@test lat ≈ 0
@test long ≈ 230.87301833205856
@test alt ≈ 600
# Test `eci2geo' is the inverse of `geo2eci'
jd = @inferred(get_juldate())
lat, long, alt = @inferred(eci2geo(geo2eci(10, 10, 10, jd), jd))
@test lat ≈ 10
@test long ≈ 10
@test alt ≈ 10
end
# The values used for the testset are from running the code. However they have been
# correlated with the output from eq2hor routine of IDL AstroLib, with
# differences only in the least significant digits.
@testset "eq2hor" begin
alt_o, az_o, ha_o = eq2hor(259.20238631600944, 49.674907472176095,
AstroLib.J2000, "pbo", B1950=true)
@test alt_o ≈ 43.804935603297004
@test az_o ≈ 56.74141416977815
@test ha_o ≈ 291.2750910119525
alt_o, az_o, ha_o = eq2hor(142.2933457820434, -34.218006262991786, 2e6, 54.435, -34.78,
1000.34, ws=true, B1950=true, precession = false,
nutate=false, aberration=false,
refract=false, pressure = 500.345, temperature = 293.343)
@test alt_o ≈ 1.3449999999999924
@test az_o ≈ 359.43
@test ha_o ≈ 359.3108663499664
alt_o, az_o, ha_o = eq2hor(3.3222617779538037, 15.190516725395284, 2466879.7083333,
"kpno", pressure = 711, temperature = 273)
@test alt_o ≈ 37.91138916818937
@test az_o ≈ 264.918333213257
@test ha_o ≈ 54.61193155973385
alt_o, az_o, ha_o = @inferred(AstroLib._eq2hor(259.52076321839485, 49.62352289872951,
Float64(AstroLib.J2000), 43.0783,
-89.865, 0.0, NaN, NaN, false, false,
true, true, true, true))
@test alt_o ≈ 43.687900264047116
@test az_o ≈ 56.68399934960606
@test ha_o ≈ 291.0817909922114
alt_o, az_o = eq2hor(hor2eq(25, 55, 2.05e6, "pbo")[1:2]..., 2.05e6, "pbo")
@test alt_o ≈ 24.99993224731665
@test az_o ≈ 54.99993893556545
end
@testset "eqpole" begin
x, y = @inferred(eqpole([100], [35], southpole=true))
@test x ≈ [-111.18287262822456]
@test y ≈ [ -19.604540237028665]
x, y = @inferred(eqpole([80], [19]))
@test x ≈ [72.78853915267848]
@test y ≈ [12.83458333897169]
end
# The values used for the testset are from running the code. However they have been
# correlated with the output from euler routine of IDL AstroLib, with
# differences only in the least significant digits.
@testset "euler" begin
glong, glat = @inferred(euler(299.590315, 35.201604, 1))
@test glong ≈ 71.33498957116959
@test glat ≈ 3.0668335310640984
ra, dec = @inferred(euler((71.33498957116959, 3.0668335310640984), 2))
@test ra ≈ 299.590315
@test dec ≈ 35.201604
elong, elat = @inferred(euler(3.141592653589793, 0.6143838917832061, 3,
FK4 = true, radians=true))
@test elong ≈ 2.8679433080257506
@test elat ≈ 0.557258307291505
ra, dec = @inferred(euler((2.8679433080257506, 0.557258307291505), 4,
FK4 = true, radians=true))
@test ra ≈ 3.141592653589793
@test dec ≈ 0.6143838917832061
ecl, gal = euler.(30.45, 76.54, [5,6])
@test ecl[1] ≈ 103.50477919192522
@test ecl[2] ≈ 18.01965967759107
@test gal[1] ≈ 194.96100731553986
@test gal[2] ≈ 34.46136801388695
@test @inferred(euler(183/pi, pi/180, 2, FK4=false, radians=true)) ==
(5.682517110086799, 0.947078051715398)
glong, glat = @inferred(euler([0.45, 130], [16.28, 53.65], 5))
@test glong ≈ [96.9525940157568, 138.09922696730337]
@test glat ≈ [-43.90672396295434, 46.95527026543361]
@test_throws DomainError @inferred(euler((45,45), 7))
end
@testset "flux2mag" begin
@test flux2mag.([1.5e-12, 8.7e-15, 4.4e-10]) ≈
[8.459771852360795, 14.051201868453454, 2.291368308784527]
@test @inferred(flux2mag(1)) ≈ -21.1
@test @inferred(flux2mag(5.2e-15)) ≈ 14.609991640913002
@test @inferred(flux2mag(5.2e-15, 15)) ≈ 20.709991640913003
@test flux2mag(5.2e-15, ABwave=15) ≈ 27.423535345634598 # Inferred Type Error
end
@testset "gal_uvw" begin
u, v, w = @inferred(gal_uvw([ten(1,9,42.3)*15], [ten(61,32,49.5)], [627.89], [77.84],
[-321.4], [1e3/129], lsr=true))
@test u ≈ [118.2110474553902]
@test v ≈ [-466.4828898385057]
@test w ≈ [88.16573278565097]
u, v, w = @inferred(gal_uvw(1, 2, 3, 4, 5, 6))
@test u ≈ 4.0228405867158745
@test v ≈ 3.7912174342038227
@test w ≈ -3.1700191400725464
end
@testset "geo2eci" begin
x, y, z = @inferred(geo2eci([0], [0], [0], [2452343]))
@test x ≈ [6214.846433007192]
@test y ≈ [-1433.9858454345972]
@test z ≈ [0.0]
x, y, z = @inferred(geo2eci((0,0,0), jdcnv("2015-06-30T14:03:12.857")))
@test x ≈ -4024.8671780315185
@test y ≈ 4947.835465127513
@test z ≈ 0.0
end
@testset "geo2geodetic" begin
lat, long, alt = @inferred(geo2geodetic([90], [0], [0], "Jupiter"))
@test lat ≈ [90]
@test long ≈ [0]
@test alt ≈ [4638]
lat, long, alt = @inferred(geo2geodetic((90, 0, 0)))
@test lat ≈ 90
@test long ≈ 0
@test alt ≈ 21.38499999999931
lat, long, alt = @inferred(geo2geodetic((43.16, -24.32, 3.87), 8724.32, 8619.19))
@test lat ≈ 43.849399515234516
@test long ≈ -24.32
@test alt ≈ 53.53354478670836
lat, long, alt = @inferred(geo2geodetic([43.16], [-24.32], [3.87], 8724.32, 8619.19))
@test lat ≈ [ 43.849399515234516]
@test long ≈ [-24.32]
@test alt ≈ [ 53.53354478670836]
end
@testset "geo2mag" begin
lat, long = @inferred(geo2mag(ten(35,0,42), ten(135,46,6), 2016))
@test lat ≈ 36.86579228937769
@test long ≈ -60.184060536651614
lat, long = @inferred(geo2mag([15], [24], 2016))
@test lat ≈ [ 11.452100529696096]
@test long ≈ [-169.86030510727102]
end
@testset "geodetic2geo" begin
lat, long, alt = @inferred(geodetic2geo([90], [0], [0], "Jupiter"))
@test lat ≈ [90]
@test long == [0]
@test alt ≈ [-4638]
lat, long, alt = @inferred(geodetic2geo((90, 0, 0)))
@test lat ≈ 90
@test long == 0
@test alt ≈ -21.38499999999931
lat, long, alt = @inferred(geodetic2geo((43.16, -24.32, 3.87), 8724.32, 8619.19))
@test lat ≈ 42.46772711708433
@test long == -24.32
@test alt ≈ -44.52902080669082
lat, long, alt = @inferred(geodetic2geo([43.16], [-24.32], [3.87], 8724.32, 8619.19))
@test lat ≈ [42.46772711708433]
@test long == [-24.32]
@test alt ≈ [-44.52902080669082]
# Test geodetic2geo is the inverse of geo2geodetic, within a certain
# tolerance.
lat, long, alt = @inferred(geodetic2geo(geo2geodetic(67.2,13.4,1.2)))
@test lat ≈ 67.2 atol = 1e-8
@test long == 13.4
@test alt ≈ 1.2 atol = 1e-9
end
# Test get_date with mixed keywords.
@testset "get_date" begin
@test @inferred(get_date(DateTime(2001,09,25,14,56,14), old=true,timetag=true)) ==
@inferred(get_date(2001,09,25,14,56,14, old=true,timetag=true)) ==
@inferred(get_date("2001-09-25T14:56:14", old=true,timetag=true)) ==
"25/09/2001T14:56:14"
@test @inferred(get_date(DateTime(2001,09,25,14,56,14))) ==
@inferred(get_date(2001,09,25,14,56,14)) ==
@inferred(get_date("2001-09-25T14:56:14")) ==
"2001-09-25"
@test get_date.([DateTime(2024), Date(2016, 3, 14)]) ==
get_date.([Date(2024), "2016-03-14"]) ==
get_date.(["2024-01", DateTime(2016, 3, 14)]) == ["2024-01-01", "2016-03-14"]
end
@testset "gcirc" begin
@test gcirc.(0, [0,1,2], [1,2,3], [2,3,4], [3,4,5]) ≈
[1.222450611061632, 2.500353926443337, 1.5892569925227757]
@test @inferred(gcirc(0, 120, -43, 175, +22)) ≈ 1.590442261600714
@test @inferred(gcirc(1, (120, -43), 175, +22)) ≈ 415908.56615322345
@test @inferred(gcirc(2, 120, -43, (175, +22))) ≈ 296389.3666794745
@test @inferred(gcirc(0, (120, -43), (175, +22)) ) ≈ 1.590442261600714
@test gcirc.(1, [120], [-43], 175, +22) ≈ [415908.56615322345]
@test gcirc.(2, 120, -43, [175], [+22]) ≈ [296389.3666794745]
@test_throws DomainError @inferred(gcirc(3, 0, 0, 0, 0))
end
@testset "hadec2altaz" begin
alt1, az1 = @inferred(hadec2altaz([0], [11.978165], [ten(43,4,42)]))
@test alt1 ≈ [58.89983166666667]
@test az1 ≈ [180.0]
@test @inferred(hadec2altaz((0, 11.978165), ten(43,4,42), ws=true)[2]) ≈ 0.0
alt1, az1 = 50, 20
alt2, az2 = @inferred(hadec2altaz(altaz2hadec(alt1, az1, 40), 40))
@test alt1 ≈ alt2
@test az1 ≈ az2
end
@testset "helio_jd" begin
@test helio_jd(juldate(2016, 6, 15, 11, 40), ten(20, 9, 7.8)*15, ten(37, 9, 7)) ≈
57554.98808289718
@test @inferred(helio_jd(1000, 23, 67, B1950=true)) ≈ 999.9997659545342
@test @inferred(helio_jd(2000, 12, 88, diff=true)) ≈ -167.24845957792076
end
@testset "helio_rv" begin
@test @inferred(helio_rv(helio_jd(juldate(94, 10, 25, 17, 30), ten(04, 38, 16)*15,
ten(20, 41, 05)), 46487.5303, 2.0563056, -6, 59.3)) ≈
-62.965570109145034
@test helio_rv.([0.1, 0.9], 0, 1, 0, 100, 0.6, 45) ≈
[-45.64994926111004, 89.7820347358485]
end
# The values used for the testset are from running the code. However they have been
# correlated with the output from helio routine of IDL AstroLib, with
# differences only in the least significant digits (except for `hrad`` output of Mars)
@testset "helio" begin
@test_throws DomainError @inferred(helio(jdcnv(2005,07,17,2,6,9), 10))
hrad_out, hlong_out, hlat_out = @inferred(helio(jdcnv(2000,08,23,0), 2, true))
@test hrad_out ≈ 0.7213758288364316
@test hlong_out ≈ 3.462574978561256
@test hlat_out ≈ 0.050393862449261535
hrad_out, hlong_out, hlat_out = @inferred(helio([AstroLib.J2000], [7]))
@test hrad_out[1] ≈ 19.921687573575788
@test hlong_out[1] ≈ 316.4011812518626
@test hlat_out[1] ≈ -0.6846115653974465
end
# The values used for the testset are from running the code. However they have been
# correlated with the output from hor2eq routine of IDL AstroLib, with
# differences only in the least significant digits.
@testset "hor2eq" begin
ra_o, dec_o, ha_o = hor2eq(43.6879, 56.684, AstroLib.J2000, "pbo", B1950=true)
@test ra_o ≈ 259.3943636338339
@test dec_o ≈ 49.67396411401468
@test ha_o ≈ 291.0833116221485
ra_o, dec_o, ha_o = hor2eq(1.345, 359.43, 2e6, 54.435, -34.78, 1000.34, ws=true,
B1950=true, precession = false, nutate=false,
aberration=false, refract=false, pressure = 500.345,
temperature = 293.343)
@test ra_o ≈ 142.2933457820434
@test dec_o ≈ -34.218006262991786
@test ha_o ≈ 359.3108663499664
ra_o, dec_o, ha_o = hor2eq(ten(37,54,41), ten(264,55,06), 2466879.7083333,
"kpno", pressure = 711, temperature = 273)
@test ra_o ≈ 3.3222617779538037
@test dec_o ≈ 15.190516725395284
@test ha_o ≈ 54.61193186104758
ra_o, dec_o, ha_o = @inferred(AstroLib._hor2eq(43.6879, 56.684, Float64(AstroLib.J2000),
43.0783, -89.865, 0.0, NaN, NaN, false,
false, true, true, true, true))
@test ra_o ≈ 259.52076321839485
@test dec_o ≈ 49.62352289872951
@test ha_o ≈ 291.0817908419628
ra_o, dec_o = hor2eq(eq2hor(45, 60, 2e6, "pbo")[1:2]..., 2e6, "pbo")
@test ra_o ≈ 45.0001735428487
@test dec_o ≈ 59.999995143349956
end
# The values used for the testset are from running the code. However they have been
# correlated with the output from imf routine of IDL AstroLib, with
# differences only in the least significant digits.
@testset "imf" begin
@test_throws DimensionMismatch @inferred(imf([5], [-6.75], [0.9]))
@test @inferred(imf([0.1, 0.01], [-0.6, -1], [ 0.007, 1.8, 110])) ≈
[0.49627714725007616, 1.9757149090208912]
@test imf.([[3],[5]], [[-1.35], [-0.6, -1.7]], [[0.1, 100], [0.007, 1.8, 110]]) ≈
[[0.038948937298846235], [0.027349915327755464]]
end
# The values used for the testset are from running the code. However they have been
# correlated with the output from ismeuv routine of IDL AstroLib, with
# differences only in the least significant digits.
@testset "ismeuv" begin
@test @inferred(ismeuv(304, 1e20)) ≈ 58.30508020244554
@test ismeuv.([50, 75, 343], 1e18) ≈
[0.004486567212077276, 0.01601219540569213, 0.7811526665834057]
@test ismeuv.([96, 41, 233], 1e18, 1e17, 1e17) ≈
[0.04657033979688484, 0.0035293162863089807, 0.30662192095758833]
@test ismeuv.([96.6, 41.056, 233.19], 1e18, 1e17, 1e17, true) ≈
[0.04733922036264192, 0.003543553203857853, 0.3103333860793942]
@test ismeuv.([480, 910], 1e19, 5e17, 5e17) ≈
[14.273937721143753, 62.68379602891728]
@test @inferred(ismeuv(4500, 1e18)) ≈ 0
end
@testset "jdcnv" begin
@test @inferred(jdcnv(-4713, 11, 24, 12)) ≈ 0.0
@test @inferred(jdcnv(763, 09, 18, 12)) == @inferred(jdcnv("763-09-18T12")) == 2000000
@test (jd=1234567.89; @inferred(jdcnv(daycnv(jd))) == jd)
@test jdcnv.([DateTime(2016, 07, 31), "1969-07-20"]) ==
jdcnv.([Date(2016, 07, 31), DateTime(1969, 07, 20)]) ==
jdcnv.(["2016-07-31", Date(1969, 07, 20)])
end
@testset "jprecess" begin
ra, dec = @inferred(jprecess([ten(13, 39, 44.526)*15], [ten(8, 38, 28.63)],
reshape(100*[-15*0.0259, -0.093], 2, 1)))
@test ra ≈ [205.5530845731372]
@test dec ≈ [8.388247441904628]
ra, dec = @inferred(jprecess(82, 19))
@test ra ≈ 82.73568745151148
@test dec ≈ 19.036972917272056
ra, dec = @inferred(jprecess([57], [23], 2024))
@test ra ≈ [57.74049975335702]
@test dec ≈ [23.150053754297726]
ra, dec = @inferred(jprecess([57], [23], reshape([9, 86], 2, 1), parallax=[1],
radvel=[4]))
@test ra ≈ [57.74180294549785]
@test dec ≈ [23.16200582079095]
ra, dec = @inferred(jprecess((-57, -23), 2024))
@test ra ≈ 303.73910971499015
@test dec ≈ -22.846895476784482
ra, dec = jprecess((-57, -23), [9, 86], parallax=1, radvel=4) # Inferred Type Error
@test ra ≈ 303.7402950607101
@test dec ≈ -22.834931625610313
end
# Test juldate with Gregorian Calendar in force. This also makes sure precision
# of the result is high enough. Note that "juldate(dt::DateTime) =
# Dates.datetime2julian(dt)-2.4e6" would not be precise.
@testset "juldate" begin
@test @inferred(juldate(DateTime(2016, 1, 1, 8))) ≈ (57388.5 + 1//3)
# Test juldate with Julian Calendar in force, for different centuries. This
# also makes sure precision of the result is high enough.
@test @inferred(juldate(1582, 10, 1, 20)) ≈ (-100843 + 1//3)
@test @inferred(juldate("1000-01-01T20")) ≈ (-313692 + 1//3)
@test @inferred(juldate("100-10-25T20")) ≈ (-642119 + 1//3)
@test @inferred(juldate(-4713, 1, 1, 12)) ≈ -2.4e6
@test @inferred(juldate(2016, 06, 30, 00, 05, 53, 120)) ≈
jdcnv(2016, 06, 30, 00, 05, 53, 120) - 2.4e6
# Test daycnv and juldate together, with Gregorian Calendar in force. Note that
# they are not expected to be one the inverse of the other during Julian
# Calendar.
@test (dt=DateTime(2016, 1, 1, 20, 45, 33, 457);
@inferred(daycnv(juldate(dt) + 2.4e6)) == dt)
end
@testset "kepler_solver" begin
for e in 0:0.1:1
M = collect(0:1e-3:2pi)
E = mod2pi.(kepler_solver.(M, e))
# Make sure E is the solution of the Kepler's Equation with high precision.
@test M ≈ E .- e .* sin.(E) rtol = 1e-15
end
@test kepler_solver.([pi/4, pi/6, 8pi/3], 0) ≈ [pi/4, pi/6, 2pi/3]
@test @inferred(kepler_solver(0, 1)) == 0.0
@test_throws DomainError @inferred(kepler_solver(pi, -0.5))
@test_throws DomainError @inferred(kepler_solver(pi, 1.5))
end
@testset "lsf_rotate" begin
vel, lsf = @inferred(lsf_rotate(3, 90))
@test @inferred(length(vel)) == @inferred(length(lsf)) == 61
vel, lsf = @inferred(lsf_rotate(5, 10))
@test vel ≈ collect(-10.0:5.0:10.0)
@test lsf ≈ [0.0, 0.556914447710896, 0.6933098861837907, 0.556914447710896, 0.0]
end
@testset "mag2flux" begin
@test @inferred(mag2flux(4.83, 21.12)) ≈ 4.1686938347033296e-11
@test flux2mag(mag2flux(15, ABwave=12.), ABwave=12) ≈ 15.0 # Inferred Type Error
@test @inferred(mag2flux(8.3)) ≈ 1.7378008287493692e-12
@test @inferred(mag2flux(8.3, 12)) ≈ 7.58577575029182e-9
@test mag2flux(8.3, ABwave=12) ≈ 3.6244115683017193e-7 # Inferred Type Error
end
@testset "mag2geo" begin
lat, long = @inferred(mag2geo(90, 0, 2016))
@test lat ≈ 86.395
@test long ≈ -166.29000000000002
lat, long = @inferred(mag2geo([15], [24], 2016))
@test lat ≈ [11.702066965890157]
@test long ≈ [-142.6357492442842]
# Test geo2mag is approximately the inverse of mag2geo
lat, long = @inferred(geo2mag(mag2geo(12.34, 56.78, 2016)..., 2016))
@test lat ≈ 12.34
@test long ≈ 56.78
end
@testset "mean_obliquity" begin
@test @inferred(mean_obliquity(AstroLib.J2000)) ≈ 0.4090926006005829
@test mean_obliquity.(jdcnv.([DateTime(1916, 09, 22, 03, 39),
DateTime(2063, 10, 13, 09)])) ≈
[0.4092816887615259, 0.40894777540460037]
end
@testset "month_cnv" begin
@test month_cnv.([" januavv ", "SEPPES ", " aUgUsT", "la"]) == [1, 9, 8, -1]
@test month_cnv.([2, 12, 6], short=true, low=true) == ["feb", "dec", "jun"]
@test @inferred(month_cnv(5, up=true)) == "MAY"
@test (list=[1, 2, 3]; month_cnv.(month_cnv.(list)) == list)
@test (list=["July", "March", "November"]; month_cnv.(month_cnv.(list)) == list)
end
@testset "moonpos" begin
ra, dec, dis, lng, lat = @inferred(moonpos(jdcnv(1992, 4, 12)))
@test ra ≈ 134.68846854844108
@test dec ≈ 13.768366630560255
@test dis ≈ 368409.68481612665
@test lng ≈ 133.16726428105378
@test lat ≈ -3.2291264192144356
ra, dec, dis, lng, lat = @inferred(moonpos([2457521], radians=true))
@test ra ≈ [2.2587950290926178]
@test dec ≈ [0.26183388011392217]
@test dis ≈ [385634.68772395694]
@test lng ≈ [2.232459255739553]
@test lat ≈ [-0.059294466326164315]
end
@testset "mphase" begin
@test mphase.([2457520, 2457530, 2457650]) ≈
[0.2781695910737857, 0.9969808583803166, 0.9580708477591693]
end
@testset "nutate" begin
long, obl = @inferred(nutate(jdcnv(1987, 4, 10)))
@test long ≈ -3.787931077110755
@test obl ≈ 9.442520698644401
