Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1994 Dec;77(6):2827-31.
doi: 10.1152/jappl.1994.77.6.2827.

Effect of heat stress on muscle energy metabolism during exercise

Affiliations
Clinical Trial

Effect of heat stress on muscle energy metabolism during exercise

M A Febbraio et al. J Appl Physiol (1985). 1994 Dec.

Abstract

To examine the effect of heat stress on muscle energy metabolism during submaximal exercise, 12 endurance-trained men cycled on two occasions for approximately 40 min at 70% maximal O2 uptake in an environmental chamber at either 20 degrees C and 20% relative humidity (T20) or 40 degrees C and 20% relative humidity (T40). Trials were conducted > or = 1 wk apart in random order. No difference in mean O2 uptake was observed when exercise in T40 was compared with that in T20. In contrast, exercise in T40 resulted in a higher mean heart rate (P < 0.01) and respiratory exchange ratio (P < 0.05) compared with that in T20. Postexercise rectal and muscle temperatures were also higher (P < 0.01) in T40 than in T20. Lower (P < 0.01) postexercise creatine phosphate and higher creatine (P < 0.01) and ammonia (P < 0.05) were observed in muscle after exercise in T40 compared with T20. In addition, an increased (P < 0.01) muscle glycogenolysis and higher (P < 0.01) postexercise muscle lactate accumulation were observed during exercise in T40 compared with T20. In contrast, no differences were observed in postexercise concentrations of total adenine nucleotide pool (ATP+ADP+AMP), ATP/ADP ratio, or inosine 5'-monophosphate (IMP) when T40 was compared with T20. These results indicate that the rate of ATP utilization may be increased during exercise in the heat but that this increased energy demand is predominantly met by an increase in anaerobic glycolysis and creatine phosphate hydrolysis, preventing a reduction in total adenine nucleotide pool.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources