Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut
- PMID: 16672507
- PMCID: PMC1472403
- DOI: 10.1128/AEM.72.5.3593-3599.2006
Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut
Abstract
Dietary carbohydrates have the potential to influence diverse functional groups of bacteria within the human large intestine. Of 12 Bifidobacterium strains of human gut origin from seven species tested, four grew in pure culture on starch and nine on fructo-oligosaccharides. The potential for metabolic cross-feeding between Bifidobacterium adolescentis and lactate-utilizing, butyrate-producing Firmicute bacteria related to Eubacterium hallii and Anaerostipes caccae was investigated in vitro. E. hallii L2-7 and A. caccae L1-92 failed to grow on starch in pure culture, but in coculture with B. adolescentis L2-32 butyrate was formed, indicating cross-feeding of metabolites to the lactate utilizers. Studies with [(13)C]lactate confirmed carbon flow from lactate, via acetyl coenzyme A, to butyrate both in pure cultures of E. hallii and in cocultures with B. adolescentis. Similar results were obtained in cocultures involving B. adolescentis DSM 20083 with fructo-oligosaccharides as the substrate. Butyrate formation was also stimulated, however, in cocultures of B. adolescentis L2-32 grown on starch or fructo-oligosaccharides with Roseburia sp. strain A2-183, which produces butyrate but does not utilize lactate. This is probably a consequence of the release by B. adolescentis of oligosaccharides that are available to Roseburia sp. strain A2-183. We conclude that two distinct mechanisms of metabolic cross-feeding between B. adolescentis and butyrate-forming bacteria may operate in gut ecosystems, one due to consumption of fermentation end products (lactate and acetate) and the other due to cross-feeding of partial breakdown products from complex substrates.
Figures
Similar articles
-
Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose.Appl Environ Microbiol. 2006 Dec;72(12):7835-41. doi: 10.1128/AEM.01296-06. Epub 2006 Oct 20. Appl Environ Microbiol. 2006. PMID: 17056678 Free PMC article.
-
Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis.FEMS Microbiol Lett. 2015 Nov;362(21):fnv176. doi: 10.1093/femsle/fnv176. Epub 2015 Sep 28. FEMS Microbiol Lett. 2015. PMID: 26420851
-
Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product.Appl Environ Microbiol. 2004 Oct;70(10):5810-7. doi: 10.1128/AEM.70.10.5810-5817.2004. Appl Environ Microbiol. 2004. PMID: 15466518 Free PMC article.
-
The microbiology of butyrate formation in the human colon.FEMS Microbiol Lett. 2002 Dec 17;217(2):133-9. doi: 10.1111/j.1574-6968.2002.tb11467.x. FEMS Microbiol Lett. 2002. PMID: 12480096 Review.
-
Understanding the effects of diet on bacterial metabolism in the large intestine.J Appl Microbiol. 2007 May;102(5):1197-208. doi: 10.1111/j.1365-2672.2007.03322.x. J Appl Microbiol. 2007. PMID: 17448155 Review.
Cited by
-
Microbial transcriptional responses to host diet maintain gut microbiome homeostasis in the American cockroach.bioRxiv [Preprint]. 2024 Nov 19:2024.10.31.621369. doi: 10.1101/2024.10.31.621369. bioRxiv. 2024. PMID: 39554183 Free PMC article. Preprint.
-
The case for microbial intervention at weaning.Gut Microbes. 2024 Jan-Dec;16(1):2414798. doi: 10.1080/19490976.2024.2414798. Epub 2024 Oct 28. Gut Microbes. 2024. PMID: 39468827 Free PMC article. Review.
-
Supplementation with a cranberry extract favors the establishment of butyrogenic guilds in the human fermentation SHIME system.Microbiome Res Rep. 2024 Jun 14;3(3):34. doi: 10.20517/mrr.2024.17. eCollection 2024. Microbiome Res Rep. 2024. PMID: 39421251 Free PMC article.
-
Metabolic interactions shape emergent biofilm structures in a conceptual model of gut mucosal bacterial communities.NPJ Biofilms Microbiomes. 2024 Oct 2;10(1):99. doi: 10.1038/s41522-024-00572-y. NPJ Biofilms Microbiomes. 2024. PMID: 39358363 Free PMC article.
-
Microbial lactate utilisation and the stability of the gut microbiome.Gut Microbiome (Camb). 2022 May 4;3:e3. doi: 10.1017/gmb.2022.3. eCollection 2022. Gut Microbiome (Camb). 2022. PMID: 39295779 Free PMC article. Review.
References
-
- Bartosch, S., A. Fite, G. T. Macfarlane, and M. E. T. McMurdo. 2004. Characterization of bacterial communities in feces from healthy elderly volunteers and hositalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol. 70:3575-3581. - PMC - PubMed
-
- Bartosch, S., E. J. Woodmansey, J. C. M. Paterson, M. E. T. McMurdo, and G. T. Macfarlane. 2005. Microbiological effects of consuming a symbiotic containing Bifidobacterium bifidum, Bifidobacterium lactis, and oligofructose in elderly persons, determined by real-time polymerase chain reaction and counting of viable bacteria. Clin. Infect. Dis. 40:28-37. - PubMed
-
- Bourriaud, C., R. J. Robins, L. Martin, F. Kozlowski, E. Tenailleau, C. Cherbut, and C. Michel. 2005. Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J. Appl. Microbiol. 99:201-212. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources