Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 15;463(Pt 2):141289.
doi: 10.1016/j.foodchem.2024.141289. Epub 2024 Sep 16.

Rapid determination of total phenolic content and antioxidant capacity of maple syrup using Raman spectroscopy and deep learning

Affiliations

Rapid determination of total phenolic content and antioxidant capacity of maple syrup using Raman spectroscopy and deep learning

Li Xiao et al. Food Chem. .

Abstract

Total phenolic content (TPC) and antioxidant capacity of maple syrup were determined using Raman spectroscopy and deep learning. TPC was determined by Folin-Ciocalteu assay, while the antioxidant capacity was measured by 2,2-diphenyl-1picrylhydrazyl (DPPH) assay, oxygen radical absorbance capacity (ORAC) assay, and ferric reducing antioxidant power (FRAP) assay. A total of 360 spectra were collected from 36 maple syrup samples of different colours (dark, amber, light) by both benchtop and portable Raman spectrometers. These spectra were used to establish predictive models for assessing the antioxidant profiles of maple syrup. Deep learning models developed along with portable Raman spectroscopy exhibited comparable predictive performance to those developed along with benchtop Raman spectroscopy. Base on the spectral dataset collected using portable Raman spectroscopy, the developed deep learning models exhibited low RMSEs (root mean square errors, 7.2-17.9 % of mean reference values), low MAEs (mean absolute errors, 5.2-13.1 % of mean reference values) and high R2 values (>0.88). The results showed a great goodness of fit and accuracy for predicting the antioxidant profiles of maple syrup, indicating the potential of using portable Raman spectrometer for on-site analysis of antioxidant profiles of maple syrup.

Keywords: Antioxidant capacity; Machine learning; Maple syrup; PLSR; Raman spectroscopy.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Publication types

LinkOut - more resources