çç³»ã¨ä¸è¬äººã®æ大ã®ã®ã£ãã
ä»ããæ¸ããã¨ã¯ãç工系ã®äººã«ã¨ã£ã¦ã¯å½ããåéãã¦è©±é¡ã«ããä¸ããªãã®ã«ã
ããã§ãªã人ã«ã¨ã£ã¦ã¯ã²ã©ãç解ã«è¦ããããçç³»ã¨ä¸è¬äººã®æ大ã®ã®ã£ãããã«ã¤ãã¦ã§ãã
ããã¯ãã°ãã
ããæ¹ç¨å¼ã解ãã
ã¨ããè¨èã®æå³ã§ãã
ã¾ãã¯æåãªä¾ãæãã¦ã¿ã¾ãããã
ã»ã¢ã¤ã³ã·ã¥ã¿ã¤ã³ã®å®å®æ¹ç¨å¼ï¼
ãã®ãæ¹ç¨å¼ã解ããã¨ããã·ã¥ã´ã¡ã«ãã·ã«ã解ããªã©ã¨ããçãåºã¦ããããå®å®ã®éå»ã¨æªæ¥ã®å§¿ãäºæ³ã§ããããã¾ãã
ã»ã·ã¥ã¬ã¼ãã£ã³ã¬ã¼ã®æ³¢åæ¹ç¨å¼ï¼
ãã®ãæ¹ç¨å¼ã解ããã¨ãååãååã®å½¢ãããã£ãããç©è³ªã®æ§è³ªï¼ç©æ§ï¼ãè¨ãå½ã¦ãããããã¾ãããã
ããããªã®ããããããããããï¼ã
ã¯ããããæã£ãããªãã¯ç系人éã§ãããããããããå
ã¯èªãå¿
è¦ããã¾ããã
ã§ããï¼ç§ãç¥ãéãï¼ããã¦ãã®äººã®åå¿ã¯å°ãéã£ã¦ãã¾ãã
ãå®å®ã«ãæ³¢åãã ã¨?! ããã¤ãé 湧ãã¦ããããããï¼ã
ã»ã»ã»ããã¾ã§é²éª¨ã«è¨ã人ãå¸ã§ãããã¨ã«ããããããã£ããæ¹ç¨å¼ã解ããããã»ã¹ã«éåæãè¦ãã人ã¯å°ãªãããã¾ããã
ãªããæ¹ç¨å¼ããå®å®ã®ãã¨ããããã®ãï¼ ãã£ã¨èªåã«ã¯ç解ã§ããªãä½ããããã«éããªãããã
ãããã£ãããã§ããæ¹ç¨å¼ã解ããã¨ããè¨èã«å¯¾ããåå¿ããçç³»ã¨ä¸è¬äººãéã¦ãã®ã£ãããå½¢ä½ã£ã¦ããã¨æãã®ã§ãã
å®éãããããçç³»ã®è«æã§ã¯ãæ¬å½ã«å¤§äºãªãã¨ã¯æ¹ç¨å¼ã®ä¸ã«æ¸ããã¦ãã¾ãã
ãªã®ã§æ®éã®äººããè¦ãã°ãä¸çªå¤§äºãªã¨ããããæ¹ç¨å¼ã®å£ãã«é»ã¾ãã¦ãã¦ãç´å¾ã®ããç解ã«ã¯ãã©ãçãã¾ããã
æ¬å½ã«ç¥ãããã£ããæ°å¦ãåå¼·ãç´ããã¿ãããªæããããã§ã¯åãä»ã島ãç¡ãã
ããã§ã¯ãç系人ãã¤ã¡ã¼ã¸ãããæ¹ç¨å¼ã解ããã¨ã¯ãã©ããã£ããã®ã§ããããã
ç§ãæãã«ãããã¯
ããçãç·ã§åºãã
ã¨ããã¤ã¡ã¼ã¸ã§ãã
ä¸æ¹ãæ®éã®äººãèããæ¹ç¨å¼ã¯ã
ããçãç¹ã§åºãã
ã¨ããã¤ã¡ã¼ã¸ã ã¨æãã®ã§ãã
ã©ããããã¨ãã¨ããã¨ã
ããçãç·ã§åºã => çã¯é¢æ°ã®å½¢ã«ãªã => é¢æ°æ¹ç¨å¼ã
ããçãç¹ã§åºã => çã¯æ°åã®å½¢ã«ãªã => 代æ°æ¹ç¨å¼ã
ã¨ãããã¨ã§ãã
ç§ãããæãããã«ãªã£ãã®ã«ã¯ãã¡ãã£ã¨ãããã£ãããããã¾ãã
ããã¯ä¾ã«ãã£ã¦ãæ°å¦ã¯å½¹ã«ç«ã¤ã®ããã¨ãã話é¡ããã§ããã
ã¨ããå人ãè¨ãã«ã¯ããã©ããªã«æ°å¦ãä¸çæ¸å½ãã£ãã£ã¦ããã¯ãä¸ã®ä¸ã¨ã¯ããã¦ããã¨æãã
ãã¨ãã°éçã®ãã¼ã«ã®è½ä¸å°ç¹ãè¨ç®ãããã¨ãã¦ããããã«ã¯ãã¼ã«ã®å転ãã風ã®åããã
ãããã£ã¼ãããã¿ã¼ã®å¿çããããªã©ãªã©ãç¡æ°ã«çµ¡ã¿åã£ã¦ãã¦ã絶対ã«æ£ããçãªãã¦åºãããããªããã
ããè¨ããã¦ããµã¨æã£ãã®ã§ãã
å人ã®èãã¦ãããçãã¨ã¯ããã¼ã«ã®è½ä¸ããããã ãã®ä¸ç¹ã®æ°åã®ãã¨ãªã®ã§ã¯ãªããã¨ã
ã ã¨ããã°ãå人ã®ä¸»å¼µã¯ããªãã¡ééã£ã¦ã¯ãã¾ããã
ããã§ãããã®å人ã¯ï¼ã¤åéããã¦ãã¾ãã
æ°å¦ã®çã¯å¿
ãããä¸ç¹ã®æ°åã ãã§ã¯ãªããå¾åã示ãç·ã§ããå ´åããããã¨ãããã¨ã§ãã
ãããæ§ã
ãªè¦å ã絡ãå
ã§ãã¼ã«ã®è½ä¸å°ç¹ãäºæ¸¬ãããã¨è¨ãããã°ããã
çã¯ãããªé¢¨ã«ã確çå¯åº¦ã®ãç·ãã¨ãã¦è¡¨ããã¨ãã§ããã®ã§ãã
ãç·ãããããã°ããã®è¾ºã§å¾
ã¡ãã¾ãã¦ããã°ãã¼ã«ããã£ããã§ãããã ã¨ãã
ãã®è¾ºã«ã¯ãã¼ã«ãæ¥ããã«ãªããã¨ãã£ã対çãç«ã¦ãããããã§ãã
ãã»ç¹ã®çã¯ã絶対ã®æ£è§£ã«ã¯ãã©ãçããªãã
ãã»ç·ã®çã¯ãããä¸å®ã®å¾åã示ãã¦ããã
ãããå人ã¨ç§ã®ããçãã«ã¾ã¤ããã¤ã¡ã¼ã¸ã»ã®ã£ããã§ã¯ãªããã¨æã£ãã®ã§ãã
çããç·ãã«ãªããã¨ãããã¨ãããããã°ããã®ãæ°å¦ã®çã¯ãã ä¸ã¤ãã¨ããæ義ãç¡æå³ã§ãããã¨ã«æ°ä»ãã¯ãã
ã§ã¯ããªããããªã¤ã¡ã¼ã¸ã»ã®ã£ãããçããã®ãã
ããã¯ãå°ãªãã¨ãä¸å¦æ ¡ã¾ã§ã®æ¹ç¨å¼ã¯ãå
¨ã¦ãç¹ãã§çãåºã¦ããããã ã¨æãã®ã§ãã
# é«æ ¡ã¯ã©ããªã£ã¦ãããã¨æã£ã¦èª¿ã¹ã¦ã¿ãããä»æã®é«æ ¡ã§ã¯å¾®åæ¹ç¨å¼ã¯æããªããããã
# ç§ãé«æ ¡ã®æã«ã¯ãã£ãããããããã¶ãæã®è©±ã ããã©ã
ä¸å¦æ ¡ã¾ã§ã®æ¹ç¨å¼ã®ã¤ã¡ã¼ã¸ã£ã¦ãããã次ã®ãããªãã®ã§ãããã
ããããªãæ°ãï½ã¨ç½®ãã¦ãå¼ãç«ã¦ãã
ãã¨ã¯æ©æ¢°çãªè¦åï¼å ¬å¼ã¨ãï¼ã«å¾ã£ã¦å¤å½¢ããã°ãçãåºã¦ããã
ã太éãããï¼ï¼ï¼åæã£ã¦è²·ãç©ã«è¡ã£ã¦ãããããï¼åè²·ã£ããããã¤ããï¼ï¼åã ã£ãããããï¼åã¯ãããï¼ã
ãï¼ï¼ï¼âï¼ï½ï¼ï¼ï¼ããã»ã»ã»ãããæ¹ç¨å¼
ãï¼ï¼ï¼âï¼ï¼ï¼ï¼ï½ããã»ã»ã»ãã¨ã¯æ©æ¢°çãªå¤å½¢
ãï¼ï¼ï¼ï¼ï½
ãï¼ï¼Ã·ï¼ï¼ï½
ãï¼ï¼ï¼ï½ããããã»ã»ã»çãåºãï¼
åºæ¬ããããªæãã
ãã¨ã¯å¼ãé·ãè¤éã«ãªã£ã¦ããã ãã§ãæ°å¦ã®åå¼·ã¨ã¯ãã²ãããå¼å¤å½¢ã®æ©æ¢°çãªè¦åãè¦ãããã¨ããã
ã»ã»ã»ãããªã¤ã¡ã¼ã¸ãæ¤ãä»ãããã¦ããã¨ãæ¹ç¨å¼ã解ãã¦ãç·ãã®çãåºã¦ãããã¨ãã£ãçºæ³ãæµ®ãã§ããªãããã§ãã
ãç¹ãã®æ¹ç¨å¼ã¨ããç·ãã®æ¹ç¨å¼ã®éã«ã¯ã解ãæ¹ã®ä¸ã§ï¼ã¤å¤§ããªéããããã¾ãã
ãç¹ãã®æ¹ç¨å¼ã®å ´åãå¼å¤å½¢ã®è¦åã¨ã¯ã¤ã¾ãã¨ããï¼âÃ÷ã®ååæ¼ç®å¦çã®ãã¨ã§ãã
# ãã¨ãåªä¹ï¼¸^nï¼ã¨ãã¯ã¹ã®ï½ä¹ï¼ã ã¨ããåªæ ¹ âï¼ã«ã¼ãã¨ãï¼ãåºã¦ãããã¨ãããã
ãªã®ã§ãæ¹ç¨å¼ã«
ãã»è¶³ãç®ãåºã¦ãããããã®å対ã®å¼ãç®ãã
ãã»ããç®ãåºã¦ãããããã®å対ã®å²ãç®ãã
ãã»åªä¹ãåºã¦ãããããã®å対ã®åªæ ¹ãã
æ½ãã¦ããã°ããããçã«ãã©ãçãã
ãï¼ãã©ãçããªããã¨ããããããããæ¹ç¨å¼ã¯ä»£æ°çã«ã¯è§£ããªããï¼
ã¨ããããç·ãã®æ¹ç¨å¼ã«ã¯ãååæ¼ç®ã¨ã¯å
¨ã種é¡ã®éããæ°ããªä¸çµã®æ¼ç®ãç»å ´ãã¾ãã
ããããå¾®åãç©åããªãã§ãã
ãç·ãã®æ¹ç¨å¼ã«ã
ãã»å¾®åãåºã¦ãããããã®å対ã®ç©åãã
æ½ãã¦ããã°ãããããç·ãã®çã«ãã©ãçãã
ãï¼ãã£ã¡ããã©ãçããªããã¨ããããã¨ãããããã©ãã¤ããªããã¨ã®æ¹ãå¤ããï¼
ãããªä»çµã¿ã«ãªã£ã¦ãããã§ãã
å¾®åãç©åã£ã¦ãä½ã®ããã«ãããã ããï¼
ããã¯ãç·ãã®æ¹ç¨å¼ã解ãããã§ããï¼å¥ã®ç®çã«ã使ãã¾ãããä¸å¿ã¨ãªãã®ã¯æ¹ç¨å¼ã§ãï¼
ã¡ããã©ãããç®æ¹ç¨å¼ãã解ãããã«ãããç®ä¹ä¹ãè¦ããã®ã¨åãããã«ã
ãç·ãã®æ¹ç¨å¼ã解ãããã®éå
·ã¨ãã¦å¾®ç©åãããã®ã§ãã
ï¼ã ãããå¾®ç©åã ãè¦ãã¦çµããã«ããã¨ãè¦çãªã ãã§ä½ã®ããã«ãã£ããã ãããããããªãã£ã¦ãã¨ã«ãªããã§ãã
ãä»ã®é«æ ¡ããããªæãï¼ï¼
ããã¦ããã¾ã¾ã§ãç·ãã®æ¹ç¨å¼ãã¨è¨ã£ã¦ãããã®ã¯ãä¸è¬ã«ã¯ãå¾®åæ¹ç¨å¼ãã¨å¼ã°ãã¦ãã¾ãã
ããã§ã¯ï¼ã¤ã ããæãã·ã³ãã«ãªãç·ãã®æ¹ç¨å¼ã解ãã¦ã¿ã¾ãããã
ãã¥ã¼ãã³ã®éåæ¹ç¨å¼ãç©ä½ã®èªç±è½ä¸ã«ã¤ãã¦ã
ç©ä½ã®åç´ä½ç½®ã xãæ°´å¹³ä½ç½®ã yãæå»ã t ã¨ãã¦ãéåæ¹ç¨å¼ãç«ã¦ã¦ã¿ãã
åç´æ¹åï¼
ãm d^2x/dt^2 = - m gããããã»ã»ã»ãããéåæ¹ç¨å¼
ãï¼ç©ä½ã®ä½ç½®ãæå»ã§ï¼åå¾®åãããã®ã¯ãç©ä½ã«ãããéåã«çãããªã£ã¦ããï¼
ãdx/dt = - g t + C1ãããããã»ã»ã»æ¹ç¨å¼ã解ãããã«ã両辺ãï½ã§ç©åãã¾ã
ãx = - 1/2 g t^2 + C1 t + C2ããã»ã»ã»ããä¸åã両辺ãï½ã§ç©åãããããç·ãã®çã§ã
æ°´å¹³æ¹åï¼
ãm d^2y/dt^2 = 0ããããã»ã»ã»ãããéåæ¹ç¨å¼
ãï¼æ°´å¹³æ¹åã«ã¯ãå
¨ãåãããã£ã¦ããªãï¼
ãdy/dt = C1ãããããã»ã»ã»æ¹ç¨å¼ã解ãããã«ã両辺ãï½ã§ç©åãã¾ã
ãy = C1 t + C2ããã»ã»ã»ããä¸åã両辺ãï½ã§ç©åãããããç·ãã®çã§ã
ã§ãã£ã¦ããã®çã® x 㨠y ãã°ã©ãã«æãã¦ã¿ãã¨ããæ¾ç©ç·ãã¨ããå½¢ãæµ®ãã³ä¸ããããã§ãã
å¼ã®ç´°ããæå³ãããããããªãã¦ãã
ãã»å¾®åãå«ãã æ¹ç¨å¼ãç«ã¦ã¦ã
ãã»ãããç©åããã¨ãç·ãã®çãåºã¦ããã
ã¨ããé°å²æ°ãä¼ããã°ãããã§ååã
ãªãç©çã§ã¯ãåå¦ããã¾ã£ããã«åãä¸ããã®ãã
ããã¯ããæ¹ç¨å¼ã解ãããã¨ã®æå³ãä¸çªã¯ã£ãããããé¡æã ããã§ãã
æåã«æãããã¢ã¤ã³ã·ã¥ã¿ã¤ã³ã®å®å®æ¹ç¨å¼ããã·ã¥ã¬ã¼ãã£ã³ã¬ã¼ã®æ³¢åæ¹ç¨å¼ããå®ã¯ãã種ã®å¾®åæ¹ç¨å¼ãªãã§ãã
æ¹ç¨å¼ã®è¤éãã¯èªç±è½ä¸ã®æ¯ã§ã¯ããã¾ããããã¨ã«ããç©åãã¦è§£ãããããã°ãçã®ãå½¢ããæ±ã¾ãã¾ãã
ä¾ãã°å®å®æ¹ç¨å¼ã®å ´åãçã¯ãç·ãã§ã¯ãªãã¦ãå次å
æ空ã®æªã¿ãè¨ããªãã°ãä½ãã«ãªãããã§ãã
ããã§ã大äºãªã®ã¯ãçãä¸ç¹ã®æ°åã§ã¯ãªãã¦ããã種ã®ãå½¢ãã§ãããã¨ããã¨ããã§ãã
以ä¸ã®ãã¨ã¯ãæåã«æã£ãããã«ç工系ã®äººã«ã¨ã£ã¦ã¯å½ããåãªã®ã§ããã¾ããã©ãã«ãæ¸ãã¦ãªãã¨æãã®ã§ãã
ãã®ä¸æ¹ã§ãæ¹ç¨å¼ãªã©ã¨ãããã®ã«ç¸ã®ãªãã£ã人ã«ã¨ã£ã¦ã¯ãä¸æããã¨ä¸çç¥ããã«çµãããã¨ããããã¾ããã
ãæ¹ç¨å¼ã解ããã¨ã¯ãã©ããããã¨ãªã®ãã
ãã®ã®ã£ãããåã¾ãã°ãæ°å¦ææçãå¤å°ã¯ç·©åãããã¨æãã®ã§ãã
ãç·ãã®æ¹ç¨å¼ã£ã¦ä½ã ï¼ ã¨æã£ã人ã«ã¯ããã®æ¬ãå½¹ã«ç«ã¤ããã
ã¨ãã§ããªãå½¹ã«ç«ã¤æ°å¦
- ä½è : 西ææ´»è£
- åºç社/ã¡ã¼ã«ã¼: ææ¥åºç社
- çºå£²æ¥: 2011/03/19
- ã¡ãã£ã¢: åè¡æ¬
- è³¼å ¥: 25人 ã¯ãªãã¯: 555å
- ãã®ååãå«ãããã° (21件) ãè¦ã