âä»äºã§å§ããæ©æ¢°å¦ç¿âã®è¦ç¹ãã¾ã¨ãã¦ã¿ããã¨ã¦ãè¯ãå ¥éæ¸ã ã£ã
æè¿ã販売ãããä»äºã§å§ããæ©æ¢°å¦ç¿ãè²·ã£ãã®ã§ãè³¼å ¥ãèãããã¦ããæ¹ãæ©æ¢°å¦ç¿ãå§ãããã¨æã£ã¦ããæ¹ã«èªãã§ãåèã«ãªãã°ã¨æãã¾ãã
ãã®è¨äºã®ç®çã¨å ¨ä½ã®æµã
ãã èªãã®ã¨ãã¢ã¦ããããï¼ããã°ã«æ¸ãï¼åæã§èªãã®ã¨ã¯ã¤ã³ãããã®è³ªãéãã¨ãããã¨ãããã£ãã®ã§ãããã°ã«æ¸ããªããç解ãã¦ããå½¢ãåãã¾ãã
å ¨ä½ã®æµãã¨ãã¦ã¯ãç« ã®è¦ç´ããããã®å 容ç¥ã£ã¦ããªã£ã¦äººã¯è²·ããã«æ¸ãããããããªããã¨å¤ãã¨ãã人ã¯è³¼å ¥ãæ¤è¨ãã¦é ããã°ãï¼åºçé¢ä¿è ã§ããªããã°ãã¢ãã£ãªã¨ã¤ããªã©ã®å¶å©ç®çã§ããªãããã¡æ¶è²»è ã¨ãã¦ã®å人çæè¦ã«ãªãã¾ãã ãäºæ¿ãã ãããï¼
çµè«ããè¨ãã¨ï¼æ¸è©ï¼
ãã¾ã¾ã§ã®ãªã©ã¤ãªã¼ã®ãã¼ã¿ãµã¤ã¨ã³ã¹æ¬ã ã¨è±èªãã翻訳ããã®ã§ãããã«ããæ¥æ¬èªãé常ã«ãã£ã¨ãããã®ã§ããã
ãã®æ¬ã¯ãæ¥æ¬ã®æ¹ãæ¸ããã¦ãããæ¥æ¬èªã¹ã ã¼ãºã«ç解ã§ãã¾ãã
ã¾ããé常ã«è«çç«ã¦ããã¦æ¸ããã¦ããã®ã§ããã¡ãã¹ã ã¼ãºã«é ã«å ¥ã£ã¦ãã¾ãã誰ã«ã§ãï¼MLåãã¦è¦ã人ãé¤ãï¼ãããããã«ãããã¦ããæ©æ¢°å¦ç¿åå¿è ã«ã¯æé«ã®ä¸åã§ãã
ã»ããã ããªã®ã¯ãããªã®ã§ã1ã¤ã¯ãããããã説æããã¤ã³ã¼ã«å°éæ§ã¯ä»ã®åèæ¸ã§å¦ç¿ãã¦ãã ããå½¢å¼ãªã®ã§ä¸ç´è ã«ã¯ãã®è¶³ããªãããããã¾ããããã¨ãã³ã¼ãããã¾ãã§ã¦ãã¾ããããã¸ãã¹æ¸ã¨ãã¦ãæããããã
ã¬ãã«ã«ã¤ãã¦ãæ¬ã®ä¸ã§æ¸ããã¦ããã®ã¯ãCourseraã®Machine Learningã³ã¼ã¹ãåããããã¼ãããä½ãDeep Learningãèªãã ãã¨ã®2åç®ã¨ãã¦èªãã§ããã ããã°ã¨æ¸ããã¦ãã¾ãã®ã§ãèªåã®ã¬ãã«æã¨ã¯ããããã¦ã¾ããã
ãã®æ¬ã§æ±ã£ã¦ããå 容ã¯ãæ£å¼ã«ã¯ããæ¸ããã¦ãã¾ãã
æ¬æ¸ã§ã¯ãæ©æ¢°å¦ç¿ããã¼ã¿åæã®éå ·ãã©ã®ããã«ãã¸ãã¹ã«çããã¦ããã°è¯ãã®ããã¾ãä¸ç¢ºå®æ§ãé«ãã¨è¨ããã¦ããæ©æ¢°å¦ç¿ããã¸ã§ã¯ãã®é²ãæ¹ã«ã¤ã㦠æ´çãã¦ãã¾ãã
æ¬æ¸ã¯ãã¨ãã¨ãæ©æ¢°å¦ç¿ã®åå¦è åãã«æ¸ããæç« ããã¯ãã¾ãã¾ãããå ¥éè ã®ããã«æ¸ãã¯ã ããã®ã§ãããå®éã«ã¯çè«ã軽ãã«ããã½ããã¦ã§ã¢ã¨ã³ã¸ãã¢åãã®å®è·µçãªã«ã¿ãã°ã®ãããªå½¢ ã«ãªã£ã¦ãã¾ãã ã¢ã«ã´ãªãºã ã®è©±ãªã©ã¯ä»ã®æ¸ç±ã§ãæ°å¤ãåãä¸ãããã¦ããã®ã§ãæ¬æ¸ã§ã¯ããã¸ã§ã¯ãã®ã¯ã ãæ¹ããã·ã¹ãã æ§æãå¦ç¿ã®ããã®ãªã½ã¼ã¹ã®åéæ¹æ³ãªã©ãèªè ããå®éã©ãããã®ï¼ãã¨æ°ã«ãª ãã§ãããç¹ãä¸å¿ã«ãã¦ãã¾ãã
æ©æ¢°å¦ç¿ãç¾å ´ã§ã©ã使ã£ã¦ãããã®éçãããã1åã¨ãªã£ã¦ãã¾ãï¼å人çã«ï¼
ç®æ¬¡
ã§ã¯ããã®æµãã§è¦ã¦ããã¾ã
ï¼ï¼å
ã«ã¯ãã®ç« ã®ã²ã¨ãã¨ã§ã¾ã¨ãã表ç¾ãå
¥ãã¦ãã¾ãã
- æ©æ¢°å¦ç¿ããã¸ã§ã¯ãã®ã¯ããæ¹ï¼å®éã®ããã¸ã§ã¯ãã®é²ãæ¹ï¼
- æ©æ¢°å¦ç¿ã§ä½ãã§ãããï¼ã¢ã«ã´ãªãºã ç´¹ä»ï¼
- å¦ç¿çµæãè©ä¾¡ãããï¼ã¢ã«ã´ãªãºã ãã¨ã®è©ä¾¡ã®ä»æ¹ï¼
- ã·ã¹ãã ã«æ©æ¢°å¦ç¿ãçµã¿è¾¼ãï¼å®è£ åã®ã·ã¹ãã è¨è¨ã®ä»æ¹ï¼
- å¦ç¿ã®ããã®ãªã½ã¼ã¹ãåéãããï¼ãã¼ã¿ã»ããã®ä½¿ãæ¹ï¼
- å¹ææ¤è¨¼ï¼æ¤è¨¼ã»æ¤å®ã»ABãã¹ã ããå®åçï¼ãã¸ãã¹çï¼ï¼
ããã¾ã§ã®çè«ãã¼ã¹ã第1ç« ã¨ãªã£ã¦ãã¾ãã第2ç« ï¼7.æ ç»ã®æ¨è¦ã·ã¹ãã ãä½ãã8.Kickstarterã®åæãæ©æ¢°å¦ç¿ã使ããªãã¨ããé¸æè¢ã9.Uplift Modelingã«ãããã¼ã±ãã£ã³ã°è³æºã®å¹çåï¼ã¯å®éã«æ©æ¢°å¦ç¿ã·ã¹ãã ãä½ããªãã解説ããå 容ã¨ãªã£ã¦ãããå®è·µãåºç¤ãå¦ã¹ãé常ã«åªããæè¡æ¸ã ã¨æãã¾ãã
以ä¸ãã»ã¨ãã©ä¸¸åãã®ããã«è¦ãã¾ãããããããããéè¦ã®ãããå¼ç¨ããã¦ããã ãã¾ãããï¼å¶å©ç®çã§ã¯ããã¾ããï¼
æ©æ¢°å¦ç¿ããã¸ã§ã¯ãã®ã¯ããæ¹
æ©æ¢°å¦ç¿ã¯æ®éã®ã½ããã¦ã§ã¢éçºããææ»ããçºçããå ´åãå¤ãã§ããã§ãã®ã§ããã¤ã³ããæãããã¨ã大äºã§ãã
æ©æ¢°å¦ç¿ããã¸ã§ã¯ãã®æµã
å®éã®æ©æ¢°å¦ç¿ã¯ä»¥ä¸ã®ããã«é²ãã¦ããã¾ãã
- åé¡ãå½¢å¼åãã
- æ©æ¢°å¦ç¿ãããªãã§è¯ãæ¹æ³ãèãã
- ã·ã¹ãã è¨è¨ãèã
- ã¢ã«ã´ãªãºã ãé¸å®ãã
- ç¹å¾´éãæ師ãã¼ã¿ã¨ãã°ã®è¨è¨ããã
- åå¦çãè¡ã
