Hahn-Banachs sats
Utseende
Den här artikeln behöver källhänvisningar för att kunna verifieras. (2022-09) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. |
Inom funktionalanalys, en gren av matematiken, är Hahn-Banachs sats ett ofta använt resultat. Satsen är uppkallad efter Stefan Banach och Hans Hahn.
Formulering
[redigera | redigera wikitext]- Låt f vara en linjär funktional vars definitionsmängd är ett underrum M till ett komplext vektorrum X och låt p vara en semi-norm vars definitionsmängd är vektorrummet X. Om funktionalen är begränsad av semi-normen på underrummet,
- så kan funktionalen utvidgas till en linjär funktional, F, vars definitionsmängd är X, och som är begränsad av semi-normen:
Beviset av Hahn-Banachs sats är icke-konstruktivt, då det utnyttjar Zorns lemma. Det går emellertid att undvika Zorns lemma för vissa typer av vektorrum, exempelvis då det är ett så kallat Hilbertrum; det är Riesz representationssats som åstadkommer detta. Enligt denna är varje begränsad linjär funktional på ett Hilbertrum detsamma som en inre produkt med avseende på ett till funktionalen associerat element i Hilbertrummet.
Se även
[redigera | redigera wikitext]- Banach-Schauders sats (även kallad Satsen om öppna avbildningar)
- Banach-Steinhaus sats (även kallad Satsen om likformig begränsning)
- Svag konvergens
- Dualrum