NumPy 㯠常ã«å¤æ§ãªã³ã³ããªãã¥ã¼ã¿ ã®ã°ã«ã¼ãã«ãã£ã¦éçºããã¦ãããã³ãã¥ããã£ä¸»å°ã®ãªã¼ãã³ã½ã¼ã¹ããã¸ã§ã¯ãã§ãã NumPy ã主å°ããã°ã«ã¼ãã¯ããªã¼ãã³ã§ååçã§ãã¸ãã£ããªã³ãã¥ããã£ãä½ããã¨ããç´æãã¾ããã ã³ãã¥ããã£ãç¹æ ãããããã«ãã³ãã¥ããã£ã®äººéã¨äº¤æµããæ¹æ³ã«ã¤ãã¦ã¯ã NumPy è¡åè¦ç¯ ãã覧ãã ããã
ç§ãã¡ã¯ãNumPyã³ãã¥ããã£å ã§å¦ãã ããç¥èãå ±æããããä»ã®äººã¨äº¤æµããããã®ããã¤ãã®ã³ãã¥ãã±ã¼ã·ã§ã³æ¹æ³ãæä¾ãã¦ãã¾ãã
NumPy ããã¸ã§ã¯ããã³ãã¥ããã£ã¨ç´æ¥äº¤æµããæ¹æ³ã¯æ¬¡ã®éãã§ãã éè¦: ç§ãã¡ã¯ã¦ã¼ã¶ã¨ã³ãã¥ããã£ã¡ã³ãã¼ã«äºãã«NumPyã®ä½¿ãæ¹ã®è³ªåã«é¢ãã¦å©è¨ãåã£ã¦æ¬²ããã¨æã£ã¦ãã¾ãã - åç §ãµãã¼ã.
ãã®ã¡ã¼ãªã³ã°ãªã¹ãã¯ãNumPy ã«æ°ããæ©è½ã追å ãããªã©ãããé·ãæéã®è°è«ã®ããã®ä¸»ãªã³ãã¥ãã±ã¼ã·ã§ã³ã®å ´ã§ãã NumPyã®Roadmapã«å¤æ´ãå ããããããã¸ã§ã¯ãå ¨ä½ã§ã®ææ決å®ãè¡ãã¾ãã ãã®ã¡ã¼ãªã³ã°ãªã¹ãã§ã¯ããªãªã¼ã¹ãéçºè ä¼è°ãã¹ããªã³ããã«ã³ãã¡ã¬ã³ã¹ãã¼ã¯ãªã©ãNumPy ã«ã¤ãã¦ã®ã¢ãã¦ã³ã¹ãªã©ã«ãå©ç¨ããã¾ãã
ãã®ã¡ã¼ãªã³ã°ãªã¹ãã§ã¯ãä¸çªä¸ã®ã¡ã¼ã«ã使ç¨ããã¡ã¼ãªã³ã°ãªã¹ãã«è¿ä¿¡ãã¦ä¸ãã( ä»ã®éä¿¡è ã§ã¯ãªã)ã ãã®ã¡ã¼ãªã³ã°ãªã¹ãã®æ¤ç´¢å¯è½ãªã¢ã¼ã«ã¤ã㯠ãã¡ã ã«ããã¾ãã
np.arange(3).shape
returns (5,)
, when it should return (3,)
");np.percentile
”).ã¡ãªã¿ã«ãã»ãã¥ãªãã£ã®èå¼±æ§ãå ±åããã«ã¯ãGitHubã®ã¤ã·ã¥ã¼ãã©ãã«ã¼ã¯é©åãªå ´æã§ã¯ãªããã¨ã«æ³¨æãã¦ãã ããã NumPy ã§ã»ãã¥ãªãã£ä¸ã®èå¼±æ§ãçºè¦ããã¨æãããå ´åã¯ã ãã¡ã ããå ±åãã¦ãã ããã
Slackã¯Numpyã«_ è²¢ç®ããããã®è³ªåãããããã®_ããªã¢ã«ã¿ã¤ã ã®ãã£ããã«ã¼ã ã§ãã å ·ä½çã«ã¯ã å ¬éã®ã¡ã¼ãªã³ã°ãªã¹ããGitHubã§è³ªåãã¢ã¤ãã¢ãæã¡åºããã¨ãèºèºãã¦ãã人ã ã®ããã®ãã®ã§ãã Slackã«æå¾ ãã¦ãããããå ´åã¯ãã¡ãã確èªä¸ããã
NumPyãããã¼ã¿ãµã¤ã¨ã³ã¹ãç§å¦æè¡è¨ç®ãªã©ã®ããåºãã¨ã³ã·ã¹ãã ã®ããã®Pythonããã±ã¼ã¸ã¤ãã¦ããã£ã¨å¦ã¶ããã®ãã¼ã«ã«ãã¼ãã¢ãããåå¼·ä¼ãè¦ã¤ãããå ´åã PyData ãã¼ãã¢ãã (150人以ä¸ã®ãã¼ãã¢ããã10ä¸äººä»¥ä¸ã®ã¡ã³ãã¼ãã¾ã¨ãããã®) ã調ã¹ã¦ã¿ããã¨ããå§ããã¾ãã
å ãã¦ãNumPy ã§ã¯éçºãã¼ã ã¨åå ã«èå³ãããã³ã³ããªãã¥ã¼ã¿ã®ããã«ã対é¢ã§ã®ã¹ããªã³ããææéå¬ãã¦ãã¾ãã ãã®éçºã¹ããªã³ãã¯é常æ°ã¶æã«ä¸åº¦ã«éå¬ããã¦ããã ã¡ã¼ãªã³ã°ãªã¹ã 㨠Twitter ã§éå¬é£çµ¡ããã¾ãã
NumPy ããã¸ã§ã¯ãã¯ç¬èªã®ã«ã³ãã¡ã¬ã³ã¹ã¯éå¬ãã¦ãã¾ããã NumPy ã®ç®¡çè ããã³ã³ããªãã¥ã¼ã¿ãã¦ã¼ã¶ã¼ã«æã人æ°ããã£ãã«ã³ãã¡ã¬ã³ã¹ã¯ãSciPy ããã³ PyDataã®ã«ã³ãã¡ã¬ã³ã¹ã§ãã
ãããã®ã«ã³ãã¡ã¬ã³ã¹ã®å¤ãã¯ãNumPyã®ä½¿ãæ¹ãé¢é£ãããªã¼ãã³ã½ã¼ã¹ããã¸ã§ã¯ãã«è²¢ç®ããæ¹æ³ãå¦ã¶ãã¨ãã§ãããã¥ã¼ããªã¢ã«ãéå¬ãã¦ãã¾ãã
NumPyããã¸ã§ã¯ããæåãããã«ã¯ãããªãã®å°éç¥èã¨ããã¸ã§ã¯ãã«é¢ããç±æãå¿ è¦ã§ãã ããã°ã©ãã¼ãããªãããåå ã§ããªãï¼ ãããªãã¨ã¯ããã¾ããï¼ NumPy ã«è²¢ç®ããæ§ã ãªæ¹æ³ãããã¾ãã
ãããNumPyã«è²¢ç®ãããå ´åã¯ã ã³ã³ããªãã¥ã¼ã ãã¼ã¸ãã覧ããã ããã¨ããå§ããã¾ãã
ã¾ããç§ãã¡ã®ã³ãã¥ããã£ãã¼ãã£ã³ã°ã«ããã²åå ãã¦ã¿ã¦ãã ããã ã³ãã¥ããã£ãã¼ãã£ã³ã°ã®æ´»åã確èªããã«ã¯ããã¡ãã®ã¤ãã³ãã«ã¬ã³ãã¼ã確èªãã ããã