Multilayered horizontal operon transfers from bacteria reconstruct a thiamine salvage pathway in yeasts
- PMID: 31611373
- PMCID: PMC6825263
- DOI: 10.1073/pnas.1909844116
Multilayered horizontal operon transfers from bacteria reconstruct a thiamine salvage pathway in yeasts
Abstract
Horizontal acquisition of bacterial genes is presently recognized as an important contribution to the adaptation and evolution of eukaryotic genomes. However, the mechanisms underlying expression and consequent selection and fixation of the prokaryotic genes in the new eukaryotic setting are largely unknown. Here we show that genes composing the pathway for the synthesis of the essential vitamin B1 (thiamine) were lost in an ancestor of a yeast lineage, the Wickerhamiella/Starmerella (W/S) clade, known to harbor an unusually large number of genes of alien origin. The thiamine pathway was subsequently reassembled, at least twice, by multiple HGT events from different bacterial donors involving both single genes and entire operons. In the W/S-clade species Starmerella bombicola we obtained direct genetic evidence that all bacterial genes of the thiamine pathway are functional. The reconstructed pathway is composed by yeast and bacterial genes operating coordinately to scavenge thiamine derivatives from the environment. The adaptation of the newly acquired operons to the eukaryotic setting involved a repertoire of mechanisms until now only sparsely documented, namely longer intergenic regions, post-horizontal gene transfer (HGT) gene fusions fostering coordinated expression, gene relocation, and possibly recombination generating mosaic genes. The results provide additional evidence that HGT occurred recurrently in this yeast lineage and was crucial for the reestablishment of lost functions and that similar mechanisms are used across a broad range of eukaryotic microbes to promote adaptation of prokaryotic genes to their new environment.
Keywords: gene fusion; horizontal gene transfer; horizontal operon transfer; thiamine; yeast metabolism.
Conflict of interest statement
The authors declare no competing interest.
Figures
![Fig. 1.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8de/6825263/30a582893aeb/pnas.1909844116fig01.gif)
![Fig. 2.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8de/6825263/cf4479c292e6/pnas.1909844116fig02.gif)
![Fig. 3.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8de/6825263/39273c0ce70f/pnas.1909844116fig03.gif)
![Fig. 4.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8de/6825263/257b0b4c496b/pnas.1909844116fig04.gif)
![Fig. 5.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8de/6825263/8aacc7997389/pnas.1909844116fig05.gif)
![Fig. 6.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8de/6825263/99b291db32eb/pnas.1909844116fig06.gif)
![Fig. 7.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8de/6825263/d0d1ae72b209/pnas.1909844116fig07.gif)
Similar articles
-
Eukaryotic Acquisition of a Bacterial Operon.Cell. 2019 Mar 7;176(6):1356-1366.e10. doi: 10.1016/j.cell.2019.01.034. Epub 2019 Feb 21. Cell. 2019. PMID: 30799038 Free PMC article.
-
Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast lineage.Elife. 2018 Apr 12;7:e33034. doi: 10.7554/eLife.33034. Elife. 2018. PMID: 29648535 Free PMC article.
-
Contrasting Strategies for Sucrose Utilization in a Floral Yeast Clade.mSphere. 2022 Apr 27;7(2):e0003522. doi: 10.1128/msphere.00035-22. Epub 2022 Mar 31. mSphere. 2022. PMID: 35354279 Free PMC article.
-
Selfish operons and speciation by gene transfer.Trends Microbiol. 1997 Sep;5(9):355-9. doi: 10.1016/S0966-842X(97)01110-4. Trends Microbiol. 1997. PMID: 9294891 Review.
-
Functional horizontal gene transfer from bacteria to eukaryotes.Nat Rev Microbiol. 2018 Feb;16(2):67-79. doi: 10.1038/nrmicro.2017.137. Epub 2017 Nov 27. Nat Rev Microbiol. 2018. PMID: 29176581 Review.
Cited by
-
Unique trajectory of gene family evolution from genomic analysis of nearly all known species in an ancient yeast lineage.bioRxiv [Preprint]. 2024 Jun 6:2024.06.05.597512. doi: 10.1101/2024.06.05.597512. bioRxiv. 2024. PMID: 38895429 Free PMC article. Preprint.
-
Convergent reductive evolution in bee-associated lactic acid bacteria.bioRxiv [Preprint]. 2024 Jul 2:2024.06.28.601270. doi: 10.1101/2024.06.28.601270. bioRxiv. 2024. Update in: Appl Environ Microbiol. 2024 Nov 20;90(11):e0125724. doi: 10.1128/aem.01257-24. PMID: 39005388 Free PMC article. Updated. Preprint.
-
Convergent reductive evolution in bee-associated lactic acid bacteria.Appl Environ Microbiol. 2024 Nov 20;90(11):e0125724. doi: 10.1128/aem.01257-24. Epub 2024 Oct 23. Appl Environ Microbiol. 2024. PMID: 39440949 Free PMC article.
-
Functional and Evolutionary Integration of a Fungal Gene With a Bacterial Operon.Mol Biol Evol. 2024 Apr 2;41(4):msae045. doi: 10.1093/molbev/msae045. Mol Biol Evol. 2024. PMID: 38415839 Free PMC article.
-
THI1 Gene Evolutionary Trends: A Comprehensive Plant-Focused Assessment via Data Mining and Large-Scale Analysis.Genome Biol Evol. 2024 Oct 9;16(10):evae212. doi: 10.1093/gbe/evae212. Genome Biol Evol. 2024. PMID: 39400049 Free PMC article.
References
-
- Gladyshev E. A., Meselson M., Arkhipova I. R., Massive horizontal gene transfer in bdelloid rotifers. Science 320, 1210–1213 (2008). - PubMed
-
- Husnik F., McCutcheon J. P., Functional horizontal gene transfer from bacteria to eukaryotes. Nat. Rev. Microbiol. 16, 67–79 (2018). - PubMed
-
- Keeling P. J., Palmer J. D., Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9, 605–618 (2008). - PubMed
Publication types
MeSH terms
Substances
Associated data
LinkOut - more resources
Full Text Sources