'+pages+''); $('.stream > div:odd').addClass('bgr_color'); updateHeight('#history'); }); window.activateTabArea = ensure(function(tab, areas){ var parsed = false; var parts = (areas || '').split('/'); window.fsonload = $.inArray('fs', parts) >= 0; if(fsonload){ parts.splice(parts.indexOf('fs'), 1); } var replayMode = false; if($.inArray('replay', parts)>=0){ replayMode = 'replay'; } var noSoundMode = false; if($.inArray('nosound', parts)>=0){ noSoundMode = 'nosound'; } if($.inArray('ns', parts)>=0){ noSoundMode = 'ns'; } var previewMode = null; if($.inArray('p', parts)>=0){ previewMode = 'p'; } if($.inArray('preview', parts)>=0){ previewMode = 'preview'; } if($.inArray('repeat', parts)>=0){ replayMode = 'repeat'; } if($.inArray('r', parts)>=0 || $.inArray('ro', parts)>=0){ replayMode = 'r'; } if(replayMode){ parts.splice(parts.indexOf(replayMode), 1); } if(noSoundMode){ parts.splice(parts.indexOf(noSoundMode), 1); } if(previewMode){ parts.splice(parts.indexOf(previewMode), 1); } if(previewMode){ if(!parts.length){ parts = ['1-14', '999:59']; } } var area = parts[0]; if(tab == 'history' && false){ var page = parseInt(area || '1') || 1; $.ajax({ url: 'https://login.wn.com/recent/json/?pp='+history_pp+'&skip='+history_pp*(page-1), dataType: 'jsonp', success: function(response){ $ensure(function(){ renderHistory(response, page); }); } }); return true; } if(tab == 'global_history' && false){ var page = parseInt(area || '1') || 1; globalHistory.fetchStream(page, '', function(){ updateHeight('#global_history'); }); return true; } if(tab == 'my_playlists' && false){ var page = parseInt(area || '1') || 1; myPlaylists.fetchStream(page, '', function(){ updateHeight('#my_playlists'); }); return true; } if(tab == 'my_videos' && false){ var page = parseInt(area || '1') || 1; myVideos.fetchStream(page, '', function(){ updateHeight('#my_videos'); }); return true; } if(tab == 'related_sites' && areas && matchPosition(areas)){ var seconds = parsePosition(areas); scrollRelated(seconds); return false; } if(matchPosition(area) || matchAction(area)){ parts.unshift('1'); area = parts[0]; } if(tab == 'expand' && area && area.match(/\d+/)) { var num = parseInt(area); if(num < 100){ //FIX ME. Load news page with ajax here } else if(num > 1900){ //FIX ME. Load timeline page with ajax here } } else if(tab.match(/^playlist\d+$/)){ var playerId = parseInt(tab.substring(8)); var vp = videoplayers[playerId]; window.descriptionsholder = $('.descriptionsplace'); if(!vp) return; // why? no player? if(replayMode){ $('.replaycurrent'+playerId).attr('checked', true); vp.setReplayCurrent(true); } var playQueue = []; window.playQueue = playQueue; var playQueuePosition = 0; var playShouldStart = null; var playShouldStop = null; var parseList = function(x){ var items = x.split(/;|,/g); var results = []; for (i in items){ try{ var action = parseAction(vp, items[i]); if(!action.video){ if(window.console && console.log) console.log("Warning: No video for queued entry: " + items[i]); }else{ results.push(action); } }catch(e){ if(window.console && console.log) console.log("Warning: Can''t parse queue entry: " + items[i]); } } return results; }; var scrollToPlaylistPosition = function(vp){ var ppos = vp.getPlaylistPosition(); var el = vp.playlistContainer.find('>li').eq(ppos); var par = el.closest('.playlist_scrollarea'); par.scrollTop(el.offset().top-par.height()/2); } var updateVolumeState = function(){ if(noSoundMode){ if(noSoundMode == 'turn-on'){ clog("Sound is on, vsid="+vp.vsid); vp.setVolumeUnMute(); noSoundMode = false; }else{ clog("Sound is off, vsid="+vp.vsid); vp.setVolumeMute(); noSoundMode = 'turn-on'; } } } var playQueueUpdate = function(){ var playPosition = playQueue[playQueuePosition]; vp.playFromPlaylist(playPosition.video); scrollToPlaylistPosition(vp); playShouldStart = playPosition.start; playShouldStop = playPosition.stop; }; var playQueueAdvancePosition = function(){ clog("Advancing play position..."); playQueuePosition ++; while(playQueuePosition < playQueue.length && !playQueue[playQueuePosition].video){ playQueuePosition ++; } if(playQueuePosition < playQueue.length){ playQueueUpdate(); }else if(vp.getReplayCurrent()){ playQueuePosition = 0; playQueueUpdate(); vp.seekTo(playShouldStart); vp.playVideo(); }else{ vp.pauseVideo(); playShouldStop = null; playShouldStart = null; } }; function loadMoreVideos(playerId, vp, start, finish, callback){ var playlistInfo = playlists[playerId-1]; if(playlistInfo.loading >= finish) return; playlistInfo.loading = finish; $.ajax({ url: '/api/upge/cheetah-photo-search/query_videos2', dataType: 'json', data: { query: playlistInfo.query, orderby: playlistInfo.orderby, start: start, count: finish-start }, success: function(response){ var pl = vp.getPlaylist().slice(0); pl.push.apply(pl, response); vp.setPlaylist(pl); callback(); } }); } if(parts.length == 1 && matchDash(parts[0])){ var pl = vp.getActualPlaylist(); var vids = parseDash(parts[0]); parts = []; for(var i = 0; i < vids.length; i++){ playQueue.push({ 'video': pl[vids[i]-1], 'start': 0, 'stop': null }) } if(vids.length){ if(vids[vids.length-1]-1>=pl.length){ loadMoreVideos(playerId, vp, pl.length, vids[vids.length-1], function(){ if(fsonload){ activateTabArea(tab, parts[0]+'/fs'); }else{ activateTabArea(tab, parts[0]); } var pls = vp.getPlaylist(); vp.playFromPlaylist(pls[pls.length-1]); vp.playVideo(); scrollToPlaylistPosition(vp); }); return true; } } if(playQueue){ playQueueUpdate(); vp.playVideo(); parsed = true; playShouldStart = 0; } } if(previewMode){ var vids = []; var dur = 0; var pl = vp.getActualPlaylist(); area = parts[0]; if(parts.length == 1 && matchPosition(parts[0])){ vids = parseDash('1-'+pl.length); dur = parsePosition(parts[0]); parts = []; }else if(parts.length == 1 && matchDash(parts[0])){ vids = parseDash(parts[0]); dur = parsePosition("999:59"); parts = []; } if(parts.length == 2 && matchDash(parts[0]) && matchPosition(parts[1])){ vids = parseDash(parts[0]); dur = parsePosition(parts[1]); parts = []; } for(var i = 0; i < vids.length; i++){ playQueue.push({ 'video': pl[vids[i]-1], 'start': 0, 'stop': dur }) } if(playQueue){ playQueueUpdate(); vp.playVideo(); parsed = true; } } if(parts.length>1){ for(var i = 0; i < parts.length; i++){ var sel = findMatchingVideo(vp, parts[i]); if(sel){ playQueue.push({ 'video': sel, 'start': 0, 'stop': null }) } } if(playQueue){ playQueueUpdate(); vp.playVideo(); parsed = true; } }else if(area){ var sel = findMatchingVideo(vp, area); if(sel){ vp.playFromPlaylist(sel); playShouldStart = 0; parsed = true; } } if(fsonload || replayMode){ playShouldStart = 0; } if(document.location.search.match('at=|queue=')){ var opts = document.location.search.replace(/^\?/,'').split(/&/g); for(var o in opts){ if(opts[o].match(/^at=(\d+:)?(\d+:)?\d+$/)){ playShouldStart = parsePosition(opts[o].substr(3)) } if(opts[o].match(/^queue=/)){ playQueue = parseList(opts[o].substr(6)); if(playQueue){ playQueuePosition = 0; playQueueUpdate(); } } } } if(matchPosition(parts[1])){ playShouldStart = parsePosition(parts[1]); parsed = true; } if(matchAction(parts[1])){ var action = parseAction(vp, area+'/'+parts[1]); playShouldStart = action.start; playShouldStop = action.stop; parsed = true; } if(playShouldStart !== null && !playQueue.length){ playQueue.push({ video: vp.getCurrentVideo(), start: playShouldStart, stop: playShouldStop }); } if(playShouldStart != null){ setInterval(function(){ if(playShouldStop && vp.currentPlayer && vp.currentPlayer.getCurrentTime() > playShouldStop){ playShouldStop = null; if(vp.getCurrentVideo() == playQueue[playQueuePosition].video){ playQueueAdvancePosition(); }else{ playShouldStart = null; } } }, 500); vp.playerContainer.bind('videoplayer.player.statechange', function(e, state){ if(state == 'ended'){ // advance to the next video playQueueAdvancePosition(); } }); vp.playerContainer.bind('videoplayer.player.readychange', function(e, state){ if(state){ updateVolumeState(); if(playShouldStart !== null){ vp.seekTo(playShouldStart); playShouldStart = null; }else{ playShouldStop = null; // someone started other video, stop playing from playQueue } } if(fsonload) { triggerFullscreen(playerId); fsonload = false; } }); } } else if(tab.match(/^wiki\d+$/)){ if(firstTimeActivate){ load_wiki($('#'+tab), function(){ if(area){ var areaNode = $('#'+area); if(areaNode.length>0){ $('html, body').scrollTop(areaNode.offset().top + 10); return true; } } }); } } return parsed; }) window.activateTab = ensure(function(tab, area){ window.activeArea = null; if(tab == 'import_videos'){ if(area){ import_videos(area); }else{ start_import(); } return true; } if(tab == 'chat'){ update_chat_position($('.chat').eq(0)); window.activeArea = 'chat'; jQuery('.tabtrigger').offscreentabs('activateTab', 'chat'); return true; } if(tab in rev_names){ tab = rev_names[tab]; } if(tab.match(':')){ return false; } var sup = $('ul li a[id=#'+tab+']'); if(sup && sup.length>0){ window.activeArea = area; sup.first().click(); if(!window.activateTabArea(tab, area)){ window.activeArea = null; } window.activeArea = null; return true; }else{ var have_tabs = $('#playlist_menu li').length; if(tab.match(/^playlists?\d+$/)){ var to_add = +tab.substring(8).replace(/^s/,'')-have_tabs; if(to_add>0 && have_tabs){ add_more_videos(to_add); return true; } } } return false; }); window.currentPath = ensure(function(){ return window.lastHistory.replace(basepath, '').split('?')[0]; }); window.main_tab = window.main_tab || 'videos'; window.addHistory = ensure(function(path){ if(window.console && console.log) console.log("Adding to history: "+path); if(window.history && history.replaceState && document.location.hostname.match(/^(youtube\.)?(\w{2,3}\.)?wn\.com$/)){ if(path == main_tab || path == main_tab+'/' || path == '' || path == '/') { path = basepath; } else if( path.match('^'+main_tab+'/') ){ path = basepath + '/' + path.replace(main_tab+'/', '').replace('--','/'); } else { path = basepath + '/' + path.replace('--','/'); } if(document.location.search){ path += document.location.search; } if(window.lastHistory) { history.pushState(null, null, path); } else if(window.lastHistory != path){ history.replaceState(null, null, path); window.lastHistory = path; } } else{ path = path.replace('--','/'); if(path == main_tab || path == main_tab+'/' || path == '' || path == '/') { path = ''; } if(window.lastHistory != '/'+path){ window.location.hash = path? '/'+path : ''; window.lastHistory = '/'+path; } } }); $('.tabtrigger li a').live('click', ensure(function() { var tab = $(this).attr('id'); if(tab.substring(0,1) == '#'){ var name = tab.substring(1); if(name in menu_names){ name = menu_names[name][0]; } realTab = rev_names[name]; $('#'+realTab).show(); if(window.console && console.log) console.log("Triggering tab: "+name+(window.activeArea?" activeArea="+window.activeArea:'')); var path = name; if(window.activeArea){ path = path + '/' + window.activeArea; } if(tab.match(/#playlist\d+/) || tab.match(/#details\d+/)){ $('.multiple-playlists').show(); $('.related_playlist').show(); $('.longest_videos_playlist').show(); }else { $('.multiple-playlists').hide(); $('.related_playlist').hide(); $('.longest_videos_playlist').hide(); } // start the related script only when the tab is on screen showing if (tab.match(/related_sites/)) { if (mc) { mc.startCredits(); } } window.activeTab = realTab; addHistory(path); setTimeout(ensure(function(){ if(tab.match(/language--/)){ $('.tabtrigger').offscreentabs('activateTab', 'language'); } if(tab.match(/weather/)) { $('.tabtrigger').offscreentabs('activateTab', 'weather'); loadContinent(); } updateMenus(tab); updateHeight(); }), 10); } return false; })); }); -->

Inositol trisphosphate receptor

Inositol trisphosphate receptor (InsP3R) is a membrane glycoprotein complex acting as a Ca2+ channel activated by inositol trisphosphate (InsP3). InsP3R is very diverse among organisms, and is necessary for the control of cellular and physiological processes including cell division, cell proliferation, apoptosis, fertilization, development, behavior, learning and memory. Inositol triphosphate receptor represents a dominant second messenger leading to the release of Ca2+ from intracellular store sites. There is strong evidence suggesting that the InsP3R plays an important role in the conversion of external stimuli to intracellular Ca2+ signals characterized by complex patterns relative to both space and time. For example, Ca2+ waves and oscillations. The InsP3 receptor was first purified from rat cerebellum by neuroscientists Surachai Supattapone and Solomon Snyder at Johns Hopkins University School of Medicine.

Distribution

It has a broad tissue distribution but is especially abundant in the cerebellum. Most of the InsP3Rs are found in the cell integrated into the endoplasmic reticulum.

Podcasts:

  • Inositol Triphosphate (IP3) and Calcium Signaling Pathway | Second Messenger System

    Lesson on the Inositol Trisphosphate (IP3) and Calcium Signaling Pathway. IP3, calcium and diacylglycerol (DAG) are important second messengers that are unregulated upon activation of a G protein-coupled receptor. Inositol triphosphate and DAG are cleavage products of phosphatidyl inositol 4,5 bisphosphate (PIP2), which is cleaved by phospholipase C. Increasing levels of IP3 lead to augmented cytosolic calcium levels that further lead to activation of downstream cellular targets. Hey everyone. In this lesson you will be introduced to the IP3 and calcium signaling pathway. We will also discuss the purpose of the pathway, enzymes involved in the pathway, and how the pathway is regulated. I hope you find this video helpful. If you do, please like and subscribe for more videos like this one....

    published: 26 Jun 2018
  • IP3 DAG Calcium Pathway

    IP3-mediated signal transduction pathways First messengers are extracellular signaling molecules, such as hormones or neurotransmitters. In response to exposure to these first messengers, intracellular signaling molecules called second messengers are released by the cell. Two such second messengers are IP3 and DAG. Calcium is also an important second messenger. Transient increases in cytoplasmic Ca2+ levels are caused by the binding of some hormones and signal molecules, and this can send important intracellular signals, by activating calcium-binding proteins that then perform various functions. Note that cytosolic increases in calcium concentration can occur in two ways. There are reservoirs of calcium that can be opened within the cell by the second messenger IP3 – the endoplasmic retic...

    published: 13 Oct 2019
  • Insights into inositol 1,4,5-trisphosphate receptor structure and function

    Webcast of the presentation entitled 'Insights into inositol 1,4,5-trisphosphate receptor structure and function from playing LEGO with receptor subunits ' given by David Yule (University of Rochester, USA). Presented at the Biochemical Society focus meeting 'Calcium Signalling: The Next Generation' held at Charles Darwin House, United Kingdom at 9 - 10 September 2014.

    published: 22 Oct 2014
  • Inositol triphosphate (IP3) | Calcium release

    GPCRs step by step in following videos GPCRs (G protein linked cell signaling) https://youtu.be/GSjVKVGK_1o GPCRs (Activation of G protein receptor) https://youtu.be/Le_f5cxpD4w GPCRs (phospholipase C activation IP3 & DAG, Diacyl Glycerol) https://youtu.be/2bbBrpgeheY GPCRs - (Inositol triphosphate (IP3) Calcium release) https://youtu.be/lsYBeFqEwzk GPCRs- (Di acyl glycerol (DAG) activates protein Kinase C (PKC) https://youtu.be/larIxw_9ePU GPCRs- (Adenyl Cyclase and cAMP) https://youtu.be/0nA2xhNiAow GPCRs- (Protein kinase A activation by cAMP ) https://youtu.be/NaOBRvAFiJQ #BiotechReview #GPCRs #GProtein #CellSignaling #SignalTransduction #IP3

    published: 08 Dec 2011
  • What is the role of inositol triphosphate?

    published: 12 Oct 2020
  • Inositol 1,4,5-Trisphosphate Receptor (IP3R) Model in a Dendritic Spine

    This video visualizes the IP3 receptor model in a realistic spine reconstruction, simulated using STEPS (http://steps.sourceforge.net/) simulator. It demonstrates the activation of IP3 receptors on the Endoplasmic Reticulum (ER) membrane by cytosolic Ca2+, leading to the release of Ca2+ from the ER and the rapid increase of cytosolic Ca2+ concentration, which in turn increases the number of open-state IP3 receptors. Published in: W. Chen and E. De Schutter: Python-based geometry preparation and simulation visualization toolkits for STEPS. Frontiers in Neuroinformatics 8: 37 (2014). https://www.frontiersin.org/articles/10.3389/fninf.2014.00037/full.

    published: 09 Jun 2020
  • Caged Inositol Trisphosphate Part 1

    In this video we discuss what caged inositol trisphosphate is and c=give an example of an experimental construct which makes use of it.

    published: 05 Jan 2015
  • Inositol triphosphate and Diacylglycerol Pathway by Dr. Nitin Nema

    It is one of the most widespread pathways of intracellular signaling which is derived from the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 forms different second messenger system which ultimately produces biological response through the mobilization of stored energy in the cell via Calcium release mechanism.#Inositoltriphosphate#GPCR#Diacylglycerol#

    published: 04 Aug 2019
  • Inositol 1,4,5-trisphosphate receptor (Anti-ITPR1)(Anti-Sj) in Purkinje cells of the cerebellum.

    For more videos abut immunofluorescence patterns click 👇👇👇 Immunofluorescence: https://www.youtube.com/playlist?list=PLRDmErrHTaZ36bY-Sx7cu7Y59iMb2AtSc

    published: 23 May 2022
  • INOSITOL TRISPHOSPHATE (IP3) & DIACYLGLYCEROL (DAG) AS SECOND MESSENGERS

    release of inositol triphosphate (IP3) and diacylglycerol (DAG) as second messengers. Binding of ligand to G protein-coupled receptor activates phospholipase C (PLC)β. Alternatively, activation of receptors with intracellular tyrosine kinase domains can activate PLCγ. The resulting hydrolysis of phosphatidylinositol 4,5-diphosphate (PIP2) produces IP3, which releases Ca2+ from the endoplasmic reticulum (ER), and DAG, which activates protein kinase C (PKC). CaBP, Ca2+-binding proteins, and physiologic response

    published: 15 Mar 2019
developed with YouTube
Inositol Triphosphate (IP3) and Calcium Signaling Pathway | Second Messenger System
5:42

Inositol Triphosphate (IP3) and Calcium Signaling Pathway | Second Messenger System

  • Order:
  • Duration: 5:42
  • Uploaded Date: 26 Jun 2018
  • views: 174052
Lesson on the Inositol Trisphosphate (IP3) and Calcium Signaling Pathway. IP3, calcium and diacylglycerol (DAG) are important second messengers that are unregulated upon activation of a G protein-coupled receptor. Inositol triphosphate and DAG are cleavage products of phosphatidyl inositol 4,5 bisphosphate (PIP2), which is cleaved by phospholipase C. Increasing levels of IP3 lead to augmented cytosolic calcium levels that further lead to activation of downstream cellular targets. Hey everyone. In this lesson you will be introduced to the IP3 and calcium signaling pathway. We will also discuss the purpose of the pathway, enzymes involved in the pathway, and how the pathway is regulated. I hope you find this video helpful. If you do, please like and subscribe for more videos like this one. :) JJ ------------------------------------------------------------------------------------------------------------- For books and more information on these topics https://www.amazon.com/shop/jjmedicine Microphone I use to record these lessons https://www.amazon.com/dp/B00N1YPXW2/?tag=aiponsite-20&linkCode=ic5&ascsubtag=amzn1.idea.1K2H9Z4RF77DB&creativeASIN=B00N1YPXW2&ref=exp_jjmedicine_dp_vv_d Stethoscope I use in my clinical work https://www.amazon.com/dp/B01M0I4KOZ/?tag=aiponsite-20&linkCode=ic5&ascsubtag=amzn1.idea.1K2H9Z4RF77DB&creativeASIN=B01M0I4KOZ&ref=exp_jjmedicine_dp_vv_d Support future lessons and lectures ➜ https://www.patreon.com/jjmedicine Start your own website with BlueHost ➜ https://www.bluehost.com/track/jjmedicine/ Check out the best tool to help grow your YouTube channel (it’s helped me!) https://www.tubebuddy.com/jjmedicine Follow me on Twitter! ➜ https://twitter.com/JJ_Medicine Come join me on Facebook! ➜ https://www.facebook.com/JJ-Medicine-100642648161192/ ------------------------------------------------------------------------------------------------------------- Check out some of my other lessons. Medical Terminology - The Basics - Lesson 1: https://www.youtube.com/watch?v=04Wh2E9oNug Medical Terminology - Anatomical Terms: https://www.youtube.com/watch?v=KkXiE3NEJxw Fatty Acid Synthesis Pathway: https://www.youtube.com/watch?v=WuQS_LpNMzo Wnt/B Catenin Signaling Pathway: https://www.youtube.com/watch?v=NGVP4J9jpgs Upper vs. Lower Motor Neuron Lesions: https://www.youtube.com/watch?v=itNd74V53ng Lesson on the Purine Synthesis and Salvage Pathway: https://www.youtube.com/watch?v=e2KFVvI8Akk Gastrulation | Formation of Germ Layers: https://www.youtube.com/watch?v=d6Kkn0SECJ4 Introductory lesson on Autophagy (Macroautophagy): https://www.youtube.com/watch?v=UmSVKzHc5yA ---------------------------------------------------------------------------------------------------- I am always looking for ways to improve my lessons! Please don't hesitate to leave me feedback and comments - all of your feedback is greatly appreciated! :) And please don't hesitate to send me any messages if you need any help - I will try my best to be here to help you guys :) Thanks for watching! If you found this video helpful, please like and subscribe! JJ ---------------------------------------------------------------------------------------------------- DISCLAIMER: This video is for educational purposes only and information in this lesson SHOULD NOT be used for medical purposes alone. Although I try my best to present accurate information, there may be mistakes in this video. If you do see any mistakes with information in this lesson, please comment and let me know.
https://wn.com/Inositol_Triphosphate_(Ip3)_And_Calcium_Signaling_Pathway_|_Second_Messenger_System
IP3 DAG Calcium Pathway
3:27

IP3 DAG Calcium Pathway

  • Order:
  • Duration: 3:27
  • Uploaded Date: 13 Oct 2019
  • views: 182029
IP3-mediated signal transduction pathways First messengers are extracellular signaling molecules, such as hormones or neurotransmitters. In response to exposure to these first messengers, intracellular signaling molecules called second messengers are released by the cell. Two such second messengers are IP3 and DAG. Calcium is also an important second messenger. Transient increases in cytoplasmic Ca2+ levels are caused by the binding of some hormones and signal molecules, and this can send important intracellular signals, by activating calcium-binding proteins that then perform various functions. Note that cytosolic increases in calcium concentration can occur in two ways. There are reservoirs of calcium that can be opened within the cell by the second messenger IP3 – the endoplasmic reticulum and calciosomes. Otherwise, cyclic AMP can activate the opening of calcium channels in the plasma membrane so that extracellular calcium can rush in. G-protein-coupled receptors, or GPCRs, are integral membrane proteins, meaning that they are locked into the cell membrane. They are locked in via 7 transmembrane α-helical segments. GPCRs recognize ligands through an extracellular recognition site. They also have an intracellular recognition site for a G protein. When a ligand binds the extracellular recognition site of a GPCR, this induces a conformational change, activating the G-Protein. There are different kinds of G proteins, sometimes also called membrane-associated heterotrimeric G proteins. Gs activates adenylyl cyclase. Gi inhibits adenylyl cyclase. Gq has three subunits – α, β, and γ. A conformational change in the GPCR activates the G protein. When this happens, the GDP on the Gα subunit gets replaced by GTP. This drives dissociation of the Gα subunit from the Gβγ complex. The now free Gα subunit can activate Phospholipase C-β. Phosphatidylinositol-4-P (PIP) and phosphatidylinositol-4,5-biphosphate (PIP2) are produced through successive phorphorylations of phosphatidylinositol (PI). Once it is activated by a G-protein, Phospholipase C-β can break down PIP2. PIP2 is hydrolyzed by phospholipase-C to produce inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG), both of which act as second messengers. IP3 is hydrophilic, and diffuses into the cell, while DAG is lipophilic, and hence remains in the cell membrane. IP3 binds to calcium channel on endoplasmic reticulum (or the sarcoplasmic reticulum in the case of muscle cells) and allows release of calcium from the endoplasmic reticulum lumen. DAG, with the help of the calcium released from the endoplasmic reticulum, activates the calcium-dependent Protein Kinase C. Once activated, protein kinase C adds phosphates to target proteins and causes cellular responses.
https://wn.com/Ip3_Dag_Calcium_Pathway
Insights into inositol 1,4,5-trisphosphate receptor structure and function
13:15

Insights into inositol 1,4,5-trisphosphate receptor structure and function

  • Order:
  • Duration: 13:15
  • Uploaded Date: 22 Oct 2014
  • views: 637
Webcast of the presentation entitled 'Insights into inositol 1,4,5-trisphosphate receptor structure and function from playing LEGO with receptor subunits ' given by David Yule (University of Rochester, USA). Presented at the Biochemical Society focus meeting 'Calcium Signalling: The Next Generation' held at Charles Darwin House, United Kingdom at 9 - 10 September 2014.
https://wn.com/Insights_Into_Inositol_1,4,5_Trisphosphate_Receptor_Structure_And_Function
Inositol triphosphate (IP3) | Calcium release
0:46

Inositol triphosphate (IP3) | Calcium release

  • Order:
  • Duration: 0:46
  • Uploaded Date: 08 Dec 2011
  • views: 44507
GPCRs step by step in following videos GPCRs (G protein linked cell signaling) https://youtu.be/GSjVKVGK_1o GPCRs (Activation of G protein receptor) https://youtu.be/Le_f5cxpD4w GPCRs (phospholipase C activation IP3 & DAG, Diacyl Glycerol) https://youtu.be/2bbBrpgeheY GPCRs - (Inositol triphosphate (IP3) Calcium release) https://youtu.be/lsYBeFqEwzk GPCRs- (Di acyl glycerol (DAG) activates protein Kinase C (PKC) https://youtu.be/larIxw_9ePU GPCRs- (Adenyl Cyclase and cAMP) https://youtu.be/0nA2xhNiAow GPCRs- (Protein kinase A activation by cAMP ) https://youtu.be/NaOBRvAFiJQ #BiotechReview #GPCRs #GProtein #CellSignaling #SignalTransduction #IP3
https://wn.com/Inositol_Triphosphate_(Ip3)_|_Calcium_Release
What is the role of inositol triphosphate?
6:56

What is the role of inositol triphosphate?

  • Order:
  • Duration: 6:56
  • Uploaded Date: 12 Oct 2020
  • views: 650
https://wn.com/What_Is_The_Role_Of_Inositol_Triphosphate
Inositol 1,4,5-Trisphosphate Receptor (IP3R) Model in a Dendritic Spine
1:23

Inositol 1,4,5-Trisphosphate Receptor (IP3R) Model in a Dendritic Spine

  • Order:
  • Duration: 1:23
  • Uploaded Date: 09 Jun 2020
  • views: 120
This video visualizes the IP3 receptor model in a realistic spine reconstruction, simulated using STEPS (http://steps.sourceforge.net/) simulator. It demonstrates the activation of IP3 receptors on the Endoplasmic Reticulum (ER) membrane by cytosolic Ca2+, leading to the release of Ca2+ from the ER and the rapid increase of cytosolic Ca2+ concentration, which in turn increases the number of open-state IP3 receptors. Published in: W. Chen and E. De Schutter: Python-based geometry preparation and simulation visualization toolkits for STEPS. Frontiers in Neuroinformatics 8: 37 (2014). https://www.frontiersin.org/articles/10.3389/fninf.2014.00037/full.
https://wn.com/Inositol_1,4,5_Trisphosphate_Receptor_(Ip3R)_Model_In_A_Dendritic_Spine
Caged Inositol Trisphosphate Part 1
19:44

Caged Inositol Trisphosphate Part 1

  • Order:
  • Duration: 19:44
  • Uploaded Date: 05 Jan 2015
  • views: 121
In this video we discuss what caged inositol trisphosphate is and c=give an example of an experimental construct which makes use of it.
https://wn.com/Caged_Inositol_Trisphosphate_Part_1
Inositol triphosphate and Diacylglycerol Pathway by Dr.  Nitin Nema
6:52

Inositol triphosphate and Diacylglycerol Pathway by Dr. Nitin Nema

  • Order:
  • Duration: 6:52
  • Uploaded Date: 04 Aug 2019
  • views: 1097
It is one of the most widespread pathways of intracellular signaling which is derived from the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 forms different second messenger system which ultimately produces biological response through the mobilization of stored energy in the cell via Calcium release mechanism.#Inositoltriphosphate#GPCR#Diacylglycerol#
https://wn.com/Inositol_Triphosphate_And_Diacylglycerol_Pathway_By_Dr._Nitin_Nema
Inositol 1,4,5-trisphosphate 
receptor (Anti-ITPR1)(Anti-Sj) in Purkinje cells of the cerebellum.
0:09

Inositol 1,4,5-trisphosphate receptor (Anti-ITPR1)(Anti-Sj) in Purkinje cells of the cerebellum.

  • Order:
  • Duration: 0:09
  • Uploaded Date: 23 May 2022
  • views: 15
For more videos abut immunofluorescence patterns click 👇👇👇 Immunofluorescence: https://www.youtube.com/playlist?list=PLRDmErrHTaZ36bY-Sx7cu7Y59iMb2AtSc
https://wn.com/Inositol_1,4,5_Trisphosphate_Receptor_(Anti_Itpr1)(Anti_Sj)_In_Purkinje_Cells_Of_The_Cerebellum.
INOSITOL TRISPHOSPHATE (IP3) & DIACYLGLYCEROL (DAG) AS SECOND MESSENGERS
10:35

INOSITOL TRISPHOSPHATE (IP3) & DIACYLGLYCEROL (DAG) AS SECOND MESSENGERS

  • Order:
  • Duration: 10:35
  • Uploaded Date: 15 Mar 2019
  • views: 892
release of inositol triphosphate (IP3) and diacylglycerol (DAG) as second messengers. Binding of ligand to G protein-coupled receptor activates phospholipase C (PLC)β. Alternatively, activation of receptors with intracellular tyrosine kinase domains can activate PLCγ. The resulting hydrolysis of phosphatidylinositol 4,5-diphosphate (PIP2) produces IP3, which releases Ca2+ from the endoplasmic reticulum (ER), and DAG, which activates protein kinase C (PKC). CaBP, Ca2+-binding proteins, and physiologic response
https://wn.com/Inositol_Trisphosphate_(Ip3)_Diacylglycerol_(Dag)_As_Second_Messengers
developed with YouTube
PLAYLIST TIME:
  • Most Related
  • Most Recent
  • Most Popular
  • Top Rated
  • Inositol Triphosphate (IP3) and Calcium Signaling Pathway | Second Messenger System
    5:42
    Inositol Triphosphate (IP3) and Calcium Signaling Pathway | Second Messenger Systemremove from playlist
  • IP3 DAG Calcium Pathway
    3:27
    IP3 DAG Calcium Pathwayremove from playlist
  • Insights into inositol 1,4,5-trisphosphate receptor structure and function
    13:15
    Insights into inositol 1,4,5-trisphosphate receptor structure and functionremove from playlist
  • Inositol triphosphate (IP3) | Calcium release
    0:46
    Inositol triphosphate (IP3) | Calcium releaseremove from playlist
  • Inositol 1,4,5-Trisphosphate Receptor (IP3R) Model in a Dendritic Spine
    1:23
    Inositol 1,4,5-Trisphosphate Receptor (IP3R) Model in a Dendritic Spineremove from playlist
  • Caged Inositol Trisphosphate Part 1
    19:44
    Caged Inositol Trisphosphate Part 1remove from playlist
  • Inositol triphosphate and Diacylglycerol Pathway by Dr.  Nitin Nema
    6:52
    Inositol triphosphate and Diacylglycerol Pathway by Dr. Nitin Nemaremove from playlist
  • Inositol 1,4,5-trisphosphate 
receptor (Anti-ITPR1)(Anti-Sj) in Purkinje cells of the cerebellum.
    0:09
    Inositol 1,4,5-trisphosphate receptor (Anti-ITPR1)(Anti-Sj) in Purkinje cells of the cerebellum.remove from playlist
  • INOSITOL TRISPHOSPHATE (IP3) & DIACYLGLYCEROL (DAG) AS SECOND MESSENGERS
    10:35
    INOSITOL TRISPHOSPHATE (IP3) & DIACYLGLYCEROL (DAG) AS SECOND MESSENGERSremove from playlist
developed with YouTube
PLAYLIST TIME:

Inositol Triphosphate (IP3) and Calcium Signaling Pathway | Second Messenger System

Lesson on the Inositol Trisphosphate (IP3) and Calcium Signaling Pathway. IP3, calcium and diacylglycerol (DAG) are important second messengers that are unregulated upon activation of a G protein-coupled receptor. Inositol triphosphate and DAG are cleavage products of phosphatidyl inositol 4,5 bisphosphate (PIP2), which is cleaved by phospholipase C. Increasing levels of IP3 lead to augmented cytosolic calcium levels that further lead to activation of downstream cellular targets. Hey everyone. In this lesson you will be introduced to the IP3 and calcium signaling pathway. We will also discuss the purpose of the pathway, enzymes involved in the pathway, and how the pathway is regulated. I hope you find this video helpful. If you do, please like and subscribe for more videos like this one. :) JJ ------------------------------------------------------------------------------------------------------------- For books and more information on these topics https://www.amazon.com/shop/jjmedicine Microphone I use to record these lessons https://www.amazon.com/dp/B00N1YPXW2/?tag=aiponsite-20&linkCode=ic5&ascsubtag=amzn1.idea.1K2H9Z4RF77DB&creativeASIN=B00N1YPXW2&ref=exp_jjmedicine_dp_vv_d Stethoscope I use in my clinical work https://www.amazon.com/dp/B01M0I4KOZ/?tag=aiponsite-20&linkCode=ic5&ascsubtag=amzn1.idea.1K2H9Z4RF77DB&creativeASIN=B01M0I4KOZ&ref=exp_jjmedicine_dp_vv_d Support future lessons and lectures ➜ https://www.patreon.com/jjmedicine Start your own website with BlueHost ➜ https://www.bluehost.com/track/jjmedicine/ Check out the best tool to help grow your YouTube channel (it’s helped me!) https://www.tubebuddy.com/jjmedicine Follow me on Twitter! ➜ https://twitter.com/JJ_Medicine Come join me on Facebook! ➜ https://www.facebook.com/JJ-Medicine-100642648161192/ ------------------------------------------------------------------------------------------------------------- Check out some of my other lessons. Medical Terminology - The Basics - Lesson 1: https://www.youtube.com/watch?v=04Wh2E9oNug Medical Terminology - Anatomical Terms: https://www.youtube.com/watch?v=KkXiE3NEJxw Fatty Acid Synthesis Pathway: https://www.youtube.com/watch?v=WuQS_LpNMzo Wnt/B Catenin Signaling Pathway: https://www.youtube.com/watch?v=NGVP4J9jpgs Upper vs. Lower Motor Neuron Lesions: https://www.youtube.com/watch?v=itNd74V53ng Lesson on the Purine Synthesis and Salvage Pathway: https://www.youtube.com/watch?v=e2KFVvI8Akk Gastrulation | Formation of Germ Layers: https://www.youtube.com/watch?v=d6Kkn0SECJ4 Introductory lesson on Autophagy (Macroautophagy): https://www.youtube.com/watch?v=UmSVKzHc5yA ---------------------------------------------------------------------------------------------------- I am always looking for ways to improve my lessons! Please don't hesitate to leave me feedback and comments - all of your feedback is greatly appreciated! :) And please don't hesitate to send me any messages if you need any help - I will try my best to be here to help you guys :) Thanks for watching! If you found this video helpful, please like and subscribe! JJ ---------------------------------------------------------------------------------------------------- DISCLAIMER: This video is for educational purposes only and information in this lesson SHOULD NOT be used for medical purposes alone. Although I try my best to present accurate information, there may be mistakes in this video. If you do see any mistakes with information in this lesson, please comment and let me know.
5:42
Inositol Triphosphate (IP3) and Calcium Signaling Pathway | Second Messenger System
Lesson on the Inositol Trisphosphate (IP3) and Calcium Signaling Pathway. IP3, calcium and...
published: 26 Jun 2018
Play in Full Screen
3:27
IP3 DAG Calcium Pathway
IP3-mediated signal transduction pathways First messengers are extracellular signaling mol...
published: 13 Oct 2019
Play in Full Screen
13:15
Insights into inositol 1,4,5-trisphosphate receptor structure and function
Webcast of the presentation entitled 'Insights into inositol 1,4,5-trisphosphate receptor ...
published: 22 Oct 2014
Play in Full Screen
0:46
Inositol triphosphate (IP3) | Calcium release
GPCRs step by step in following videos GPCRs (G protein linked cell signaling) https://you...
published: 08 Dec 2011
Play in Full Screen
6:56
What is the role of inositol triphosphate?
published: 12 Oct 2020
Play in Full Screen
1:23
Inositol 1,4,5-Trisphosphate Receptor (IP3R) Model in a Dendritic Spine
This video visualizes the IP3 receptor model in a realistic spine reconstruction, simulate...
published: 09 Jun 2020
Play in Full Screen
19:44
Caged Inositol Trisphosphate Part 1
In this video we discuss what caged inositol trisphosphate is and c=give an example of an ...
published: 05 Jan 2015
Play in Full Screen
6:52
Inositol triphosphate and Diacylglycerol Pathway by Dr. Nitin Nema
It is one of the most widespread pathways of intracellular signaling which is derived from...
published: 04 Aug 2019
Play in Full Screen
0:09
Inositol 1,4,5-trisphosphate receptor (Anti-ITPR1)(Anti-Sj) in Purkinje cells of the cerebellum.
For more videos abut immunofluorescence patterns click 👇👇👇 Immunofluorescence: https://w...
published: 23 May 2022
Play in Full Screen
10:35
INOSITOL TRISPHOSPHATE (IP3) & DIACYLGLYCEROL (DAG) AS SECOND MESSENGERS
release of inositol triphosphate (IP3) and diacylglycerol (DAG) as second messengers. Bind...
published: 15 Mar 2019
Play in Full Screen

Inositol trisphosphate receptor

Inositol trisphosphate receptor (InsP3R) is a membrane glycoprotein complex acting as a Ca2+ channel activated by inositol trisphosphate (InsP3). InsP3R is very diverse among organisms, and is necessary for the control of cellular and physiological processes including cell division, cell proliferation, apoptosis, fertilization, development, behavior, learning and memory. Inositol triphosphate receptor represents a dominant second messenger leading to the release of Ca2+ from intracellular store sites. There is strong evidence suggesting that the InsP3R plays an important role in the conversion of external stimuli to intracellular Ca2+ signals characterized by complex patterns relative to both space and time. For example, Ca2+ waves and oscillations. The InsP3 receptor was first purified from rat cerebellum by neuroscientists Surachai Supattapone and Solomon Snyder at Johns Hopkins University School of Medicine.

Distribution

It has a broad tissue distribution but is especially abundant in the cerebellum. Most of the InsP3Rs are found in the cell integrated into the endoplasmic reticulum.

'); } else { var query = elem.find('.keywords').html(); $.ajax({ context: elem, url: 'https://wn.com/api/upge/cheetah-search-adv/video', cache: true, data: { 'query': query }, dataType: 'jsonp', success: function(text) { if (text.length > 0) { video_id = text[0].id; elem.find('.player').html(''); } } }); } } var stopAllYouTubeVideos = function() { var iframes = document.querySelectorAll('iframe'); Array.prototype.forEach.call(iframes, function(iframe) { iframe.contentWindow.postMessage(JSON.stringify({ event: 'command', func: 'pauseVideo' }), '*'); }); } jQuery(function() { jQuery(".playVideo").live("click", function() { if(!$(this).hasClass("played")){ stopAllYouTubeVideos(); var elem = $(this); setTimeout(function(){ mouseOverMe(elem); }, 1000); } }); jQuery(".description_box .expandContent").live("click", function() { elem = $(this).parent().parent().parent().find('.descContent'); if(elem.height() > 51) { elem.css('height', '44px'); $(this).html('Show More '); }else{ elem.css('height', 'auto'); $(this).html('Hide '); } }); jQuery('.interview-play-off').click(function() { $(".interview-play-off").hide(); $(".interview-play").show(); $(".videoplayer-control-pause").click(); }); jQuery(".video-desc .show_author_videos").live("click", function() { query = $(this).attr('title'); container = $(this).parent().parent().parent().find('.video-author-thumbs'); $(this).parent().parent().parent().find('.video-author-thumbs').css('height', '220px'); jQuery.ajax({ url: '/api/upge/cheetah-photo-search/videoresults', data: {'query': query}, success: function(text) { if(!text) { text = i18n("No results"); } container.html(jQuery(text)); } }); }); }); // -->
×