Upgrade to Pro — share decks privately, control downloads, hide ads and more …

転ばぬ先のテスト・アサートの導入〜再現性の保証対策として〜 / rcode-test-assert

Uryu Shinya
August 22, 2018

転ばぬ先のテスト・アサートの導入〜再現性の保証対策として〜 / rcode-test-assert

⚡️ Lightning Talk ⚡️
Reproducible Source Code is here: https://github.com/uribo/talk_180822_rcode-test-assert

Uryu Shinya

August 22, 2018
Tweet

More Decks by Uryu Shinya

Other Decks in Education

Transcript

  1. ৭ʑͳ৚݅ɾ؀ڥͷҧ͍͕͋Δ 04 3ຊମɾύοέʔδͷόʔδϣϯ มԽʢҟৗʣʹؾ͕ͭ͘͜ͱ͕େࣄ ࢥ͍ࠐΈͷ··ղੳΛଓ͚ͯ͠·ͬͨΒʁ Ͳ͜ͰมԽ͕͔͋ͬͨ୳͢ͷ͸ె࿑

    Կ͕มΘͬͯ͠·ͬͨͷ͔Λ೺Ѳ͍ͨ͠ స σʔλ ͸ มΘΔ ςετɺΞαʔτΛಋೖ͢Δ͜ͱͰɺ σʔλͷมԽʹؾ෇͖΍͘͢ͳΔ
  2. ✔ expect_equal( dim(iris), c(120, 4)) Error: dim(iris) not equal to

    c(120, 4). 2/2 mismatches (average diff: 15.5) [1] 150 - 120 == 30 [2] 5 - 4 == 1 స FYQFDU@ ΦϒδΣΫτ ͱ ฦΓ஋ͷ ঢ়ଶΛهड़ expect_equal( object = dim(iris), expected = c(150, 5))
  3. ؔ਺ ର৅ ྫ expect_equal() ฏ౳ੑ expect_equal(letters[1:3], c(“a", "b", “c”)) expect_setequal(letters[1:3],c("a",

    "c", "b")) expect_gt() େখؔ܎ expect_gt(pi, 3.1) expect_gte(pi, 3.14) expect_lt(pi, 3.2) expect_true() ਅِ஋ expect_true(iris$Species[1] == "setosa") expect_length() ௕͞ expect_length(unique(iris$Species), 3)
  4. tests/testthat/test-01iris.R ςετର৅ͷΦϒδΣΫτΛ ɹɹɹɹɹNZ@JSJTDTWʹม͑ͯ࠶౓࣮ߦ NZ@JSJT͸JSJTͱಉ͡σʔλͰ͋Δ૝ఆ JSJTʹର͍͔ͯͭ͘͠ͷՃ޻Λߦͬͨ΋ͷ Error: Test failed:

    'Iris data statement' * dim(my_iris) not equal to c(150, 5). 1/2 mismatches [1] 120 - 150 == -30 * unique(my_iris$Species) has length 4, not length 3. * levels(my_iris$Species) not set-equal to c("setosa", "versicolor", "virginica"). Lengths differ: 4 is not 3 స ʮਖ਼͘͠ʯࣦഊ͢Δ
  5. library(dplyr) iris %>% tibble::as_tibble() %>% select(Sepal.Length, Species) %>% verify( has_all_names(

    c("Sepal.Length", "Species"))) %>% filter(Sepal.Length >= 5.0) %>% assert( within_bounds(5.0, Inf), Sepal.Length) ύΠϓॲཧ ϑϨϯυϦʔ ͳ Ξαʔτ ؔ਺Λఏڙ verify has_all_names assert within_bounds ྻʹؚ·ΕΔ໊લͰ͋Δ ൣғʹؚ·ΕΔ஋Ͱ͋Δ
  6. my_iris <- iris my_iris %>% select(Sepal.Length, Species) %>% filter(Sepal.Length >=

    5.0) %>% group_by(Species) %>% summarise( sl_mean = mean(Sepal.Length)) # A tibble: 3 x 2 Species sl_mean <fct> <dbl> 1 setosa 5.23 2 versicolor 5.96 3 virginica 6.62 src/02-assertr_demo.R Ξαʔτ͕ͳ͍ͱʜ
  7. my_iris <- read.csv( here::here("data", "my_iris.csv")) my_iris %>% select(Sepal.Length, Species) %>%

    filter(Sepal.Length >= 5.0) %>% group_by(Species) %>% summarise( sl_mean = mean(Sepal.Length)) # A tibble: 4 x 2 Species sl_mean <fct> <dbl> 1 setosa 5.28 2 versicolor 5.98 3 virginica 6.65 4 Virsicolor 6.2 స ͜Ε͸๬Μͩ݁Ռ Ξαʔτ͕ͳ͍ͱʜ src/02-assertr_demo.R