[スポンサーリンク]

ケムステニュース

FM-AFMが実現!”溶ける”を原子レベルで直接観察

[スポンサーリンク]

金沢大学は、同大学理工研究域電子情報学系の福間剛士教授と理工研究域バイオAFM先端研究センターの宮田一輝助教らの研究グループが、フィンランドAalto大学の研究グループと共同で、従来の約50倍の速度で液中原子分解能観察が可能な高速周波数変調原子間力顕微鏡(FM-AFM)を開発し、水中でカルサイト(方解石、CaCO3)の表面が溶解する様子を原子レベルで観察することに成功したことを発表した。この成果は6月26日、American Chemical Society「Nano Letters」のオンライン版[1]に掲載された。

図1. カルサイト溶解現象のFM-AFM観察: (a) カルサイトの構造、(b) FM-AFM観察の様子(0, 10, および20 sのスナップショット)、(c) (b)の10 sにおける線P-Qにおける高さ方向の解析 (引用:金沢大学HP、研究トピック)

 

(中略)

今回、カルサイトの溶解過程に関する原子レベルでの詳細な理解が得られたことで、これまで巨視的な溶解過程のシミュレーションに用いられてきた経験的パラメータが持つ物理的意味を根本的に理解できる。これにより、自然界でのさまざまな溶液環境中における溶解挙動を正確に予測することが可能となり、将来的には大規模な炭素循環の予測精度向上にも貢献できると説明している。

また、開発した高速FM-AFM技術は、カルサイトの溶解過程だけでなく、さまざまな鉱物、有機分子、生体分子の結晶成長・溶解、自己組織化、さらには金属腐食、触媒反応など、幅広い固液界面現象の原子スケール観察に用いることができる。これらの現象も従来は原子レベルで直接観察する手段はなかったため、今回開発された技術により、さまざまな未知の現象が発見されることが期待できるとしている。(引用:マイナビニュース、2017年7月17日

長過ぎる。3行で。という方にご説明すると『すんごいAFMを使って、塩が水に溶けていく様子を、原子レベルで観察しちゃった』って話です。

近年、発展の目覚ましい走査型プローブ顕微鏡(SPM)。その中でも本記事の原子間力顕微鏡(AFM)や、その仲間の走査型トンネル顕微鏡(STM)の発展は目を見張るものがあります。記憶に新しい話では、最近開催されたナノカーレース。STMを使ってナノカーがAu基板上を走る様を観察してました。ケムステではスポットライトリサーチとして『水分子が見えた!ー原子間力顕微鏡を用いた水分子ネットワークの観察ー』でAFMを取り上げました。

本記事は溶液のAFM観察。その弱点の一つとして時間分解能があります。これまでの時間分解能は、1面分の試料を観察するために1分弱(1 min/frame)ほど必要でした。一方、開発されたFM-AFMは1面分の観察に1秒(1 s/frame)しかかかりません。おおよそ50倍です。比較すると凄さが際立ちます。これを皮切りに、溶液中や固液界面の様々な化学的現象が可視化できるとのこと。フレームレートを考えると秒単位のタイムスケールで起こる化学現象はFE-AFMによる観察が大変利きそうです。私は自己組織化する材料が、溶液中でガシャガシャと組み上がる様を観察できたら楽しいなーなんて考えたりしました。もはややっているかとも思いますが。。。

化学結合の開裂、形成までを完全に可視化して動画的に観察できたら、さらにすごいとおもいますが、そのような反応は10-12秒(ピコ秒)スケールなので、現状ではまだまだ難しいでしょう。中間構造をスナップショットとして捉えることなら可能かもしれません。化学結合形成反応も可視化して動画的に追える。なんて日も存外近いのかもしれません。溶液ではないのですが、基板上での化学反応の進行をスナップショットとして追跡した例は続々と報告されてきています。[2]一番最近では東大、京大、愛媛大の研究グループが『ばね型有機分子の炭素骨格変換反応』として多縮環芳香族分子が銅基板上で骨格を組み換える反応をAFMで追跡しました。

 

ケムステ観覧者には釈迦に説法かと思いますが、せっかくなのでAFMの概要を。(図1)

原子間力顕微鏡(AFM)は、観察対象試料と探針の原子間にはたらく力を検出して画像を得る顕微鏡。出力される画像は試料表面の凹凸形状をコントラストで示したものです。

AFM測定のイメージ

AFMの装置構成図

図1. AFMの概略図(株式会社日立ハイテクサイエンスHPより転載)

 

株式会社日立ハイテクサイエンスのHPにあるアニメーションが非常にわかりやすくAFM観察のイメージを示しています。

板バネ(カンチレバー)の先に数nmの針(探針)がついており、その針が試料表面をなぞる。カンチレバー背面にはレーザーを反射する金が被覆されている。そこにレーザー光を照射すると、カンチレバーの上下に伴って、レーザー光の反射方向が変化する。この反射方向の変位(たわみ信号)を光センサーで観測して画像に変換する。カンチレバーの動作モードとしてコンタクトモード、ノンコンタクトモード、タッピングモード、フォースモードなどが存在する。変位の観測モードとしては、単純な変位モード、振幅変調モード、そして周波数変調モード(下記参照)がある。原子間力はあらゆる物質の間に働くため容易に試料を観察することができるため、様々な環境(大気中、液体中、または高温、低温など)で、測定できる。弱点としては時間分解能、液体中での感度、原子の区別ができないなどがあったが、それらは着実に解消されつつある。

記事で取り上げられたFM-AFMの場合は、溶液中でのAFM観察での弱点である時間分解能と感度の底上げに成功している。キーとなるのは高速周波数変調方式。周波数変調方式とは以下のような原理。まずカンチレバーを一定周波数で振動させて試料をなぞる。試料表面の凹凸に応じて、カンチレバーの振動の周波数は変化する。その結果、反射レーザーも対応する周波数で振動する。試料表面の凹凸に応じた周波数の変調を可視化して、凹凸形状をコントラストで示す。レーザーの変位よりも振動数変調の方が高感度かつ高い信号雑音比で捉えることができる。また、FM-AFMの感度を上げるには探針の硬さ、カンチレバーのQ値というパラメーター、そして光センサーの感度が重要であり、本記事のAFMはその点でも感度を底上げしている。

 

AFMの進化はめざましいですね。可視化できることは科学研究において重要なファクターの一つです。AFMの進化が続けば、科学研究における根本が覆るということもあり得るでしょう。今でこそ当たり前のNMR測定だって、もはや測らないようになる、かもしれません。いずれにしても、今後のAFM進化、楽しみですね。

 

 

関連する文献

  1. Miyata, K.; Tracey, J.; Miyazawa, K.; Haapasilta, V.; Spijker, P.; Kawagoe, Y.; Foster, A. S.; Tsukamoto, K.; Fukuma, T. Nano Letters 2017,17, 4083-4089, doi: 10.1021/acs.nanolett.7b00757.
  2. (a) G. de Oteyza, D.; Gorman, P.; Chen, Y. C.; Wickenburg, S.; Riss, A.; Mowbray, D. J.; Etkin, G.; Pedramrazi, Z.; Tsai, H. Z.; Rubio, A.; Crommie, M. F.; Fischer, F. R. Science 2013, 340, 1434-1437, doi: 10.1126/science.1238187, (b) Pavliček, N.; Schuler, B.; Collazos, S: Moll, N; Pérez, D.; Guitián, E.; Meyer, G.; Peña, D.; Gross, L. Nature Chem. 2015, 7, 623–628, doi: 10.1038/nchem.2300, (c) Schuler, B.; Fatayer, S.; Mohn, F.; Moll, N.; Pavliček, N.; Meyer, G.; Peña D.; Gross, L. Nature Chem. 2016, 8, 220–224, doi:10.1038/nchem.2438, (d) Kawai, S.; Haapasilta, V.; Lindner, B. D.; Tahara, K.; Spijker, P.; Buitendijk, J. A.; Pawlak, R.; Meier, T.; Tobe, Y.; Foster, A. S.; Meyer, E. Nat. Commun. 2016, 7, 12711, doi:10.1038/ncomms12711, (e) Shiotari, A.; Nakae, T.; Iwata, K.; Mori, S.; Okujima, T.; Uno, H.; Sakaguchi, H.; Sugimoto, Y. Nat. Commun. 2017, 8, 16089, doi:10.1038/ncomms16089

関連書籍

[amazonjs asin=”4320071352″ locale=”JP” title=”有機分子のSTM /AFM”] [amazonjs asin=”4274214133″ locale=”JP” title=”走査型プローブ顕微鏡入門”]

 

関連リンク

Avatar photo

Trogery12

投稿者の記事一覧

博士(工学)。九州でポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. ヒアリの毒素を正しく知ろう
  2. 「アバスチン」臨床試験中間解析を公表 中外製薬
  3. 防カビ効果、長持ちします 住友化学が新プラスチック
  4. 「株式会社未来創薬研究所」を設立
  5. 新型卓上NMR Spinsolve 90 が販売開始
  6. 熱を効率的に光に変換するデバイスを研究者が開発、太陽光発電の効率…
  7. 住友化学、液晶関連事業に100億円投資・台湾に新工場
  8. ファンケル、「ツイントース」がイソフラボンの生理活性を高める働き…

注目情報

ピックアップ記事

  1. 【5月開催】第八回 マツモトファインケミカル技術セミナー 有機金属化合物「オルガチックス」の密着性向上剤としての利用 -プライマーとしての利用-
  2. 武田薬の糖尿病治療薬、心臓発作を予防する効果も
  3. 【技術者・事業担当者向け】 マイクロ波による化学プロセス革新 〜マイクロ波が得意とするプロセスはコレだ!〜
  4. がん細胞を狙い撃ち 田澤富山医薬大教授ら温熱治療新装置 体内に「鉄」注入、電磁波で加熱
  5. ヘキサン (hexane)
  6. カルボニル化を伴うクロスカップリング Carbonylative Cross Coupling
  7. シュガフ脱離 Chugaev Elimination
  8. 名古屋メダル―受賞者一覧
  9. 禅問答のススメ ~非論理に向き合う~
  10. 留学せずに英語をマスターできるかやってみた(5年目)(留学中編)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

光励起で芳香族性を獲得する分子の構造ダイナミクスを解明!

第 654 回のスポットライトリサーチは、分子科学研究所 協奏分子システム研究セ…

藤多哲朗 Tetsuro Fujita

藤多 哲朗(ふじた てつろう、1931年1月4日 - 2017年1月1日)は日本の薬学者・天然物化学…

MI conference 2025開催のお知らせ

開催概要昨年エントリー1,400名超!MIに特化したカンファレンスを今年も開催近年、研究開発…

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP