UnstructuredMarkdownLoader
This notebook provides a quick overview for getting started with UnstructuredMarkdown document loader. For detailed documentation of all ModuleNameLoader features and configurations head to the API reference.
Overview
Integration details
Class | Package | Local | Serializable | JS support |
---|---|---|---|---|
UnstructuredMarkdownLoader | langchain_community | ❌ | ❌ | ✅ |
Loader features
Source | Document Lazy Loading | Native Async Support |
---|---|---|
UnstructuredMarkdownLoader | ✅ | ❌ |
Setup
To access UnstructuredMarkdownLoader document loader you'll need to install the langchain-community
integration package and the unstructured
python package.
Credentials
No credentials are needed to use this loader.
If you want to get automated best in-class tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
Installation
Install langchain_community and unstructured
%pip install -qU langchain_community unstructured
Initialization
Now we can instantiate our model object and load documents.
You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single Document
object. If you use "elements" mode, the unstructured library will split the document into elements such as Title
and NarrativeText
. You can pass in additional unstructured
kwargs after mode to apply different unstructured
settings.
from langchain_community.document_loaders import UnstructuredMarkdownLoader
loader = UnstructuredMarkdownLoader(
"./example_data/example.md",
mode="single",
strategy="fast",
)
Load
docs = loader.load()
docs[0]
Document(metadata={'source': './example_data/example.md'}, page_content='Sample Markdown Document\n\nIntroduction\n\nWelcome to this sample Markdown document. Markdown is a lightweight markup language used for formatting text. It\'s widely used for documentation, readme files, and more.\n\nFeatures\n\nHeaders\n\nMarkdown supports multiple levels of headers:\n\nHeader 1: # Header 1\n\nHeader 2: ## Header 2\n\nHeader 3: ### Header 3\n\nLists\n\nUnordered List\n\nItem 1\n\nItem 2\n\nSubitem 2.1\n\nSubitem 2.2\n\nOrdered List\n\nFirst item\n\nSecond item\n\nThird item\n\nLinks\n\nOpenAI is an AI research organization.\n\nImages\n\nHere\'s an example image:\n\nCode\n\nInline Code\n\nUse code for inline code snippets.\n\nCode Block\n\n```python def greet(name): return f"Hello, {name}!"\n\nprint(greet("World")) ```')
print(docs[0].metadata)
{'source': './example_data/example.md'}
Lazy Load
page = []
for doc in loader.lazy_load():
page.append(doc)
if len(page) >= 10:
# do some paged operation, e.g.
# index.upsert(page)
page = []
page[0]
Document(metadata={'source': './example_data/example.md', 'link_texts': ['OpenAI'], 'link_urls': ['https://www.openai.com'], 'last_modified': '2024-08-14T15:04:18', 'languages': ['eng'], 'parent_id': 'de1f74bf226224377ab4d8b54f215bb9', 'filetype': 'text/markdown', 'file_directory': './example_data', 'filename': 'example.md', 'category': 'NarrativeText', 'element_id': '898a542a261f7dc65e0072d1e847d535'}, page_content='OpenAI is an AI research organization.')
Load Elements
In this example we will load in the elements
mode, which will return a list of the different elements in the markdown document:
from langchain_community.document_loaders import UnstructuredMarkdownLoader
loader = UnstructuredMarkdownLoader(
"./example_data/example.md",
mode="elements",
strategy="fast",
)
docs = loader.load()
len(docs)
29
As you see there are 29 elements that were pulled from the example.md
file. The first element is the title of the document as expected:
docs[0].page_content
'Sample Markdown Document'
API reference
For detailed documentation of all UnstructuredMarkdownLoader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.markdown.UnstructuredMarkdownLoader.html
Related
- Document loader conceptual guide
- Document loader how-to guides