- å¦ç¿ã»ãã©ã¡ã¼ã¿ãã¥ã¼ãã³ã°
- ã·ã¹ãã ã«çµã¿è¾¼ã
ãã£ã¨å¤§ã¾ãã«ããã¨ã
â 解ããã課é¡ãæ©æ¢°å¦ç¿ã§è§£ããåé¡è¨å®ã«è½ã¨ãè¾¼ãï¼1,2ï¼
â¡è§£ãããã®éå ·é¸ã³ã¨åå¦çï¼3,4,5,6ï¼
â¢ã¢ãã«ã®ä½æï¼7ï¼
â£ãµã¼ãã¹ã¸ã®çµã¿è¾¼ã¿ï¼8ï¼
ç¹ã«æåã®2ã¤ã®èª²é¡è¨å®ã¨åå¦çãéè¦ã§ãã
æ©æ¢°å¦ç¿ã®ã·ã¹ãã éçºã¯ãå®éã«ã¯è©¦è¡é¯èª¤ãç¹°ãè¿ãä½æ¥ã«ãªãã¾ ããç¹ã«ãä¸è¨ã®4ãã7ã¯è©¦ãã¦ã¿ã¦ã¯å¤æ´ãã¦ãã¨ããä½æ¥ãä½åº¦ãç¹°ãè¿ããã¨ã«ãª
ã¾ãã¯ããæ©æ¢°å¦ç¿ã§ãããã課é¡ã解決ãããã¨ããäºä¾ãè¦ãæã«ããã©ããã£ãã¢ã«ã´ãªãºã 㧠解決ãããããã©ã®ãããªãã¼ã¿ãç¹å¾´éã¨ãã¦ä½¿ã£ã¦ãããããæ©æ¢°å¦ç¿é¨åãã©ã®ããã«çµã¿è¾¼ã㧠ããããã¨ãããã¨ãæèãã¦èª¿ã¹ãã¨è¯ãã§ãããã
å®ã·ã¹ãã ã«ãããæ©æ¢°å¦ç¿ã®åé¡ç¹ã¸ã®å¯¾å¦æ³
äºæ¸¬æ§è½ã®ã¿ã追ãæ±ãã¦ã¢ãã«ã®è¦å¿ãé£ãããªãããããã·ã¹ãã ã®è¤éæ§ãä¸ãã£ã¦ã¡ã³ããã³ã¹æ§ãä½ä¸ããã¡ã§ãããå¤åã«è¿½å¾ãã¥ããã¨ããã¾ãã
ãã®åé¡ã«ã¯ã以ä¸ã®ãã¤ã³ããéè¦ã§ãã
㻠人æã§ã´ã¼ã«ãã¹ã¿ã³ãã¼ããç¨æãã¦ãäºæ¸¬æ§è½ã¢ãã¿ãªã³ã°ãããï¼1,2,4ï¼
ã» äºæ¸¬ã¢ãã«ãã¢ã¸ã¥ã¼ã«åãã¦ã¢ã«ã´ãªãºã ã®ABãã¹ããåºæ¥ãããã«ãªãï¼2ï¼
ã» ã¢ãã«ã®ãã¼ã¸ã§ã³ç®¡çããã¦ããã¤ã§ãåãæ»ãå¯è½ã«ããï¼4,5ï¼
ã» ãã¼ã¿å¦çã®ãã¤ããªã¢ã³ãã¨ã«ä¿åããï¼3,5ï¼
ã» éçº/æ¬çªç°å¢ã®è¨èª/ãã¬ã¼ã ã¯ã¼ã¯ã¯æããï¼6ï¼
æ©æ¢°å¦ç¿ãå«ããã·ã¹ãã ãæåãããã«ã¯
æ©æ¢°å¦ç¿ã®ãããã¯ãããã¸ãã¹ã¨ãã¦æåãããã«ã¯ä»¥ä¸ã®4è ãéè¦ã«ãªãã¾ãã
- ãããã¯ãã«é¢ãããã¡ã¤ã³ç¥èãæã£ã人
- çµ±è¨ãæ©æ¢°å¦ç¿ã«æãã人
- ãã¼ã¿åæåºç¤ãä½ããã¨ã³ã¸ãã¢ãªã³ã°è½åã®ãã人
- 失æãã¦ããã¾ããªãã¨ãªã¹ã¯ãã¨ã£ã¦ããã責任è
ããããããã¹ã©ã¤ããããã¾ããã
æ©æ¢°å¦ç¿ããã¸ã§ã¯ãã®é²ãæ¹ã¨æµãã®ã¾ã¨ã
ã»è§£ãã¹ãåé¡ã®ä»®èª¬ãç«ã¦ãMVPãä½ãã³ã³ã»ããã®æ¤è¨¼ãæåªå ãã
ã»æ©æ¢°å¦ç¿ããªããã¨ãæããªã
ã»æ©æ¢°å¦ç¿ã«é©ãã¦ããåé¡è¨å®ããè¦æ¥µãã
ã»äºæ¸¬æ§è½ã¨KPIã®ä¸¡æ¹ã®ã¢ãã¿ãªã³ã°ããç¶ç¶ãã¦ã«ã¤ã¼ã³ãç¶ãã
ã©ã®ã¢ã«ã´ãªãºã ãé¸ã¶ã¹ãã
大ã¾ãã«ç¹å¾´ãæãããã¨æãã¾ãã
åé¡
æ£è§£ã¨ãªãé¢æ£çãªã«ãã´ãªï¼ã¯ã©ã¹ï¼ã¨å ¥åãã¼ã¿ã®çµã¿åããã§å¦ç¿ããæªç¥ã®ãã¼ã¿ããã¯ã©ã¹ãäºæ¸¬ãã
å帰
æ£è§£ã¨ãªãæ°å¤ã®å ¥åãã¼ã¿ã®çµã¿åããã§å¦ç¿ããæªç¥ã®ãã¼ã¿ããé£ç¶å¤ãäºæ¸¬ãã
ã¯ã©ã¹ã¿ãªã³ã°
ãã¼ã¿ãä½ãããã®åºæºã§ã°ã«ã¼ãã³ã°ãã
次å åæ¸
é«æ¬¡å ã®ãã¼ã¿ãå¯è¦åãè¨ç®éåæ¸ãªã©ã®ããã«ä½æ¬¡å ã«ãããã³ã°ãã
ãã®ä»
æ¨è¦
ã¦ã¼ã¶ã好ã¿ãããªã¢ã¤ãã ããé²è¦§ãã¦ããã¢ã¤ãã ã«é¡ä¼¼ãã¦ããã¢ã¤ãã ãæ示ãã
ç°å¸¸æ¤ç¥
ä¸å¯©ãªã¢ã¯ã»ã¹ãªã©æ®æ®µã¨ã¯éãæåãæ¤ç¥ãã
é »åºãã¿ã¼ã³ãã¤ãã³ã°
ãã¼ã¿ä¸ã«é«é »åº¦ã«åºç¾ãããã¿ã¼ã³ãæ½åºãã
å¼·åå¦ç¿
å²ç¢ãå°æ£ã®ãããªå±æçãã¯æ£è§£ãä¸æçãªç°å¢ã§ãã¨ãã¹ãè¡åã®æ¹éãå¦ç¿ãã
ã©ãã使ããè¿·ã£ãã¨ãã¯Scikit-learnã®ãµã¤ãã®ããã¼ãã£ã¼ãã使ãã¾ã
åé¡
åé¡ã¯æ師ããå¦ç¿ã®1ã¤ã§ãäºæ¸¬å¯¾è±¡ã¯ã«ãã´ãªãªã©ã§ããä¾ãã°ãã¡ã¼ã«ãã¹ãã ãã©ãããç»åã«ã©ããªç©ä½ãåã£ã¦ããããªã©ã®ããµã³å°ã§çè¨ã§ãããã®ãäºæ¸¬ããå ´åã«åé¡ã®ã¢ãã«ãä½ãã¾ããæåãªã¢ã«ã´ãªãºã ã¯ä»¥ä¸ãããã¾ãã
- ãã¼ã»ãããã³
- ãã¸ã¹ããã¯å帰ï¼Logistic Regressionï¼
- SVM(Support Vector Machine)
- ãã¥ã¼ã©ã«ãããã¯ã¼ã¯
- k-NN(k-Nearest Neighbor Method)
- 決å®æ¨ï¼Decision Treeï¼
- GBDT(Gradient Boost Decision Tree)
å帰
å帰ã¯ãæ師ããå¦ç¿ã®1ã¤ã§ãããå ¥åãã¼ã¿ããé£ç¶å°ãäºæ¸¬ãã¾ããä¾ãã°ãé»åæ¶è²»éãWebãµã¤ãã®ã¢ã¯ã»ã¹æ°ãªã©ãé£ç¶å°ã§è¡¨ç¾ã§ããå¤ãäºæ¸¬ãããå ´åã«ã¢ãã«ãå¦ç¿ãã¾ããå帰ã®åã¢ã«ã´ãªãºã ã«ã¤ãã¦è¦ã¦ããã¾ãã
- ç·å½¢å帰ãå¤é å¼å帰
- Lassoå帰ãRidgeå帰ãElastic Net
- å帰æ¨
- SVRï¼Support Vector Regressionï¼
ã¯ã©ã¹ã¿ãªã³ã°
ã¯ã©ã¹ã¿ãªã³ã°ã¨ã¯æ師ãªãå¦ç¿ã®1ã¤ã§ã主ã«ãã¼ã¿ã®å¾åãã¤ããããã«ä½¿ããã¾ãã
- k-meansã¯ã·ã³ãã«ã«ãã¼ã¿ã®å¾åãè¦ããã¨ããã使ããã¾ã
- é層çã¯ã©ã¹ã¿ãªã³ã°
- 次å åæ¸ï¼ææ³ã¨ãã¦ã主æååæï¼PCAï¼ã»æè¿ã§ã¯t-SNEã人æ°ï¼
ãã®ä»
- æ¨è¦
- ç°å¸¸æ¤ç¥
- é »åºãã¿ã¼ã³ãã¤ãã³ã°
- å¼·åå¦ç¿
å¦ç¿çµæãè©ä¾¡ãã
ã·ã¹ãã ã«æ©æ¢°å¦ç¿ãçµã¿è¾¼ãã ã¨ãã«ãæåããæºè¶³ã§ããçµæãåºããã¨ã¯ã¾ãã§ããæºè¶³ã§ããçµæãã©ãããã©ããã£ã¦å³ããã®è©ä¾¡æ¹æ³ã«ã¤ãã¦èª¬æãã¾ãã
åé¡ã®è©ä¾¡
ä¾ã¨ãã¦ãã¹ãã åé¡ãã¨ãã4ã¤ã®ææ¨ãè¦ã¦ããã¾ãã
- æ£è§£çï¼Accuracyï¼
- é©åçï¼Precisionï¼
- åç¾çï¼Recallï¼
- Få¤ï¼F-measureï¼
ã¾ããããããèããä¸ã§éè¦ãª3ã¤ã®æ¦å¿µãè¦ã¾ãã
- æ··åè¡åï¼Confusion Matrixï¼
- ãã¤ã¯ãå¹³åããã¯ãå¹³å
å帰ã®è©ä¾¡
- å¹³åäºä¹å誤差
- 決å®ä¿æ°
æ©æ¢°å¦ç¿ãçµã¿è¾¼ãã ã·ã¹ãã ã®A/Bãã¹ã
ã·ã¹ãã ã«æ©æ¢°å¦ç¿ãçµã¿è¾¼ã
ã·ã¹ãã ãæ©æ¢°å¦ç¿ã«å«ããæµã
- åé¡ãå®å¼åãã
- æ©æ¢°å¦ç¿ãããªãã§ããæ¹æ³ãèãã
- ã·ã¹ãã è¨è¨ã»èª¤ããã«ãã¼ããæ¹æ³ãèãã
- ã¢ã«ã´ãªãºã ãé¸å®ãã
- ç¹å¾´éãæ師ãã¼ã¿ã¨ãã°ã®è¨è¨ããã
- åå¦çããã
- å¦ç¿ã»ãã©ã¡ã¼ã¿ãã¥ã¼ãã³ã°
- ã·ã¹ãã ã«çµã¿è¾¼ã
ãã®ä¸ã§ããã·ã¹ãã è¨è¨ãããã°è¨è¨ãã«ã¤ãã¦è¿°ã¹ã¾ã
ã·ã¹ãã è¨è¨
ä»åã¯æã使ãããæ師ããå¦ç¿ã«ã¤ãã¦è¿°ã¹ã¾ããåé¡ãå帰ã®å ´åãå¦ç¿ã¨äºæ¸¬ã®2ã¤ã®ãã§ã¼ãºãããã¾ããããã«å¦ç¿ã®ã¿ã¤ãã³ã°ã«é ã£ã¦ããããå¦çã§ã®å¦ç¿ã¨ãªã¢ã«ã¿ã¤ã å¦çã§ã®å¦ç¿ã¨ããäºç¨®é¡ã¿ã¤ãã³ã°ãããã¾ãã
ãããå¦çã§å¦ç¿ãè¡ã3ã¤ã®äºæ¸¬ãã¿ã¼ã³ã¨ãªã¢ã«ã¿ã¤ã å¦çã®ãã¿ã¼ã³ã«ã¤ãã¦æ§æãè¦ã¦ããã¾ãããã
- ãããå¦çã§å¦ç¿ ï¼ äºæ¸¬çµæãWebã¢ããªã±ã¼ã·ã§ã³ã§ç´æ¥åã·ã¥ã«ããï¼ãªã¢ã«ã¿ã¤ã å¦çã§äºæ¸¬ï¼
- ãããå¦çã§å¦ç¿ ï¼ äºæ¸¬çµæãAPIçµç±ã§å©ç¨ããï¼ãªã¢ã«ã¿ã¤ã å¦çã§äºæ¸¬ï¼
- ãããå¦çã§å¦ç¿ ï¼ äºæ¸¬çµæãDBçµç±ã§å©ç¨ããï¼ãããå¦çã§äºæ¸¬ï¼
- ãªã¢ã«ã¿ã¤ã å¦çã§å¦ç¿ãã
ãã°è¨è¨
ãã°è¨å®ã¯ç¹å¾´éã決ããããã®éè¦ãªãã¤ã³ãã§ããä¾ãã°ãè¤æ°ã®èªç¤¾ã§å±éããWebãµã¼ãã¹ãã¨ã«ã¦ã¼ã¶IDãç°ãªãå ´åãCookieãªã©ã«UUIDãä»è¾¼ãã§IDã®åå¯ãã試ã¿ããªã©ããå¿
è¦ãããã¾ãã
ããã§ã¯ãã©ãã«ããã©ããã£ãæ
å ±ãå©ç¨ããæ師ãã¼ã¿ã«æ´»ç¨ãããã«ã¤ãã¦ã®æ¦è¦ã説æãã¾ãã
ç¹å¾´éãæ師ãã¼ã¿ã«ä½¿ãããæ å ±
ç¹å¾´éãæ師ãã¼ã¿ã«ä½¿ããããªæ å ±ã¨ãã¦ã¯3ã¤å¤§ããããã¾ãã
- ã¦ã¼ã¶ã¼æ å ±ï¼ç»é²ããã¨ãã®æ å ±ï¼
- ã³ã³ãã³ãæ å ±ï¼ããã°ã«æ¼ããè¨äºãååèªèº«ã®æ å ±ï¼
- ã¦ã¼ã¶è¡åãã°ï¼ã¢ã¯ã»ã¹ãã°ï¼
ãã°ãä¿æããå ´æ
- åæ£RDBMSã«æ ¼ç´ãã
- åæ£å¦çåºç¤Hadoopã¯ã©ã¹ã¿ã¼ã®HDFSã«æ ¼ç´ãã
- ãªãã¸ã§ã¯ãã¹ãã¬ã¼ã¸ã«æ ¼ç´ãã
æè¿ã¯Amazon RedshiftãGoogle BigQueryãªã©ã®ãã«ããã¼ã¸ããªã¯ã©ã¦ãåæ£DBãããã¾ãã
ã»ã¯ã©ã¦ãã¹ãã¬ã¼ã¸
â Amazon S3
â Google Cloud Storage
â Microsoft Azure BLOB Storage
ã»ããã¼ã¸ãåæ£DB
â Amazon Redshift
â Google BigQuery
â Treasure Data
ãã°ãè¨è¨ããä¸ã§æ³¨æç¹
ã»å¿ è¦ãããªã¦ã¼ã¶ã¼æ å ±ãã³ã³ãã³ãæ å ±ã«ã¤ãã¦ã¯è¨è¨æã«è¨å®ãã¹ã
ã»ãã¼ã¿ã®å¤æ´å±¥æ´ãä¿åããï¼ãã¼ã¿éãå¤ãã®ã§æ¾æ£ããããæ師ãã¼ã¿ããªã
ã»ã·ã¹ãã éçºã»éç¨ã»åæãã人ãå¥ãã¦ããã¨ãã¼ã¿è¨è¨ã§ããªããã¨ããã
ã»ãã°å½¢å¼ã®å¤å ãµã¼ãã¹ã«è¿½å æ©è½ãããããå ´åã«ãã°å½¢å¼ãå¤åãããã¨ããã
å¦ç¿ã®ããã®ãªã½ã¼ã¹ãåéããã
å¦ç¿ã®ããã®ãªã½ã¼ã¹ã®åå¾æ¹æ³
æ師ããå¦ç¿ã«æ¬ ãããªãæ師ãã¼ã¿ã«å«ã¾ããæ å ±ã¯2ã¤ããã¾ãã
- å ¥åï¼ã¢ã¯ã»ã¹ãã°ãªã©ããæ½åºããç¹å¾´é
- åºåï¼åé¡ã©ãã«ãäºæ¸¬å¤
ç¹å¾´éã«ã¤ãã¦ã¯è©¦è¡é¯èª¤ã«ãªãã®ã§ãåºåã®ã©ãã«ãå¤ã¯ä»¥ä¸ã®ãããªæ¹æ³ã§ä»ä¸ã§ãã¾ãã
- ãµã¼ãã¹ã®ä¸ã«ãã°åå¾ã®ä»çµã¿ãç¨æãã¦ããããæ½åºããï¼å®å ¨ã«èªåï¼
- ã³ã³ãã³ããªã©ã人ãè¦ã¦ä»ä¸ããï¼äººåã§è¡ãï¼
- æ©æ¢°çã«æ å ±ãä»ä¸ãã¦ã人æã§ç¢ºèªããï¼èªåï¼äººåï¼
ããã§ã¯ãæ師ãã¼ã¿ãä½ãã®ã¯èª°ãã¨ãã観ç¹ãã説æãé²ãã¦ããã¾ãã
- å ¬éããããã¼ã¿ã»ãããã¢ãã«ãæ´»ç¨ãã
- éçºè èªèº«ãæ師ãã¼ã¿ãä½ã
- ååãå人ãªã©ã«ãã¼ã¿å ¥åãã¦ããã
- ã¯ã©ã¦ãã½ã¼ã·ã³ã°ãæ´»ç¨ãã
- ãµã¼ãã¹ã«çµã¿è¾¼ã¿ãã¦ã¼ã¶ã¼ã«å ¥åãã¦ããã
å ¬éããããã¼ã¿ã»ãããã¢ãã«ãæ´»ç¨ããéã«ãæ°ã«ãã¹ãç¹ãããã¾ãã
- ã¢ãã«ããã¼ã¿ã¯åç¨å©ç¨å¯è½ãªã©ã¤ã»ã³ã¹ãï¼
- å¦ç¿æ¸ã¿ã¢ãã«ããã¼ã¿ã»ãããèªåã®ãã¡ã¤ã³ï¼èªåãã¡ãéç¨ããã·ã¹ãã ãµã¼ãã¹ï¼ã«é©ç¨ã§ãããï¼
2ã¤ç®ã¯ãåæ師ããå¦ç¿ã転移å¦ç¿ãããã¾ããç»åã®ç©ä½èªèãè¡ãã¿ã¹ã¯ã§ã¯ã転移å¦ç¿ãç¨ããæ¢åã®å¦ç¿ ã¢ãã«ã«èªåã®è§£ãããç»åã®æ£è§£ãã¼ã¿ã»ããã追å ãããã¨ã§ãå°ãªã追å ã³ã¹ãã§ç®çã®ç»å ãèªèããã¢ãã«ãå¦ç¿ã§ãããã¨ãç¥ããã¦ãã¾ãã
åã®ä¸çªå¥½ããªãã©ãã«Silicon Valleyã¨ãããã®ããã£ã¦ãä½ä¸ã«ç»å ´ãããããããã°å¤å®æ©ãããã§ã¤ããã¾ããJian-yangæå¤ã¨åªç§ï½
å¹ææ¤è¨¼
å¹ææ¤è¨¼ã®æ¦è¦
å¹ææ¤è¨¼ã¨ã¯ãããæ½çã«ãã£ã¦ããããããéä¸ãæ¨å®ãããã¨ã§ããä¾ãã°ãåºå表示1000åãããåçãæ°æ©è½ã«ãã£ã¦ã©ãã ãå¢ããããªã©ã§ãã
å¹ææ¤è¨¼ã¾ã§ã®æµã
- åé¡å®ç¾©
- 仮説è¨å®
- ã¢ã¯ã·ã§ã³ï¼éçºï¼
- å¹ææ¤è¨¼
ãªãã©ã¤ã³ã§æ¤è¨¼ãã«ãããã¤ã³ã
- çµæ¸å¹æ Netflixã®ã¬ã³ã¡ã³ãã·ã¹ãã ã§ã¯è§£ç´çã®ä½ä¸ã¨10åãã«/å¹´ã®å¹æãåã£ãã¨ããã¾ãã
- ãã°ãçµç±ããå¯ä½ç¨ ã¬ã³ã¡ã³ããããã°ãåããã¨ã«ãªãã®ã§ããããé²ãããã®å®è£ ã«ã³ã¹ãããããã¨ãããã¦ãã¾ãã
仮説æ¤æ¤å®ã®æ çµã¿
仮説æ¤å®ã¯å¹ææ¤è¨¼ã®ãã¼ã¹ã¨ãªããã®ã§ãæ¯éå£ã«ææãªå·®ããããã¨ãæ¨æ¬ã使ã£ã¦ç¢ºèªããææ³ã§ããåºæ¬çãªä¾ãããã¾ãã
- ã³ã¤ã³ã¯æªãã§ããã
- äºç¾¤ã®æ©æ¯çã®å·®ã®æ¤å®
å½é½æ§ã¨å½é°æ§ï¼på¤ãäºåã«å®ããæææ°´æºãä¸åã£ãå ´åã«å¸°ç¡ä»®èª¬ãæ£å´ããã®ã仮説æ¤å®ã®æ çµã¿ã§ããããããã¾ãã«ããããããªããã¨ãããã£ããã帰ç¡ä»®èª¬ãæ£å´ãã以ä¸ã帰ç¡ä»®èª¬ãçã§ãã£ãã¨ãã¦ãæææ°´æºã®ç¢ºçã§èª¤ã£ã¦å¸°ç¡ä»®èª¬ãæ£å´ãã¦ãã¾ãã¾ãã誤ã£ãçºè¦ãå½é½æ§ãéã«æ¬å½ã¯ææå·®ãããã®ã«å¸°ç¡ä»®èª¬ãæ£å´ããªãã±ã¼ã¹ãå½é°æ§ã¨å¼ã³ã¾ãã仮説æ¤å®ã§ã¯æ¤å®åãæ¤å®çµæã®è©ä¾¡ã«å©ç¨ãã¾ãã
æ¤å®å㯠1ã¼ææå·®ãããã®ã«ææå·®ããªãã¨å¤æãã確ç ã§è¡¨ãã¾ãã
仮説æ¤å®ã®æ³¨æç¹
- ç¹°ãè¿ãæ¤å®ããã¦ãã¾ã
- ææå·®ã¨ãã¸ãã¹ã¤ã³ãã¯ãï¼æ¨å®éã®ã°ãã¤ãã表ãæ¨æºèª¤å·®ãæ¨æ¬ãµã¤ãºã®å¢å¤§ã«å¾ã£ã¦å°ãããªããæ¨æ¬ã®ãµã¤ãºãå¢ããã¦ããã°ããããªãã§ãææå·®ã¨ãªãã¾ããWebãµã¼ãã¹ã ã¨ãã¼ã¿ã¯ãã貯ã¾ãã®ã§ãéè¦ãªã®ã¯ææå·®ãããã¨ããäºã¨ãã¸ãã¹ä¸ã®ã¤ã³ãã¯ãã¯å¥ã§ããç¹ã§ãã
- è¤æ°ã®æ¤å®ãåæã«è¡ãï¼å¤éæ¤å®ï¼
å æå¹æã®æ¨å®
- ã«ã¼ãã³ã®å æã¢ãã«ï¼å¹³åå¦ç½®å¹æ(ATE)ï¼E(Y1-Y0)ï¼E(Y1)-E(Y0)ï¼
- ã»ã¬ã¯ã·ã§ã³ãã¤ã¢ã¹ï¼E(Y1|ä»å ¥ãã)-E(Y0|ä»å ¥ãªã)ï¼
- ã©ã³ãã åæ¯è¼è©¦é¨ï¼Randomized Controlled Trial (RCT)ï¼
- éå»ã¨ã®æ¯è¼ã¯é£ãã
ABãã¹ã
- 2群ã®æ½åºã¨æ¨æ¬ãµã¤ãº
- AAãã¹ã
- çæ¹ã«ä»å ¥
- çµæã®ç¢ºèª
- ãã¹ãçµäº
ã¨ããã¨ããã§ç¬¬1ç« ã¯çµããã§ãã
è¦ç¹ã ãããæ¸ãã¦ãã¾ããã®ã§ãæ·±ãèªã¿ãããªã¨ãã²è³¼å ¥ãã¦ã¿ããã ããã
ãªã³ã¯ãã®ãã¦ããã¾ããï¼ã¢ãã£ãªã¨ã¤ãã§ããªãã§ããªãã§ãï¼
ãããã¾
çºå£²ã2017/10/20ï¼æ£å¼ã«ã¯ç¥ããªãï¼ã ã¨ãã¦ãæ¸ããã®ã10/28ãªã®ã§çµæ§æ¸ãã®æ©ãã£ããã ã¨æ¸ãçµãã£ã¦ããç¥ãï¼ã¢ã¼ãªã¼ã¢ããã¿ã¼çãªãã¨ããããã¨ããããã§ã¯ãªãã£ããã§ãï¼
é¢é£è¨äº
ä½è ã®æ¹ã®Medium
ä»ã®æ¹ã®æ¸è©