Przejdź do zawartości

Powierzchnia

Z Wikipedii, wolnej encyklopedii

Powierzchniazbiór punktów (miejsce geometryczne) o tej własności, iż można wokół każdego jej punktu zbudować (niewielką) sferę, która w przecięciu z tym zbiorem daje jedynie obiekty jednowymiarowe (krzywe). Jest to trójwymiarowy odpowiednik pojęcia krzywej. Powierzchnia jest także potocznym określeniem pola powierzchni.

Definicja formalna

[edytuj | edytuj kod]

Powierzchnia to continuum o wymiarze 2, tj. takie continuum, iż każdy jego punkt posiada pewne otoczenie, którego brzeg nie zawiera żadnego continuum o wymiarze 2 lub wyższym jednak zawiera continuum o wymiarze 1.

Powierzchnia może w szczególności rozgałęziać się.

Klasyfikacja powierzchni w topologii algebraicznej

[edytuj | edytuj kod]

Zwarte domknięte (bez brzegu) powierzchnie (czyli takie dla których otoczenie każdego punktu jest homeomorficzne z ) można podzielić na klasy równoważności zgodnie z relacją równoważności zadaną przez homeomorfizm. Twierdzenie o klasyfikacji powierzchni mówi wtedy, że takich klas równoważności jest przeliczalnie wiele i każda z nich ma reprezentanta jednej z 3 postaci:

  1. Sferę
  2. Sumę spójną (wzdłuż ) g torusów dla
  3. Sumę spójną (wzdłuż ) k kopii dla

Pozwala to na klasyfikacje powierzchni na podstawie tylko dwóch informacji: genusu oraz czy przestrzeń jest orientowalna. Dodatkowo przestrzenie orientowalne mają nietrywialną najwyższą grupę homologii a nieorientowalne nie

Przykłady powierzchni

[edytuj | edytuj kod]

Bibliografia

[edytuj | edytuj kod]

Linki zewnętrzne

[edytuj | edytuj kod]
  • Eric W. Weisstein, Surface, [w:] MathWorld, Wolfram Research (ang.). [dostęp 2024-11-22].
  • publikacja w otwartym dostępie – możesz ją przeczytać Surface (ang.), Encyclopedia of Mathematics, encyclopediaofmath.org [dostęp 2024-11-22].