Metered Parking Functions
Abstract
We introduce a generalization of parking functions called $t$-metered $(m,n)$-parking functions, in which one of $m$ cars parks among $n$ spots per hour then leaves after $t$ hours. We characterize and enumerate these sequences for $t=1$, $t=m-2$, and $t=n-1$, and provide data for other cases. We characterize the $1$-metered parking functions by decomposing them into sections based on which cars are unlucky, and enumerate them using a Lucas sequence recursion. Additionally, we establish a new combinatorial interpretation of the numerator of the continued fraction $n-1/(n-1/\cdots)$ ($n$ times) as the number of $1$-metered $(n,n)$-parking functions. We introduce the $(m,n)$-parking function shuffle in order to count $(m-2)$-metered $(m,n)$-parking functions, which also yields an expression for the number of $(m,n)$-parking functions with any given first entry. As a special case, we find that the number of $(m-2)$-metered $(m, m-1)$-parking functions is equal to the sum of the first entries of classical parking function of length $m-1$. We enumerate the $(n-1)$-metered $(m,n)$-parking functions in terms of the number of classical parking functions of length $n$ with certain parking outcomes, which we show are periodic sequences with period $n$. We conclude with an array of open problems.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- 10.48550/arXiv.2406.12941
- arXiv:
- arXiv:2406.12941
- Bibcode:
- 2024arXiv240612941D
- Keywords:
-
- Mathematics - Combinatorics