long, obl = @inferred(nutate(2457521))
@test long ≈ -4.401443629818089
@test obl ≈ -9.26823431959121
long, obl = @inferred(nutate([2457000, 2458000]))
@test long ≈ [ 4.327189321653877, -9.686089990639474]
@test obl ≈ [-9.507794266102866, -6.970768250588256]
end
@testset "paczynski" begin
@test @inferred(paczynski(-1e-10)) ≈ -1e10
@test @inferred(paczynski(1e-1)) ≈ 10.037461005722337
@test @inferred(paczynski(-1)) ≈ -1.3416407864998738
@test @inferred(paczynski(10)) ≈ 1.0001922892047386
@test @inferred(paczynski(-1e10)) ≈ -1
end
@testset "planck_freq" begin
@test @inferred(planck_freq(2000, 5000)) ≈ 6.1447146126144004e-30
end
@testset "planck_wave" begin
@test @inferred(planck_wave(2000, 5000)) ≈ 8.127064833530511e-24
end
# The values used for the testset are from running the code. However they have been
# correlated with the output from planet_coord routine of IDL AstroLib, with
# differences only in the least significant digits
@testset "planet_coords" begin
@test_throws DomainError @inferred(planet_coords(DateTime(2013, 07, 22,
03, 19, 06),0))
ra_out, dec_out = @inferred(planet_coords([AstroLib.J2000, 2.45e6], [2,8]))
@test ra_out[1] ≈ 239.8965221579066
@test ra_out[2] ≈ 294.55483837772476
@test dec_out[1] ≈ -18.450868549676304
@test dec_out[2] ≈ -20.992319312642262
ra_out, dec_out = @inferred(planet_coords(2.45e6, 9))
@test ra_out ≈ 238.3131013864547
@test dec_out ≈ -6.964788781133789
@test @inferred(planet_coords(juldate(1), 3) == (0, 0))
end
@testset "polrec" begin
x, y = @inferred(polrec([1, 2, 3], [pi, pi/2.0, pi/4.0]))
@test x ≈ [-1.0, 0.0, 1.5*sqrt(2.0)]
@test y ≈ [ 0.0, 2.0, 1.5*sqrt(2.0)]
x, y = @inferred(polrec((2, 135), degrees=true))
@test x ≈ -sqrt(2)
@test y ≈ sqrt(2)
end
@testset "posang" begin
@test @inferred(posang(1, ten(13, 25, 13.5), ten(54, 59, 17),
ten(13, 23, 55.5), ten(54, 55, 31))) ≈ -108.46011246802047
@test posang.(0, [0,1,2], [1,2,3], [2,3,4], [3,4,5]) ≈
[1.27896824717634, 1.6840484573313608, 0.2609280020139511]
@test @inferred(posang(0, 120, -43, 175, +22)) ≈ -1.5842896165356724
@test @inferred(posang(1, (120, -43), 175, +22)) ≈ 82.97831348792039
@test @inferred(posang(2, 120, -43, (175, +22))) ≈ 50.02816530382374
@test @inferred(posang(0, (120, -43), (175, +22))) ≈ -1.5842896165356724
@test posang.(1, [120], [-43], 175, +22) ≈ [82.97831348792039]
@test posang.(2, 120, -43, [175], [+22]) ≈ [50.02816530382374]
@test_throws DomainError @inferred(posang(3, 0, 0, 0, 0))
end
@testset "precess" begin
ra1, dec1 = @inferred(precess((ten(2,31,46.3)*15, ten(89,15,50.6)), 2000, 1985))
@test ra1 ≈ 34.09470328718033
@test dec1 ≈ 89.19647174928589
ra2, dec2 = @inferred(precess([ten(21, 59, 33.053)*15], [ten(-56, 59, 33.053)],
1950, 1975, FK4=true))
@test ra2 ≈ [330.3144305418865]
@test dec2 ≈ [-56.87186126487889]
end
# The values used for the testset are from running the code. However they have been
# correlated with the output from precess_cd routine of IDL AstroLib, with
# differences only in the least significant digits.
@testset "precess_cd" begin
@test @inferred(precess_cd([30 60; 60 90], 1950, 2000, [13, 8], [43, 23])) ≈
[30.919029003435927 62.343060521017435;
61.93905850970097 93.56509103294071 ]
@test @inferred(precess_cd([30 60; 60 90], 2000, 1950, [13, 8], [43, 23])) ≈
[30.919029003435927 62.343060521017435;
61.93905850970097 93.56509103294071 ]
@test @inferred(precess_cd([12.45 56.7; 66 89], 2000, 1985, [67.4589455, 0.345345],
[37.94291666666666, 89.26405555555556])) ≈
[963.4252080520984 4387.890452343343 ;
5107.504395433958 6887.55936949333 ]
@test @inferred(precess_cd([30.0 28.967; 60.45 90.65], 2000, 1975, [13, 10.658],
[35.54, 67], true)) ≈
[64.78429186351575 62.637156996728194 ;
130.49379143419722 195.9699513801844 ]
end
@testset "precess_xyz" begin
x1, y1, z1 = @inferred(precess_xyz((1.2, 2.3, 1.7), 2000, 2050))
@test x1 ≈ 1.165933061423247
@test y1 ≈ 2.313228746401996
@test z1 ≈ 1.7057470102860104
x2, y2, z2 = @inferred(precess_xyz([0.7, -2.4], [3.3, 6.6], [0, 4], 2000, 2016))
@test x2 ≈ [0.688187142071843, -2.429815562246262]
@test y2 ≈ [3.3024835038223532, 6.591359330834213]
@test z2 ≈ [0.001079105285993004, 3.9962455511755794]
end
@testset "premat" begin
@test @inferred(premat(1967, 1982, FK4=true)) ≈
[0.9999933170034135 -0.0033529069683496567 -0.0014573823699636742;
0.00335290696825777 0.9999943789886484 -2.443304965138481e-6 ;
0.0014573823701750721 -2.4431788671274868e-6 0.9999989380147651 ]
@test @inferred(premat(1995, 2003)) ≈
[ 0.9999980977132219 -0.0017889257711428855 -0.0007773766929507687;
0.0017889257711354528 0.9999983998707707 -6.953448226403318e-7 ;
0.0007773766929678732 -6.953257000046125e-7 0.9999996978424512 ]
end
@testset "radec" begin
@test @inferred(radec(15.90, -0.85)) == (1.0, 3.0, 36.0, -0.0, 51.0, 0.0)
@test @inferred(radec(-0.85,15.9)) == (23.0,56.0,36.0,15.0,54.0,0.0)
@test @inferred(radec(-20,4,hours=true)) == (4.0,0.0,0.0,4.0,0.0,0.0)
@test @inferred(radec([15.90, -0.85], [-0.85,15.9])) ==
([1.0, 23.0], [3.0, 56.0], [36.0, 36.0],
[-0.0, 15.0], [51.0, 54.0], [0.0, 0.0])
end
@testset "recpol" begin
r = a = zeros(Float64, 3)
r, a = @inferred(recpol([0, sqrt(2.0), 2.0*sqrt(3.0)], [0, sqrt(2.0), 2.0]))
@test r ≈ [0.0, 2.0, 4.0]
@test a ≈ [0.0, pi/4.0, pi/6.0]
r, a = @inferred(recpol(1, 1))
@test r ≈ sqrt(2.0)
@test a ≈ pi/4.0
# Test polrec is the inverse of recpol
xi, yi, x, y, = 6.3, -2.7, 0.0, 0.0
x, y = @inferred(polrec(recpol((xi, yi), degrees=true), degrees=true))
@test x ≈ xi
@test y ≈ yi
end
@testset "rhotheta" begin
ρ, θ = @inferred(rhotheta(41.623, 1934.008, 0.2763, 0.907, 59.025, 23.717, 219.907,
1980))
@test ρ ≈ 0.41101776646245836
@test θ ≈ 318.4242564860495
end
# Test also it's the inverse of ten.
@testset "sixty" begin
@test @inferred(sixty(-51.36)) ≈ [-51.0, 21.0, 36.0]
@test @inferred(ten(sixty(-0.10934835545824395))) ≈ -0.10934835545824395
@test @inferred(sixty(1)) ≈ [1.0, 0.0, 0.0]
end
@testset "sphdist" begin
@test sphdist.([0,1,2], [1,2,3], [2,3,4], [3,4,5]) ≈
[1.222450611061632, 2.500353926443337, 1.5892569925227762]
@test @inferred(sphdist(120, -43, 175, +22)) ≈ 1.5904422616007134
@test sphdist.([120], [-43], 175, +22) ≈ [1.5904422616007134]
@test sphdist.(120, -43, [175], [+22]) ≈ [1.5904422616007134]
end
@testset "sunpos" begin
ra, dec, lon, obl = @inferred(sunpos(jdcnv(1982, 5, 1)))
@test ra ≈ 37.88589057369026
@test dec ≈ 14.909699471099517
@test lon ≈ 40.31067053890748
@test obl ≈ 23.440840980112657
ra, dec, lon, obl = @inferred(sunpos(jdcnv.([DateTime(2016, 5, 10)]), radians=true))
@test ra ≈ [0.8259691339090751]
@test dec ≈ [0.3085047454107549]
@test lon ≈ [0.8687853454154388]
@test obl ≈ [0.40901175207670365]
ra, dec, lon, obl = @inferred(sunpos([2457531]))
@test ra ≈ [59.71655864208797]
@test dec ≈ [20.52127006818727]
@test lon ≈ [61.824436793991545]
@test obl ≈ [23.434648653514724]
end
# Make sure string and numerical inputs are consistent (IDL implementation of "ten" is not).
@testset "ten" begin
@test @inferred(ten(0, -23, 34)) == @inferred(ten((0, -23, 34))) ==
@inferred(ten([0, -23, 34])) == ten(" : 0 -23 :: 34") == -0.37388888888888894
@test @inferred(ten(-0.0, 60)) == @inferred(ten((-0.0, 60))) ==
@inferred(ten([-0.0, 60])) == @inferred(ten("-0.0 60")) == -1.0
@test @inferred(ten(-5, -60, -3600)) == @inferred(ten((-5, -60, -3600))) ==
@inferred(ten([-5, -60, -3600])) == @inferred(ten(" -5: :-60: -3600")) == -3.0
@test ten("") == 0.0
@test ten.([0, -0.0, -5], [-23, 60, -60], [34, 0, -3600]) ==
ten.([(0, -23,34), ":-0.0:60", (-5, -60, -3600)]) ==
ten.(["0 -23 :: 34", (-0.0, 60), " -5:-60: -3600"]) ==
[-0.37388888888888894, -1.0, -3.0]
@test ten.([12.0, -0.0], [24, 30]) == ten.([" 12::24", " -0:30: "]) == [12.4, -0.5]
end
@testset "tic_one" begin
min2, tic1 = @inferred(tic_one(30.2345, 12.74, 10))
@test min2 ≈ 30.333333333333332
@test tic1 ≈ 7.554820000000081
min2, tic1 = @inferred(tic_one(45, 50, 4, true))
@test min2 ≈ 46.0
@test tic1 ≈ 50.0
min2, tic1 = @inferred(tic_one(pi\8, tics(90, 45, 1000, 10)...))
@test min2 ≈ 2.5
@test tic1 ≈ 1.0318357862412286
end
@testset "ticpos" begin
@test ticpos.([16,8,4],[1024,512,256], [150,75,37.5]) ==
[(256.0, 4, "Degrees"), (128.0, 2, "Degrees"), (64.0, 1, "Degrees")]
@test @inferred(ticpos(2, 512, 75)) == (128.0, 30, "Arc Minutes")
@test @inferred(ticpos(1.5, 512, 75)) == (85.33333333333333, 15, "Arc Minutes")
@test @inferred(ticpos(1.5, 512, 50)) == (56.888888888888886, 10, "Arc Minutes")
@test @inferred(ticpos(1.6, 1024, 50)) == (53.333333333333336, 5, "Arc Minutes")
@test @inferred(ticpos(0.2, 512, 75)) == (85.33333333333333, 2, "Arc Minutes")
@test @inferred(ticpos(0.5, 512, 10)) == (17.066666666666666, 1, "Arc Minutes")
@test @inferred(ticpos(0.1, 1024, 50)) == (85.33333333333333, 30, "Arc Seconds")
@test @inferred(ticpos(0.08, 1024, 40)) == (53.333333333333336, 15, "Arc Seconds")
@test @inferred(ticpos(0.025, 512, 50)) == (56.888888888888886, 10, "Arc Seconds")
@test @inferred(ticpos(pi/100, 1024, 40)) == (45.27073936836133, 5, "Arc Seconds")
@test @inferred(ticpos(0.06, 2048, 20)) == (18.962962962962965, 2, "Arc Seconds")
@test @inferred(ticpos(0.016, 1024, 20)) == (17.77777777777778, 1, "Arc Seconds")
end
@testset "tics" begin
@test @inferred(tics(30, 90, 30, 1)) == (3.8666666666666667, 480)
@test @inferred(tics(30, 90, 3, 3, true)) == (4.0, 240)
@test @inferred(tics(30, 70, 3, 1, true)) == (0.75, 60)
@test tics.([30,50],[70,60], [6,12], [3,0.5], [true, false]) ==
[(3.75,120), (0.55,30)]
@test @inferred(tics(45, 55, 30, 0.5)) == (0.725, 15)
@test @inferred(tics(45, 60, 10, 0.1)) == (0.1, 10)
@test @inferred(tics(55, 60, 100.0, 1/2)) == (0.66, 2)
@test @inferred(tics(25, 30, 50, 2, true)) == (2.45, 1)
@test @inferred(tics(20, 80, 600, 0.03)) == (0.04159722222222222, 0.25)
@test @inferred(tics(25, 75, 500, 0.02)) == (0.02772222222222222, 0.16666666666666666)
@test @inferred(tics(10, 12, 25, 0.01)) == (0.016666666666666666, 0.08333333333333333)
@test @inferred(tics(20, 80, 6000, 0.03)) ==
(0.055546296296296295, 0.03333333333333333)
@test @inferred(tics(30, 60, 200, 0.02, true)) ==
(0.02763888888888889, 0.016666666666666666)
@test @inferred(tics(60, 70, 125, 0.001)) ==
(0.0017222222222222222, 0.008333333333333333)
@test @inferred(tics(10, 12, 25, 0.01, true)) == (0.01, 0.0033333333333333335)
@test @inferred(tics(130, 180, 1000, 0.0004)) == (0.000555, 0.0016666666666666668)
@test @inferred(tics(60, 70, 5500//2, 0.003)) ==
(0.003818055555555556, 0.0008333333333333334)
@test @inferred(tics(30, 150, 4000, 0.002, true)) ==
(0.0027770833333333337, 0.0003333333333333333)
@test @inferred(tics(9.5, 14.5, 5000, 0.002)) ==
(0.002777222222222222, 0.00016666666666666666)
@test @inferred(tics(90, 45, 1000, 10)) == (11.1, -30)
ticsize, incr = @inferred(tics(30, 70, 50, 0.1))
@test ticsize ≈ 0.10208333333333333
@test incr ≈ 5
ticsize, incr = @inferred(tics(pi/3, pi/2, 60.0, 7.5, true))
@test ticsize ≈ 14.085212463632736
@test incr ≈ 0.5
end
@testset "true_obliquity" begin
@test @inferred(true_obliquity(AstroLib.J2000)) ≈ 0.4090646078966446
@test true_obliquity.(jdcnv.([DateTime(2016, 08, 23, 03, 39, 06),
DateTime(763, 09, 18, 12)])) ≈
[0.4090133706884892, 0.41188965892279295]
end
@testset "kepler_solver" begin
@test @inferred(trueanom(8pi/3, 0.7)) ≈ 2.6657104039293764
@test trueanom.([pi/4, pi/6, 8pi/3], 0) ≈ [pi/4, pi/6, 2pi/3]
@test @inferred(trueanom(3pi/2, 0.8)) ≈ -2.498091544796509
@test @inferred(trueanom(0.1, 1)) ≈ pi
@test_throws DomainError @inferred(trueanom(pi, -0.5))
@test_throws DomainError @inferred(trueanom(pi, 1.5))
end
# The values used for the testset are from running the code. However they have been
# correlated with the output from uvbybeta routine of IDL AstroLib, with
# differences only in the least significant digits.
@testset "uvbybeta" begin
@test_throws DomainError @inferred uvbybeta(NaN, NaN, NaN, 9, NaN)
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(-0.009, 0.11, 0.68, 1)
@test te_o ≈ 12719.770257555097
@test mv_o ≈ -0.08913388245565224
@test eby_o ≈ 0.038295081967213124
@test delm_o ≈ -0.007787863429965028
@test radius_o ≈ 2.549253655861009
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(0.415, -0.069, 0.308, 2)
@test te_o ≈ 12280.215047866226
@test mv_o ≈ -7.112880191374548
@test eby_o ≈ 0.4040160642570281
@test isnan(delm_o)
@test radius_o ≈ 90.29892932880738
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(0.273, -0.051, 0.051, 3)
@test te_o ≈ 18733.204098765906
@test mv_o ≈ -5.453550292618578
@test eby_o ≈ 0.33158225857187795
@test isnan(delm_o)
@test radius_o ≈ 27.825306168356892
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(0.29343, 0.09, 0.001, 4)
@test te_o ≈ 25713.1878000067
@test mv_o ≈ -4.816603735163776
@test eby_o ≈ 0.6430112570356474
@test isnan(delm_o)
@test radius_o ≈ 0.16611917129253512
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(0.03, 0.21345, 0.3976, 5)
@test te_o ≈ 10363.815662133818
@test mv_o ≈ 4.411076600000009
@test eby_o ≈ -0.038394585955939545
@test delm_o ≈ -0.03113954500000002
@test radius_o ≈ 0.4863555386334208
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(0.18547, -0.04356, 0.2576, 6)
@test te_o ≈ 7308.315628104092
@test mv_o ≈ 7.562860949999999
@test eby_o ≈ -0.00736941600000007
@test delm_o ≈ 0.2449243827527609
@test radius_o ≈ 0.17062904371865295
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(0.18547, -0.04356, 0.2576, 6,
2.72001)
@test te_o ≈ 7308.315628104092
@test mv_o ≈ 6.1817999999999955
@test eby_o ≈ -0.07476300000000027
@test delm_o ≈ 0.21601800458420034
@test radius_o ≈ 0.3223035928541916
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(0.18547, -0.04356, 0.2576, 6,
2.82)
@test te_o ≈ 7334.8182052629045
@test mv_o ≈ 7.767123299999994
@test eby_o ≈ 0.003229999999999733
@test delm_o ≈ 0.2454149000000012
@test radius_o ≈ 0.154376398171302
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(0.18547, -0.04356, 0.2576, 6,
2.8201)
@test te_o ≈ 7343.722680158638
@test mv_o ≈ 7.682471615999958
@test eby_o ≈ 0.0043099999999998695
@test delm_o ≈ 0.24506736642000115
@test radius_o ≈ 0.16018990575428574
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(0.1923, 0.2186, 0.2783, 6)
@test te_o ≈ 7252.900460401587
@test mv_o ≈ 7.219177499999998
@test eby_o ≈ -0.011614630064603726
@test delm_o ≈ -0.019005720258414266
@test radius_o ≈ 0.2024586440816956
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(0.216, 0.167, 0.785, 7)
@test te_o ≈ 7108.688707930596
@test mv_o ≈ 1.538642957897997
@test eby_o ≈ 0.005426551873147473
@test delm_o ≈ 0.010495724945951107
@test radius_o ≈ 2.8675336941552185
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(0.206, 0.162, 0.786, 7,
2.601)
@test te_o ≈ 7144.241056060125
@test mv_o ≈ -0.8920873665838025
@test eby_o ≈ -0.12713573819611615
@test delm_o ≈ 0.05272866901000031
@test radius_o ≈ 8.706345749177931
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(0.394, 0.184, 0.382, 8)
@test te_o ≈ 5755.671513413262
@test mv_o ≈ 3.7737408311021916
@test eby_o ≈ -0.028753800373693867
@test delm_o ≈ 0.034414237187698926
@test radius_o ≈ 1.6597544196694192
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(0.6501, 0.184, 0.382, 8)
@test te_o ≈ 5452.352129194577
@test mv_o ≈ 5.192225306337874
@test eby_o ≈ 0.19958051948051947
@test delm_o ≈ 0.032731030075137835
@test radius_o ≈ 0.9924525316819005
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(0.7901, 0.184, 0.0145, 8)
@test te_o ≈ 3977.185981725903
@test mv_o ≈ 9.893069966897801
@test eby_o ≈ -0.022297953964194334
@test delm_o ≈ 0.5456850156962505
@test radius_o ≈ 0.26255047396110764
te_o, mv_o, eby_o, delm_o, radius_o = @inferred uvbybeta(0.7901, 0.037, 0.039, 8)
@test te_o ≈ 3985.833020767027
@test mv_o ≈ 10.356215131980953
@test eby_o ≈ 0.0027659846547315762
@test delm_o ≈ 0.6944746189113468
@test radius_o ≈ 0.2106831009861503
end
# Test airtovac is its inverse (it isn't true only around 2000, just avoid those values)
@testset "vactoair" begin
@test @inferred(vactoair(2000)) ≈ 1999.3526230448367
@test airtovac.(vactoair.(collect(1000:300:4000))) ≈ collect(1000:300:4000)
end
@testset "xyz" begin
x, y, z, vx, vy, vz = @inferred(xyz([51200.5 + 64 / 86400], 2000))
@test x ≈ [0.5145687092402946]
@test y ≈ [-0.7696326261820777]
@test z ≈ [-0.33376880143026394]
@test vx ≈ [0.014947267514081075]
@test vy ≈ [0.008314838205475709]
@test vz ≈ [0.003606857607574784]
end
@testset "ydn2md" begin
@test ydn2md.(2016, [60, 234]) == [Date(2016, 02, 29), Date(2016, 08, 21)]
@test @inferred(ymd2dn(ydn2md(2016, 60))) == 60
end
@testset "ymd2dn" begin
@test ymd2dn.([Date(2015,3,5), Date(2016,3,5)]) == [64, 65]
@test @inferred(ydn2md(2016, ymd2dn(Date(2016, 09, 16)))) == Date(2016, 09, 16)
end
@testset "zenpos" begin
ra, dec = @inferred(zenpos(2.457514070138889e6, 45, 45))
@test ra ≈ 1.9915758420649625
@test dec ≈ 0.7853981633974483
ra, dec = @inferred(zenpos(DateTime(2015, 11, 24, 13, 21), 43.16, -24.32, 4))
@test ra ≈ 3.1232737646297757
@test dec ≈ 0.7532841051607526