Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2024 May 1;326(5):E648-E662.
doi: 10.1152/ajpendo.00312.2023. Epub 2024 Apr 3.

A bout of aerobic exercise in the heat increases carbohydrate use but does not enhance the disposal of an oral glucose load, in healthy active individuals

Affiliations
Randomized Controlled Trial

A bout of aerobic exercise in the heat increases carbohydrate use but does not enhance the disposal of an oral glucose load, in healthy active individuals

Ricardo Mora-Rodriguez et al. Am J Physiol Endocrinol Metab. .

Abstract

We investigated if a bout of exercise in a hot environment (HEAT) would reduce the postprandial hyperglycemia induced by glucose ingestion. The hypothesis was that HEAT stimulating carbohydrate oxidation and glycogen use would increase the disposal of an ingested glucose load [i.e., oral glucose tolerance test (OGTT); 75 g of glucose]. Separated by at least 1 wk, nine young healthy individuals underwent three trials after an overnight fast in a randomized order. Two trials included 50 min of pedaling at 58 ± 5% V̇o2max either in a thermoneutral (21 ± 1°C; NEUTRAL) or in a hot environment (33 ± 1°C; HEAT) eliciting similar energy expenditure (503 ± 101 kcal). These two trials were compared with a no-exercise trial (NO EXER). Twenty minutes after exercise (or rest), subjects underwent an OGTT, while carbohydrate oxidation (CHOxid, using indirect calorimetry) plasma blood glucose, insulin concentrations (i.e., [glucose], [insulin]), and double tracer glucose kinetics ([U-13C] glucose ingestion and [6,6-2H2] glucose infusion) were monitored for 120 min. At rest, [glucose], [insulin], and rates of appearance/disappearance of glucose in plasma (glucose Ra/Rd) were similar among trials. During exercise, heart rate, tympanic temperature, [glucose], glycogen oxidation, and total CHOxid were higher during HEAT than NEUTRAL (i.e., 149 ± 35 vs. 124 ± 31 µmol·kg-1·min-1, P = 0.010). However, during the following OGTT, glucose Rd was similar in HEAT and NEUTRAL trials (i.e., 25.1 ± 3.6 vs. 25.2 ± 5.3 µmol·kg-1·min-1, P = 0.981). Insulin sensitivity (i.e., ISIndexMATSUDA) only improved in NEUTRAL compared with NO EXER (10.1 ± 4.6 vs. 8.8 ± 3.7 au; P = 0.044). In summary, stimulating carbohydrate use with exercise in a hot environment does not improve postprandial plasma glucose disposal or insulin sensitivity in a subsequent OGTT.NEW & NOTEWORTHY Exercise in the heat increases estimated muscle glycogen use. Reduced muscle glycogen after exercise in the heat could increase insulin-mediated glucose uptake during a subsequent oral glucose tolerance test (OGTT). However, plasma glucose kinetics are not improved during the OGTT in response to a bout of exercise in the heat, and insulin sensitivity worsens. Heat stress activates glucose counterregulatory hormones whose actions may linger during the OGTT, preventing increased glucose uptake.

Keywords: exercise; glucose kinetics; hyperthermia; insulin resistance; stable isotopes.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms