(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.1' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 446367, 8304] NotebookOptionsPosition[ 430058, 8011] NotebookOutlinePosition[ 430491, 8028] CellTagsIndexPosition[ 430448, 8025] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Pentagonal Orthobirotunda", "Title",ExpressionUUID->"64fdfc19-0808-4413-a482-554b01fffd73"], Cell[CellGroupData[{ Cell["Author", "Subsection",ExpressionUUID->"f177f61b-4143-401a-9abb-efd18faee365"], Cell["\<\ Eric W. Weisstein May 14, 2021\ \>", "Text",ExpressionUUID->"a6f87c50-a6c2-4ede-900b-b26fc51d22e4"], Cell[TextData[{ "This notebook downloaded from ", ButtonBox["http://mathworld.wolfram.com/notebooks/Polyhedra/\ PentagonalOrthobirotunda.nb", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/notebooks/Polyhedra/\ PentagonalOrthobirotunda.nb"], None}], "." }], "Text",ExpressionUUID->"c40a47a4-b306-4bd1-b545-b62070e4c00b"], Cell[TextData[{ "For more information, see Eric's ", StyleBox["MathWorld", FontSlant->"Italic"], " entry ", ButtonBox["http://mathworld.wolfram.com/PentagonalOrthobirotunda.html", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/PentagonalOrthobirotunda.html"], None}], "." }], "Text",ExpressionUUID->"1232a89e-9fbe-4005-8b1d-7226f0fb178b"], Cell["\<\ \[Copyright]2021 Wolfram Research, Inc. except for portions noted otherwise\ \>", "Text",ExpressionUUID->"a701863c-fdbc-4d7d-9a0b-f59634844d55"] }, Open ]], Cell[CellGroupData[{ Cell["Solid", "Section",ExpressionUUID->"2324fe6f-a33e-48e8-ba9a-8e6071a888cb"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[780]:=",ExpressionUUID->"6ba4a078-b9d5-43cf-b9dd-f2894aec1713"], Cell[BoxData[ RowBox[{"{", "\<\"C5\"\>", "}"}]], "Output", CellLabel-> "Out[780]=",ExpressionUUID->"0dbb4017-4e5c-4b29-a868-a8f53a32028a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", "\"\\"", "]"}]], "Input", CellLabel-> "In[781]:=",ExpressionUUID->"3c03c16d-c9e0-488a-9ad9-eaa686634792"], Cell[BoxData[ Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, -0.8506508083520399}, { 1.3763819204711736`, 0, 0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, \ -0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.8506508083520399, 0, -1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, { 0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, -1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}}], Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, { 25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]]]], "Output", CellLabel-> "Out[781]=",ExpressionUUID->"cb146711-a997-4b00-a9fd-62138c075890"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Net", "Section",ExpressionUUID->"669fdbaf-0d29-46f6-87a8-097671db0ac2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[782]:=",ExpressionUUID->"d0b668e0-dc7b-4a6d-b112-2c95cdee6f6d"], Cell[BoxData[ GraphicsBox[ {RGBColor[1, 1, 0.85], EdgeForm[GrayLevel[0]], GraphicsComplexBox[ NCache[{{0, Rational[1, 8] (13 - 5^ Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (7 - 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (6 + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (7 - 5^Rational[1, 2] - (6 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 - 5^ Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (8 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (13 + 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (23 - 7 5^Rational[1, 2] + (750 - 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (11 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] ( 3 (9 + 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2]}, { Rational[1, 4] (55 - 17 5^Rational[1, 2] + (4350 - 1830 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (8 + 2 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] ((6 (5 + 5^Rational[1, 2]))^Rational[1, 2] + Rational[1, 2] (11 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] ((6 (5 + 5^Rational[1, 2]))^Rational[1, 2] + Rational[1, 2] (11 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] ( 3 (15 - 5^ Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[1, 2], 0}, { Rational[1, 4] ( 3 (15 - 5^ Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[1, 2], 1}, { Rational[1, 4] ( 3 (15 - 5^ Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (53 + 11 5^Rational[1, 2] + (390 - 114 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (4 - 5^ Rational[1, 2] + (15 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (52 - 2 5^Rational[1, 2] + 6 (75 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] ( 3 (5 + 5^Rational[1, 2]) + (150 + 66 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (13 + 2 5^Rational[1, 2] + 2 (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (9 - 5^ Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (13 + 2 5^Rational[1, 2] + 2 (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (13 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] ( Rational[1, 2] (34 + 11 5^Rational[1, 2] + (195 + 66 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (7 - 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (Rational[31, 2] + Rational[11, 2] 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (11 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] ( 3 (21 + 5 5^Rational[1, 2] + (6 (85 + 31 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (8 + 2 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {((6 (5 + 5^Rational[1, 2]))^Rational[1, 2] + Rational[1, 2] (11 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (17 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (65 + 23 5^Rational[1, 2] + (30 (205 + 89 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (5 + (15 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (65 + 23 5^Rational[1, 2] + (30 (205 + 89 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (6 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (92 + 22 5^Rational[1, 2] + 6 (195 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (11 - 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 4] (83 + 35 5^Rational[1, 2] + (6 (965 + 431 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (5 + 5^Rational[1, 2])}, { Rational[1, 4] ( 5 (17 + 7 5^Rational[1, 2] + (6 (65 + 29 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (7 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (115 + 37 5^Rational[1, 2] + (30 (425 + 181 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (6 - 5^ Rational[1, 2] + (15 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (23 + 10 5^Rational[1, 2] + 2 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (13 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (113 + 41 5^Rational[1, 2] + 11 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (7 + 5^Rational[1, 2])}, { Rational[1, 2] ( Rational[3, 2] (18 + 7 5^Rational[1, 2] + (555 + 246 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (15 + 7 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (32 + Rational[23, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (2245 + 982 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (13 + 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[35, 4] + Rational[13, 4] 5^Rational[1, 2] + Rational[1, 2] (Rational[975, 2] + Rational[435, 2] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (17 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[133, 16] + Rational[59, 16] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[17475, 32] + Rational[7815, 32] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (8 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] ( Rational[1, 2] (74 + 31 5^Rational[1, 2] + (9915 + 4434 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (-(30 - 6 5^Rational[1, 2])^Rational[1, 2] + 3 (5 + 5^Rational[1, 2]))}, { Rational[1, 2] ( Rational[1, 2] (74 + 31 5^Rational[1, 2] + (9915 + 4434 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (17 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (155 + 67 5^Rational[1, 2] + (30 (1385 + 619 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (5 + 5^Rational[1, 2])}, {(Rational[43, 4] + Rational[19, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[1335, 2] + Rational[597, 2] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (11 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 4] (167 + 71 5^Rational[1, 2] + 3 (6 (965 + 431 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (4 + 5^Rational[1, 2])}, { Rational[1, 4] (187 + 77 5^Rational[1, 2] + (30 (1945 + 869 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (10 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (197 + 85 5^Rational[1, 2] + 3 (8310 + 3714 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (7 + 5^Rational[1, 2])}, { Rational[1, 4] (197 + 85 5^Rational[1, 2] + 3 (8310 + 3714 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[3, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 4] (223 + 97 5^Rational[1, 2] + (84270 + 37686 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (6 + 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (19 + 7 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (Rational[119, 2] + Rational[53, 2] 5^Rational[1, 2] + (6 (1165 + 521 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (13 + 3 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (Rational[119, 2] + Rational[53, 2] 5^Rational[1, 2] + (6 (1165 + 521 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (19 + 5 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[119, 2] + Rational[53, 2] 5^Rational[1, 2] + (6 (1165 + 521 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (27 + 5 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (257 + 113 5^Rational[1, 2] + 3 (30 (445 + 199 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2])}, { Rational[1, 4] (257 + 113 5^Rational[1, 2] + 3 (30 (445 + 199 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 5^Rational[1, 2])}, {(Rational[145, 8] + Rational[59, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (13 + 3 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[3, 2] (12 + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (11 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[149, 8] + Rational[65, 8] 5^Rational[1, 2] + (Rational[3, 2] (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 5 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (323 + 131 5^Rational[1, 2] + (30 (6305 + 2819 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 2] (4 + 5^Rational[1, 2])}, { Rational[1, 2] (80 + Rational[71, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (3305 + 1478 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (21 + 5 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 4] (347 + 149 5^Rational[1, 2] + (209310 + 93606 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (7 + 2 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[347, 16] + Rational[155, 16] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[119775, 32] + Rational[53565, 32] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (11 + 3 5^Rational[1, 2])}, {(23 + 10 5^Rational[1, 2] + 2 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]) - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 4] (403 + 163 5^Rational[1, 2] + (6 (46325 + 20639 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (7 + 3 5^Rational[1, 2])}}, {{0, 2.1691306063588582`}, { 0.20791169081775937`, 3.147278207092664}, {0.41582338163551874`, 1.1691306063588582`}, {0.6146483338935596, 4.060823664735265}, { 0.8225600247113184, 2.0826760640014594`}, {0.9510565162951535, 2.4781476007338057`}, {1.1589682071129128`, 0.5}, {1.4372083586048785`, 4.765312195842559}, {1.6091702292618328`, 3.9562952014676114`}, { 1.8170819200795922`, 1.9781476007338057`}, {1.8170819200795922`, 2.9781476007338057`}, {2.0249936108973516`, 0}, { 2.0249936108973516`, 1}, {2.0249936108973516`, 3.9562952014676114`}, { 2.3614017932989455`, 0.7555851487162573}, {2.431730253973152, 4.869840659110212}, {2.7681384363747457`, 1.6691306063588582`}, { 2.7681384363747457`, 3.287164595108753}, {3.10454661877634, 0.08645454235739913}, {3.355923688667219, 2.4781476007338057`}, { 3.4262521493414253`, 4.765312195842559}, {3.6341638401591845`, 3.787164595108753}, {3.762660331743019, 1.5646021430912047`}, { 3.762660331743019, 3.391693058376407}, {3.9705720225607783`, 0.5864545423573991}, {4.099068514144614, 1.8090169943749475`}, { 4.3504455840354925`, 4.200710052751354}, {4.713716848038173, 1.2555851487162573`}, {4.757182227111293, 3.287164595108753}, { 4.965093917929051, 2.3090169943749475`}, {5.008559297002171, 4.3405964407674436`}, {5.3718305610048525`, 1.3954715367323467`}, { 5.623207630895731, 3.787164595108753}, {5.751704122479566, 5.009727047126302}, {5.959615813297326, 2.204488531107294}, { 5.959615813297326, 4.031579446392496}, {6.088112304881159, 1.8090169943749475`}, {6.296023995698919, 0.8308693936411418}, { 6.366352456373126, 3.118033988749895}, {6.617729526264005, 5.509727047126302}, {6.954137708665598, 2.3090169943749475`}, { 6.954137708665598, 3.9270509831248424`}, {7.290545891067193, 0.7263409303734882}, {7.360874351741399, 4.8405964407674436`}, { 7.697282534142993, 1.6398863880160892`}, {7.697282534142993, 4.596181589483701}, {7.697282534142993, 5.596181589483701}, { 7.905194224960752, 2.618033988749895}, {7.905194224960752, 3.618033988749895}, {8.113105915778512, 1.6398863880160892`}, { 8.285067786435466, 0.8308693936411418}, {8.563307937927432, 5.096181589483701}, {8.771219628745191, 3.118033988749895}, { 8.899716120329025, 3.513505525482241}, {9.107627811146784, 1.5353579247484357`}, {9.306452763404826, 4.427050983124842}, { 9.514364454222585, 2.4489033823910367`}, {9.722276145040345, 3.4270509831248424`}}], PolygonBox[{{20, 18, 11, 10, 17}, {20, 26, 30, 29, 24}, {20, 24, 18}, {24, 29, 27}, {18, 22, 21, 16, 14}, {18, 14, 11}, {14, 16, 8}, {11, 9, 4, 2, 6}, {11, 6, 10}, {6, 2, 1}, {10, 5, 3, 7, 13}, {10, 13, 17}, {13, 7, 12}, {17, 15, 19, 25, 23}, {17, 23, 20}, {23, 25, 28}, {39, 41, 48, 49, 42}, {39, 33, 29, 30, 35}, {39, 35, 41}, {35, 30, 32}, {41, 37, 38, 43, 45}, {41, 45, 48}, {45, 43, 51}, {48, 50, 55, 57, 53}, {48, 53, 49}, { 53, 57, 58}, {49, 54, 56, 52, 46}, {49, 46, 42}, {46, 52, 47}, {42, 44, 40, 34, 36}, {42, 36, 39}, {36, 34, 31}}]]}]], "Output", CellLabel-> "Out[782]=",ExpressionUUID->"5b98a496-2149-448f-9a68-47c097317af7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[783]:=",ExpressionUUID->"2977a215-ef1c-45e0-8779-4d2e99982ddf"], Cell[BoxData[ GraphicsBox[ {EdgeForm[GrayLevel[0]], GraphicsComplexBox[ NCache[{{0, Rational[1, 8] (13 - 5^ Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (7 - 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (6 + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (7 - 5^Rational[1, 2] - (6 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 - 5^ Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (8 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (13 + 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (23 - 7 5^Rational[1, 2] + (750 - 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (11 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] ( 3 (9 + 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2]}, { Rational[1, 4] (55 - 17 5^Rational[1, 2] + (4350 - 1830 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (8 + 2 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] ((6 (5 + 5^Rational[1, 2]))^Rational[1, 2] + Rational[1, 2] (11 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] ((6 (5 + 5^Rational[1, 2]))^Rational[1, 2] + Rational[1, 2] (11 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] ( 3 (15 - 5^ Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[1, 2], 0}, { Rational[1, 4] ( 3 (15 - 5^ Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[1, 2], 1}, { Rational[1, 4] ( 3 (15 - 5^ Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (53 + 11 5^Rational[1, 2] + (390 - 114 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (4 - 5^ Rational[1, 2] + (15 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (52 - 2 5^Rational[1, 2] + 6 (75 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] ( 3 (5 + 5^Rational[1, 2]) + (150 + 66 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (13 + 2 5^Rational[1, 2] + 2 (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (9 - 5^ Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (13 + 2 5^Rational[1, 2] + 2 (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (13 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] ( Rational[1, 2] (34 + 11 5^Rational[1, 2] + (195 + 66 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (7 - 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (Rational[31, 2] + Rational[11, 2] 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (11 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] ( 3 (21 + 5 5^Rational[1, 2] + (6 (85 + 31 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (8 + 2 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {((6 (5 + 5^Rational[1, 2]))^Rational[1, 2] + Rational[1, 2] (11 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (17 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (65 + 23 5^Rational[1, 2] + (30 (205 + 89 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (5 + (15 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (65 + 23 5^Rational[1, 2] + (30 (205 + 89 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (6 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (92 + 22 5^Rational[1, 2] + 6 (195 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (11 - 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 4] (83 + 35 5^Rational[1, 2] + (6 (965 + 431 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (5 + 5^Rational[1, 2])}, { Rational[1, 4] ( 5 (17 + 7 5^Rational[1, 2] + (6 (65 + 29 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (7 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (115 + 37 5^Rational[1, 2] + (30 (425 + 181 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (6 - 5^ Rational[1, 2] + (15 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (23 + 10 5^Rational[1, 2] + 2 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (13 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (113 + 41 5^Rational[1, 2] + 11 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (7 + 5^Rational[1, 2])}, { Rational[1, 2] ( Rational[3, 2] (18 + 7 5^Rational[1, 2] + (555 + 246 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (15 + 7 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (32 + Rational[23, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (2245 + 982 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (13 + 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[35, 4] + Rational[13, 4] 5^Rational[1, 2] + Rational[1, 2] (Rational[975, 2] + Rational[435, 2] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (17 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[133, 16] + Rational[59, 16] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[17475, 32] + Rational[7815, 32] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (8 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] ( Rational[1, 2] (74 + 31 5^Rational[1, 2] + (9915 + 4434 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (-(30 - 6 5^Rational[1, 2])^Rational[1, 2] + 3 (5 + 5^Rational[1, 2]))}, { Rational[1, 2] ( Rational[1, 2] (74 + 31 5^Rational[1, 2] + (9915 + 4434 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (17 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (155 + 67 5^Rational[1, 2] + (30 (1385 + 619 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (5 + 5^Rational[1, 2])}, {(Rational[43, 4] + Rational[19, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[1335, 2] + Rational[597, 2] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (11 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 4] (167 + 71 5^Rational[1, 2] + 3 (6 (965 + 431 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (4 + 5^Rational[1, 2])}, { Rational[1, 4] (187 + 77 5^Rational[1, 2] + (30 (1945 + 869 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (10 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (197 + 85 5^Rational[1, 2] + 3 (8310 + 3714 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (7 + 5^Rational[1, 2])}, { Rational[1, 4] (197 + 85 5^Rational[1, 2] + 3 (8310 + 3714 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[3, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 4] (223 + 97 5^Rational[1, 2] + (84270 + 37686 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (6 + 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (19 + 7 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (Rational[119, 2] + Rational[53, 2] 5^Rational[1, 2] + (6 (1165 + 521 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (13 + 3 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (Rational[119, 2] + Rational[53, 2] 5^Rational[1, 2] + (6 (1165 + 521 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (19 + 5 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[119, 2] + Rational[53, 2] 5^Rational[1, 2] + (6 (1165 + 521 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (27 + 5 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (257 + 113 5^Rational[1, 2] + 3 (30 (445 + 199 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2])}, { Rational[1, 4] (257 + 113 5^Rational[1, 2] + 3 (30 (445 + 199 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 5^Rational[1, 2])}, {(Rational[145, 8] + Rational[59, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (13 + 3 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[3, 2] (12 + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (11 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[149, 8] + Rational[65, 8] 5^Rational[1, 2] + (Rational[3, 2] (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 5 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (323 + 131 5^Rational[1, 2] + (30 (6305 + 2819 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 2] (4 + 5^Rational[1, 2])}, { Rational[1, 2] (80 + Rational[71, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (3305 + 1478 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (21 + 5 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 4] (347 + 149 5^Rational[1, 2] + (209310 + 93606 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (7 + 2 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[347, 16] + Rational[155, 16] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[119775, 32] + Rational[53565, 32] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (11 + 3 5^Rational[1, 2])}, {(23 + 10 5^Rational[1, 2] + 2 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]) - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 4] (403 + 163 5^Rational[1, 2] + (6 (46325 + 20639 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (7 + 3 5^Rational[1, 2])}}, {{0, 2.1691306063588582`}, { 0.20791169081775937`, 3.147278207092664}, {0.41582338163551874`, 1.1691306063588582`}, {0.6146483338935596, 4.060823664735265}, { 0.8225600247113184, 2.0826760640014594`}, {0.9510565162951535, 2.4781476007338057`}, {1.1589682071129128`, 0.5}, {1.4372083586048785`, 4.765312195842559}, {1.6091702292618328`, 3.9562952014676114`}, { 1.8170819200795922`, 1.9781476007338057`}, {1.8170819200795922`, 2.9781476007338057`}, {2.0249936108973516`, 0}, { 2.0249936108973516`, 1}, {2.0249936108973516`, 3.9562952014676114`}, { 2.3614017932989455`, 0.7555851487162573}, {2.431730253973152, 4.869840659110212}, {2.7681384363747457`, 1.6691306063588582`}, { 2.7681384363747457`, 3.287164595108753}, {3.10454661877634, 0.08645454235739913}, {3.355923688667219, 2.4781476007338057`}, { 3.4262521493414253`, 4.765312195842559}, {3.6341638401591845`, 3.787164595108753}, {3.762660331743019, 1.5646021430912047`}, { 3.762660331743019, 3.391693058376407}, {3.9705720225607783`, 0.5864545423573991}, {4.099068514144614, 1.8090169943749475`}, { 4.3504455840354925`, 4.200710052751354}, {4.713716848038173, 1.2555851487162573`}, {4.757182227111293, 3.287164595108753}, { 4.965093917929051, 2.3090169943749475`}, {5.008559297002171, 4.3405964407674436`}, {5.3718305610048525`, 1.3954715367323467`}, { 5.623207630895731, 3.787164595108753}, {5.751704122479566, 5.009727047126302}, {5.959615813297326, 2.204488531107294}, { 5.959615813297326, 4.031579446392496}, {6.088112304881159, 1.8090169943749475`}, {6.296023995698919, 0.8308693936411418}, { 6.366352456373126, 3.118033988749895}, {6.617729526264005, 5.509727047126302}, {6.954137708665598, 2.3090169943749475`}, { 6.954137708665598, 3.9270509831248424`}, {7.290545891067193, 0.7263409303734882}, {7.360874351741399, 4.8405964407674436`}, { 7.697282534142993, 1.6398863880160892`}, {7.697282534142993, 4.596181589483701}, {7.697282534142993, 5.596181589483701}, { 7.905194224960752, 2.618033988749895}, {7.905194224960752, 3.618033988749895}, {8.113105915778512, 1.6398863880160892`}, { 8.285067786435466, 0.8308693936411418}, {8.563307937927432, 5.096181589483701}, {8.771219628745191, 3.118033988749895}, { 8.899716120329025, 3.513505525482241}, {9.107627811146784, 1.5353579247484357`}, {9.306452763404826, 4.427050983124842}, { 9.514364454222585, 2.4489033823910367`}, {9.722276145040345, 3.4270509831248424`}}], { {RGBColor[1, 0, 0], PolygonBox[{{6, 2, 1}, {10, 13, 17}, {11, 6, 10}, {13, 7, 12}, {14, 16, 8}, {17, 23, 20}, {18, 14, 11}, {20, 24, 18}, {23, 25, 28}, {24, 29, 27}, {35, 30, 32}, {36, 34, 31}, {39, 35, 41}, {41, 45, 48}, {42, 36, 39}, {45, 43, 51}, {46, 52, 47}, {48, 53, 49}, {49, 46, 42}, {53, 57, 58}}]}, {RGBColor[1, 1, 0], PolygonBox[{{10, 5, 3, 7, 13}, {11, 9, 4, 2, 6}, {17, 15, 19, 25, 23}, { 18, 22, 21, 16, 14}, {20, 18, 11, 10, 17}, {20, 26, 30, 29, 24}, {39, 33, 29, 30, 35}, {39, 41, 48, 49, 42}, {41, 37, 38, 43, 45}, {42, 44, 40, 34, 36}, {48, 50, 55, 57, 53}, {49, 54, 56, 52, 46}}]}}]}]], "Output", CellLabel-> "Out[783]=",ExpressionUUID->"9cac922d-3f6d-4e09-a35d-89178ff40d54"] }, Open ]], Cell[BoxData[ RowBox[{"NetPrintout", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", "\"\\""}], "]"}]], "Input",Expr\ essionUUID->"a70995bb-52aa-47e2-b77b-6cc42384b222"] }, Open ]], Cell[CellGroupData[{ Cell["Properties", "Section",ExpressionUUID->"fe4f13a0-d69d-4589-a170-e69a0df80daa"], Cell[BoxData[ RowBox[{"<<", "MathWorld`PolyhedronOperations`"}]], "Input", CellLabel-> "In[784]:=",ExpressionUUID->"3b87fd94-63e7-4be1-968a-deb12f7f2e51"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"p", "=", RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"pname", "=", "\"\\""}], ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "In[785]:=",ExpressionUUID->"fa3cb98d-b490-41fc-b9bc-e05b7ef37bda"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, { 14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, { 13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], TagBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, -0.8506508083520399}, { 1.3763819204711736`, 0, 0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, {0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {-1.1135163644116066`, \ -0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`, \ -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, \ {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.8506508083520399, 0, -1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, \ -0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, \ {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, { 0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, -1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}}], Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, { 4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]], "Polyhedron"]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], TagBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, -0.8506508083520399}, { 1.3763819204711736`, 0, 0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, {0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {-1.1135163644116066`, \ -0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`, \ -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, \ {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.8506508083520399, 0, -1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, \ -0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, \ {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, { 0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, -1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}}], Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, { 4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]], "Polyhedron"]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, { 11, 29, 15, 6, 10}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "Out[785]=",ExpressionUUID->"72444f2c-bcf3-4993-9b7b-f98ce0b651bc"] }, Open ]], Cell[CellGroupData[{ Cell["Centroid", "Subsection",ExpressionUUID->"f2122309-5862-4666-8010-15342edb603c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"AbsolutePointSize", "[", "10", "]"}], ",", "\[IndentingNewLine]", RowBox[{"Point", "[", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"Blue", ",", RowBox[{"Point", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}]}], "}"}], ",", RowBox[{"Opacity", "[", ".2", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}], "]"}]], "Input", CellLabel-> "In[786]:=",ExpressionUUID->"9b7255aa-ddab-4ffd-8388-0949519c5c09"], Cell[BoxData[ Graphics3DBox[ {AbsolutePointSize[10], Point3DBox[{0, 0, 0}], {RGBColor[0, 0, 1], Point3DBox[{0, 0, 0}]}, {Opacity[0.2], GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2], 0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, {1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, -0.8506508083520399}, { 1.3763819204711736`, 0, 0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, \ -0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.8506508083520399, 0, -1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, { 0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, -1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}}], Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, { 1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]]}}]], "Output", CellLabel-> "Out[786]=",ExpressionUUID->"31e3b3b8-7460-4a5c-9da6-25c284a7f748"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[787]:=",ExpressionUUID->"3dc686c0-ccde-484f-b6be-16c5e5748969"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output", CellLabel-> "Out[787]=",ExpressionUUID->"e53376e9-53fa-4e91-b429-8f25c2961636"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"RegionCentroid", "[", "p", "]"}], "//", "FullSimplify"}]], "Input",\ CellLabel-> "In[789]:=",ExpressionUUID->"acd54e4b-ff27-40a5-a974-70f96cfb24b5"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output", CellLabel-> "Out[789]=",ExpressionUUID->"dfbf49e4-899d-43c6-8890-6f3ffc6ef1a8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"PolyhedronCentroid", "[", "p", "]"}], "//", "FullSimplify"}], "//", "Quiet"}], "//", "Timing"}]], "Input",ExpressionUUID->"175cc544-4aab-4ed9-\ bb01-881476f35e45"], Cell[BoxData[ TemplateBox[{ "N", "meprec", "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ \\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{FractionBox[\\\"1\\\", \\\ \"2\\\"], \\\"+\\\", FractionBox[\\\"1\\\", RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]], \\\"-\\\", SqrtBox[RowBox[{RowBox[{\\\"(\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\"+\\\", FractionBox[\\\"1\\\", \ RowBox[{\\\"2\\\", \\\" \\\", SqrtBox[\\\"5\\\"]}]]}], \\\")\\\"}], \\\" \ \\\", RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \ \\\"+\\\", FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}], \\\")\\\"}]}]], \ \\\"-\\\", SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"5\\\"], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \ FractionBox[\\\"11\\\", RowBox[{\\\"8\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]}], \\\")\\\"}]}]], \\\"+\\\", \ SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"5\\\"], \\\" \\\", RowBox[{\\\"(\\\ \", RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \\\"+\\\", \ FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}], \\\")\\\"}], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \ \\\", SqrtBox[\\\"5\\\"]}]}], \\\")\\\"}]}]]}]\\).\"", 2, 790, 130, 19518561545030772728, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[790]:=",ExpressionUUID->"cff8db5d-059d-4e9b-8788-c05b2a29e0ce"], Cell[BoxData[ TemplateBox[{ "N", "meprec", "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ \\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{FractionBox[\\\"1\\\", \\\ \"2\\\"], \\\"+\\\", FractionBox[\\\"1\\\", RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]], \\\"-\\\", SqrtBox[RowBox[{RowBox[{\\\"(\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\"+\\\", FractionBox[\\\"1\\\", \ RowBox[{\\\"2\\\", \\\" \\\", SqrtBox[\\\"5\\\"]}]]}], \\\")\\\"}], \\\" \ \\\", RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \ \\\"+\\\", FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}], \\\")\\\"}]}]], \ \\\"-\\\", SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"5\\\"], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \ FractionBox[\\\"11\\\", RowBox[{\\\"8\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]}], \\\")\\\"}]}]], \\\"+\\\", \ SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"5\\\"], \\\" \\\", RowBox[{\\\"(\\\ \", RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \\\"+\\\", \ FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}], \\\")\\\"}], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \ \\\", SqrtBox[\\\"5\\\"]}]}], \\\")\\\"}]}]]}]\\).\"", 2, 790, 131, 19518561545030772728, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[790]:=",ExpressionUUID->"3179a2cb-2698-4191-97d7-18b324d15534"], Cell[BoxData[ TemplateBox[{ "N", "meprec", "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ \\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{FractionBox[\\\"1\\\", \\\ \"2\\\"], \\\"+\\\", FractionBox[\\\"1\\\", RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]], \\\"-\\\", SqrtBox[RowBox[{RowBox[{\\\"(\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\"+\\\", FractionBox[\\\"1\\\", \ RowBox[{\\\"2\\\", \\\" \\\", SqrtBox[\\\"5\\\"]}]]}], \\\")\\\"}], \\\" \ \\\", RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \ \\\"+\\\", FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}], \\\")\\\"}]}]], \ \\\"-\\\", SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"5\\\"], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \ FractionBox[\\\"11\\\", RowBox[{\\\"8\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]}], \\\")\\\"}]}]], \\\"+\\\", \ SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"5\\\"], \\\" \\\", RowBox[{\\\"(\\\ \", RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \\\"+\\\", \ FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}], \\\")\\\"}], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \ \\\", SqrtBox[\\\"5\\\"]}]}], \\\")\\\"}]}]]}]\\).\"", 2, 790, 132, 19518561545030772728, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[790]:=",ExpressionUUID->"447bb8b2-b117-4419-84de-32569af1e288"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"N\\\", \\\"::\\\", \ \\\"meprec\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \ calculation.\"", 2, 790, 133, 19518561545030772728, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[790]:=",ExpressionUUID->"7fb0cbbe-143a-4c71-b75d-80c1cbeecd84"], Cell[BoxData["$Aborted"], "Output", CellLabel-> "Out[790]=",ExpressionUUID->"12d2ab0b-8f11-4141-90a1-65710057624b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Circumsphere", "Subsection",ExpressionUUID->"feae7157-2c81-4ff6-80ea-92aeca1eb70b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[791]:=",ExpressionUUID->"e82ae479-e9b5-4b3d-9c1d-35af2d16707e"], Cell[BoxData[ RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}]}], "]"}]], "Output", CellLabel-> "Out[791]=",ExpressionUUID->"5fea1e53-8feb-4a90-a5cf-ecb5a77c2cc1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Circumsphere", "[", "p", "]"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[793]:=",ExpressionUUID->"f3fddb6b-8184-4081-ac51-f8e4d0deee16"], Cell[BoxData[ RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}]}], "]"}]], "Output", CellLabel-> "Out[793]=",ExpressionUUID->"93adb96b-327a-4ff2-b278-f0de2a2acbd7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"sphere", "=", RowBox[{"MyCircumsphere", "[", "p", "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "In[794]:=",ExpressionUUID->"b2a725fb-cf72-42ec-b697-3c21a7978607"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.046886`", ",", RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}]}], "]"}]}], "}"}]], "Output", CellLabel-> "Out[794]=",ExpressionUUID->"f7e8ee2b-da28-430e-afd6-cfc9afea198e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".2", "]"}], ",", "Yellow", ",", "sphere"}], "}"}], ",", "p"}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel-> "In[795]:=",ExpressionUUID->"c1ef1593-7803-480e-bba4-5cf66c58d2f9"], Cell[BoxData[ Graphics3DBox[{ {RGBColor[1, 1, 0], Opacity[0.2], SphereBox[{0, 0, 0}, NCache[ Rational[1, 2] (1 + 5^Rational[1, 2]), 1.618033988749895]]}, TagBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2], 0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, {1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, -0.8506508083520399}, { 1.3763819204711736`, 0, 0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, \ -0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.8506508083520399, 0, -1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, { 0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, -1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}}], Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, { 1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]], "Polyhedron"]}, Boxed->False]], "Output", CellLabel->"Out[795]=",ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzcvQmQVdeZJnj77m/LfYVkS/ZF7EhoQULCKUACbZAIiRQGpZRJQpJS2tgU ZWQk7DRyWlRhJKaowmh1VU+VhKtmq1liZrprZhpvaperbNMxe8wSHR0T0REd 0REzETMxc+d8/3/Of8+9774HyO6IiSHi3Ey2zPu+7/u/fznnvtx79NSxV08e PTUxenThzq8cff3YxOhXFz7+2lfUH3n/wHHcX6p1a6Hjq88Txym+/L3j/P/y D0boU6/30kFnrV6Oj2tlBJ96Q/ZfxLi6ay/tU3+xdnafI7/oS+23Pn8al3Ct /hIjzsilQ7ScENeukcuHnBif0XfxRi7i341cHE6/laevswcd3Fv6lR/Nfx7h X/p8t/RtLvNyWujqjVxRv79ymJb6zupaG7l8WN2I+lu6G/q/Lt8Dff9ZXvw9 HrK+H33urhVg8B9HLqvflfHFXHzZGr5B/8iVo043PgvwZx7+1st9K39IvtU+ WvQdtljf7V761Lepwdegr+bz11XfoRPfS11GnQ581iXf1eV7Uv8j0N91WFNr viO+Mn2ntdZ33UB64NeI1yZw0rfk74lvhKXwU9dWfHN35MoY7gCfXR1V5KrP 6NZi/IcyPlM3dJRvDWAcTjXhW/c39M6w3J+gssK6vzU2B++OpPfn6a98+Wh6 fwGuLbiXAHc1d+TqmPqt+kz9u6vWv4txjQRE/VXU16OvSa88wK26KX8B7te+ W5Ip3eIi63aX1ZOIu/ZEMHSLJXxrHxCWcYuVkasTfLMl3GyIzyJ8RrfYjf9h cLx8KMXRk1vE3Snq1B3ad8l3NM+6u0X23R2mJerKUU3fOsIt1nA7HbjF9pFr E+ruro0BzjFgPKHUoD4L+bbNzeovZfD0DKrpvcuday+oj/s+6/MBrYHDogH9 ld2CG3dx9eXu23B/Pu50Be7eHbk2qSShPqviL2LcuN/oxt0C0N2cLryhdziu Uz10170MzyCOu2c8Qg6RK4TbmIoddTercV81uUMPSMdymx7+cZf+b4f5q7hi NXk0xa/pNtqtz7tyt6TsOn2lVpB4AqTHwa5uxMUtlXBzbbhNjz+7PqH+3fVJ 6EPfeoB/Rzou6/BTX0a+cnv2RXjiXJ6FK6WHTJy11L0gn14peQtTRp5DNx6K SxHRHhQQC77duN0YN96Jz8r4syr+NsaN+zoo6268FVfSiNvwxn07BMVyy9a9 8+sgz+VcyVLTN05WypDjNrA43CK8hIq+yUlnEDfujVyfcubzZ+rP6G/LEqD0 EtrlnlOwdebUKU17iGd7iAo348aRdesVDbu5dYqUoxxzpYIbL8k98w3OPHOf c6tNfZWYvpyHz29sXUbLiXEt4RW14BVV8dk8/ozi9ZpBAi+L2InzHI06bP++ JCB+1ZI1UraUQqzXa6uNb8161ZGOmBkTMUcc+eL629K3jkRzZbzuALddwst2 IvPCE/01k02LN9HHpx4cdoLk2NPTjpfse3g4efierVgKIHUtJ11VoDTYk6IU 0NW7sXVJ+medgGoAULnQdEl/YyiZPqPIVVC1ZbHxipNKHhtbzP+PBYufzSYc g0cVUawDImqCFmuX7QJ4ECYVXF3ctFPGq0m6FDzz26rJpjn9BM3ezXuS8cfH 6KOGqr8AKQ/XIHl4LeCqEVy9zo37l9FSolJXCpM5+FY+mxW76yTMwManVftx XUngFpQxHDV+XkUUOP+XBdM/yMFEX3cUNVJduISASd3JJLsUmSpsasoRgFb0 VJNnVy9N9qxYakDygJKCwcLJmQeg2pJjzxBajwwDHizoau3WCoAqs5BmRrY5 +D70vSjwAkGGU5B9e+QsoxxkjYEKbaDEai4eZHPkZgLRRL/+d/7wf6euuBYB hfAqS0C5miNElYEnBDBOMDPySArPtoX9gMdxk7EtG9VLt3SkwoxxmtPeD4xI Sn24rmiEk/qzlfMHABYpy8dVXVoQfsudiAD0Z158REQtecSV3J3DK5DiUv11 TjojsyrY3tbBNrPX+deMzP9pkGHrIWRiycueIOMDmRIL59oU60bdnoLn1mC3 wONrZPprVUEmKkCmC9f7gUycHHt2upw8vI7wWDAAALAURupKru2CAKWlgw+m agl05TXKjtBQLQF3SheRQGehjhHTDygInH/FGPwfBRhEUkXn3IbQ8IBGCDQi oFEuRiOw0IAlA4eSRmNBVz8ZDdBox3Ur0FjYFA3Hv3HvEklQWBVdih6VMruu nGTTZTVQOuaGQ9U2AARwDL39LMPxLxmOf531FIZEl+BBASJU/rBAbKmWgQxl XOWQ07h5xSXBo20m1PDAlgEHgKloeFbOSeFpwfU+wLMe8KggsZDB8gGYezuE KDj8hpCEKSRqXYBCOFD+N0blX2UrW1NYESS6zg4MHAaEKYdRCIBCKUXBNttI o4Df4lXj9dcKUKgICg8QCgFeNCGg0EASnzl4v8MhUc6+5oD79izvF5h3vEDn X/Ar/Jf5lHuUFr1I3yb/ykSOfMoqnPTwcumFx3Sl5IgXTi++jKs78iHhcP+y jKvGBTi0FuAQ43ovcHiYcAhJDcBi3/ZhG4scFHfaft0+Xow4nH/OuLFAQsHt osZO5+I7gI4axxIAqwIhjxHK20m5AKH2AoRCXDcDoccIoYhUAnTU7+ij+n2B YuK78RHP9lRbTP8Lg/IvUjENvXOE6zcjJk8QcQGILzh4nHkVDgqRaQbDLwaj UgBGpwUGCjgu59R1E8AYIjA8AgBywe9c/Wc6lAAKzxtKAgj4S3VT0Bf7RQp5 hhXyPzEY/1x3NrOWOgwYpsMYo8Uph2DxJNEEXMwqWHyBJUijiD21W7nJqqXV Ali6LVhWzhsgWAiRp7KvHtZZ9+qLoqZ42uLnbXRfxkb/B4bif+VgyUIxSoEi PkphklYdPlX0HjvLNC38TgMREhCB2IkGIhnbvNExaKCmNWj0GjTm9lP9heps Ha77CtCIZP54t2gEuZpDkux/xzj8z2nNMXKR5VCoByrDfADCgqDkArdNA8bj FKMAqQCQKAfItgX9AkitAJAeXFWZvzOPympcn9cpd9+jylwXqrTbqmxjG4Ax NycdaiA4NZwhFcaKdtP/hoH5H/PGwQJhbHwbG0659ch4BdmIilYvh1HOVBb0 ewDJxkh1yMlz9+3hEAoLMKLq/klgpPqh5yygbg32p0DFOqhHZTJXDI8k6RQa 8dV/xvD89waeUS7MbHiIjhCIBAUQBOKrFYkblYtPEQ6PkvdlcGgpwKELOJQK cFiC6zbgsAA4+MkEgbFfgbFKg/HiNu5ZaHJqphnkr1bVnt1s8Ioiic1VIfIb RuS/Nek3i4hxFLcOlKtTKSihrlKuTeeqFMrBAcPDJtsj3uI3gocSULUAnkW4 bgA8EeBZo+F5ZP3WpLvVubWY4fFlPkg2GAtGnj1QqRsTWAD5edno7bn/2u5w RgkflkyKDtQzmbMXF1hRXUKSYVCACeESpujYzkvotBag0wF0WgvQmYfrOqDz AAHjGWB4cicjR1+U4wkqelZ66XCT6s2zS3sghT1HMWT8+lv+8M8sU9YySk0Z hjPhGKiQoK5McoJKYcrVu5FG7fqpFLU4h5q256ARalThdRSgNgfX1TppTajK TkFH8N2La5xM7EOTgD98ZINGc7lDg5cIiEY6FjWY6czOBZieBvPioTsC08Qk OdU/ZTB/ozO91pvE5GV2bp9rnHoMXUAYcqeggCsXW1QIvNoK8GoDXt0FePXi uqIAr1W4DhBeXrJq0UDS3UZY8SjPl90G2vZzs/LLIUaAEU4e4LHQER//OaPz K10S5tBxs9B4nOQz0PhcFTeGJgI07VYhqGBJ26neAmi6cV0CaAiZhQBkDQGi LPyxYYBiPCpmTLhi1zuJLvY/3TufbNJE5lCxlHy4FwDDAmA/Zbx+adrv0ZyD 5UJTdxQZ7GIuna8TgHB1hR2FoUp/pykWl2f8nQDsKACwBdc5BQB24LoIAPoA sB8A3l8MYMT7nFcnWFQu775ZAGYrzEt6ZiGIHcoh5gIotrNeY2c3+cMv7MzY IAIJKpe7DAVVJFDx1Ias6zpUhis5vp+CZtt+nActM8yYVwAaTZDnC2h9AG27 BZoKw3rQIhn8udZ+mYm/gONvln1KV1GQlUZJDB+//iv+8LldUdmReNm0Y0Zc XERcMSUmFRJXp3RJEXGFaUQWAi+qH4IcXtrwCa/ORngtKMCrhutc4BUKXuuB V1sysX860AZGZs/IcbAGdbBp7KgM1VtYmei8HYq9Nor/BX/4Wepn9ShmQzQE hKFglsuZnoSoB/RCRm9mZEfG48pN0VtUgF4F114uwQx6y4DZUqAH4DYq4NqV 869sApzJlUVReZCWVGLax0xgapx+0sj3b4tTJL5PVXvUBJiuAmCquC4pACbG tTsLzCCAWVcATMSjCOrKjYUFBZvZddkgoy0yfmt4xDgpUf2N7V8UkiPW8gCS a0fhlak0Cn1ci+r5QIArFft9pSlmywowC3FtB2YlwWweMNtKmCn/2qFMf3AA uGELh2ALBDZfRFUIm2/DJs2QL1HpZZEjU/tHtqdlzezOkEvbw1hqLwTjaQeg EXBRsfMTfN2N4FtRAJ+Ha2sWvjmA79EsfLcWz0nhozIx0rt0up32dSGmm0Ye dXPRahZHZMMG6T9j3P5LU/mnmDFoniTJOwBNl/oaM1tutvNXbbzsSQzhtYrw 8m28sKq8M6TQ6gVafUBrPdBqTSaG8RdFuIUiuxQ3e2hTFKgFs/GLFLyZuHWB IVcd8us/4Q9/UxS8Y+xwnlXZXplic/NkNBPdRnh5r6sByJ5GQK7JC08V/mVc Y9FcL1BcA+wGgSLapf2qXdpEfndr8VwF4qMOo5hTnykMRmXdef2bCWMNJE3A zK//iD/8Iw3kjIrld1IwTaq4PJFpSIshDcX7YsJQFSNnnJmRoQyOqq7NAYlm Srbj1mogx3eNJSsH+rHH4kQCZCrH5UDvHgLSYxA7VNJYpYdvbhbFsGCA6OpT CzaEaYNl+vuLB+tzrQ5q0zNoAP9zDmoeI6Y9w+3QSyftvlRyXIyIIKkGdoGl lU00mgRmb0FnmoJJWEKajGa6FUGI9giii4HofQWIhkwwUc2le0F0m+xSJEqf 9i/5pJYGNKPHTDvxH/CH/1R7JI3u7xJOGk+7PHo1FYwHEAMG0Qbw9iDeAxBD C8RVCsQJ2upS124J7QXA71GN36rFA4JfIPjFZig4kR4ucBshmbb8efwu5vDL xPO/Z/tjgLMpaTyPUTsGHGkPnTCclFWEYq4xiwrkGRGoXibGW5siukYQVbmZ YF1lwUpTgS6R5VzAuptgVSnnS8OA1rilz8FDRaspd3h6Z+DkIX7IB7gpri8e so866YZDA5npNf4d/vAfszFSXF9MQWyGYaSLw2L4eAzuMX5naKHxEGGaPSW1 mgtzlcAYFcDYKcLsA4KrgGCcHB9WDdzxAxi9HJiuNUHVE1RDjWqdQAMeiV46 yknH0+1J5uxlQYD/FX/4D+0AP0q41gc4zYZpamekGQHWUnMcPeQc0qLCUHX+ DUAsC4gBQKwYEOf1YxuBpnUtIsNeSdwVgLgMIAYAEfgNDSfdnSqHDyj8dpiE WIffRGajTavSo804X7K2LiU9fQJXn54wReRf2R6pgzurSxamVwBaWbe5p5Gd 61CiiO3XKGmE0jNEKwWlMlDyk2O781CVs3rrB1RtgGozoFL/ePvmrUkPo8Tl goJo2myRmJ0AvxFiboobj5VM6+ITgFz2aPA0egFHeJqtqXf5EUP47+vWWPKL FdY59PhGZTfYN3vCp9LADs3YKq0jsUq3A9qe9xHQy7NyjAqADgVo0mQ7gO4C 0A9ngb5x/xrtP66546ncGMkVtIMCeL0UXtbnRbMOZRC+kNs8/IwR/ndNRWll oAzCARAO9H1Mm6x97ZSxSQUmyZUSjIr2s7eFcttK69wbtdK+QFkpgNLDtVs0 WxUodxVA6fJO3bVp04hpGCdzh2zqoEy3vwyeHmAsFCnD6HxqpyDlkaMiUnZH tyl+IUe6ws+Xqsdn/CTDYIO+Dj/T0pRkfEP4VYFfSwF+XQJdBdC1A7pnCLog GVamuHrJAOBDK6U7Vmq8OGnTaGeCdx9DPrtkRTIvna+jzPnSfET/OYP1lwxW 2sFkwAoBlq+L2GkOYoph6lf8LFjBXYO1OAtWuwFrfj9t8mBa2i4hWwZYrQBr PcCqJcefV2VOBrZbSwZS2FyBLe1rdBWZObkR8r78JSp7aEsxRdLLASmJ5Rln ZIYbGecfMpA/sjoZUt2EnVUISK8RkIEA6QHI6G6AjAVIallqAqSqEp/Io1nL otkCNNcAw/VA0yU0/WT4cY3mPOpDdZfKxa0eLerjT/Ux62lN0qdA02jSK6oh h2VvZMaqdX7IHz5LpSlxzAWk+iZp8Whh6wNbj9vCa6d41EPY8oDf44rnLK0v gPJgAcphAcolQbkkml0BbB8Eykqu27cog+xyCOAXhxzcq9z2FI/SuCy3tzXc rFhdHfcXj0p6qYt766wb5Epxr8FlrwxYrsjiE3pNOpZiXZ6gXdXZMEU1FMUW o1pfSzZElXYCXKDaAlTbgGq5ANVAUI2lSloMVIcIVd+geuP+exz28zR/m2dO Aj6MRVujV6Q+x2YbH13KgOsCW5zST2ukOmRnn1H/bKZux+VD/vDnJpmPWuUS vvflSfbXCCCbYm7aMaWdhjvAy3CzcNNEo3Q7kHFgNwPywgKQawSyb4NcAPEi QLyHIPZsiLk8dsUWHH66J3MGXz+6QVPFvC3wAsjGHKxTDBgZBbZ0h97SJxc0 sv+26S9HM/J1U/3SJPgKHaqqx9jXSFN1eooD0NdhaMbD12kWd50gJ/DvAHd7 whnbm4QYzB3j5dSEgTYj8wX9tBWBCXEXrpEUBgsA/z4N/+qlAwz/Goflbc7M 1cHvWU39Zd3j0LAc/Wd2y0afa7yoCyzexEhHeJkjEiPnmQrnA6bhz/ICZxq8 RjSEd4178MVwn98U93bg7ibHnsyDT9u0IcDvAPjzAP4L2l4oKy5V/T6bdiDl BRNQ/6xFegSST8wyB/CAdNJ5iZ5av3jUahNSLz+IICMS9qX12wxY2OusPadY uM4s/KkVDPTlGwdDKCxEgD0GzpEFcSYb1kFsZgCxnBdoy2IaFGBazWJKJdtK YLo8OX4QHlOErl+HbnpyNDutMmUcUuOYfv1mjTri46ztIK9ts2dOAlewks+c UdBeY2g/+YICv3oqJ/CIdK1UfiY3d7l74AcKgI8LgC/h6gP4TgDfL8BvA/Aq n6pPk+Gdw1SKaNytZiMHvJubwl4hL7lifMWADk2TyQMtrWs2ebfwQBEjD1Er QQ+9sdtx/oSR/7hY1IR8rHu4Yqhx46dTL/HZSxTw8RfDe24B3pUCvGlrypNu uA94LwfIjxPeKnvey2Xf4vlNcPbsPmXCwlkMREvxIpd/h63tKthFOlowVjFy 7gnW9FW7OPHt/hjo+kDWFCRXptNk6XJBcvWUKUiunTYGff0MT2vuHtQ5BaC2 EKh+su+hPQbUAkiXAtK9WsIEabfUfFTyNVSvfi6Qd4sNoL7kQw2qmzZ+cf6B s5EZA+sTJNY/YkTfzzXRFzkObLXiW6aYNkLUE0TjgpTX3hTRfp3yju1sWGp0 aNXu27aH9loUpE4K7GIAu5+A9fPAujLBaQgsH1H204paZoNZPzia8YPYPi43 cmHYghhuvNv5txji67mhThbiqBhiMgfdtFw7beYVXxzivjuFWOXBPWPJhF77 FdyrFw84lP96AfUiQP2ihhoWvHrZAOCGBef7FjEFlw87cd9CBW86vKZnOywR 29abPf7ErktbsjNpQQd/eI+RvpamPCmvL44x2KakuDyV5j2fG8Ur02wUPjDX o427wHxOwWw3ksOwLiBvySLdDqQjAKz+m4aYFF0TmBcA5qNZmOG+Ur+5+skT a5ie1bNn5g1j9liSjuuwVRScLdPg7iNwIWM0Lu8yuJzcApLxrAZX+6+l5BRN T9AMgKYnaJa/GJo9TdEsF6BZEjTnAc1VQHNjcvyF6Woxrr7g6ushqw2lm/Nc eczuIs3L7VZ71iS1IG8LVPteZkCvWmp9O/WG5mql/MaNNpUParEdu1mkgzzS N+5fKVuN9UibDiSHdM4h2rQJTzwpDuFUCoAPBPi5AH4l4N4G4EtZizbAe3XA pyWq/VCEp8uoMWMZmgPTluuWvGRIMMpmFjQTZBuqWPs+s/BHVkkxm/MMPa0D CZdNB5Kzi4aw62nSyIfnHLyrB6BXLtoM9u67gb2Frr4Nu4DeL6DvBOihXcNx XixEXB/WzuLs2e2I2fwFyHEW4INpBtS+fInx5SQYkcItfKkovjTJUzsX8AaN 5O3pKxVJp2mxQdOOUSiIh0DcBeD8RipSznU0GuIR7F2NYG8F7C5Q7zQaf3gP bXEMDw073UC6F0iv0M3gC6pZOfHC9D34zC/A3C3APNRn/0hm3CY0Bj63Kzd7 2NFnDy8cFNveJ7b9B4z/FbrGWfwnMvgD/VDQDxvBzQqnNlAtS+q0e+LdNfCd PJNWwFebAq+Ev9eg39PpEPrtQL8P6C8F0jVgfi/Q78VnMKCD06Yy4UKQt1Xq sGejDeyixPSEnC31PJUP5GjYIf3U4Q9mvIVGfRcZe86ckTj87Fgd/pb2qQYM CtAPmqLvAX2f0Z8ZeZzdBmdyOpui3yHok+xbBX1qZchsOoB+VIB+TdBfDKDL wPxxoN9O6KvEuksl1uWSWN3sgbKQD85cpq0CA7xuwnk3K5TdLLM06g1Ap7T6 DoN+OQX9DgwnBT0GyrHASvvPQQqrVCnNYW3nfUEj6iJY2wFrpQDWksC6CLBG AHMfYG3RohZYF+rNF3OcIgery/XKpTGeW9MOqy5RZtPMyL7hEY7KN2g4+j3G 8Pt3iqEvGMI8TuVMO9LCvXYmFW7q16xcIEwo+7fD2p6Uplh7t8e6pQDrUOx7 AbAOgPB6YL08OfGigv4EVYki5p4ex6BedIoltRJTdRNSY+ao9yVucixNp7NS UrV28JQJdDXfZTI4kcZZMuodPGhEhWsIOV1vKXXMlAqYuW0U1DHTlo2CFmGm BmZ8Yaa9gBlXmJkHZjywsBx8PARmQnxGhoPset9WwwzT4vFBvNuSwem0YjMh NeOFQ47Yy/nh1NPfZjb+kK4h14v1fp5GRXCHVOhS5toZNp8mBGRK+C4Q0Fdw qjqSB6HvgICuPAGPDzs9+njCQVXZnCBj17DHWdhvbL3HkVaPiocpLtqLsTcJ 1RwwqmuYLtAm+4yBnmG/wKj/gR6p5rKom4Xc59r8yim2Hxc469r8GipyM0gl dKOCgqUQVJmh1PislgG1JtO/ahbUboCq6penCNlH9mBySsh2ANk+IOsmJw6y qp8BvAE+C7XfWPDamp6ycQ1sXEXbDG05u+1ryVqwZY/5DmN7MY/tRA5bT+Tc HNtIzh3dPbbVLLapYAnbANi2iWDDAmxbgG2vYLsMiL4g2HrZwgT4ai/X2Ope W9fhjlus3jGG2LVn16RaMoyDguwMI8sVScDdfVHd5zdCVg+gDLKhlNlfEFlf Cr2aIFvSUyit2k4gWy5Atgxky0C2FcguAZ6jQNbHZw6lzmzFt4N8IVXtVCM3 oIFKrpE37aX08MaPDbx83OZbDPGsPUQZb2oMZMUuT6UMxJ74biAtZFhQS3c3 hbhSYAwEcahHU1q8HYC4VUM8rCDuVRAfeBzVyAkYg0J3MTCdBLqeRvdAFlk6 hZgCy3sfcgaGNkPoeSiT5XzW6uwhKZuzBuucZyC/mwLJVUZjF8gB6YlWCUhf hk5FdUNPo8PZBGRZgEy12io73i0CJFV0Kqb3KtUefwpzEAtNYNkPLAeB4NeA pfoHB3YPJ72qVliiYDy4oz7oOSQnC0VqH7GzNrtddCV4Tyqt0AspsmhI3mJg 37aBbW6vdw3srhywRqH2ee5I3lUnzCq0xsBOYMBkgC2zvSpgewlYJdPtCthu BexOzDyMQtcD1XuSE4dUkQZ8veTRrVuT3l4z6biqA++3RNjjIYfuU1J/dd5k bLk6CPPYUll8aYq/uZuFl02WKjC12G31LpYB2pN9Qd90JucdG+wM1nWD6liw TkUcsxtMYLhhDDdkw1VY9wBrPzn+dB7wdgC+AICvBMyPAfA+AjxIAV+nN414 97MYc73flHaEBlyYgl3wanzPMb5cIYRDM0csfCcL8CWD9Rvhy0qmZuPaGceS dIo0jY9cAI06d1Va59Zhbc58E9YRsI4E6yqwDvhUQUbXPrCuAetuYB0XYF0D 1gPAejUQfhJYdxPWYbJmxUAea3Fgn6syHhfnjsiQpq3jBCnsYaM+4w1GnisI b+jtI6JqtgyfXJ+fFsaeoW4yvgj6dCCvQnPqkHuN87JMgdGbhz/T50VZqRP8 PtcWGfjbBPlqAfIxkJ8D5NcA7wNAvo2Qj8m2Ffq3luiRh4W+rivYUCZ1ZTWh 91Y5DWaf778oxfGstRrwcJZ5+LZVHFvu4or8f9dU+BwDmQKvLgYyJIQFMeCC hLKQUOUYOK6ZoKTZXsCEDyb6uWCefJFN58ugo0Z0RIV00Eufcu6GC5+3IBEI Udp0H7JI4Ld1dL7BLHwrz8JkcxZcnupdwdbMVRwTMzg72SO/pXSTxgjfmFCG gF67aqkjIAABsSTXqn4WQDEAArCcNB5iUBELFR2goltTccBQsQvvrH8CGwqT dHlxugcEHAcVlQZUaBr0M3QNqPD0UxKXskca6DzO7FF7uK278ZQP5IXfZzrO azre+S3oKOk5oN6y8Rh1ZFkpuvtuj3okqJvHfSZ2p6iXJeGGXNwcx8hJod4O 1MtAvSU58TTqxxPPjCUHHt2T9PU4yfO7hrsA/CCA9wD31wF8rCtJnXgBvO7c psxu5WUGAoLXhbhROiF84bAoXf3ZDL3Nhsm4+PV7/IGLG/2033gG4i8m+etn U8nH+WybqSIbQh4WCL3Ez2ooxCsCtMvluZF3C4BWED6l6kkFdAicIfQUaacV UC8G1OqzQ9PTgDrMFZVb70lrmyuWpj3B2c6zR53bgj6cgn6aP5wzoI/WlTq3 Ad24/ZXT9W5/9Uzq9kEjSiIpNW9LiX06nijxs5TEnIEVJVVQUmVKjiMNG0oq oCQQSsoFlFRAyUJQshCUzAMlK5ITI+j9D2GgUkeOmys8s+S44EYfFp611oXD xmmCtC0dlhbf+TpT8808NZOF1Pg2NRINd0BMKHOWHDGhNFu3JcYegeeIoacR Q37ixhATsylliIlATAnE9ICYlgJiIhAzD8RsADEx6NgKYhbiM19XqzozgJyZ g0NSK6WNQMAt18VRdn0lygt2IVRfDH2NiXjDJmKiCRGXp++MCBc8kFWFXAUp 9ON0BkO1EHUDGvP+Ru/JEsjbDJckFnxuvIw9hZx9M5B7gLwGyLsBeUcB5C4g nwvI1wHyajI5Mr0DkA8Acs+aLphkfHCIe4LCcZd11E2vWWoVZmFYF7gxsDiw BjWnmIOzFgcX/w1wQBEQWqNGuxtw5hS9lwvGN+YnlIzjfCEvJ7UlD1SURP00 Ki+Bilahoh0sdIGFHsPCY4oF9X2f3z2sCrBJzBsm0f4aAvqLCMAm3YEdmoCg 6Fw9C98l3APuAMxi4O3ULI9GfYU/fOMLou/zZOfKaTPZMZgHPNn5Qpj7PN41 FuPy42cGZE9AJr1XAbJyiL3qtwbpXiCtEHw2D3c74FZ/dvLF6eTkIVrKV9R1 EBQsBgVDoKA7TwHqIk2BKzvRgCPLgUWBbzKBocAlDmRbmrb2NfpcfgZri9D3 gL6rc7SFPgv/DqCPCybrdX5joDc/uOjY46ncS8IEytBdY1yK7qYyVHuQPsR1 nJeTslPiBGDY6QA7fWDHBzuqGSOKnlcU9avbO7gb+x2KnD5wQmXTWuGkI+Uk n6OtbTlDyMVsQHg2GzxzS6kYeuNZx5lmKs4wFbxp9NtQEYMKX6igTY5Scyp8 mwo2/mOYHSv4yxwIE+jCLNCPP5GCXhbfCbgcMqC3SznUkkw+o/6iHvQyQF8M 0P3k5Mj0FoC+E6C3AnQ32yDQBt7lST7joiHXps8VUVEAzBxKA2BfivrrdoNQ j/rFqTtH3ZcA8Hjfw6AeF4zr5+bfTQ6o76MAOIZ9j2NU48DgDeTUc7lAvCpA OzSqB9BYmLRpyFsBucqwMH0FeVsB5AEgXwTIewA56fxxQF5LIfdkQLd1jZPB 20g8g/eFBngPywaT85rdG9wl3j5v5TXD27dU3hjv5xTe3TbeJHF6759A8I44 oRq8a8BbobIH2OqsWgHKgaDcRSj7NsrAeAEwXgaMlwPjEBgr93kJJc9L+O1L 3AMQ7g41Adms+6jj6IOjpuSvA/yQBbgvB7jO7aPjLicZ868bzMfvFnMfmDPo VN9fPeNYdu/xRup16n5z6Jct9OmtOt1knChYqVpgBT/Ax3uoPc7lZcBv1WIo CLm8NBTE7C0nUNgYocegoAQKukFBnxH6DkVBn6LgiWFlcAr/dcBfZdqXph8A 6hFQXwLUq4R6VIS6OUKnG2HPVJW6srzABT5Dz4VlOuw32E8y9l+7I+xdQM+T TjrdcoVOttyWAJfPCNyWAHqbZ58I8G0CJAI87nQN/AHgjwT+EPBHWfh9wF8D /F0Cv59MPpfnoAMcrAUHHcJBCRwsSDkIizkYS+Ef0/AfNfAHKfzpKQz1d+fp PcjOWE/fT/CHr9I1lF1tcDGbcvEFqUidiIOBel212JPowGPZZF48DdfFmXdA fnhAaJGySnVemhSKCReklIUUj7tcQ0oAUuIsKe3goxN89IKPUgEfNfCxGnzM Ax8Pgo8y+BhI+VBFzv08kMPDiUFDEuIiEuwYOG5X+ume4m2w923ssUIgH34B qDdpqOlHxMRNoK4Iyg7BzOUNTZkN3i7wLgve1OKqKvIppFgb9JoG/aAFekzl vpdMqcJ/aoSW+spTxMGIygGKiIeEiL4CIm7cu8aRLEA978VRPfAxiwY/M/nB D9f7+yQMpouomBAqfFDBG2KUDHRC8ApYKAH2cjpUsFEn0OknfpWLQac+FlCr Qp/q+l3obQ0HVQEdZc6eMYCOpTAz8NNQJxL4OwT+APBXk5PCwRzFwQtPoOpR 6M8F6GWAvikLeg9ArxSA7n5B0MmDjjHor/+WoEcAPbwd6PMAOv1UvqqVajXo ThHiJVyplVLiRmmfljym2gm42sngXAPOCsRnlfUDZ9/GGSgPAuU4mXpJlfMG 5QpQ7gTKZV3tHHginakdeMRMdAqARk3ZAGjtM844A/1abqxpAY0vra3m7qHm ISUy6sqlAjX9IMhaAdQhZ9SJnWzeJTbv41rXZTaTE9hCPIHB/om9PM5vEZTb gbJDLSpQxnK6cO0zuv7SnqSGZm1oWBmcAnsOwL4HYG8TSbenYPsGbDrytP+R O8DZz+OsIZ76rSHGp2dyKTTUvn7tbM7X4fXn0mO7sX1Mh/nAT/fVjkM/v7W1 gBE6/+QLIyHXOIYRmmD6wgj1UkBf9VaKESzsqGhuqJH1kpPPqMrfMKI61334 H889zD9zGbT0gJZVoMUHLarDPTytCtXDyu0VQTEIaksJKuUJ4lN3uuq0rIaO l2SyLYb7qvQZY3pO2u3VWCbd/pugxwU7cf5IDxOT8uKBl3bNC1ow4oXeNT3D S8Ddl7GiiMucE9qPSuxHk6h1DBsVsBGCjW5hIy5gow1srAEb1WTqsDIoxUY/ 2FgiPUFrPlx0/cPhMkuP0FhhwouJcMGC4xEP5tcof+AuICriI9sG5Ci53ISS ANfgt6PEIU5ACdGSIWduv84V1JdNYANgYhdvgcUSNAHIiSRoaNAWZcmJQE5Z yOkFOdUCciogZyXI6QU5FCrzQc48aZMpVEr59LzK0cyUZOCTY2bk/EEKESqB XmFKTliUXLgbSk5ZlLhghIohnzvha2e5E7bg9+wMrUSlsJ+jsR/fnGLfYWFP s4mtexx6eDIU7F1gXxLsPWBfEuxDYB9nsfc5UZ/EbMJg31aAfQjslwP7QQmM QWDfJ9i3ptiHMojbskqaAeCedyYNe++ZgxIJx7847D7vwTeAPeD+txnstK/o AvVuG+wagx2JAVUEYocwBsRYOE+lXcjn6jMDdjtw7hQD6iKc/WRudz8wNhX/ UqC8WlBeApS7sijH1iDIzN8Iadp2bwzxy3arqyEu7rUE4kvTGbPJQUxlkJeF 2AfEobV1m+mzPFzpVJVfhPN+g3Mpi3NVVOwB2LIAS6MFlWdtdEnFHUBXyZak DIj3PT6cvPYS3hz0NcBIVacBeSlAbhOPbwHIUdG0Tfn8c9uagKxqzKMMMtf0 fPjYAtmlFBsAYyCcrmk9WIOsT2Xa2iK4fcDt3yHc3Vz0WHDvU3D32HBTUwUx q5JfYY7lkJGUtcpPPJGqvCwqd4gNLoH24i8mccp+Eid8yNgVLW2gpUNo8UBL D2hRbe7+PDdzcPWT1w5PPwBuFoKbleCmJgFA3IT20N+QM6jIeWab9hjf5mbo rYOGFi5PPZsWcEJj61nWPumfthQx08jqH9ywvQc8ZjY+k7Kit3EVK0Fxdg3A CT2gHYKTngJOyNJpzEmUlMEEjXR8EEHBUNH4T+5J8a8I/iFXPQb/duBfA/7l ZOq5sX7gHxXg34VrD/CfA/z7kqkvq2bs5JdVW6aYWAUmKg2ZKGWZeLAuw1Lh c4R5GPv/CA/t3KKNY/o8junzsWIywiwZEdc2howyO9MkuoLJvdyiedwGZCjA xu5zY6AAS8Gtrn0go1JARiuuy0GGBzKWgYw5IMOTsEg3CGogI7A3hc1hucF5 RAS3a57wgF+HbS6CNOVO5JoBtzgZuGDBzZJAFuXeOQkhSGjlkcQ4JtDjmEAz Ccfu3ZglIeAC05AQcPVvSIg572ZIaBf8W4C/AvJZuI9GvbUA9RKuq4B6NXnt yyr9GtRz6q8K4L4+FkqA9zg3Nq1k1Z8/RKrHYUKD9Ksa6ZmmSLsA2i1A2BeZ u7yNfu0sn9yJgHDdIxMWwi2CMJXwoYXwqt5qirDP/dXxXVxG+tz3GoQjLiMN wmWW+Ukb5gpgDgFzt8DcWQCzj+sKwNwjMPezuCe/jH2ww6rJMlhXxGnMQStg jSc1Ny1PcVYVzksMM1fw0dqZghpy1jaWFGkvdRQ6qKPbqdth7jVKvIQ6/SCr ElCnaUME1F2ArsAA7I+s2gTQHWptPR45GHG7PAQy0AfcPRnoYzb5k6gsDfQR oC8L9L2AvteC/r61W4G3swzXhUB9MVDvBeohUF+SVXg5p3A+3mae4Xzqfo36 XmfEbmV1xTOWrXjctKgkF7lERzgN7um+iS8ewk5Ofata7Cb6kCAmPWqxr7iN GIhwpZ9hVwYDLWAgzjOwWjWxwgCdXoiEgYqA7/NcwYAfAvwoC77PGXYKw06j +z6A7yZTw4aBgd4BYmAhrquEgW4wEIOBwazuS8KAmz16DmOH14AJ6B8FjqHh 5SaFZ3OPIQYC0fvvhoEyz/gVAzRuLjdlQB/fOc7LCcWIqsIF7bCXhYsAXMRZ LpBlnx0DF1hOi7DSK6xgk2V4LLlPBaBaqo/G1U/mdCyklhdE3bdu6xzwtBk8 DYKnLvBUBU/zsjzF4k8OHVUne8JHLDRn2qZA0yGbJc/OBI0pKjIntylZZFNx U3ZiXOmn1VbBDu3AVMCOV8CO15QdtAGqaaAegTbDDFn4C9SnvJyUNpebBENb jUNoCgdRFFmdQlY7yPKS1/arv1UU+WDHT57aMaTE9fSOvUTWH13/KHl5bFSI 27puq3pxr8PKFH0Pgb5FUsi2gz4a6ZWk3YuytZMLytDiHdKkqWrpRWbt6O+O tUjvkGE7/rp5pwmTu4mobfP7FZQZkmhvstaIJFeTdHxnShLZWcwJ5YT2tIqm ZvLJImoc2q0ENVgOkdQKksqcZAxJHUISdXLVApLi5PqFWfX1lg8OJu/98XvJ P/n8prpJXEP6vWENS7GW7H98uAziFHtfZn9UDcmR6YFk6ohixURgNyjsykZg mHPKkBxy3aalN7ak1Rimey8wkdyFhENvHakrxFAhcLoK7HRlit/GtIYSjLFE X5ZW2Ysog9aQt5zHN/PufmtKq2/TypnpOEYix3fx2JvCjWoDasWJySoIrGoC T+4tIjACgeUsgVXuPl7bp0TyGvnivkf2ZH0x5dNLrn9ntqpJ/fqr48mGTRs0 nU1J9UDqHJDaxsWeInUeSMWtHpkGqVhOG649Qi9FaCD0hvogDpg9cnwKH81B MrBLdfZBpvfLTG9vQZ19O3pp/BLUmevVszlz5aitq7aJ2QDMtoBZOkzTBmZ9 HbCPLOq3AvY4JorHqe5DtW1ojbjkm8SYZXIPj7tcsFoTMmlvqZYlE1lt3xjI xHI6cSXzdILkxaE9ydB9m2QNdPerf052lixfNAh6yVddHbjfmW3VRINIE72l HNEQgBC9c3gpOFb/5XVF6mu8nNW4zgXbPshuBce94LhDOPbFhX2dRHv7nOT3 vvOuRLCZ2VM/tdd53u5fmWbzZMTvmGbk1XNpwROY6/kGQe1nqW+3qd+3ZilR fzxDvc+trKE+5EbLRDSNkH1QXwX1NE8AzU+PgXos1DcYLygRtEAEivDnxoh6 sP4lxfq9m3gp1jesAOsDc9RrSB7aMpiMPDMk640T404NxLdr4iEJE+ERrury T2+q/1nAvDPA4a2YXwHC+0F4BMKrjQinoPb0ThoRfuFdBDbGR645Bc2c068D NunByHnEdpZwnD7iQUWWcb+pZQfc3F3FoKIB4y4IN28Dpeon0F0B3S6f0BrH 5qWiu8Ome7+iu7fmpHSXhO5Q6PZ5cmEiPeKa1kR6GXT7YLtNSK6A5BAk10Cy D24VJxuWq/6i35Gl2FX3oHhVV8UseMVSHquuXVZoK16JYQ/XFmLYsxlW9644 7gK9c4TeXtBbAr3lLL0x6PWEXlfvBxl6sVRM03RQ9oM8al/Mr/384SU9KnnL tvAMzU0C229ErgtuQ4vSTElcMTNzbLvxciiW6VBqp52gJ+7dKAQPb92T8uvx eNDw6/J40IRzCH4jCecS+A2y/Ebgtwx+I+HXB6UI2c0qZJ8ekvXG8XGnD4R2 W5UWuAOh3QXROtDH9XEVdC4WOrtBZxV0xkJnO+iMstGqvprN5JETFKyZaJ3R FbMeMY7oitkqtPQeiG9GMWb5Eqo5+siWgzukr51Yo2gEXzToahfmXBCHN+9N qRMjdnnKbphD74ICmZeTxqjPAxgToyGXVhkOfXBYA4fqqyAdaw9WsWTY9EFg lFyfme0Fgb1WVUVRqajrb0JgAALXgMDlILALBLaAwKCAQIrHgAhU5VN/SiCW IhTbJtbJEc8Uy/RLf+C+1bNzrWxm5YikabGXGq+6nhbj5dNTV87wiZGUWnLd oBG1ZR2Z45vSyGzlqb2ZJ3hNqHUoKrlJ3Y2m6AT2yetJLkmguiC5IoEagOQ4 b8TM74s7VI7dsgkL/G7BIGGgz7HdmMiuCtn9muzrb89yb/Qn7znzNNnq8+Tl 8dGU7PVbnU3geanw3AaevSzPgfDsE88x8/x2yvPOp3ffGlwop4Qsqqlyxq/n +MOLmuozB/NUezbVclCoOc9pCPtZnrF1mW13G7KMUfXmNJ47rPH1BC+nWWSX JKgrEsVVCWCPm1vFbSu4pXGRilqcEQXBgU0wrQ3L+plilV+fQn6FFStusZBf NcsdYDlM3r8w6yXvv03BPcYt003FdDuuJZCumqdf2My3tDjJqmUDyeMPb3XW gvkoef2oMuvXjk53gv4O0O8Q/6Afy6GeuE2EQI7tkhDCVAhmcdB7UIKo4GCq gmf5wwuWCs4fpVrLzDpmpzgFE/fIw6doQy5d9Oaa9YGud61FANkDeiUuqMZT D7c5by/g3IT80ysynJd4hHtiN29dqFDWxFdo1KGQ2zPGLTLtmZoYd6GDisQ4 TdID6KCBBDxIAEl50yB0IOuNiXH1p9e/DQFoKXiQQjekEGopUFOlCIcUenAt Jzd/cdMjKYTJtY/fS6a/NpoMzHNoKSkkh54epvprLtSwCGpQhcNRnGQ4gtHW ETaD1qwZwN9Gpo0E1O9wDZKdz+ymAyPmgPLMUceWgvx6xpaCn52W1AvBzwvB hRK8rBD8IifICoEmk+QCbVx8Hdu80YT8xJaUft+ivxIK/bF2/BO7UsentE5b hR7UQAUZjbxIDKkX1MQGItDvgn5VgW2mCnspJvgOL+XvindxAMU5GMdSOjbc UzdVSt7/zmwfuI81909/aUhsoBPXLnCvstIPNO3zFOVYOxXtI08PJ9NH8PPR qVhT3C8A9xG4rwr3GNodSe2gC9eWOilYTiBSUE6QnlPPSiFTlj/NH/hP/LXn UOqlUvCyUmiQD2KowMuqgOzAL1BBxO30+CbTXx3bzO20CxFE2gDm1KrJ01uI dx5IE+8U/CH3V4bumGu3kxhznqTcTu+yN/XUGHfTT8MLDPseV3GKeB98I8o3 qijfOyTrjWPjypMM0y53Ve+jkFNMVwqivBXXucR0KEzv3L3BZjoC1X4yfXT6 HjA9H0yXwXQJTLeDaRdEU6jXhF+HCE565yh6v/uuighQ63OUrxFqXeI2rdLf OCgBzvMUv/eMPUipY7VBgLtZagNQ6+WpvbHVap1DHpKNbzKTkmObefzpF1K7 Cw5MrbOhNshSG3FrZSK5BGp9MEvhXKEpiZ98aZPybrM0sT64VFX4t2aJyzbm 8v0ZmLWO2qoVtaOqEgeXVVwXE5dBlsdHFI/P4CCx4nAVOJwLDmvgMLJqN8Uh zTmrNoeaP+LQ00F6ZHIKYYudPHmkbeZoeoAV5RuO9j2dIZIStnTMtlPj3Xqs jvnSKbMDa4gsgUg3S2QAIj0mMlOWBzzHHt/Ec+wARLaAyCBP5JyOfiKSTm8E QiSdZwqEyIBnICZGIy69DZG0QaS+3guP7iEy1VJln7q6ydwe9dlAD+bUI3uG 7EBtAbltIJfq71DIpUBtsSozBCvILeG6DOT6yc2/xTRk+uuK4ScUw+h1wXEH 6F0JeueA3lbQ6wu9PujtFno9TW+fRa+Lq6s5Xrdl6Y0t9zTm+Jzm+Cl7DmZl 48k0WM0+u8UxdqROmV3eepZDsOw2ZZnOxkZgucq7Fcc28yYUsRwXsOzxTPuE Lr19Hmwalj0ebJpwpWMMEVimIlyJ6oXtiuCNm3gpotcvQcE9l+g9BHrTpSqr 84hdHcAxOC6B49SM2zXH6LRMAAe4LgXHVeI4sDlONq4bAMsqjRqa+0BzO2h2 pdMOheYyaHYtms8oms9wFJtYNpEMhuntHnSyzdRe5/gYC/3awx+G8wl3MmfN 9RHt8hn0BhHt8hn0a+f4DHrRgdEYXNOefQSuq+A6bMS1K1xTRHu8f2G4doVr imgfXMfg2i/iWq31i/vptARy7oPrB4lvs86Oj6u/+8H52QistwnrAVivZlnv KOi5PFyXgPXOJqz3gPXlYL1X91xHmfAIhFNpVQLhDgW24VvhoK424SqsZ56h R/MvjGaS7/nDztBbI46z1x54emnyndSNlhXRd84xxbN+4ANz7Gs0w76Wvq+2 3lkmoksgusw7y8c28/Z/lBLt20Tz7qOhWR8JnuTlpIRXJK49iWsv+dKGTep/ aH6JXdfm+MkhWWfHiOO3FKmK6DhLtAuiW7NEdxHRvhmkgGKsRaB5rqb5B5+8 R1TbNPeB5jbQ3JW8/jLtWh2dBuFYqqE21Ku28CjOv2I2Oolye5IO6xD/fXPT WM/wf+Tk1K3BRWLp9FQQTc5M0GsZqBpsj60Cn7Y1rMx9V65ehgq4CqOdrKt0 bKepHqTcTvVAB9ZK0AMd1okbBX4sYiiDfT07M+w7RD+X1/Q+4UoCysO7iPN1 9ZyXwLkPzkvCOaVt9YXeV52V4hxLVVbq2gn2e8B+j1WdbUSY/wI91Y/J139x c7AJ/63gv5xMvzy9BPz7yWsvT3cI6x5YL2dZD23WZ5l1H1dXs64j3mLds1lX f3YeNr/2nNVX7banrD5vd6T0+4UWcCpnAdxj08NfEEBJny+p493XvL/4eO6x yDJ4j/kY0DEif4u65Hifq3g/YXgvaROY3J0zAZIByH9yjOcs9Dz2SUoCe6GD HeuV0ZulNaHS+hNDivw3VcusZOBCBhWRQRUy8KGCDpDfkW2zaskH0mtdUfGv uHfm4lpKfvy3NxeSAkJWwGlWANbO7apQf3Z4DvgfBP8x+G8B/x3Cv97gmjzC x4aCPP+zaKBZBSjsdj67+9bgIBVlXkHMn0/L9SfseavSw6jk9jrnL4h6vLsa T9lkYUezcofR31wFdBa+AhXQYcmyrQIMWjIqiAtUEOMac+4/qfOBPpJy8OE9 oF/9Tl1VculU3/fQ7iEX7FfAfhXsc4oH+1gO6aAVOihxhad00C46oKGam3xw QSlC6UB99l1p1sZHSQx9uM6FGFohhjC5+UtSxA+1IhY4tLQiBqCIBVBEDYoo iSJ8KCKGIipQRCsU4RcowsXVt2Sh2rqZZ3aQLJqYQqb222VPYtPKQEawqT5c yEMfzde+wDtoShVV8YGQKc804SnlIZ/OPLaZTyhX7N7t+L0bDe0417eLtzZd ME6uH3FBfxK9G4gOkoPbFMnrNslatxDFu+LaS17cjVmZYjy5dm42+cG5WXUT 6lqzqb/+VhH1IaivZKmvsAUo6vtAvaepPz3OrRyo78F1Bah3kx//EjkhQ/3O JzfY1M8D9fNBfRuoD6XmL6LeLaDes6nf9ezuG1vWsZs3p54mMebXTpv64nyA VIAtmGnHeAPbgmfbApcFDTMDK8K3a38+Lz2+iR8Vq0EP9JxAFXoIoQcXctA+ AIifuRePjxlReCKKUKIfenhI6WFtVg8qoXSgEHjgnsHkxV1Dsr7xyjim3+dQ /Gld6LpAyaImanChhhZJCO1Qg8u1oDGCUKthBZo+bQQduC6HGtqghojUEBQp wVkAKQxACh2Qgi9dfgAp0LmWGqRQo3GrBy0YJagXoK4eqSBAd2AUwItKg5m0 IdBZgTSwy566p9xfyNcCHPSeHfTICaclBVw5W58Crp5LU4DXhH2fT8sfo3EO TptOUKOPDdYG7Ifc4xv29cnS5xXvj63FhEaxr5BYt6A/mdPuyHpgDcbninV1 /cboeHLtm7NYKnLUNYAIQhFBzA1BRgTt4gZt4F99lQ++Mwv+sZxUCVGBL7Th ugxK6IcSAlKCZysBc57tWxdCBnMggx7IgBQQQgGhKKCqFdA3kPoAKcDVEwD4 wL3rjHkrDeD9kLShGzM4r8uDc4ectSoH7LRH7nrLfcyy/7t1gapdENo6cIt1 UBYdtEIH9DxWS70OVuZ0EPBodnI3j2b95N6lIB7/pho7SX87r/uZ+J1E/MuK +DdmsZwyiPdBfCzEhyA+EuIrIF71Azb7VbAfgvwuyQUlK/pNTVjDdSk4HwTn XkH0b1w/ANadQdDeJ7Rjl+DlaXCPhV0CWwUtUEHJVsH3WAWRrQL4gD6eiOJw jE1AD/os+qkEeJz5f8pO/3fAvwf+78oHmP/8UQtDfhvI90B+K8in7Ta/Efme mICX3LsENZ5i3xwEVtEER0v2PjzkJX/yhmJUEU58u+C7DL6r4DsA3zH4bgHf JfAdgO824Zv200rCN8V4xYpxdIHgu4LrEvC9Gnw7VPclX6mnm9juFbaJbNp0 icFxIBxHeY6/964qicC0n6y/dykFOVE8puPcI9Z0nCPZk+ErkqXWG7KJtgyf E36QHnYzNOc5dkGxHutdPWfi2S7tpa33+em/u6DUTbYs2eSCTToCDv62DYFD s6LkT84qBhWhsRCqvpAu7qjAS0PZB7UlCeWYy7pMKAegtpqltqaptdu7GNfF oHYTUasyg6rovvJ7oymtj+KIlOJV1XSjqlZ7fXS6O8twSRjWx5IncXaqnmEX 10jTfHRqyo5klx5bjimxW1Tb8QyqNcs87vNslm8fzr6u4i6fyVVxuej2chrI tncU0x4/YHtsMz/l3AYB0AmKICeALUvuV7/bQkGMdi8fxNtUq/4n31B0K/Yd imfx8DSwK0K8C+IrQnwA4uMs8S6IbxXie0B8q9XKmZiOcF0E4jeAeNXh/x2x /6fM/vyFiv0NzP4giI9AfBuI725KvFdAvJcS7yXr75P4RvPVOLiZdarmvsS0 83wvsLO4qeg4wqnDT+M6R3YsYe7zftxV08ILw8+tXJpGOBHsUIjzYYktGx2i mk/LUEN3nGa7fDWkYy2bP+gle7YhMX/10Hjyx78/m/zxN3CgwbBdBr0lHeY/ +GZRmPPwltu4t5DUjZd74L0sXk5zPBRtM7NcuNHZ5A9wbMqEfrtWQE8PVW2k AB/XCAoIk5/87c1O8fce0kKY0QKW0kIy8tzwQsihCjlUIIcuyCGAHOKsHMjp 3QI5BLgGqQ/cWrxYd2UTjRXhQgwq5M9YDd6j/OFJLQurtze+39j4cT1d3+J9 Qb2QIXRCL51NBLJlLjvA/k2r8TGALMpQREnH/7WzufgvcWJX+kgTOzr7N1NZ pHbg8oTPyKLKeeADdHUZMbRBDG7yISniEZW0v/q10eQnv0DZrq4LIAY/+ckv kRZ+eXNhAzHsUmJ4SYuhDWKIIIZOEQOdqilDDK54Q04HYaoDsoWZ54YcczZy jN78qzgZaCn02lLYnpECJYa8QxTlhot2bnDBfrmI9LSsU1w7pWwKANmbU4do 55kPGA9p2Luqvzv587EDtMC8sgYXzMPvlS0o+rFU3KtrXCAEKggiCIGMgrJB GUIgHdSE/powT7u2cZZ5SgQ+mG8j5v3kzanxZME8B5xjzQfvfeC9Fbwvz/G+ a88Gm3c3+cro9HyQ3wnyPSE/BPlhlvyaIX9eSn6Eq9/MBEoZ/s9r/nVaGDmr C3ztATwG5p+qIMRPFKaGO418qgq8vAhWahHE+TpgQsd+mOvtFeXqFSry1Z9B Cij8FO8OBX4Ivoluygch922G5ZiLPcNylYP8fU11K6imQxiVLNWt3Kt/+LYi PQ3y9z9+Dww7A7guA88q3P/u5hqd+As4Vv9RkTwAkntBckcBv57M9Q2/77yL hXL+e+96Orj75joS3K6Uey6Y0pP9HL3I+ppZ3tUJJenPTNSPcjzt6xdPpVMc Fyx7Etelu6FU1/YTIJft/PiWvJ17Yufn9mxnht3kL4hm/OFXR8YprCOh2Rea A57LGJpDbs8NzWVO8YrmFqHZA8010NwBmttBc8hermju1TS/+dp4svuJDURz P65LQXM7aF5GNHs2zaoIVUQH4HiOcOwmr41i74ayOaZ1U7Rjq4mmDTz1Wi2i sYhrV3O967ndJpYRyPSTU2b1yG6Glwu61R9bsYxZzXaLcNaG16zEw6j+dGbv JjXwlGi3gOgo25f7IJps2wXPgRXA2r+ZXl/T++be7cmyBYNEb4hrAHoDoZfG bqEk7YDHbobemCv3TBS3ZwO4W0hVWXoWzC6Y7yTvf8IB3IPrEjA7F8wuLgjg TapyV9yqu1Pk9oPcHpAbgNxKltyqkBsURLGHa2zTq0LZTNA1vaUsvcVebcjd lUvQVjTn+W0ewEjPqhA7mBZiafi28ch1YrPpzHKsZoLWA6vqMk4GPUcb9DeQ IdXVB7WhUOuB2kio9XisrqhtAbUhqI2E2gpH7gc2v63g10s+tEn2NMlf3j8k 4duF62KQvAQkLzIkn1Ek77VIfmyrUvNXELwmgonkciOSvQKSfYlhDt8b966X isk0aYbfNHY1v2dh1iPOI0wvj1tD2YbN1WCmBJudtkqwU43CmXJyzMfdr5zl Rw8t2rvztLfyPsvEZjORsWg3hRho9ySYA027bdgurh5oj0B7SWiPhXYXtJcl ogMewhjDLoH2ALS3Ce20txaB9i6hPbRiW5FNtLcL7WtAextoV+XY31Nr/mfv Ef/zFynuNzL3KsBfUYxPv6KKr0yUlyCAMgTgQgA1qcXcAgGEEuV2gE9oAdgT uPMc3SjBaafVVGH4tY0/PG7l6/NjdVEe6K0X2mq18rVEvCvUl3LUezbtbOIp 71GWd+nJUxNP/vxVlaH/nFgfOxAS9T6ZOejXZbgrxFO8uyC+JMQ7FPDcfr1J jydoCfg8YjWRH3Nplon8CBIoZyUQWZH/1a+PkgRacR2EBDZDAmjK/v4mJEAy mHs7MZQhhhaIoRtiCCGGuJEYcjqIcI2MEezLGYGX18FR0QEcQH49lNEB/dPm ddvtdJC3AB7INdOB3mHJ6UDbflYHsbaAYXRmSOpnqePS/DsU+Tyf+SbNZqQT N9S7vJtiqA9BfZyNfh/U17LUx5p61GzaAZwWXBeC+nWgvhXMM+FhhnAsRXjy 0r7hAJy3gPOScB6B86iAc/Xt+i26Y1xDTffR16bQnJNBByndIcUwOBTDP0wh r6OdB7I8b7ei3QXNvp69WG6PyD9lDtzVkxyAZM7vpmCzqvIWPkozsZl3UsOU 38D2d/BL/VYIfkua3784diBZrbL7qZfGnTS+KyC0pEP7+rmi0HboXDT4xVJt m/F5n1vtDNOYwl2YBdNYKpbVtVM6sYrm/JH7ByXcK8L5KnA+AM7774DzDnAe SAMeC+cVcI59tqPT4Jx4Lxn2ldB+X7Gvlnohiv1As79+69IbCkcr65cye+0U 83khHBLP/5KV9gviPfV8V9J9wxjX9C/W9EdZ+kugv6pHLFsyG+mmVnchAE7y EAAV7b5IwU0+PUZF/FPs+9BDIIkeBv9GLt5LnPKVOioQRVWL4v23UlGk4U8n LCsiihaIQtV3aNkyUqha4f+ErvkCXIPkp397c37yU9pF/+nf3YQoKA8s5TZO yaMvJw8qCFN5+JBHD+SBffjRacgDSxUXr1NhQCXCy3jk7WVu4hU8pIyL7/J6 510Sh0/i8G1r0CemKMB1ZeBCGHZBeFg1c4dNFthhjezPZz3iTkyCRjXcBNCA Ri3uBiLLLoxWqLcLC/RS4ZN3Ob2YLoD0EkMgkfaKT8cPQCWkFFsvy1V+uGbm czHXBz/AJs0Pvskb7Z6ohIb1JJKaaMPh47cf8HJIJa1QSQUqCQtUQvVBlHxE UtmuXOMD1QMqfaioMCrphkioxV8PbfTq+qBAFw4JoxfCcJPXX+GpbRly8EUO cZEcLqrmz2jCSw1j5rnHrXOWblYVjRPHg7YwwnziMJZRJAua7+gn59Aq6JWa SJQ3EZNDQmn4a3w4f2IzH8ot2aKwe4RUFKF2jXH1GaTgUxrBti0Nac/yDrwn QoggBB9CoA6hxOVhXggffCsnBLKLGEKIIYQOCKEDQuiAEPzko+8qrbAQjqhq EZ7xUzqOq64DEMIyCAGeoSrFn/BytuDaQ5LwbElg9PPY1lQPPvRQK9BDaCcO 1oL6nb6mAyAuJdy0lLi1eIl5fxkoJKJt3gv2SpMKikja8Tt72JFC8gH+8Bhd Pds+MBrSBYY+uzk7bSWXO7ANjxWCn3EtVWTONkghdFy/DIXYp/VCz0n2b1wt aeYvXk3TTChNJZlIrL1D5xlKMD4PAI1aQp4QGbVEPEYwaqlALS7E0iJmEUAj VTEL0kgMjbRAI+1aIwsVYcYsfFznQiNLoZFWSGQjlNFVYBammfBEHCHEUYY4 qhCHK+JQ/+bky2mR4RZoxRf3KNkKsd3DS0dJ1l4+W4gpO8hCjoqFZMTh5/NK w7TC/uHZ/sFliH68WitFdEK7QLwNZGsllUqNH+ma2MxP+lRsqTy6qD/pqznJ zNPbG0vFh1R8SKWUK0sgFZe3BIxUAp4VG6kEPEw0UilxSaqkUhOpuDxxykiF 9v06IZVOy05OqWoUUnFFKksglX5IhfJK551LpVQkFd+WCiQSN3IRbj3ZQEQe QZGB6CGxn2aZo2QgWh68f+BJUSregdZGNaEXptii3Lt2kbCJOoKskZA66IG/ aqoOP1nTW00eWtzNrQra0b/Q2SZVRFkr4tMJblxU8YH3NdBi8CGGSMTgZ8UQ cydqxNACMagv9eHMLMSApXpNI4s2lsVHb892QxZdJAs/eUtVpnARJQisORDF YohiEKJYDFFUk5/8ShWsP/7VzVqTsYQn9WgEecRZeVS4RT1JdrJ23UDy8vQU SSNqIhBVjWb9wyfbiOxNhpFzWhVnj1JB6tzPstiuK1KcFjhXVJHq50Fn6f1Y 9IRSlgwqAxECl6F5HThFQqCnfGsQgkODyWR4zVJyiSP3r049IpaJdCDWQDpQ f/2ZVsPXDqNtMWrwRA1UfLq8jWTUQEfDIskitFtIYmgXDVShgRAa6IIGeqyS 89TpUepG+kQAqyCANghgAAJogQCCJgJwswKgk0QtEIDJIju2b012H9hNhMeS McQN9u+2e1NNtsS+zfThLMne0Bua4DuMfc4QQb7C1O/Ck0Y+TaEyW0p+tsKs gW16C4ZWYtu38wGYbki0C6KJZ/XS33qas8EPTGdKbLu8N2zYdvhJj/d5qV7f 8O7zNNq4QJmrhw9xytvwXgLvJeG9V/P+1uuqK31yA/Heg+sgeN8E3vU8UvGO 5SzHtQMKUH+BISUJ4PdHFemoMz3TfEACeAic0gMlCq2BstbAlywNlAtCPzSh P08aUckNxKiVGziUWR+WCwydOeJsZX08outKywTydeWdOQC95Sm/HY/dceSC Py8Hz04AGE5oLbjQQmjXA3D/z3ipf8fXA5tXUytKkwqtCYcsgEdY57DrnI4r 3sfJgffP82HvisghghyirBxCyKGalYPKDN8jL3hAtZ8/fI800YXrQmhiHTRR S376q5sroIROUoL67v+QVJDMH9STqx1KBftZBZ1QQRkqCEQFsS4SoIInoII/ eBerLGYQ2mawyeotNGFs/2ggC+wfNDv32cxHtjPwf5t0jDPk+4qGdSMpwL9z BXi2IQyvzlh/KgKHHIGHEOMHnNQaStoV4P9PPTKUTqjgAN9MyY+lLMDE4c0i a3BIDNyFfgtDTZMc6LxYKasKF6pozarC06o4MjwkTtEhqlgNVfRDFctSVYSi il1PbSBlaFUUCQIDzNFpfljAPDagXQL6+MYf4DixUkilwCr8vFVktOIWaOW8 tgFtEkYrD1sV5LnbVZDsF57tF1xL+reTSi53tEAq9M5MbcYsetgs0EsETXVi Os7PjqW2EWvZfHb8ACUTlA4h55Hr2M1QYilx1aC0UhG7wJDifCqR1Dh8SKQs EmmjSbfSw4VZSATLacO1U8QSaLEsXOCIhbRZI86f8VLOoK4l/NFyCGgpBLQE AuoiAQVF4sGM89XpVkioAgl5IiEXCvJyxqKEg+Vl3cUoZv39egxuSEXjYYzB rAlJFVb3MSpGc6+tnUhKzIY+Q7rxm1qMl+pGSsyH5/f7WYsh3Tj8vm7Heakq PzUboyJlNqmIYqgm4sJDiaYMrbiQiq4+KM+YM8qeCIaOs3gimDLnlw8w3zIy cSGTqsikCpn4UElHVhyhFsdR5SRPaidxca0lP/vlzXmQRGvyM0y9lSTWQhKL IInuBpLYuYMeV3hVqUFJologCTYTowj1O6MH9pLQ9hJaR1+fgpd45vBCVhB6 5glXCOw98pGzrAkjiG1WSfpbmgmEks4qePbp2hrZIW1IkUbata1QBqryiCIU RZRk1JkqwteK2Krk8+A9rAhfxBBxB/r+m9xzlLj2NGJo4Q70wxmeRJSggxg6 aM/qIE4+Jh0sUiahiMdyqiKBRZBAAAncCwksbCSBTZsGSAIhJFCCBGqQgJtP LF96lNkPwL7bjH3lCeg1vSZ24BWzT13nFntTPNt1np+wuk50NVOSr+qM4eLp ImNoQLqXJb1VG8PxzXlj0KllsDvVQKRTy6djaWqJcA24DTWSCLUkBjqc5I3R cYjBSRNKyBMqIwk6HBOIJKo09lYt6LdneSYxM+tURSF0TKYsTtEho2+lkFml H5bJo6oc/ZpqTSGTCq4DkMlSyET99lc3N0Mm8xvJZKOWSZCViUNWAZmQVKpa MCSW57nqCArSh+MZn7i1eJk+aO7zFFILY9TJpwlnsy2MyLaF4jzhixwaegB3 I3k1OHcgh5plCVoSqm5QcgjvUA4B5OAmN46jQfnu/u2kCypKtSICUQRljBCK iEQRZSiCBJE6BZ2SaxGnIB3QXlgbdFDWOjivWlVtGaqM/RkORSodLIEOuqGD jdABzSl6tA7s3iSjg5iPzrz+yrQhfkgR/ySI/0M4QzZP+OIU2iFS2hv4AZWW mnbeBQuL/EAnlamC8qDOBXIqcLMquLF1OU8onqM3qchUma1cZR7fLC2ppIOn tjP3AY8nPtVVgg/G/WxOCIhxL3nl4dXJQyoxoP0o4Uqn1kOh2+eppKG7xK2G oZtmkQ7xzWXkBcwnMwaAAnN2FsRjqUpRXauWFXyoykpIIMZ1DiSwGBJYAAlQ HVlOfvprPOj0a6WDAjHMy4shhBhaeeujXgwurkFOEdyFZFwAw4mpbMKYmdQJ w6OTdB6UQYaAXxttdUQ81L4zU8Ck4nR2anWJtHDZvJPNLRXTtBta5AcZJcAB tqmk8J07UwK1FrFWwvaV3ckbr4ynUwiP97WMEjzerDBKiHgUoZRQgxJqUIKb fITO0wR+G/h3k48xllSs16zAR70I1iNc+8H6IFhfAdY7wfocsN4G1qsp66r5 UaxPa9axFOvJyP5hH8QH4gLqm7z2SpoN6CidCnujg7N/+C5WKgXflkL/PGdm /+OZKSOFNKd6EDmjw10OxHvgeignhQdMD3q4edmYmVnNnsrOrC6edgqzhqvV caWxOlp4dHV8s55bcy9xj1bIX7xygATi896FEYgHgYQQSEkaChKIyhAnoJLv DqsM0elAKQ5tablQSSwqoadcyqISOk0bi1+UoRJfVEIuUYVKAlFJq1VNGm8I RCVUTa6HSnyoZDlU0gOVBKlKvOTmr24apaiAVzpRf6aVAqFw5+mLXFyoJciZ xVkyCyOTMFs8qH+3e3j3rSXLLApJJq4+D5+RyYQhX7QitrGBP/DwO+akYqxj os46/Fxe8fPO4UIkXiNtuFnnyGjj0YX9Sb/KIco57lAbejBxg5eKZHX1LZU8 tJazCp2ocPjRx/d5OamrOGQrPLA4jxRklONDOSVRDp2tCLP+UoJySlBON5TT ppVj+lEox8e1T5SzDsopJT/79c2VUM5cKIeqTBeasfxlpyo3LX8pEoxXIBgP Vy+bYoxg+ufbPzUiIxgXJOvRxHk6qis156j4CWskHHrjSGFqyRUe0ErWS1yI xc2rBPUmqeRhej/M26jEcg9RicdHJ4xK6NhVJCopQxahlgVSzMjuIRKEy7NO o4OKEO/xVpchnk5XxSC+TYgPQXxViO8g4n27ARXDWAjaV4P2btC+XGj3kx// Gif0sQN2kyqKPO/De/SMyhXiKa84xLzhXf3HDOeUS3iPPIBJ3Ni6SR9kEL/P 0G4NNM20SZO/FiahDWLr3RpEg1ziCf9uyn+233CzGSQA/1VdXxxQGQQucXQr jtHUK6DEo0xFvpld3phILYISSay1oJNI8v45OpqL81aUPj6wteCQGLjd/Db+ nVFFwBOJjB24UEUbVNEFVXQW9JskiQVSaSyEJJZCEnMgiRiSqEASIUnCI0ls f3xDEsX0I8A2bnWzenC1HoYeU1o4yB5AevChB79OD+QB0wV60HthM/aiSiG1 g7M6Zay3FfG7sAOqLHiXtG4W4WbbjhBiKGszOKFa0MfStJHqweXTdxk9RFxO 3NCOYFTwoxMHklmVLOZ1OqyCmEtNo4KqVsGH30pVkHoDnc+tiDfQ8Fr944/f noUKsJxUD135vvPvsDWurh700JH8/O+RGTC8VspYDWUMilmQMspQRqTNYnRi NNmwRf88qv4BaMNxTXGhas/XeTlVXY8+/MDWZOgZpZBLaEjrFRI1cQyfQ3tm MqMH4xBaD7zzEWJ0VeQQ3l2mh7vQQ4nPx5wgh7AyhJNTRARF0AgCpcP4Ad7r OIYTVfUCiSAQH/pACK/qTratG0xLh4hbU6MS2gVzIZIW0YbLs2ujjRq04UMa HVAEtaE9xiEeVA7xe6OkiCrvZPz8727OhyLakp//yowjlCIWiVeUoIgSFBHr 0qFAEdADj6d8+u3Du0gAWDkNBNBAoAeZOEhT4BQ+U4icEZqiMpMzlENkxYCR FW+nNjUHF1pwi0zBu3GvNYjIKaCFz88ZBWhHsFKEB/5LPJ9uRn3IvegNu1og 6pU/TBr+v/nqOPFPkyg6aBkI/zEXjBn+W0B9K6gvg/qoiHqlh3dmk/PT48me PRtAfBeInwfiF4N49a0V8yAey7kf1wVZCUSQQFlL4L333yMZ2BJ4/VXeIcUQ PpUAWotLKujrjSDQRrDhgaWpEbAIWAFwgqlMqvC1KxhHwK+1/OFenSXOHPnd uIJHtaLexrIEURVLIEHEtiVYOQInJrQlkCRCrhg/wz65EkKQFUIAIQQQgq+F MHtApYouh4RA+xYBjyQ/eIt7zph7TiMEGk1jADUzCzVgOaklRNBFGbpoF120 QxdB8sn3VG755B3838eUOXz0p+9BGE4HrgOQxxLIo5b8/Nc3t0AU80QUZYgi hCgqOlMUiAI/mj2jiDcuYSxZbwukCF83EMoWbi1ZLg9aTJsfH3khXS6k4WqL OJ+zCJiAsoh1rAze3ojoR5s1sAlTqtb7BA00VeWqh1VY4hRKGOnYMhVHCx/M NuKw3EKnjADSiCANTK1fPcCTazpwW68UnweZRinUd4ZQSqiV8ur21ZIyaH+c TvJHopSQZ1gfYs/zQ+o3UE58ZPtGwNOJjG/QXlcN+vC1Pl4+METuAX204zpX 7KMX+lgHfag29Deqx/zpb3iu1cdzrR//ms9gVgvsAwvq2P/ksF8gFhdXr1Ei 8XQiUR4ys39X6iE4U01kcsWZsZEJMgapMGwvucdWjJ/3ErfASIoyCuZYPL0y /uE1Ukhk24dJKLCPu9KIx9sbRiMeNBJBI7GVVl56Yog04vFul5GHz8NuI48S 9xwZecBXUGjyclqyRuJCKF0QSqCFMrjQESNpxXWOCGUhhDIXQumGUFohlBqE 0guh1CAUnw/rQiilRkKholOrRMWXUgh5CjUkARTiiULcZp7CKqn3FJfp1gJh N6FJlhYI75AERZZSqBJc01SjTSUUU7ms51e6/kz9pNIk2dxjTcBJLSHXn5/q jBPwGPwz3ZbkNEJTzhgaKWuNINt8c2ycRlWxFBweb30ZedBhvEjkUYM8lADQ kRj3aKfdD5VUZmchCiyH5BFaPvJ1VYRCHi0ij0HIYwXkUeWORMmjB/IIsvLw II9Wy0dezlWjShLBHSjCz3uGa4jSgpih6RWuMfnG+Qlr6SSjh+EZVfj5xsTl yqVpggn4DK/qQw7syO2HpUK4bWIJby8DlzfGjQwc8gpqTtGAkGlUTAny/Pbk 4fWDkIITiSBcEQQVHnRYtySCqEAQHgTRLi7RAkEE0EM3ZBBpGXxLFaNwCsig hms/ZLAIMtgAGah/8vPf3IQMsJyVuM6FINRf/ET9oRIEltOJawuk4UIaLZCG m/yTX/G/+/tky30PJwuW4PGpN0gPpIw6UTiUSXjWvdwxj1kwU1NciPJWua0D FyLIbY+tzmgh4w7NtIC9MZ5cyeIdVMyufOMM/LNyizXRMJXkVFGCKjzeH8+o IoIqSk1V4SZ/eRJ/+9jqbpFG2pw4/Mzgh7yckojEz4qkzDVHxjXKXHMYkZSs mtR4RUVEshAiWcteoTSyAtIYYK9QyqC9tFYIwiGzoE0S+AVXHz60Qa4Bx1Bu kQojdQsXwghJGPSk6e/IKNawODZZRnE2ZxS66cmUuo1cQ54JM3Pt1DDKd5g5 SBwB74EYy8iJw+FHOm7wckKRSdlOH385eQDiIIEYmcxXd3VOpZQPaPcjnXQZ XbjQRUV0QUeuwqx5RLyL/skslxhlyzxMLVrGtU90sRq66IUulolllKCLCnTR Bl20aCGgsnj2yCESwuGTU0VC8KQ5Uf9+94HddqfqWUKYyQhB9amThU5h74it yojhzp0iLnIKyR3KKXIqaGIRWgnYQX+Fj3enKtDPE5saMwbtZgf9R8dTd6Ai oqTdYVLphrn/nsoe4B/cu1JtYsB5PrWItLBw+NGvj3g5qShCiCLOisLj7VMj impBAxuLKBZAFCshikUQxZKsKMoiCuym/jo1i7IejEMbv3/pbf2WyG98/92G ecTXeaR/Qfo8p693KC6kEjHNCBoQev+icxOpR7wxahII74XxD2m1PMITWeie eHZaFhWZTikjD3m/Km0SOok4dyQPk0FIHh6fsqiXhzGJG8dyJhFxofkj7RTU jJBRRFojY4+uljRS4uLiQ+0PVS2Kj76diqIqovB52mUyiG5GPsFWyCfUtdY1 rJHoYT70sBx6WAU9LIYe5kAPZeih1EgPsfYM6OGTf/zX5BuqrCiSRCgZxNOS IOPYwpIIGkjifLEkIIBVGUnIRojtFLdNG/yIiNFF+lCxNc+od43muaNIFg6/ NcVnvBwSSNRIICF3q0YgkQikbNUZ58bHyTlCbkeMQCqcQD7CEPQjnMr5CMfx PsJzgkYWLewVn3xXlRhGG60FPWqAaxe04SefQyCfY1/sc0xAlUo2QSULxTUq UEnUSCWhHoUZlWCtXH8PsovlHiGk4hVLxbjHrLiHivZpx5aLC624xe6hpbLh du7RWB3WwT2TUHKOUWvuGNgyLUEaLp/ObCaNkKvPGzq/5ARBIy4fgqiYrHJQ ZZUeB6JwfB5fGEGUuNLMCMLhZz4+5qWyipFGBdIIIY3OOmnYtuHjGvP+iJLG PEhjLqRRgjQehDQWiIFUIY1ApEHKCLQsbEHodAJReNBE0EgTrtbEhgeXkn2I JlxIgocMkk5IFXoYes6sMb17dthZmRFGsYd4tofw3kmjLFN00NNPM8zmjbdT iz0rL9MmGr/5wKe8HN/WzWdjzXUT8GjU6CaAbgLRjapLpvAFIZ6HNwyaIziB SIcO94WQTs2WzsffSaWTukoM6ZSyrtJO0glMPyvrc9p5/RxPIX+O54Q+xwbr 579h4cyDcPp5AqaE42eF42nhYLQBwdjiUXnHbyoch2qR5OWvTLGfnNJZJ7US rRyPRBOkohmTE+A5xdg2wv5zm6xDOuETfX6aYvLCaJxhIIkiYVCuiRoJI+BZ 1w0cyrlBg3NbGLS7EoowfBKG0uKa7uTLe4agB4dUUYEqQh54GVVUOMMoUbRA C63QQggtVLJaoOojSH74DjZudqiS9LTqXz9nMZAW5kILi6GFTmhhA7QQJj+/ hdn5LRzh+g0eJMJwVKnCy6pCH/kbPU6NC6Zs//iv1RUp5hEMzL8P6tWVZqJR Vhn8XAAJQxnKzP4nHIrkQkM5f3tDWcHy4H1YvRufGgo1QHzWy4zhi50k4FST Tjg244cSmXcjaJ5lKo3kEXKF+hlOatWLwuMtNyMK2nuNRRQeROEmf0XKWKBy zZuqAPnQtC6kDB/KiCXV0OmcIKsMOgzcKsrokAFojZThJd9WHexiZRdiESSL QchiALKgZqUTsmiHLCqQRa/Iwq2ThZaEFgRfdZJJZVFkGA41L/CKW0tWOFwO 6AC2NDFpacKDFMxg/CjLYLmthpxZ3FV6scuRovTy8IJ+4yIl671tmm3FVnkv pV4XPm/FmiyS04ULXZSyWcTXunhHpRJoA7pwRRce76AYXUTcv36MbZSP8ZzI x3Ro55O3Z6ELLKcl6x1dWhywjY9Vdapk4fTgOkfEsQTi6OL8ocQxB+LwZFje BnE4ZBoQB1WoNBtV/KNOFZX8zV8bkeiEknzz+9hIM95RLBLtG3Ui4W7m/GS6 zpFYUp1o0zA64a3ZoMg1GoulbgZGqpjZj4l5d7WBKvR7MNbnFmMen76SM4+A Z2ANROLymR0lkpI+s/MjTL54ObFdrCq9QC4kmUALZ4dKNY+oGuRDekvGD+kw D973wmiGDv5G4iW0KUuSaReltPKm/Q+/N9ttvOQr48nevRtILt0il0WQyz2Q S8hTUiWXAZbLT2/h2YPf4E35fqNHpb6tDVsfyC31+qDc4tr60AZC4atJouPb rI+Zyeb6MD6yzNZHKI+cnZtolFWCvIHoG0gfQku6Kyq1rOLUUrLeOq1Zaqne Xh0lqMNrqo6KyKFs8f/msfF0QO7wM4Yf8XJKUm8EUEJJlEDHNwJRQjuUUOX9 FEsJP7w4myxe5CQf/9l7TheU0C9KWA8lBMnnt26uESVEUEINSujQxvHj36TG UdYN7pUP3iMVKFHAvv7mr12Shm86W0gDKyhQR2C5hypFU/ew1OHbKYZry3OT ud4WTqG1wQd+0jdGOcdPHNxlEyMG4t3YslwMxNJH89lHlRvcT1/hBpeeHfBF FS4f9jKqcCiz8NT0OArVHx3nvVeYxInUPUr27OOvTqbuUTJp5wWVdnod0k3M YzIjF4+334xcYi5PM8YR8wTdyMWFWlA5PD8k7tEhmlko7tEGzayCZuZCMyVo piLu4UIyFa0UFBw/ZPtgpXApkrx19e2kpR2x+E0agXxfpZZCmTzx/O6sibDp c9vC1ci0nCbXPpIuLRd4SUYrzX3El9zC76IS2q0tZRcYiOlaytnMUjRNr/Jc 7FNddHi8DWvyyR1oI+Ly4y+1gZS4/FCCqEAH6rPX8N/Gd6xOHtk4SGIItJV8 9K3USsqiDYfEwf3sd2gMolUSckObMRU6E9YClVA14muVwFWUNkglNAvpE5Ws hkrmQCUrsiopi0rIWOKcStRSN84qOTJ9KNnyMGcZ93YqmbOAFJKqJNA+Yp/z KfYRnOlZytrgXfvI9pG8Pm7TvuSeaTzDb5eyb9VS53ZSyZSmqVRcPtxjpOLw u6Tc4OUEtmh+NNFcNDH3MkY0vhbNjntUq7t3iOTicv3xkW0jLaINOkJchjba xEEQzt+bhTawnFZRSaBVsuMh1e+eGSWVtIpKFkAlK6GSJVDJMilc/1/e7vzP j7LMF369aq/v0kuSJvvWWchCB6KsDktcomIQETGDJqJMJGEJDQ0NoSEaiLaJ UZTReHTmnFFRoqCGkJ1N5zmz5IyjbALBXedfeMbzcz3357rutb53fbs74DOv V9XIFpZ69+e67qXuakJJ7ipJZTtiKcGloFz+gaHygx+70kDJAIV2ieUaSmTi 5ODFFwYqSEbdgmOKTlSBIhf0l9pQzBk7uuDw9AmLU5tWO19aGwuowqwaaBkV 6cTFJdbF5c2oSHmEW6MilSpQU9CVPEoqHsXs+qPYVPoodpd/DzNiSgW9c9DS KvqgQhQSjHCFhemwkEoL6EplaogxiLKQ8CTYC6+JRy7+1wqoOAcqlmoVLahI tYoEKiJPdkS4x9LF/CVBufWe4YoLEyABDWbgwrwdjShZVIkS/LSPmoITyoJj Vvc9BUfmisMlpcNVPJliag5vJMg7jm+jNZoxUXrWU+mpqOledhKdJQGfiPAT voJY+ykAJuVu9Uks5T95q9p7fAjr+WqBLtZMMmISlw+L9mOdqDhUZSSSBpDE LpKA30z5Pl+i3igubS4wDpfcig7RthKXFu594CKk4IyMF7Bo/wJmQASXC8Fl EFxmg0sbXBKXS0BeaEhz7ac2iZ+Rx2hAQ1Ie+oe95QVXcKmJfFJSWwpdMkci blz3jHIfElksfH3IGKfIEmbBez+yNZMrN1GdjTFTaK5YOLuYwIZTZ87QRsxT 6spGChuJGyFReZhy5D2iuhAQennpUZokw0jG0dGjOTS4K/VysMe0TdwTcJgO DvPBYTE4xOBwGTgsBodZ4NADDrHmEEsOkoJsOiwOKCjE4WuYJHMKio/DlruH KTRosy/NguwZ5ZSIJkgJebyGwyEyKaGLSmwXFQ1iMmEhSowBkUxcYlJdYnwg Mu5WD2KF/+DNvHc0qlNB2z5SrSKBilSpWDNQPnTLNjO+TXmm43uy3aC1FTGm tGlkoNFwaTSsVlQlRYp7VL6A6vICTlF5Ae85voDV/BdOn7oENBZpGr2gEel5 ssimcSPTSG0aVFPuHa6nkTk03nbpMuo2Hh4NTCUJqx2Hs4Zr2o6dpu0YZCGr 1RxZZ2Cov1xVksD7cQp+DVbgKM9qcluauzq6l5JM68jBIZ0KhxgcMrf7zCSH w3duLB/++Lpy0ayAOcTgkGsODe4+FQeaRKfto23NYRo4NCWHT4vx69UiKYQB 8S/oSFgCCTMgYTUkiBx5A3Onb2Df4GlRTISJPpgICAVvK32dvm+lJ0Nuu5tw iIbhsX85QTpC0hFTHYEQoQOXDwh3GTFC4/TylfKHlbpQCYM3lmbd8sLlIE9h 2jpR/eAKpVQEkdWQPmzKRzcPvhl0kxY/ucmkBY1tE54NUzxiXpZ9EnvGnqQ1 fSznKx4ReOSaRwQeOXiQDvHL3/ye1eW6t3MhoYXZiBdalBHaEJbASK82EvCe 88f4Ei2nEx40js3LA0RmqUiQ74sEeYESRJGZq8nMB5l5IDMTZBaATAgyAyAz DWTUTPvdO2V4/As1pP9yIjFGxLD2rk26uIS4R12UiPwY33gVK9knlcjn6G4v FF6GO2uMTBDlhXeC5O7wtqYdjSYIEVVd6FvSWRc09gR7i9+A+/GneXvQlNBQ poS8KejQbbwKQ7tKC3capACaRKKx6wxtBAmBpqG7jwxoMh0sPRLNY180aPrc iGlLL4iY+8SwVnuZqb0MwssyeOnjPkR4WQgvcfmfb/DaHXlRmdI7LYAS4yWV YxlMu6MXEQUHbamkktPiHTWn6oVafn/OakvsdNmHY/f2jPorzjAt53aSQYlZ bKtJfCljFR07YrxF55EdpuhUvKRdp9yLrl5iXpA5KBvVkPcMKS8Bv2V/iK8g 1XICyhueUb0dizTKUEDJA0NUmyiCUqlJliiICmgfYsCvV36Pr6DQrlKecFWu WnBFrPq1pl6OoAOG1LjobxFDL9CZ9IrUHE1qDUjFPPWqSGUg1QapfpAKy/84 zZuOMIRfGpQHpKtE55Ac7shGBk3M174ealeh3rdoaRLNrUmhHTKFYjuFvJpc Ua4mX/50aOr45KplifaPiPzpaqmjYBlLISilb0JQU5NpwkhORmIyIssUT5go EjEv2SgSDe5hHBJNkMhAoleSeI8YAauUiVwSNNo5FySy8oU3MGEiq1IBEk2X RKNCQlzoaw2J3WoEzH1tVxKYkbfCRQ95VGEasQpTl4hBGVrEKHhfUW5Pp3Uv TJHcN2vtUKRpeREwXUF0FKMKiAwgQt5OpkpQwAe5PMlXYIpR4VpQ63mHh018 UDFqWMXoxqvXU1Q0tYuQF3WVixwuUriYBhf9cJFzb2u5QFSoBte4mA0Xi+Bi CC764WKV66KhXURwkZGL2HaBKwONWNK4AtOrH7/S0DBVKJXTaFZIYFS6Q53A s0ddzILHw76c2Mks1ldJRDYHXh2W+03Gh81CXm1I6Mn31GOi88wGEtGEiHgq IlLd06Kq3GrCghqVjBuVp7CM9xR1K2hUDsvYIBtheYSALJ4dlLtv3VapJT3a Bu1Ozd3MiGGjBzb6yUZMmSE7WY+MVZAxFzJWQMZ8yGhCRqZlxJCRyMS48pq1 5ef+cS8lRthhwx4OJ25sKBsb1IT7DmlDjoHHR9TP825as/ckhLLA+8rSunjo bEIqTWtHzejCwSoZFQ6RrhgVDgWef8bt6SEZC5WnnvOYRj31Ak89kk/9yMjG 8iub1uHpB7l+6mj/vrAPjx4XJkzlwCbmaTIHAdrGL+8DAlxisKo5uGNhY2Eh LKyAhWWwsExbaMFCqi0ksBBaA5u/u3sTWYhwz2EhtEqIHPyK/8DKQlbbrcqZ 9h0WDTmRqmh0SQr0pwstHSFg8CtVsVM2FI3QzJilZsbMLR1eFu40SNtjgiIi 4LNdDvIVxF11pDzifUpWjpQnRA7brUQMHYRD/Mq3rF9dvvP8QQoGmjql9VoS 0tbpQK81tDSMPgnjwJcMjH7cp1VHvK9ii5CCsQAwzgaMIcBYChjzAKMNGIkL AyY+Y0wkOh+UiRvFYPdC2VZ0NxGpuLjexEUk7ygh47KEUHAEBW9JtS/XB2ba FRDeYBZXh72VaiK3NcoVXX7d1+0w1BSJ+PesdeKMXNpwEvJmkG5OMu47n8Si 3ZPUfGJ6ZHJYMmBJgCWRWNafO6CrSIQ77RhKXCwBaeGB7hexl12xaYFNAjXT gGW6Pdy9fwthmYH7TGAJyxch5kUssbyIaVXB5kKwGQSbOWDTCzaxnlaLPWzS DjZX8KCX2GR0p54DbIhO0gWQHSoRD37HR2SVMVGyU1IZ20p96AJHitkb4pdS 2FK8YYIiU6OkY8rdKEl0hclcFpQhicsi4UlVxSLhlRfFgiZAUrBIJQtZYgyL TLOgDqMtWTy217Bo404TIA3uQ6ssxu8WQ9bBwLBogkUbLOaDxTywyMHiMrBY rFn0gUXoDlIUi1HB4l9PiAevKowsLgtEcdn1NXxsrUZEIgm8/bJlBy++uJIh I1POEDrU2JYxYZERwGwZ++ymlDceyhkQmjWLXCBJXbnxAUELutXESIJ76vES ay8xr8mojiTmVVzlJYaXDF5y8hLbNQdXwtNlSgut94fA0quN0LbDhjYyQxo5 8JV95XsuG0R8BLRYF8HIgDayBEay8sU3Tl2qjcyGkX4YEb+AQAIjNCvfI+fm BZfy2z/aX667agh/i389kdpaVNnpqkV1IZ8eHS7nLna17LMqTmTyI/HlhyLC +8viNbVlhn8Ra+LW+l7XqD1iQY2J63E4Mxq9wBHwgUA/4SuIujKh3SGRZhLz Yr9iEvGCrmISgUmumdBkfA4mDava3Pih9bJlpXl4ZaTB7apjJIaRtpsjIYhU wqSFuygqr56apaEMAko/oFBrIqLm19hA8msxshVkZoHMNJBR6zcLlwWQQWES dhi5YsNQebUY1mojZo9ZbHJkfOPVVn8qZch+hGWIHNk90pkjFhA6S2q+g4TX eH1IQk+FkVuY1Yf89ExHjZGOCuMzQh1J0tVIrDuS7kbozZhCGwlhpICRljSy eI4Y1962jYwUmkfOQ9rHMO2ueITg0ad5UKsaSx7IkO//kPvVmGuN4jFP85gD HgvB4yzwWAQe4q/9xa9PgQcu0eta2fLzN0y2tKSbRZabGPfEdrNgaVBuE70J 3BSebKH3N0XxsnoTukTMnD57Fa21dWDiyTMa9uwekcMeN2vGZNZIRrxfkTc8 S0pcmCYHSX6wS0+PRO6ekcj6toZTibpDCuGIhsUxLwcrPhFvO1N8Qt5PpPgE lDE8bTZMM+4SUsALw0f4CnKb1JG7xKB587ryXRcMWqRSnkFTpHppAUeUh337 eBhEGxSd7FG4viCy50NXr4Uo8ae8iP5WuVoMV0vgahpcLdKuUrDq07ETAlPT MvQDaSjR2ZOqbuYf95YXruP6FOJOAWRlT2Jnj5pkdWZOdrs1qdLPBvNsJ9zQ 7pygJu3Rn49Lq4mjJk66OJllF6V+Xhd2YFBLG2kYVHtC3qWqYAR8ZsxTfAWU MHJ1T5loGgQJITgqr/eeN0AYTItCb0YUGgNtFSAL/W6+iL/rDx7eV/7gK3Th t+i+TFSix0TcQETbI2IVRNDU+0qIWMiFSIhouyKKiogfcGsrUyW1qhGJ+HqH CGtk7AaI4RB1iY31Y9uqHOqrD/5yw8EaDOs38MaveycXnxoL+tNcjoUMFuKu FgI+Q+YQX4GJiwIMcpkUh283SUElpyGT4sgdJilM8UlgQ/xR6PicqEDChggs JYTeompqIU0ISbSQfj3hHgNIKl3cdP16nRQtXYHmwsUiuFgDF3H54q+xXidd NOCiqetODBcpuYjLUTHk2SKGPNKGn8a2HcP1NGK0rxQW2ApoLdChg91tLs6L uFpTpA3eqhqt6VJSgobzbreuKiYoVEUhHIXGEVaC4lMXr+aC4sORUxvCZ4M8 yVdgaskZMim4MzkiE6Qpy8jREZ0g4j8jW/mqKCuDomP5vpqEJSshr+MqKwWs pG6aNGElh5XMyhAhhKw0dYbM0VbOgZVeWFkNKwtgpQUrhWsllhliWUFOSS0x tNACr/h3QGlBiyK04CIwvimUmJf22I8VLbhou0BczZSdhs2aUYFjruUmBBmj hXfP89BYn/KfMphRDebghctNVenEgq+yqC97mSQJy5/I0kJiIh0nUxKTy3Lz 1G2m3FBHkvGg5zCW8zrZ0KAnhJpckrn1vatRdniuXq/VKCUZlOSukgxKmlCS SyXrRWM7dv8WUtLwKKFKMxNKVkHJfChpQ0mmKw0pCT1KYp8SMUC+e5Ndbr4O Hbt405pZy+kmBgNmqcVJnNEJE2fHViVnSaWJ3elJnLR6moRKHB4zx/aEip+R KkhPqCVfw4iCJ+Q9AJNhdOgWw4i6lmySjORGNsWoACMKn0a1PqmlHkzE7dnH k3F7aX5WjqITno1zilQCUj02KbSzMnxE/jmkFoLUSpBaBFIrQGoeSPWCVKKD JwEpaPqs0ZTgnkNTZGuiofSmK7trSiuBc/CSiyWhHWr34/io28k4bGTqzHHs rO9WrRJftVKTLWqihWbiQk2HBtIBjaTtakV6qGL11enJecp2Qi4htFCxSnge TiHJeB5OIaF5uBhImnZhmhuUn9u+DWMe1KTHZNoQjYjn7x0aGP2gueVLDG3E vWHljupwc41ktkZyNpCsBJJlGkkfkMQaSWQheecHhwhJqpFQ5ETWmIfGzjuw mW0ySHTG7JhsxozJlvfebcrJoJUxYx0ZY9UpvQLE5+KoGkXtLmbzIy8Rq0YZ IjRKjlwiiQ4YIpLx6OcQdpIcupW3wUZ1MFKe0BcwWnpCPwGMloRx9O6N5Vc/ IQbDFw6K//rfx1ZpB0ZAMngYvA9hcmAfT7L0gUhY/gAjIQuGPRjOXBgLAGM5 YKwFjKWAMQcwpgFGpKf2FYxFosT/4N9OTARD1aLuMHjh2ITHDncc1D09aFg8 21GxZsoq5CsWeiNjNThoFKS/RRvCRIVErmZoMeXGV2CamBw40q44Yl7tUTgS 3qCocNAiYKpxkA3Ul7UD5d99eD1VlpAHx4/ZjQpi4otGSFsLaUNIDCHTIaTp GRynuJ8FITN4JfAlMHkJm85eegMDozdOXQwrS2BlNqxMh5WAsMAKTcX1WhNy Eo34JxV3UlPomhN5ak6Me2aYmDn9h62Z2z07nMm2UXeybddwoCNE1RpXy+ax G319SuWNz1B90Uqt/4yaOX3KkNzWYg+IJqsl1tNs6Gy3VXqVlCfcFJ6Yl34c PCnw0Kgo5hVkhScGnkzjSSQeWXMgJjBu2h43PdpNg1tdlSwtz+A50W4acNML N/PhZgHcpHBzBdwMajczeMLtP91kUVAytzmJ7PlaOXwmKKnsbT/zteqkrRhO i9/G6qGIF14LUjtSnGzpaGglFN7iykfYWE2t2bsmU8l6kUudSMEvZIxUplcc K0gVNR6KYIW62R7ewKiKzZSsJDy371hJtJVIW6GgCXlrirJCW1MK3Z4oK8dE KXpElKIlosc3VprcnhzAlKwSkkNIQwtpe5Il1kJmaRxLgCMvX/r1qXcAR1S+ +JtTA+ULvxEjIrUcNEPGy3/+2sRLU6pZbKmJ3Xih3W1hpVuBmkSr0fFyD8/l d2xS4YuLUUe87FTxspXjZZatJqJPi3iLUdd4GTGz+KEmE6t4WWU+jB5PmUwI MdSuxC6UiLelKCh0DkWmoQT06idPyNEOetXRhiDTcGtTDDHir7jtfavLd184 SBlj2tqCRzyOm4S3zFfdIFnUIDrCvRdusvIlNC4vYSfCS3hD+CU0rgIPtbX9 wLMYeGbpshSCjdKy4dq15fj/2ktaUtwTvxZ7ON2pBVP5111laYl1nmBHCgqP W3zQv0oci6y9S6g/Eojlw303lD+vOSI3QR68YLnVvWZVGipNfDRy3rF0kFrX t95CwPsej/IVFFpFCBWZVPE+0bZ8XlYeAkGbX1MXRMjztApEj2cIHOJeAETb A2IOQMwFiLkaRFL+8jc4jkCmCYVJLlXcIwY7n75nU/nDf8NMfr0Ke+I29jS2 tJk66RYpOyYTKTs4UmYOi9yYaauRhehGXyHqeKPYUjN+7RVWDXLUnDNgZvcr amKoKTxqqKcNeWPbIWyU7lQT8NlGh/kKMt2gNDWYVnXAc4yvQFmRVYemS9q4 0yb6XFuhhT/Mmn5pH6zgCoyaXlIT23NxuCKYmQ4zVIHmajNLYKaP21phZhHM 5DDT45pJPWZC3AkOzc411CIhv6rjDJQT3dkqJ3MHAx0mdmc7vsNyUs2WnW5j 6yrZvOPG+nZld7Vd4dWgEfU1PLWXiWpPCiqRXXuYi/jXUFTabsCE5UHpJeYl IZUyxgulTMCnYj3FV2DkFKCSy6g5MmyipvDIaali835RbC4aJCq0/BODSkNT aYFKDCn9HUAQK9eIDvYlAeQlfB7TsbEYNlbDRgIb52gbBWy0dJVJYCPy2Ig8 NkK54dpfZSqdbCidXPWxK3WeqL3VsvKE1cpjggSVR+pYKLczjYoM2VGpPEGj +moOA5HHclmVJ/K6mNXkwvNXcZHLRDm8vZIotUwa3J0cxbqQNd927C6TMg3c w/LYKJWltw2UW65dT35ogTni5UPlp8F9iuOHypJ4ulSb3itS5oBocoWdYIYr aBEEnQtBcfnSb8T/EoIWQlATghpaUAxBoUdQjHuuBRW2IHvQbAQlcm5lHqLF bDmgXLGHPrtoMkRlyejWwKWSrb/3U06T0vlunzyJb3zEDpKOOXyqOKFdcRYP TJZLxLuXFJeAzz86xFdg2paiqxTaF0lQGvBR8IBH+Whwn3JMBkosVSyZF5Sf v30bqcjozi8SH+ArMD5oH23m+qC5t0z62CqaWQoZx8cc7eMc+OiBD0qYBfDR Ax+ZmzABRQwNekAjcWlw4aHBsi44qVYRSxUiSA5ecomrAjliehNfplgVB43J WQyFd0qm9JE8lSkWFj7sJK/LFCo4VyycbTIloL7ElJrFA6km0tJEqCmJNJGw K5FE9yhEJOOm9rCsNBUYOc+aHJVFJudhjYKRSBiP3LBOlxu5301JyHgk7Eig jQYtKWH5kqA88DgnxTRXwkJda2ZCwipImA8JvZCQukmBoe/ZpKCbhM9ZU7Gd EkQ+qPU+Tz6ojlQVE7Qa4mk6Tz6yqwkvGuMvUyf9usdWqLMdqR3Vgxj7ub9z 4WwuJR9cN6XnnvMUvHrQ6D5vNUUkwz3Vz72B557wbNkR2ZGmPNWqnnuG5x7r 555ZZUI9d9oqLWLYfvgJT5Sph9+Phx/j4feqGPjY+vL+B7aYhz/Tffgr8fAX 4eGvwMOfh4ffh4efWDPy1sP/d374Ke4FHn5kP/x1Vw257QXWf79uhit0AoEY wlndBl06IMYmDIhKDUG34QLJNu9w2w16l8etIamTC+JS9SPUxcOqG09sQVvQ DUeu5uAxPcaX8PWkXqk5dAtvUQuhpNA4Ih0KFRwJL9IoHClwpBpHbuFAtThA OBwX9M5WCy76dCgEtC0NLshGnxSyZ3QbRQSE9Ot4mK2FnM1zHULIcgiZCyH9 EBJpITThIf6FtRC+Mp0QHUjUmNbqQbMOFTosxuiogB3OlLtUMKxrhFLA21tT jokbOrqJUL/uyW/1KAEH327PcyQyIlSn+amLVoNBRQGNVxu8kURFRK2CHApS V0HCE+pKQcxLdao0VBTQRrSsQ8Hx0Y3l34vysHReUFUQ8Kt7P+ArMB5oDVd0 kg8LGUKBGE1+lXrKywd1WPTpsJitJ9SJwnmgsFRTmAYKoaZg58S/0zhVOqCw CHU7iUrxP838qKkUOA3ccnD+5csoGYQDIhA0q6lAi7i7RgKndIxxzxAMOCbW 37u5S9OQqs1GisX4NTyJYYkQek3BwHLLlo3JlE1QAUll43Do5krjkPDkxuSI 0CueWR0RqiIxhIi/0XYxYn2PKCUH6KWsA/iCKhP5wb4KESolLRBJQGS6TQRp cc2HuK3s1URmgEhSvgwnL2NL68vYiSawXKSxzAGW6cASUHDwfvpf08d6ic29 D4oByL2biE2Me+png3e7OhuMUDYYN90zbOeGiQ0cb2RBUVjGZI8hofBGxnzm sOguRz1lZLf6sJG1OYSxqKkMnsZQWlaLEvI3soRUtLT1Cp3RkvMq7pPbeFNr CB2ZRhFrFBEv8avWIuS9HwpFxBuE1FiDNiXmbkuZSxTvf/tA+emPrDeDC1q2 DWGiR1MoeFuQohBZaaH6yh5NIQeFPk1hLigUoHAZKNBM12xQGOCZLvPsb5LP Puny7FE6nMGnt7/IqgnCu+CFiD1jQX1zsYtO1NMwttO2Z8eFKSoVF9UA2TPs 1BQKkEiSuE6UlJkiQD550WrMf27ZGNeRSHSAVEhQKYk9JFKdExUSIW89VCQi kCjc4WdBJERa3CPqySdFPZkvQm54G01pNbmn+AGmQFUNyXgxX9WQ2BMQba1i FkDMB4ilABGXL//m1BUAEXI2vPhbvL6HRRRBYwaXlF9gwsL18fi/Y7pc+KDB R0P7yKUPvK7ltBZeH7H2IdLi9IpVmETgFgNEduiLcyPtKDBjnBsuDR0XO/z9 htoFoopK4KBAVQGKz39w3aRRYNS5tVJV6H2rSMcGveqbaCMh7yt0jOTaSEC5 ASO4RJeuqkpAXHgu6y78AeUmgpsG3ERgI/48wHnPxVxkaN684FGKIyfmySwl J5Fy7HFqC3dazhe1BC3Iyzg572VMmr+MaQvBZwh8RO78FqHyW+Hlhd/yKu4M bk5/gdn0X1BfavHB5ROUWU3JRXZ1mUCQTBcS5EuW3TJZQsjBBpDt5lO9021A bafeKEC7re9e7Tbz52oag4tNJJtVVWwe37IRV6TrTfOv5qjByyyKUFObaWok NOPZBJJEIrGLDi3E0fbm1EUS8oy5KjoKCcazKl6auBdA0gMkszSSQSCZCSQ0 sp0FJINAkgDJNN2JxECSyox59Cf7y3dfPUQZE+KeayZFBxMUog9tvrLau0Zq NIt5c6yEjVlTHB0VZjhYI2JkBiuYq2Y3TOch/gpQiezOQ0fJuIwSPWTB+9bn v80uLyEUmDQ5QwWxVhDyVjKlIKCSwzOf2/FXOB4KGSlH7zCRYnoSTI2PmEgx pSigTKFBDcoRhUsm3ciKRG5i3FOeCVVuaCkOyx9f3gc3uIJeHTOZFTPCDQlq 4B5B0HSPoIUQNAOCFkPQYgjKIahHxwwJSqSgQTHwkREjfqszaIJIvc9n3umr FK0OS3JC3Q6YyA4YbDQc0SPhYdGz3Ba4pApv07LLDRb5qmdenUcnUnParfKC BQMoThVSZthjSKUglfJs2ZOydYm6QiogJ6epc1GCbt/Iqyv0HueRYd4v5INE 20BCOGqBTxN82vCSW8UIZg6oTWYxr6woLy0uRj/EvFlViT0UzukelS8LNUIJ rmAA95nay2J4WQEvBbyshJdF8NKAl5brJfJ4iXXixHVeYqtEwUz3EsVLeld9 nKOopsMJVYczKjucEavD2e46yjePbvJ2OOxoWBLKTi8e0Lvi6br67GVE6Ly5 2EGkCtMZ+qHWN+Az0p7iK4gnKSnjwdFRWacK149cnjt+t/jN49TW3INfevuV q1VHg4ve/mxqQrT5LAGhaR2E7Im1GPcEgs7SQTMXcBYBznmAcx7MLISZFsw0 3CoVeswkkzeDQfPEbQ2bwfB535gdOaEaQNtMRvQ4iRqa6baVZvdmhhuZ8atl +QrlUSaAIv7i8rMfWMdQKrWrO5QcUELek6iCZhJQQjgpPDxyHigpHgU3vIpH y+plqCbRlmfFIucBkpMshWTxPjlsFhbEWKZGxBBENMqXf3tqDVgsAIsesMj1 nFsCFhURKe4FREQTiaBZ2PuGJxCRIEHM1LwzhM5Vg6td7BxxOhtJYk6XzmaX 09nQ8TdOCUJurJo9ABKTEJFBRMJruCo6uougnjbjnvawZEH7VSk+GmCRuiwy nlJRLHIePysWbav0LFsQlF+4Yxvm1CSLlGdTOguOKKtkY6+IjA+L7ta1MVPb WAgb58DGdNhYrW30wkaqbcTSxlXXrS2/8O29ctzcaSOtlBQBQvx5ugWJVRao S49w3Acf4sljcCP7D/zfNPvh99gP39uDiEd/cImo1cumtXTBEA8+1Q89mvJD T/VDzyZ+yglPuB+9g2dJUl52OSYHMhlPnDk//GF5gh71iXs3lrd/YHW5/pLB wBSGBI+64T5qmiJJ5aM+W1SGH8gYSHEf0DEwRz/qVXjU8/CoqaOYj0fdj0cd W1Pv/KhpjLtDjHFPnRDVrvujvuidE1WCBMe1+n/uIx7T7hyx1l86n3i7o1uo fJB1fP0lAaW9Sv3PiNRP3Z/xhjurXriPO9aPO6D+gKfSb6YtGnpt9qlbeTt6 pB98wuttKvUrDz7hxdiaB9/Eg4/w4Om5i7/vlecPlDddtx7PPTAjkYhn0J2n H9C8KZ4+Ccikg21iQKt+5I2Dma4D6iyXwsEKOJgLB9PhINKrcQHNeCgGGH+c OmEchB0OOkawFQeh1IAz9OYtqXYEhADr7ir1R0wn4DhoGQdbKg54mf50T5Md IOaFgbeaAEapt1QC34hoQETsioh5eV4FfqxFUOAnEJFqEQVEJBCRSBEy9kmE mdMIiAQPTb+MdRZlo49XVx7/iugqTTLQUIP6RlUEztIiFmgRqyFiuRYxAyIC IgERpKJX2thhxUOMe6UcFLYNWQomsJHgtO+OjAitSbDdpkxYJQKtAf1fP/8/ fvOl6V1zsQLjIDZHAcpH1uJFpx9iNdahUnio5KASayo5r8Yeoo4A49CnZHEg EbHOCCOCikPkioh4o44SEfNS23E5+qTZihQiUinia59ah+pAIhK9tII8+JIR 0dYi2lwrHscOnsd1y/iAGIxqESYjZmsRZ0PEWi2C5tQHIMJHINEEGjoecl9H sGv/17kjiE0enF5xjpUHEz3wEdMTOA+80bUnEMlAD/uhD7536s860bFQedZU DyJeVlXPOuJNWeqnP+RNWaoe0EkNhX7W9HZSoX/6UzzrDM86t+qBeta0YNLi evBDTE+JJ9yHJ9zkxs96wmj85M+99YTpZ74XT7hRvoLH/ApW2V+h7u83py7G s17mPuse+ayXrAjwhOlZp7inXZ41SkG3liCU6/Lix338umucH3c5OsRtN71Z vWvUKgjDqhbwEy/W33V911qAJ84/2pk7T1B4ltepCkT8ppF63Dked8wz1upH e0qPO+DzXI7xFZgf8hAPvqEfPC2TFXjwDXrwMT14Gfu4mnjssfvYczz2Bh57 2/ODHbo/2Ake+3T92BfjsUe8bCYe+1I89tk69MPyl7/l3b3y2T8hnr240GVM /OzdqE/tZ0+X/JGn6Wz7VQHaFi77APexUx/gxrvTB+jDo25xnj2iHU+/2gfm nsdPP+3yJKgnyQA1AYe2mSYgcTXQD3/Im6+UhlBroKAP+BCoo3wFaZ2LQjeI Ab+veJyvwEQDrYg1IKRplQE0B4iGgoeDDo8EPNo2D3s4aHjMAI+wfAXh/wqO XH8Fb5C8gp27r/z21GXggcnK350qX+IrWIB7BDKzdFIQGXqlQOC1yODKoSbx qEnqqoNHzfwlAdKCZx4TCotxI4fchHCDUQTUjIjGYFir4XfXMm4KqnJ4P18g v8xOcq4TcoQZFLYpykl4wHhIFouY19ZVelS8BHwu1BG+ApMjDVApJJVjd/qo tLSNEDaasNGWNmgA+Y5B6gtS3DPXRggbfbDRQzZiig45fsQ1AzLakNGAjFla xiBk9EMGdYu9gDHIHl78HY7QtT1knggJXRFN2qRBPaN+Cza1bdBUI6rJfpko IWio4YQYVrrtA61mqCloeUkP64UHl0O3lqGeQ6WONCfmEGkO0V+DQ0Mmx/G7 THKY2hJQdEAHzTBQhvRIJyd2bCyvvEAMOT+6PqD30ArXST+I9Eoi1tBSE8m4 pegkMhtEFoDIbBBZDCIZiPTrKhOBSOIhEuFegEisieRy7vHAv5m5x6g69txf X3Sc+Iid+Ni9QyfHLpayuSM5Iuo1iIreJp7a3aWuOYKKLzQqSgpXSVynhIpM wMc5HeYrMM1HASA59x1HsUZ6lJoPtJnHsDKqbISg0ZxYRAgQKC03itKyUIw7 79wm/qgS0YaIqHxcsujzzDyRCVSL06dgAlcwXeuYpzuPQeiYBh2LtY4GdPTo qYgYOiJrrLFVjDWeoOGm0mFKSt59uJk4HGgq6h2B18I45iKcKkK9R58TG5sp NnxvFW33x0b0JkBQDxrypj0VGz4QuQyQI9tNgOS4Z9oHpUjm+ih4GHJc1pOm 9HFi1Ocjkj5Oitj4ujDy3nfgqFvlo8ldR9UHYoOa0texC/hlfNH2FYxFOlWs hIqcpyeFikVQ0YKKplaRQEVALBQK7KU/JRiouCgmqih6ylJ3G7HjQ0TF5GhQ gyFp8HtnudNgeHgoHc3EpyNyi4qZlG5AR8CnYj/JV5BoJ7EODuOEgiMHjGyS MFKenVIwMp6LUDAa3GicwGy1ExcxNIhf/gOijGz96HpoCEwnWsBE1mFCj09f x94sqiPKxExtYhFMnAcT4q94RfSeL/MVDOG+EDp6oKNwMwNx8ZCJi8wtJhPq 0KPX/VNPj92GiOw36P96bSLRGouIrCSR/e6qNjJTzmQ+Tpt9axLkDI2kOkuM kRBEqKSkPG+pSkpFRsrzlkpGwcMTRwYy4t6NlBPQkUgjy0VN2XPnNjJiBrMZ D2Yfx8S2MNJvD2Z3cm7kuDdgZEDnxlxtZAhGmiBCMmh40gcZGWRM072GknEf y8gnlpF06Tp0mdFQJhUjrpHNfiOebiOrvt988IKlQXnezJac5ZjQR5N3hD+5 ld9dTjSIgM8FfIqvILbLzOFbK2Um5UmPGikJr3koKQmkpFpKzlMdSkqbM0RA yaUP1BQY+aGaziQfKXwUHT5oNHvNWvIR83DFyRDj4xz4mA4fq+FjPnz0w0ei fdBwRfwy33tyf/mea4bKJ/7PCVy5Li2RJuLrREO5Fq4Gsg/u/zpcqPEKDVVo dvsdaqjC618SBC4zeh01cx6OitbmEanC8yaao+IDS2aVNSgaHhS+0DhDIzSW SbSRBowk2gjVmZgXRI9hx5UykukGNeOdnSew9q0mOyhMGmQkLoc3rEbfwZPd UkjMs6BKyDSVIFeIMe0T+2Xn4YTHHI1jFXDMA44VGsc04Ij16qjCsWRloGB0 xVE7dLVKCdbB5i+ZpAbZakgN/GJaSq3GyPWVlwducV4e2GOBSKPgLfGQ81rY U7fwlrtaALEOiZj3PaiQqACIed+DApDyRLgCUABAAgAtq9GgIvJlnMDzQ2zt pVUO1WOop//4I/vKmz++vrz2mrVBv376M/XTX6hbziX66c/F05+Bpx/h6ffJ FTDx+NXDx/Dj/5zIJnr06CJulsUh8XQRmPveeA1Nf2LOYvcOPdnNF9Y43Me9 xttZqsed0BjUftyiwwy6P+uWLgghv0GmftjNww3xbKlDiLs+0oi3sqjcD3mH k8r9mHdRqtyntY0Uj7Rt5/4i0RuMbOOFq163YwzLJ+j2CJ7rCvEv+EPxUy2e aNDrPtfZ+rmuwHNdhee6XD/XATzXgB4snis92x75hJeaH23rCTfxhEP9hLNJ JL/sCJJKQ6DnvPeM6cUtee2ixa1RuZqp/69tP/1ovXr65i313ES/nIKwH79o HitPv3CXt2qffo6nn9Q9fUr0SD99SvSQ97epH+iAzyk5zleQawcRr3ArBxkc ZHDQIx2cvG9jOXyVyPe/wd6XH9Lu68e/vA8YcAXmh5ymtBObhfxRJxY9nh/3 BWBxNlicp1nMAYuzeN7BOPiRdJDinroO8kk2iTYLlADZEMQ1UXDdNaoKCBtj xgZNTWkb+k0Px0Za1xaoQlClsUFcn8J2/m482ryTX/HIwCOVncBTN5tOINFa Iq0l4n0xKitC3natsiKgsOBZzDvpsKyJ3IS8gVa5oXXwXLshNqgLF4oB6Mb1 xCbFneyYJGmATA4ykZUkAgqRabtk+kCmKH8FN7/Ci2O/wqYIgedC4Fmm8ahM eeF3JlMa0tLVH10r4mATPGEUalcNY6m+m3TnNRPTSiZ61nuPXDUdp/bBwrJz mDsGC8tAtWtwwTCWTB904gHDb5yaOYrcI4YCJeCDPQ/xFSR1dmgQGr8ldpoe LNQ/xMBSaCyJxCKrjcwYaiEdLLSdqmljeb9oJneK4ajGMkNjSYFlusYyD1gK YLlUY5ldh4VeABFBcZ8YmEosuHKdPT4v9qseqsvgaMmrQ1BaYZdGNu/G9opK r8H7KXocJNxr2K2l+ioPvXw4TkdeKCEbjBA3UXJ3hrMlW8snb6q0lrVcQmjJ NJJYIwn4gKQjfAWmMAV8lNZRvgJTohqQUsiUOT5iUqbQjWfAZx+c4CsoNCHa m9fQhFJJ6Ot/tw6FSuaNoyeGnh5bzxfv2abixtIzAD1h+St8KlDpWQo94vf9 7tQ66FkKPbO0nhB4chkwlhnxs9mpJqDmVB+ekE22h7GLVbfI0ZZ2aEubdwxX LK23+9adXksJWbrQtRRUSlPUFVJaBynm9ZTJQTK504CcXEbOsTtM5FCbk3OT e1zmjuJz4m7Dx5SrEHya4NNr83la9DobRMl6n+h1EpcPbd/uBZ/ECh/V8zZ1 pWqDTwE+s8FnvubTBJ+LwCcpX/k9XgH4/alIQ5LjGwEp9UCKcC8AKTlDSGbg +6DOJc/UGLqd3Ol2du2w1mu53XGKV7wZlnZsqp45O2lI+VsCiRrkiLf5HcZG 8LcMUoML2Ams0yk+AW8JP8lX0NCQqJTFcCT+FEjaK+qZcIRpH6mJVvixnPqV fdCEK3BcIZZU09zUsZTDVa+OJXK1BK5mwNUKuOqHq0G4Er/KS783e0MGXGGx R1iio6pWWCrb7B/8+2TabHe4HduTbnK2Xm4lRWilhtoOTW3N6HCVmtMjbZWH TKY81jJLvgpcCG3iby0/zKIun7r2JOsgjcgi3kOi4suoy3nN7wheO+LCd/R2 U/gy3DMemR/DzoFjd/Ke46irtR63qc4IV1zuF5XubNEw0VBM0uoBLZLVD1Cp Z3De0KBCgJqhg2oeQA0C1HyAmgtQc3VQpfA0TTOKwSiqDM+mwog77Mx2Q5f9 kopvXIbZuQnYrL/3NsWG320sZurO6Qanc9Jj9XG9syTZvM8Kq89euhaHX/Mn F0zVC7uySXkTsuOE0ing8+MO8xWYnCIxGXfWR7G5xHFCXVLKk3LKSc4jd+Wk ySXtJKbvFZYQWBoyie4Q43dR02i83oN7izuiJzAzZ0mxx+skpR9SovJXp8WI XEWPkbIMUvogZQmkLISUAlJ6IWW6lhJ6pKS6pMVaygQTOu7krTdSxpWNECR4 UYeWdEQL5KqI3X5ahQmv+o1XUQx3Q2GyxIy5QpjIXAqJjoxaCuiVbzMlK8U9 1TKobqVdZdAe9UTLKLhXdmTIOZ2n+RIlRlariwbKbX+7noy0cKddrKk2knkG 6AXubRhJPUYWw8gQjKQwskobacJIW0/qJzBS4ZG5PIoz6Xjs11+izrk/hElU zRHTMaPTaXnEbKqIyWwxqvxADI4Qw77qS9eKvzvO0Ef9EVzw79YFTa7RhBpN zrsHDt/K+9JqlUQ6PxJe+VN1JuFVHaUk5Ul9pSTnQblSomaAn95hlLRk2Xl6 bGO5f4soPYuDcu9d2wgK7XLPO6DYg3OCUgBKw4UyV0NZCygian5/ag2gLACU NqA0dJhECsoqAeU/GEo+MZSpNi72XqXIpEyDVgsv5pRRQ/eqGjQtrhreEL+p 0rRMXs2PpJrUHXXRgcY9nqghNamOGqMmBBqqNTGvFnRaoUSJeT/BcexT67SS 8XtQykqLa42g0gshIYCIf3AQed+lXHAauCc821c1Yg/Bc9wzHkMpIzNdI+fC SBNGhmBkPoz0wEihwySURq7euLbc+929cCL0CSMNGImmbiT1NimiClUHUXI5 QbcmYx2DJ7QmLg7T0W51cOyu4NincLS64Mi74sBq8dbK+KliBQOmWyplqZYO FaPYpRPxJiUVMzEvHjt0UtBpgU6Te1pFJ5Z07DpEG1AifolG0ck98UI7lSLQ 6QedATdeFuk6NAN0Vmk6faCT6Z0Hchbwvt1iWDSG1yuFndxDZ8I2xT4iN6xZ Xbj2GtXFJkxFzv2pZqXixGpUvE621zuZbTlJ6pxQD5t6nNCIJ+AzLJ/iK6Ca lHrEpLgnPGWsxES83UCFTcT7HVVhqoiJePOSEpPwkpQKm5yH2EpMKsXIWkRi UtxDXo1S46DCM7AmMdM9ObNQY5mjscwFlmnAkthYxhgKRcybw2J9t9tUG/UW XrXaWErQozQZCh/EEJmxDq9J+qnsqaFy1dJZ5Y1itOyhkrlUaiOllkoIKdlU gFCk0OEtua5GFSAxr10rIBlP5ikgmVWNgARAaC9sr7bR8EzmRZwmv5JATJrM 0UBWA8gggKwEkDkAMh1AYgDp9QBJNJDCBZJPsfIsWCqb2VbHsoLIFC1ltysF B6C6UtZUVq+34oV+66yOTiwjhIUGQLvEJbF4M6XdFUptpiQaCrUtMS9zH8Fe SAUl1VBCF0rAx40d5yswmRKQGZ4IvhtzfApPxHtZFJ4UeHLg6QGegvDE5R0f XK1aGc6WJ3x+7JFz6tKZ6dJZxfN1gs4KTWcG6IR686ykc7Okk7p0wqn0MHGX 5LlxtPJ1b06eQq8r2JasgTTaGB8mOb0iMcVVTCEk4Q3DYW0Jf9uO4InciZY3 XaNM8BhPFDyh6yng88eO8RWYGlWRZcKoVlbIb40qWbTVttCymlLWVaLT+aKo WwKUH9WPHtlXrhTd8eNP7K9HtQCoVgLVGqA620WFmWDR07zIlxjs4x6Xjx3a X773w0Plj8UoSlwZhGUeYRNUr6S8wpzWS9dnv67eJc51JClCu00njI8IuYL0 e8NjpnDtdgrXHjNImthPbeFKefvEITlaylwmFDsRb5dTsWOYNHjN23Jx/E6f i5aGEFDGAAKuoNDNL+3Qb2gSDZAIy2eoXH1DlKsVolwJG4FBQX0vmRB/yi0i bj4jml9hQjwEJWOGltGCjJ7yVfB4FW8EvorlbmHkfBhZDiOzYWTAY6QhjSwT o2zpY2IjaZecUYfA48MxoW/Wbre1blnpbhoOErO1cquJGX3k2NRiJqxjEoNJ 4jLJdXWKdJoYJpQmAZ9Gd5SvwDQ0kwADJneZICmsFQCVISHANN3qlEgwd4oS 9f7LBkElMG0vrSelEsw+0fsiSn5FG7M7oyQEmJkazDyAoRXLvwGYpS6YpixS lhDxn/PHVKT+40TqMeJrcmKzayIpd/9P/UkZX46YDOlsaypEZEtTS2SPJMJf lUpoeLRLtjQ3nbesvIy+yO3MtWS6pYnrIsTYoAgJJ7aRy5pzbNjUnBz33EOl wJ02X4WQ0gSQpgyYk6MmYEzNCfiNsKf5CkzUUFOcSznP3L+xvOrigfLm69cH LS2Htu81pJwrRWesoqbSFPdDTlK+ikr0Kr4q9CoOJnkVuyQcNKoSvfh7kzKZ x1DkMRRQp6wPusjrNEVdAugx8dvym2Z2AOUUQJjQ88hCkyNl8QEXmT68RurS y0i7Sdpu+gjvHlWohgOvMFyzKZE606fNZx7VpE/sEZZqYTlIZdwWH5OZk/EA +zi2Y3XyaXCjctIOmbZWQmPrAkoICeb9B0VFunsbhQxN5PWBSsvKl4+I/tdV QgWpyQXpVXyd21FSlK/+/tSloIIhl7Dxyh/oCmbjnmk+07k7fvH3p3xoYtwL oEnq0GRumYpl5oDFY+ajZupUFPq6gJ05O92+pcLCbn1rWKQ2C/U9ZjCIZF1S UzQ/ptWBbiio8c1kv/vUtkq/G/N2GmUkoBLFawW30ZasyWvJeAJPaSl4wKS0 NGXEPH2viZimHndHwNMEnlji+can1+kKVeDewznzo6/ua0tBFwwNotElQaEr KIGgaRA0SwtaBkHTIGgIgkTD8we8sPoHZellvoKzrPHVi5jAccdXP6ah+RQE 1S8cJM5nWatFjNYOLjF7auQbRQCFPqewTcVr7H1+eqWpcIbmNaQmY6rFp6o+ eROfmFVrimaGo66mTJuM4dN2U+OoYU41sQaIpby8oIilLrGcJ3QUMdpUQ8Ja 7vJCC7BSCQvFS8HKcG9y62PB+uj715fnX7DWB+ssN5WWwtQcmFoIUzO1qah8 +Q84mMXOotgjKdMFzGyE6N4ERb5Asr/gqvyod5McP6YJcv3QYGqs6ieu+uGv xPMnwC9eHqA9dvj8WPJJ6/hU6pQvkiLei674ZF29JLymoCIp4aXLGi8ZzxAr LwUPq562q1gPqOQWFVXAEtwLXon6EbaFgkpMb/b+03cpgzSUXk6gV6UWk0BL oGUQWmhZYRG0LIKWFFqm6Tlj6ntCj5Zc506stUy23QnrYqj6VXGTQRmvO1zt 9VMBRAMtfa6zC2jcjMcVoIc9gOZUAYV1gLrnT+gCygEo5XH5UVnJ4jo2TbCJ eRVTsUm7smnL3RDP3LcRdqhNbtuKUMnQCj1Bn3l+ArvSaYnBUoTAueXWLUrR NChqQVEORTO1onla0UooavD0jVC0EIoKKOrVimIoAqDPGUDFxIAqhauaNPZH xJUSte5QUbJ5dHuHEj3WOmMlb5/VKvdcvY6UJG7MNOXbLh1VKgQS6okDPvjz MF9BrMfmGHDdWqlStWioNsW8mUZlTQVNwuuXCk3Gs3oKTYtrkzDTCyoNSeXO q82wPMQ95ck9i8qD27dR6NhUCm6ancAxVM4DlYD2SYAKruAc3BcATRNo2kDT r6Ongqah0URdu50zSp3d8suw1SMFr7naWQiHJUmJT/RJZjpdNHPSW7IsT/yB pQomNb3zoBhcfXDprPLvaFWiG6YYmNIzw0SDroQXJBSmiPdRqATyYcqAqQFM Me+5UZhSXrlSjU6DF8MVppbE9K5zB8obPrRe5Q6NvLAhnXucVUsHVeQEhCgB ol4X0VwgGtSIRBr9Ac3zH3BCFKn5A46jr9BZtlrE+M9PTJ2ON29wmZE45w1W G86u5s12rkq5g8QZau2sIBm3kHDi0L49GwoxCcEEk48MhZInnnLyZNCRTlkH RU3Iu8yVjpB3dNboSHjhW0VNDh2J1tEjdSBDdt22jTaT99gwrIBhGPRmyzQN Y6ZOl8WAsQYwegHjHA2jBzAKDUPO40gXmPf7+QkfDLVC9cNTZoUqmUqmRJQp DapPW9HJWCudV1/d0cH4qNw4AZXtU6cSvSW5kvIUzhHZz8QeL6lOk1ovVJpC 3uepvMTwUmgvGU/mKC+90suXNq+jzBBSRHsj7n1WkFAHfBrHM+Aela+ePgUv uAKSM+BGCskZgpyzIGc15MyDnF7IyWw5Ok1q5NS2MJVIUTaseqMOAsK3cNy+ pWrDGR25NmLbBmSEgNHRu9SwCF0WOVhELovITZDE4yDWDsI6B9TXBny44Am+ AlNfAj4q7CRfgbERuTZS2Mhho8dkSVI+e//G8tkH+FqzcKD86PswN2wZQabQ gPo03psT9xhEprvFZo6WsRoy5kPGKsiYCxn9kJHoPVjiF11uyYhxLyYpI6vL lMRAKajoiEZEQ8FHLyoNiauED7MdU+/HbXHm9apKJs0kdNOj4TJJPOlhmESa SeRhkmkmAZ9GeZwvbISQwdGwlg4UiZB34qnmI+G1JUWCmo8IImJwkIXmQVFo EBw06OmXKPTQ+TR2+4p75qKYqeNiEVCsAoqlQLHCRREDRa9Ecc3fri33PbqX UCQuirBrB5LxF5NqKktMKHJCgXkVdYTYhRc7IBwP+UQe9Cu4w3qJ2ubAGuJy 63nLyssHB9TQuGKhqIuMTFaSwzebSkKD4thDI9E0AiolvMY0jL9CIWloFU2o KGRunLzblxsBnxz2NF9YS5JcYl67Vlya4BKDSyK5oM5ABrjkNhc9KXea9stg X7jiMuBmyCI9QF4FLmdrLtPAJdLbxMUver8Y5txy/6byJz+nqbifn8g9XHx9 SVyXIdy/pk7/qsbNeGFSvoiLNFElR8Chz5JnrIePIozM4pE+YC52Bcn3JSlJ eOUoIjuIjwfV8KYyr0J6Uk/BoSRJPAUn5n0wikvYlQuVnlxmyvE7TKZQESpk EToxYopQXoepgXuTF5pU/Ql5M4zSU0BPBj2p1POJy1brLiXFfZoVNsKM7E9o esXRQ2EzAD1J+Rq+uPYaTb4JSHBEI+jluJ8HUcshag5ETYeoEKJaJCq2ReEy qHJPszu50PnUXZt0Jfrgx648eMGF2g3aWJeNHvHsrLDZfaZsfkJVqFsBkm/W dgudyKMo1Yryrmxy7mFPyHpUcA97Uhalpsybp++p5A2JCfgV7Wf4Chq6r81g J4edXNpB56IKVWzboaHybVvITq+HTQ420zQb8b+or/39qQuAZZmLJaD84Zdt f4/C1xlEYR2c2o4mrQyfIzt+Ap5qycrLPzCEooXvW5dzF0tDcjJ3QkSRjQgj ooqgSzoExbYgT9EK+YR+J3a6+0ngJ/P4KeAn4473OLbOKDWRVkMvFURaTYNb madlurR4JlfhoLWiAjiKSlkSQMRvWTgevJ2Hy6924jgLOMSf8tpvTgEHrmCm ZjIfTBpg8jdgstRl0vC4iLULs2pU29SkdUVrgrjJyu//7xOoVOVNos85/7Jl FDc7/EzUoqPNZJfFRJ6BajocvcehHsxPfGBqA0dO+B+WxSrUTChmAj4v9yhf AZWtTJatY7dXylYKPxQ/1OpkXf0UPDpSfpoya57ZYbKmqTnRmnYTnJoWJ1Wn QjNSEsOYR/aVP/77feVq8Qe//d39RtQMiOrluHkNjc5rOJj9NRyBJRy9E4SW gNDsuqRJpagDT+0v33ftEIlKuooqPNFiI3noH/aWF1y+DHlyeunKOiSbR1QX PHUkBAJztHZdmmuQBLWREk9ckkJ+WUlFymSt0LApca2kPGfrWIm1lZxnWZ7G Rs6n7+U9nESlrTsZ2jLTgpC2VY3EOFrNtzyyj2xg1kDoQOhccMHaoMKjAI8e 8JitY2YZeBTla384dSmMFDDSKH/1RzGMdrTk1qha9i6T4VE7P5cYLSlpQfU5 X2h5+2XLxj/wftotNSGU1N0Rvl3vX1CjZ7WNQTgR/7Ts4/xZrXLv1evIRzpJ H7UJkoNBymPmY7JRSXjCXj18ekk20Q8/4dUf9fAznpLt9vBDPPw2Hn6vPWbe vo0yocA9xcMP8ezlHxXZQCWn7QqIIWC6FkABsRQCpkHAeSzg1T/ibes/YsZf lpxpMi9e+oPJi9gDIsU9B4jEHSf5OpO0Lj5CeODPiJZXfezK0/MWUC/raGja GsyXgSwNu40G3rvLkykqMnRcPCTi42pRZ7ZcvLoaFwF/3f4QX0HiwjClJafQ 4BNSj/AVxDo4KkSoF4knJpKCCA1yUl7TUbUk53GyQ0T8zZ8d28gTbffj3Wpx 71O15BOyljxCY55H9uU2FgybRVQYLNM0FrQmvz7F7clv8NWHTjazwWYJ2MwA m0VgM1uLCQHG5yRznXTvVBJPpxJNPEWnFD30rb3lvMVBOXdRMH7ZRUoRn7qa mVeWOiXpHZjjU5V0yerJBIvcC6WCpdYPhtC3mcJDXW3Ck/oqcWLepKBa24T3 tihOEe9tUYmTuJwynqVTnNqcOM9iZl8ljvjNnarmKEn03kABSZEndlpaUi8k pYB0lvYzX/tZBD+z4Gc+/CyEn6h85Y844FtO3xGiyIMo74oo96SL4+J7/8+J 8pN3bipnzApON5tv1oWerh02BYdchGAh/qeEARaomxPFDH0UJPHETAYX6cQu KGYi7YJiJuJtmDUu6LiGXFeilBd7lIsmtyGOi9hygXKEBqRhk6B9K2Jk7JJo gkRDk5ilSSwBiRUg0cNDHkUiBYlpmgQVooBPpJIDIPH37abBjIJr5+Qi2Ys8 JnoR9CPfFz5g5MJ1Q6Dt+JAHd9ygfYTAYX0qqKYdsXXQUmCkdCwzOuIpF6Hu IZLygPiorEQxb1VR0RHxNkoVHT4iua5EEe9vUkQSXj9WRBo8lvESeW7nxvLL n6AxskvEHh8bIjmItDypMQgi54JIzGvKgsgCEMlBpNctPRgff96Mjw2ReOLu JNFiagfEkdW9Ki0PfnMv/nUeFFfqitHHRdliEt/pzryCHEJLENuVpk5MpMU0 Js6TRIsxeZLUEaEUCTURSpGQt/4rIgGfiHiSr8DkSaixUJ2JXSw5z6N01pkE VjBVe/lqGuUiVDLcYylmtZxug5imFhNDTJ8rZp4Ws5bFvPZH7Ef4Iw4k+yM+ JfJHHDUkQ0W2twTmgU3CYieWIFKnRhOYzE2WLnXm0X8+Ud73VZLhqGjyO4pG he5irYPEJsVClZmHLltbblu7rLxiycBkgqTCIraD5MgtlSBJeDlIKYl4f60K kpC3/Ksg6a7EREpAmcKzs/Q+owqXiLcuKS8pb5l8FqvKqrnNJZVzMRYWpQZU EpuKHAdXqGDeHn0tX0G/W4nmuTHTBJohjaYFNE0bjQRT/uQ/T1TR1BYh86Ja aKgkROV7gsqjPztRrjh36EHaW+B4Mae7wMrkvbgNK2EhK+LBzm0HcKIuEyM5 gIR8TK+TGz4gNCKO64BQjAR8MuZxvgLTljS0ksbELOhkoKZmkfA6j2LRwzHy 3APiV2EbaqgsJ0ce2ZdYMaLaVVoq7IONsHwNo59OEYshYg1ETIOI1VpEGyIK iOiTIg4c3l++/yNDJCLEvannSSq9ia/wxJ5AMUpCIBF/BYiIf7V1HUTaNDCe JBE1pzZlJfQduyafxjDVGIl5X4pSEvJrHSpGKkpMZ0JKCpklJ++qyZKnRyto 5PS98hLzdlpVdlrwEsFLU3pBk6LKTmh7sQfK5KUNL4n2MuDxMsTDG+FllZ5V 6YWXzPZy9jkBlPi8+BqVrOu8mvHi6WXPvXjon6s1KOGZFBcM2hNaB7yFdjC5 WibAEtlYgto8ibtKoTyJPFIyLSWfmEaBe9GVRhs0WqAR8YYDRaMBGglotD1l JvUMegvcaZt1VqdiEVSshoqFULHSVZHqLW5SxUGpIsa94VHh60gq82r8IbO8 PKA2G1gmHvzW3rKnLzi4cmWdiZ3KxFbHhDX43e4f/BKIuAICZ5tWoqMCIgGI lCdaj8juNOQNsIpBwIfgHuMrMB1IARC0Ioxu486NvI+AXos/McL7G0PwaGgV IVA0YYE2LGGB5t6NvEhDrx+q1AhdGrTol4JGb7XK/D0t0nQMfokGvazR8NCY q2msAo1loLHCQ6NdoSEuzCV00KgUGN9Eq9V3ROXlVw5hioxOCZMOeqx5kI58 0F/S3s3x4B7rM3UNatRy6KZKe+pLi5SXe4/cwmsz3XFQXclkXTk+XKkrGTeq J2SCVITkPOJVQhrclD5jV5OAMoOnXscARvUhmWxPHxCNqqkrUMI2Ose+JIRe Cmu7QmhFeAaE5OXreJnwdbxzqqysgpWzYWUuL9q8gnl7YaVFVmLbCq4UXPK6 NjXr2o/E6pCFf3XOkOJik+glv3mDgVoT9mkatTVtmaSmGJr0LhRhKZGWMAz+ tBgGw1I+5WQJ+NjTo3wFptTkdW5ogJPyTIlyQy/1xNpNNrGbHg2FNiY1bCjP fWajGvtqKPaQN8c94qlVAWW67lUJSgooA4CyEFDa5evYOU1rOwLKchdKrF/w EX+PD1+/tvzS9/ZSqES4Jy6VqK7opHVFx4aBDQMCxvhVV71pGPv8MK6uh5Fp GL6QCah75dcE6cy5p2iziS2mNm4KOEl5+HtctiTddaQ8Ba905Dw18oxsRJpc bZ7FPLyqNrRRtqmJkBDxT4luBAGi1nvxH5JCJCAcsIErqCiZASVR+Tqqzuv4 iqpQMgtK+qDkQihZ5iqJoKQhlTwgRru3itHuQepKHCXdW5OkLlpUJ2t/ayus GErLG+/aBEO0FX9sVBjCJ7uH1dCHGaUOI2s2JZpY0CWdgj40GUFxnSCTOYkW VJs5mSxdx7ZXSlfKU7SKFr2CGoNW4dJqglbioZXo4Glwj+vQCkGrrWnFktaX b5CbmQQrOUwW/ziv4lWf1zCHokBRfeoBqMIFNQhQKUD9DUDRRP4cgOoHqFC/ jFoBlegKldU1NL4ON6x0uAtE1rx7w/KDF16ireAQ5YqVUXWIcncrsgzJdT/j hEbFDGX3ZWsVljcVNXL3tYqayUKhEVFSB4UyKOFVZZVBCa8qKygpL/coKAWP k5+1yxTWlx/YCCi4gpYmkxKZiMisGFxdXnDR5QG9vBF7qOSg0utSWQ4qIo/+ eOpyUFnioZJ5qKR12WOopF0Tp0MOtu7fes8GOhLBenGwQ448YdnICats9kyd TXpmbFJPvmRdAyXh5WLlJOblYhUodBRCqgMl4g0qyknCy8WqVuU8/6YCpYen 8RWMXMJAjggUVJhSj4kQJgZgYo5rogkTFB+LPSZSj4lMm8gm7loSN0i4t23o 3hYnzL3nquUQQYes7BqrF5HylJudJbwPJVILxbc4Y2U9RHJY0ORJCBWV2pN0 tZEDQ+hiiF0MKU+eHJNtbawJ0IA50gQoKiLeoKaiwkcg11GR8cy8ItCWUfHc /SYq2hURMUXF5Re+na7vfHd/4qKYBhQiD9DPKhTzgWIZUMwAivOBIipf+xM2 Nv0Ja8XYdPIrWiH+I53W84dT4CFHQJ1j5ilBiT0xEnnOSo3MWT4FEcIxzH// TyN425RPWlaERvmrjW/SkAgbesNUNS/LZlGwRFLQPDHIPigH2VGdoJTfQ3bi JJ6koESHSMRbHFWI+ATlWhCdv1NoQfQiaaYF0cYlAmSSJCM3afm8GBih6R27 5dry+Ld3UrIIP5Hrh7Y3ZvBzlhsqS+FnLvzQ/Eof/MyGnwx+ZsHPdB49d4LJ XTC11Sbt2tAKF/jczPoPLi9vu2fD6RVDfB6u5WL92F0dLka7uAj12YP8naGq iKA7Cd+8S+oJlZjfGLQak6O3msaERkMJL/goIZEWQhkTaiGUMXRkXK6FBHzi 4NN8BZnHChUcOsKg0FYKfi3MsZLASgwq4h8LQP7fVw/QJcEElQ62AS1NV8t8 rWUQWmZDy2xomQ8tkdYyjYfQnVoKj5bu8VKtQwV9MeRr3x4BlvFrr+2Agjqk oPBHiORhgn4sZsuSOuaLjzSodUPFKPa4CSeOEvk9TydK5Nj5KHaj1GhJdZ6E vL1e5UnAR5me5CvI6tyYjAn4GLln+ApM2lQE5TwD4wii4TWFjfhVbrh8NcWN ECT+zXGP6LexDoSxdb+GlPFQyIE0T0NaAUh93MsISAsASfxSv/rTKUDCFQyY AiZM/VEXMMhqaVDpxPUqmkq9wnfYTUyVW+7ZVG6/dwPJWyjK1vjOSchL1nTI owWk2pB6WGE7uwNbbGPrSk38vqe2VnriKSVWzDtdahIr4NNST/AVJF01NnkF ckJ+Ee+SUvwynil2+IXgl0t+CDAEF8Pj+6UXrCwvuHBtZWqHXiLq113TbJ1j S8BvDfhlvKqg+MXQN93umhQ6AY7FpR5xedcIS9RntKSnz/+vveUiESnP/Mc3 y9vu3XDwHZfS6xw76Ugn19RkSU2UZFVcIXAlU8RVybHI1UQ5Rn1RpA3RRGDo 5ljFkOmQGjrCmkDTkGieuaeChqpewEeHPctXYPgkvBT1HHY9KD4NKedh0WND CszEys9rB+j3fefR/UGPljPDRTNPo3k70KzRXhJ46dddEoZe42bo1XS9VBqk N5VQdMBq+c4PDpXbd2wgSaI2bt6zy4W048wgqRXuPe6wXW6yUohoV5Vm5BbE KQVUwF9GP8xXkLhRJde8VZGMeEOvCiiDS65zOppopTssn5Y55CPV0DlUSyrm hW+VSG0uiM8bV+i/nUQKwQrQvyMbcoGrBVx9HEuvS2FneYSthbC8fP1Pp87R 7VUOZr16rC9+5Z1gtpOZmVhKph5LaTn+T3vL9169nBAJTKdXrfFC2jk1SPjc kv1xLV8obeeTGzyh5I71fR159iYSKeDTwI/zFZgxWwE+uSxoJ0dMQaO2PNea KKCKiTQ9u8OnKeI3GpWmFk8xC01Nq77JBp3bq7iiCUWOFszb0JTWaaLp5vOg qQeaVmtNBTS19UqGIAFNt0HTL07gqgWVvYmZgJDurXKxeNpf/84IcRPsxjde R9w279nJnZXjbbTijXaGTt1bbIrgSICVdqKWVqg9WUNtSsEV8bFTTnCRwdAN rlqDaKXuqNTHjMeHJ2WsVSDmPCp8BnsBn7mXd4eG0NfW6AJSx1NQ9+PfUvFr 8vjQ4tfR3aeS39it1+oeq8CdXlbIPfzman7UYw2A3yqXX0vv4ZBhBn5P/gJM FEBfa+8DWF84+22AdH363k3l+z60vHxW4ANC0YZt3rerK8CKQJrn9guMqwKp x+cPs1cBdgq8SQos6sLOJzAHudAlF+taacgVvB3o+DDvRa4Yo1FlyrNUyljG s1TKWDZlY03dgxU8XyWMtchY7MxBiCuXwuwunjaLZRDWrBO2GMKGIGwuhK2E sHkQ1oQwel23RwbcD4/sL6+8bgjCcBEyX3c29ZRTA0bE2rM//ybJElX04KWX +WXtOgNZscbEc5zRmUuqzbK8a3gFfIj0Mb4CM0A0pkKQyj2S6JXN2JUUQ1IT kgqegXgW2w3NoomKp4ynyC06iCfZw+NqWHREl0V0aPdpAjptl84sl845oLMY dFa4dAqbzoqhQLHBFYFOYyoFsj6fYp1P77p6qLz9vg0hCIk/SLG0my48913Q QYB2dgGUdQCyXv7FL4BDBqin32c+S6gU0WJLJhFdYyHK35I4qkWUyVp4/HZT C6mdT7UpasoSXohTphJesFWNfcqrMCqdcm2K0ok2oIXlc1iKUbASOS7cKX4f w7KaeBuW3cLHgBUCVp8HVhOw+srT+Kbyabxr9TrOaHwdG9EEsbNBbC6ItUAs 15vkxd/DIiZ+midElnZt68V/vi+Ijl7nkbiELORRCE9eTkyqjtPYJnf7kZfT 8BQ4FbwR7amtvBHNqMmgRr5Vo4rYZNVkuCe88qLUxHVqKIkSXuZXSURvdSZa TYObdUdNDDUtO44elptCpJqWp1WnlyemaTADGoz4807/7hTA4Apm474QdFrl abziKeicAzrLdDoZOk0PnaiOTvfSVp9PaflukUv7vzuiJQlV49dvdCXtqZfE H9fN16iPpfo0jW/VmPZ1wUQFLiw/R6Lmi98pHJGo9E0ElKEm9wcc284vXYSg lXtyKOaNIyexs16JSnUOVUSlvBqsalvBkwnPyQJHvRG9A9o2OeT23z2V1vt1 OhnWkdQHSTkgzYWfRfBzFvxMh5+3wc9SHT1t+Mngp+HxE2s/RV1r5Isen59Q nrJ1045N5fuvWa79CEunzzlPPFkqbChvme6SnA7pTThKOx0Nk6OsjlBSR8hk lPijh7dVhnq+yDKOEu2o8CRTpB1RMsXaESUTHXuTaUeJdkTJlPM8p5NMAb9M /DxfAWVUT3VCQViigIrK/yZWl8l+W4AK+lxWDbDq0awolhaCVQFWF4PVErCa w3sNBKsUrArJ6tqPrS2//P29xCrxsDIVLdSsaME4UZtnDSa6BlcE5TceHVEN khjDHbzsirfc0W7bEX9kzDpbCZtTKI+wR4mnzndjHfmMQFESBfxZ7yN8BUlX S5HOpIQ3Kal+O+JdjyqTIt6mrzIp4l2PylLMm5SUpQyWUm2pR1p6/gFjqW1b 0u23AEQtUiot/ffrB8jTd7+3P+h1LcWwNAOW5mhLZ8NSQDvcYAlX8A5XVVur yj3zBGmdqsmEVdPxhZAaHttQPvef3yyfM4Vu88Pjfy1gsT07YCfVPk4qrnY+ WfGZRVUFGhW/iI9BsPqsY7eZPoumDWLe16LcxdodZRgdLplpd6F2RxlGxwQW 2l3EmyhVLUx5qU/VQto6GYJdn62NenLRSkFbhnsObSGwYQrju9xkgVwPyE0H uRkgh9bqt6e4vfodPk7WiS8rT//pFJEb1JteKMgSkMs85LKu5MKurbmsj1/4 9l5EmaiPAhsyW1AbFt25yDIsr4xja+RuOt0YznaZLVJy1FdhNvommM376zNL PO18CGWZxhW5uBIdaj5chQ61Cq6Qt3KrUIt5I4wKtSY3WlVcunUXuBLcm8AV VXChNrY0rj7gSmBrliZFo73lINULUheB1GJNqhekYn1ci49UDFL51FOMSb37 Q0NIL2ASpOJyEC369TK9KqCsjQsyvCYBCof87N5iQFlf39y3XZ/9RMt/qjDS 3qrY4yqqc0W9evLXja9IC6P4CvhI5ZN8BaaABnyk8tN8YeeVXpJWMwwBH1r5 LF+BybUKvQbPNTyPdyIFvV67xxc9PXf34t4CvcSip9qyhqbXAr0C9GZ66J0F eheA3iLQm+XSSzz08q70atNM0dvznb3llaKzBzqVZqJBOz10HrHjNAsKFFA1 leU32Fk8FUJ7y5aFMLJmQ/c4L1Yqg9yYKX/29EPo8ZdPnGu5BpcBXOIGWeRh luogmywz07E1da7VMqMjpxq6fNI7lalm1mc3/q9x498DYZkUZjf+uRaWQ1jb I2wZhM2DsDUQlpSv/xnHEP0Zr039Cac5/wnnYmIXoGXNHlnmdZUz9QwBVL1c sjIo/8ejI44wMZYc//j1kxO2u05Y1k0Y1r238g6IDmPjG68Iygtmt6ZurJJx IYilEydbwovXClrI7yooaKGGVvC2ByWroSkB0OhGXqK+B8YsWc/eW5FFtTPg MxOf4yto6CjLeD5eVVEdZVdwlP23MlZYxkRnRsZSbSyGsX7X2HxtbBDGFsLY NBibAWNNnWdkLISx2GOs0MYozzIYi315ltl5RtfW+zaVV354efk892R0F13a 5kf2iOv/D2mVvTZ73HchsKajq2pC4hJbHF2HaPF6wkpaAFg4cZLRnEXAx8qf 4CswzVlhh9jTd1VCrPDIo16t4ZHX0JlWK4/OFMg75P1U7nw/8Z2dLK8p5ckx AcmLtbyAXu/kYcFvMY2mDM52Da6AQVqyngODs2EwdXMu1Acy+gz6aqov50LK uYJy7vlffBP66MIwVDR0B69Y9xYIjNeMfsQRGNJBwTEVU+sLO5R1kdosYe17 /hDeoJiMu9CTbj5ttXHm02aCLe+qLQS2hjYWgljTlvXcfRVZVDdjPhNJ1U2a giVY4q/4ihgeIMMQbG3cW56RAW3loh2mYXka0x2dqJYC1RBQtXiwKVDNBarI gyr0oGrUoUoqY4RYB9t7rhkq77h/QwhXmM2RqmjkCVNBBlVqiKBV7WFVcutX ZL+f46pqVFXpE1G6stpexyp2WB3COxg19bIiKuY9y8fwMo4SlWpRud2EnbzT NGE0rsx4XPm0rJcZT5Y9I/uvnCctujlq6oSSZyUpR7Q4FEtHP/2sfEHn1ms5 ptrkKLbbfFy0TT7xKJqnFb0dimJesBaK5kNRQIygiLbPz8C9X3uSlNRUbNND Kfbkk+z594oeX6QTBGlHd4xtOD30NuWo5Toadxy5+x7GOicwmjOHPeXRw4im MGI/I6qKqWR0y9pl5TuXDHQyijvariM3V9ounyrKqYCPsj/OVxC/CV+xzinj qwVftD8wBK+2VhXy/kBV92i3aQJVIVDJQidAUUTRCLK32t//Bif8vY5XvxxX s3Q6LYGr89nV6T9jvfrPOMiaXL36Z+NqmnYVUJdffoaHkiIaFamsLp0Si9R6 kUz/43sj4j8iSCUYQo5//OOy0MliF1GxyymWJqbEq9X5RIwoiboRyqzpCtm6 B0XXGAr4i6RH+QrSSdLJZLE7MWyKHXXxGc97nZQVL+XJfOUn1X4onzKezFf5 VPDkg/DT0tUtoFjiufwHEFcqn+hNisyWZHfxJKnfknTr9i0kKcW9oSWd5SbU Ep1QDUhapROKIDl+PvOFLeV2OQ3RmjiSlJ9tY5vKD6BN5zCiu7BULuFWXbjB vdlR2uoMdeygiTSinTcEslNKnCzas7VrFtGLyrkNaWsV0tSDKNHlraKJWqfU oynDPZ1YU6LTKOVlRpVGudbUtpaGFJ8MfIpqEIk2nPjQLOo0yee/Tx/gdvz7 +4OIZ7Fq+AyCz1rw6QeflZpPDD79ej5L8fnMpvLQL05Y8VPhk3TwWboqKL/5 /ZHypxYf0SQdXPeuYPPXps5njbiqfHaoD0BpPnGVTzIJOQssOTmfbD05Ob5E irShjLfOdIuglNcTFZqE16YVmkSjoQhKeI+DiiB6XznRaFoygp6/30RQSxui dwkbtiG73zaGQhBCdVVrPd/HWs9pLPN0GloMQ+fB0EwYoiZpHgwlMNSnV3hs Q788IX69zhIWuyUskg02IujOBzbAEC7FSDRJm7+2z2YUO4w8u2V286itU1Fi K1KVDPtAt6hPtFMI8cd/tusdofuMpaA7JhNDND8gtzIcuZm3MlQIZXWEanMn 4W0yilDM22SevotXb2LeAqpyxxCi3El5aVARanBv/Ty+86K6oAhwWoATSTiy uTZwuHalFD5/sa6T3HC3PXz6wadRvoEDn97Ay3+n8ZbXaexYF5CWa0gpIPXq 1Wns4Dy6v/zAR4cACVd3S5RHobS097t7KZN++stv4gopmKgvQiydXvN2MhUC VTixqXHjymvqo/L428mYitiUM/mkOH3+srXlgp7gLcymVNe3HLASnto8Idvr Wk6USJHmRIkU8e5PlUgJ73BQnAoe8j9v17IQnHpsTnZT3cC9T9ayv7yuKYnH 9JfTqj1657q1EBU0XFfUY4dwNQeuFsMVkRoEqWV6GiADqR6b1Mo1geKEi0pc 4pKK3HgKKJ/K9R8eQjqJn/+Kpys/vHx88+aqp2bVU+eG9TpQDR8oXnre4oza JuXpojmt8kvXrLM8RTqeaj0VABS6gDCFtL3SICW8JqM8xbybWHmKeIe6iqeI 36dR8eTzlOsm2+cpoHyiuUkM/9u2LLvJJlk9kEWwcunpkx9ZWT704BbylLue +uEpK9/4vWCjPLXKN7DWfBrbiztRtfWWUfErW6iED8XKdE6JJ6nEX/ZFEVIf uHY5QNmsqPFWEQVT+xBPX9vjDOR40jKyZZmppS6yrp+ULFqYibvJunxt+eHl s8qt71jN6y9x18JXeALJ5ymepCfKp1B7onwK+Y0H5SniXaEqnzKe7FaeeqSn n+6seIo9XXehZyhTeCqkp6EVQfmTg/vJU+p6asBTj/a0CJ4G4GkmPA3B01J4 mgNPOTy19AsSPk/i9z35S/2ahDXVlHXhtUz15L+EKXkXgSWGeejLBRTIimxZ CC+eC6+E1viuiUPLpnXD1Gh9jna08zQTQsvilZ1ZbmVwlnicpR5nEb9Zo5yF /I6Wyq2QX0hVudXdWcrLecpZm+vgT7GyYumy+3HS1YCuHLoaUte//GinEhYk rq4Yuma4uuZDVw90rYWuJVpXAV1N6Gp4dEUeXQ23JiZuTQyoKJY3i2Z9w7XL xT+agbWUO3UJq8eNLI6tzfsmhlWZe+rqaoteTdaoTp89MyhvXrusGyr5jV8H lS+yKpRCSMpcQAUAhfwi6Um84KwA5RpQwCfBP8NXYFqqplYUECOeAb8PUxqq Dqa8BUG16S1u03+KfQiWp3esHHDTijYjNOCpZXn62+u4m4q0pwHawheVb/zu FDzhCs7CfY6WtQyyEt59JWQN6oW7BmQ19FunlYFfXCfLlMXYzS0ZWT/jll38 Aizrzvs3HHzXu4LN31CyrC6rcUameBQ45pqSn0eKYcq85bydN/cFZguWVhUC lPgDkpT9qSzlKp7YVcxLw8pVxLv1aoIp4G8NPM1XkNYJM01Wd2GUWDGEFTqx 6L2tRCdWIoWds9x07rRRNIWwJoT1yK4d/ZUUpn31wVcKXjPdvFoJVWH5xp9P XeJRVeiDGSqqkq6qKnkVk6q4fO+1Q+XIAxtIlrgULDE+HP/EZoYVU2QV1S7L R8tus6gO0lJwZ2aN1dfC0N4Db7b6aWefk85SuS6s0svuupKJI0z8akdvqYwK axMt4s3vSp5JNLkfQVFraFsQdc9G3nBA58eY9TyVXhVbBc9OVW2NXru6/Opn rjW2Ythqw1afp3efDlgtbrMcWAsBawVgNQDrQsBa7IGVeWClbtueufkUynz6 4qN7y2WrKaNEYybukYwq0WedPvd8soTrLeUU03hwbJPmFFJeJSTKSSu1F3kS jG5927LyXUsH+DTpFIzCrokV8Kcfj/EVpF2zi2piwF/EOMlXkHgsiT/lmbsr sVXU0WrIFHtuh0mxhk6xkDcjqzqZ81y6qpO1KRbwyxV/4Svowb3f7u+f3E87 WmhXFb0J1qPNzXHN9cHc+drcLN5f9Sr19/Suhd9cbfOV+gkizL712Ej5sxeQ YT+jQSPFmRhJHnzXuznOQtwjD0J7R8KbQLjrDBHGsmbKSS6qmaEbZCQw5hfm j9y8MfUEWVYHMuKNyQpk6EZaBWSq2zVUzxFTVqnzz7v6DMGTaitt7guB0qRe wOfRPs+XeKQq/1KoLLz5d8OHVxqV/WA4TTVuPxYDgZVEMegDw4RnLDoZng2G Z4Hh28FwERjOBMMWGGb6TK0Kw2zimmoYisC4+X7R+n9kOQTichCKmrr5Gw/T 9SYRjk4VYWWcqRHOtxAm1sSYTMKA+7jYNqkzsVJaa0Wmk4zIkN96VSILEMx4 xPC0DMaMh5zPyEqb8VRZDTe5gqhSL+GtDMpXKn1dc+lA+b8f59FBwi/5/MVG Jn7zDSXtbz+6lgKvh+78EvUbfInC65hboM3Ngzkady50zeX63L/KuLO7ubTD HIquTD1tjic1MCmL3AO3hwWeb+zjKbPQLBhVXjZLnUGCHCgAXDIpa77tM2+F tbAu/UJQyyGs8IRcwF+LOcFXEE8ZV6xx0VuwMXA17Sx7fsxkWVNnWcTnGlWt /cPN61SVFf8s9M6PYy2W1j553UptrYG7GAtgeqNT2HIIG4Swc7Wws9xUqxUW AljTU1JDchXRh3rv2rlBVVMlK7aDzOcqZVd7Ovb3hZRkkc1qUq5Snyu8bB3X 0Uo8tTSdShmtDa2IX4vtJiyTBfXkHaag0mgh5YlaBS7liX8FLq0DR2nW5Ebu eTvSQt47WmVmDxlCfr/nL1hNUsxSi9lDD20hZikXzzcw6+Ewm6+ZnQ1mS8Gs KE//F45/+y+ciWRHWspHMneCyycZaQFlWrlPDCXwbfl/fkEMSAW8UEbat8RI 4rzzuYJGuIdvHb01Y9czvZ02vXjz7huZ3m5nY6k8DWl7oOx5Iy2qYxjyxzkP UwHFoZNH8K2AqeZZUqct9cSbT1uitaW8zKTijXYqR662gFKNVwXoTX/lLqsM IAQ28U/gJFtG5GLVq6nN8LkLbrbONZpXOwfgaEPFAMD1AFyfB1zoAVdMDC6y wL1PDBwQdQJcYkYPmMQd/+QnoEBZ45Yt1S1bZRczL4zH9izbmupZgkLaR/5q 0uSKZkVabeXMXGkm13LQSicZZAlvsFC0kjpaFGSFS0uuOFUt3SMy7JOi7fdY ymV8/avoyNYITwdF7++DNF9DWgtIbUBaAEj9gNTWpbINSIl1BvhHPr62fPix vaKedxoqfIaict/39pZXibZf+BGRq2KLEwsTt5u/9XCnoshWhEVLetlf7/py J2vXdGwalI6u7+poz9YJHKWVmdqnaKbWiSgDxxdRIZ9dc1zv8FJwQrihRivh DRSKS8xbup65mxeOEt4HqLjEvKVLJVEOLonm0pJJ9NMHTBJ1VsCffXZj+WHR 2P/L4zureqj4xeX/1YSuF43WG1QBawgtBaELQSjhtW5BaAYIFX5C9vCx4TZa BCex4bzvI0PlPxwY6YQzIjr3d7+b4SRuqZPx8/CZxs+oZDM2MRvrDEl5cC70 eBMotiBt80Py1To1X3HsVtNoZdqV02iduL1S+hJeBjiJvfDdmFEqRbx5uZMZ pVLmMmtyF/9TO5poPYlsiX+WfxSt/JCodzqf+twuPpfCPiV6LCUsrhO2BMIu gTDR6P/XqZUQdhaEpa6wWAr7rCXMF1IN/UZiKr8MiO9Z3/LApvKq60RGvSiQ /TN18y98k4ePUKau2IttMrVujD6kM3Vs9Go1b27WpzMztCk5C6i35zcP1TuI 3Wueia7UQyzVxEySxbw5VRGLeEezSrKI369QxCLe0aySLOWtFopYw0OMNuwk khhK4COijf8LzUyoEFMTsMIYiBGzpoVtt2jogS30YJunsVGcNYBtBbDNBLbY xRZ5sLW6VsTEwrb8nADQNLZQxdrODafPu4BjLezCrfMFsalx85XELXXcxjde FpQXzm4Rt8zjK34TORbwZ9+O8xUkddx8iVbLjRItrONGiZa43Apwi8GtV3ML +CWxn/EVKHgy1wherOH18WzY/z19oFdyk80XcTPSZrmxdj6k9UHackibDWkR pA1oaaEl7XZbmimcke3r/aJm3vWZDV5fGz4iOvZPsq8I96jD1yNn7iuyfQHX DTTBClwusKqwg+8Q/02vwauHnYGW1IGrBFo8FXqpJ99CeKP+LOYNZIpZxO9p KGb/H3N34m5XWd6Nf11rPWvYwxkzkgQIQwIhJCQMgiOxNFaJKAQSIomRGIkG EY3igAaQ6OFg2tgQiQlN0/K+NL6mGhVnGQKxFevQ/t5WiEx17L9QCbzV9Xu+ 9/2Maz9r732Sgy3XtXYrqLSsz/7e9zPumE+N6VQjZg3DLOZTPzrVBG9I1Mxy nsr3Uq2oC7Rhs0Iu4GrY6cp0Yz/Vd5XA1azyadw78vQveRviBRA2zRcW+8Ii qpzlwW/cW65Ytaj8GlYztS9bLIX6sWX87PJZnF/yX2lhaOb/bgtXy514tQFc qY9rzFykq3klmhbvtehlK7Ou/MMc8cR5vff8eeVlZ06r5ZUYXil4Cb4Q4hub V2cTSbbUQCsMtMSUz5iPJ2poEQUaLyN9CGY1uYh/3OAhfiLbtUX84wYP8xPZ tEu6MhxUaXf4Npt2uVKpxgk27YbNzqAMKke1yi/LscLqpXayn7YCjUBlXj6N 4vo07pF4mqLs6V89AZV4osX4nAOfNHSYBZ8OTaqz5TmLI7CMBusqLAlNlFAk 4F/JUcPjvlCBOYxDly0noXiCCSjW7dxukW4fUzP/qT/yVEyzANFVLlFRJRqb Q481PgsFckwCPXUw0hT7yrtakFkAZBYAmXRNvhBItafjIbNfSCdfwidFHsGJ o0c+zrfgFIacOily2MYfhgx6SsOW1SZPj0loUxS0/3z6QHnPnSuBLRo10BqA NuRDa8LZfPCaC15nGl7yv+XJXz8BY3SidtTVpqTVarNX5sSq3iIPr5ADB6kN jwdu/kKDDQ+lorvYtHO72jYr7P4Ot94GA5F/a5HPjmy182SQ5p0dGVPF1mjb 7GlLAmmYTQRfXJeGMewVXTMwMcU24dMkmlwlAxsm9KyxtjEWETJeZboVez10 wAneMqS1tXiAehjHI22s6WJrY422+zeMNsKGgcMqOXDYtpGybciQS0BumiF3 GshNATla0pwPcmfUkRsxU7Ty737OeYZcXe2NKNqo7Mpgk6OXx8nYv+yJVe1F si3nZMPAoYMaau92u5lIbSjqJ9u0tlvrtCWELNOLTv0wo6IbQ5n8C8oZKYsn bK3foBO89Vari/lUpVYX8c8KfZefKA34Q229xRZdGlg0VdF9+CO26DbqdNos FLxZUuts8IaOwzh42TnESIzODDrbpuimjs5DX72XdA7gk7Z3x+XTaAqfxq/I ap2zoXMKdC40OlU/KHGOml1HiEFrEi9FqazNQvkX8ONqKgblv9JBqH3KIBzb 8A72mZjaG5vay3O+2ugJhGItU7091wZjDKo89auxRokpwbU8M7/wCr5M8xv4 WQUv+xqGXWLqa+yHXYUdVdpCVdrvfdBWWhptFBNR2HSW4nUo0j2uLcOu4AUF JxTdEYhde0/AbtCwyxQ7NHyLz4lATw5HJbshsMsD7E4Duzavwkt2pzsD3Sex 3KA3WGKMOy7HuLevtexqS3BE7so/f4AGI/Ibq8Wh4/vnPeV9f7fl6PkX4d3v 2+mIo24PsyrbIxfcf5u3uK4IM7/U5aevzY+yPqsvCUy6Bl8D5HIe1n5PxV3O w9qHVM1t8LD2YdXc0b5JSQlr7p2yaPYkU8NaP9D0KMIGWgxZQ6bc5hVZCDTa ptuCrJYvay5knQ1ZgjdPalkzebLuSSyG6jMsrqx/Bh2vzDYcT2+8ZlH5odtX yH/ExpPA0hUVVykppCm3mpz9ujsmscR2WkrIUqod6e0dcBTRFF2i/Ky00yZ1 fhI/waig5r6f1PiJ+CeqvsNPRFmWG0m14ZXzBLA2lfMagzbVMKbazqK6Diq6 W6fpBpU7VrCcRoykhpKkxgkkqcAnndMcCkhaCEmyZv4ac7+/xtnNDkmFatcc SXiSuuqYK1a45OmKVbIw/n97XFZUEzWpakypwkgbN9QVKg6pxB4y75ZNtACq PeHZtr6HJ0Gn6hxPhaUkqpSsoiygKDaK5P+n33qv7cZyP5SKACrRNZ6y3pQS P54sJbr8q+UmkzsQoL2NQ7SbW7b+Tx2AJzzRsKl+Lafp0rLojIqArFFf1qlG VgFZFxpZtKCQQtaQORVcyai4q61M2cJvp/3VF7ZYW7Gy9cHb5HjgDWwrCdiS aaMuxrDba819holbB/uGtiYELa1CU7/+2Knt0/1qq615pK0JXrHJrIL3AOmQ wgzGB2zDRePMLMBLGF50CUZqeBWGFyVVi6vfo66xxBhrBdp5MjbAfdV/qswi WQOBdj7F5zSDapaJq3OAahCozgequT6qwTpUCT5r2/lUocJN1G9RgRXjM7Mz aVi5QiMvE8RDxaVw3a4d5uT5eHC+1xREYQqicuXXQppK22pXquzFGLE6ubmJ doNsMmPOKiYug6KLpoiaeD4J/B6kzkRrYQFXGc9afBcHArSmxGhKu2rKeSVK h1VIUwxNA25iuV06aaKTdKnRNMXV5Hbponw6rGkBjwulpqXQdKrRlEHTgKuJ xoVc+HpElFCacM/hPhlRR6qa7jsgO/RXyIjaBSlSU9yPph39aPqorykPadIT s39cUN3LYsw3+Hi+UuOLimHKeze0L8FbhLSvlHeUaV+Z8UVp1eDJB8/XoA0q 4bbpeJo86+DBGlSwfvf0gfIfJa7zzsEO405Yp5r+fBZgnWdgTfdhZQFYiYEV WlFPFC/UvltuXwFYeDxbV1wzf2zDhp62xvu3ReuetwZszaA1qd62MtfW0bOn G1tFHasHN/F6eqVTT4FJ+OkUwhTx7/B9m59IuC38d26utPCVFAspy6CsUacs MylWUUbbz7C4tHU1LzDdhs2xTnV0m3nKs4KnYr3qSH1XBnXyP7FLtvVvk82X VBeF2J0FdqeC3WKwO8XPs7a5eazCTlSqY+ayowetvMyzBN4SeKNpB/kfPOtc sqYf0UFORVknufEacu4l0obckB4odnJDg+ZTU/OxtJ8R1D6tNm9klYmtB+lH +CZQD7MJx1diYAneEKthJQYWxZfgnf0aVmpgUXzlvI6kYbUDsAbcNHOWLvFk vJ7ksSrAqqVYbZCd19uuXQpQ0ZQAq/lgdSZYLQKrk31WrTpWqWHVrmGFJJMl UpgYEyrGPiS7+De8gWMsxqfNstjNsuOApW4m92AlLizeHESqosJesjlZsOIT iDLqwLJAlNG8ljDiqGAmvLu/Rhzd9FsYcYI3O2pxmS+uxe39YVU124H2PgWy lo+MZkwHFbLfPXOg3LB6QfmVr90bjfrITjHZdTaQLaxDJhSya9YuLT974G6L zCmZwiBDZsluPu3Ahczav4ueKi5ePTKHmHZt583Y+kic3ZI9dryuMAOxQZ3+ 5SeBLZ6H0LKioiurvM6R2t0jGRUBPRRQKc+FfkcNDvtIqdyUv4qZhPdhazMp b7B4FHv3H/0EH9kVMDPkZpPTxOOhy8YGfDa0+jhCbASx+cdDst1aGIHOCOTM gJyT/HhaBDnnGDnUbOWQ0zRX/lbGhFklnqwc1blnRk6sqp2MpaMXvMLoSfyS 5+LZPil41LRoH3jGFZ4bl87jdj2vw5MF8Iiu1a02hCwjwbsSNaNK9MSGEUVP zIdyNaOYT39oRnR/XWGip8ETod2iJ+btYp6hqeBDoSP/zdoP6ttQANA8ADof gBYA0JwAoDgAKK8AshMIR2hWytfDvfnGDTp35Gfs+4krSzSquum7Nnf4jXqA 0PI7P1IhRIfXqoS2dSd0lcyfDkIPbnLWpPsoayQqNXFEkwiFnz/UJSW8QV/D iQNwCgMn4l9qeZifKPcJNU0jXiFU8NKMT0i4R4l4+lMDov2Gcfk7pShVinZt W2m6pAFf0SlG0SuMotm+okZXRVTAmkrRjr+TzfbiiBTlRhGvLdP2Lqz7iQAg 1RWp+1Si0C2IEhHfZp+ZqU4HEI4/nhCgQ688M8KpxhMClPiR1L2eCd5K43kS vqfceIr4N4Ae4ieyla0iy9a4iH9h4xF+IlvtYt6rr41lvLBcjSl04v8gO/H/ fJLm0hWwAQATBliugKE70sBaAWBnAtirAazNwH7+G7pt4DdPgBqeaGYAXcQ/ nKDMRQ2TWtobbgv+8B00nyD/H3S86S4cgZUYb9QtIaZ2Ri63mAse3zC2o3NS YSLWNlSsWW+CrR16lXSGjdFmU02hrGEe4T2vWmit2XqX+bhSPt6ocTV8TXkg nSL+tZ/v8RPZnGqYiGrWyWmYdOpPDiYHFssi58tpc1st5UyBnIYjRzZHJKfh yxGQM6t8Bjc4PYMb7KWh18FQwlsDpaEUhKaF5Rz85r16TOfIKZykeuvq+eX3 /+8e+VcdOW6LXUkqhJSVozbBpP4qMgfV8SaV0ZNW9awbpz2Ctt/GAewwoVcH CdUWOJ1P374plE/CiIr5mKwWVRhCTTeLHv5wKItaJnwivsX+UX7kP3qNSQBT 02DSTfdjt68uPyLL3T2y8f5PLBr/J85tSE9NngvQSdSoNEwYqxXG0wg8FeUz uDjzGVzL+gx2j2pPafn0b3Cs9je4BuA3uLFcHYe0TVRlfqAwlS9XDTiS6K// zxZ4Ko/83z1ECjl0u2y7L2FNqdGUKE3YYkqiaDNVZcufo0mQpjQkqWfRiyGJ 5jQxx7TRmRLgqU1AylxDVwcNRTSrxBdKbMZf6BlIieFTGD7dA6lQhe6hD9lC Ry1UEcBFXXiDW6hHlLAWb9erIUWLMQlEyf8qFVDgFNn+KQeqpkHVCnThmUFV ANWIQXUaUCWm0LUMqiZQDfuoGgFUNqT0TWE4pKZDKsanZnXFKtuPZ+qT5jF3 2kfhEifmatiZDdBreokllXeQQiuFHS6yxPnZNPmuQrHUqIOUG0gxHDXr+Mj/ 2KO32oCy1S7mPfBaE+2BF0oTEup62ZCj5FlNKa/q6ZI3EOjGU3xOh6YYmmYY TWdAU1Y+8+snLoCmEWiikteGpkFfU6E0LXQ0NY0mfYkmLpNQEcWaCqVp3xe2 HL0QIbUbL7SLph1KU+Jq4lHeiVDCjOWGzirnSqIjso2ApER9fv3dtilPusJK fVh5XflL+PSidhbxz5J9l5+IkixXSfa9LaEki+GP+qucp6A0u4KnoDS75kTY 0RmfTLFbiR794FYbYlQZBa/5aXZDgR49weco2InyGbRbz+BHiTW7QbBbAHYz DLsBsGv77HKH3YMuO6qMSaVHBzuBz1yxe8uq+Yfe+EaHHdVGbrXMCQyzGd7f bJzUmvtovbm1vc1t5ytaaSDY3dyJpFcfqijHcsOIeqysN6MYitrOQp6exKST sLlys0936F7xk38Bx69/x080aMrgMAkSbq+OZ5CLYKefqfBzGvzMgZ8z4GcI fpq+n0z5+aQc363ZxHMKLRNbsdOpI7rgJ3X9nL0oWnf/bvZTqJGeji11pkLf NKFHetoQToxpP6LqJ++kozsqYZftuPDRerGis6lChwpfXN5FfuYOReZ0RNzV T9xnSOX4jA2ngjdM1aQSTSRkPDGuUynj5TvNKefFFM2JDuZQKLWc3Qc6hohT 4VQ/6s/pSlU7makTaCTQmzeBp+3jOR14ZgPPScBzmo+HruiaAjwF8KQKz40f YDwPajwUPhGlj+7KZShLN5lyc8vtKyh3pB1MZu5WNY/x7K3Bs6uKJ7EzmQnr 4WXfCp/lHXwSqGE0gtHYOhebyOnuJvehCL57shuUiH9e6jv8RLZ/KkAm4xmn 76lhXcYbCDSUlDcQaCiZgdIGlJznLXXutLhoHVbhQ1oEtDTdzvupA1YLnVOI y9+5ZKa4ZM6NgAV7ofCbUp1k5oIM7YWaBzKng8wwyBSGTG7JCJcMHhs58m/4 WWdeIMcnLcLJ4JFpM3bDRk4cnTodcPQVEM50pvlRF6tGlazt+teBgnAWh3Jn fEM1d3oSSl1C9HydtpPTBSJeT2QVZbwz4Ntq4jvmC5C6iUmNGKpUIiAmNdGS 85qbjhYrxuZLDDGtunwZ4DZHihkxYqYpMZ/71MryujVLwSQa9bHQCO0sYGnx kpvEchqwjABL7mMRfWBxO2rCIiodNUcMPhOAMRNLaQ84u/qFQ7c39wFnrApH befVFUsfZNHtjpRT3nXpUtiZWIs9OaGE2YH327aIhnepEdfwxYUyKuVNTlpc ZsRRRjV4dkCLox0oEd+x9Rg/UctJK91ik70Wj+y0PWqQRmEvLl+gj2eh8J3X LjAKR/A501e4EApT3mUnFc6FwlEozHyFiapyf/vFe8tzL1hEVS42DuVfwO0i V6q8KuhT1jreXWce1WgLQNSRtbdvefj1YHdjSidAz59w/WFXeVJHkM8vJIYf 5Hk9kwJoa9+JILSZ1qijl/F8wndVH5XyerAXcakBJ3hvsAYnAuAyA67wwVHE DTjN+PUrF1hhTQjL/HpIg7gUwoQj7KsP3kvChoyw2aYongdh8t/3zG+egDA8 0RJjbcRYGzUdlbYmX6JOO7bWUNawcQVn7f9BKmvCWlLpxDnoOuMuceNul3OV TQhdaHYhroz0atNP3Xm6pqIvdfXpKSsNUFfO4wSYGXFZV3G5IRZKN8F7WDQ2 YbBRPU0C2HKDLQ1gSw22tkq3x26z6dZ2JhDuud2prHRtQ8OvrG3YK2AvU/aW yI5M2xvw7Z1m7GWgtxTiTjXplhpxeR/iRLli9aLyI59cAXF4GkAXB9p4UYdO Ld5MmJqoUis8ZTO6KdswIWUpKbv6LDO9UOnPrKyEf8alsz8rICs14VUEPCV8 TEaHV8KnsLSnxHiijp6uMi2Mp4zX+rQnOiZDnAZ1jTzLdvS0ISrjBRpPUROK mlCUK0U/+MpWkgRF7YCixdypSUXnGUVToEj4iuKAogSfuZNbV147v/yHf8XE p3Yk/4IulDK/ZGGUhNLqNMLxBZU/pWD1jFRmQHHmSk+m48PMROk95/r8MdXI MVUjaXNd0heeiLp7vm3hRlS5/gLK1kDLiJqumM+Fakb0uxiFYRTzaSsdSwnv LNdtPjHKDaNmByNq81UYEaOU1409RhkYDYJR4TDSrVbTZzTXMBoGo8VgdIrP aMSUv4jSSCvCjrN//namBCGH9n9xCwlKXEFuo5/hU3RMZNp7KGOeQZ8AnW0V OsJMZG5jPrHRQ9MKYvK51KYOpi7fZzuo1IRQYvQkfC6hM4SoqEX8qz8P8xNl vqOGcRQbRxRHqe+owdNRlTjSLTs5SnjniueItmcOw1Ez0LIXAUeL4GgaHC3y HSXGUe44uugS+Y//r+5mR6nu1m9f6ybRv+7x4uitq+brKQbGhDyyFY0eta3c PReamlY9QGhxNX2EmZHqINQlgKh6rVTVq6eoVHVH33iPbcyTumKW8ik9r5gJ 46gIOKqkUMWRLWsR/3rUI/xEuS+qaZJJ8G5NLaroEOW26CSKLo0cNC36KETF EDUKUe1Ai57jc4Yv6lyImgVR50LUyV1EubOcJEooUVhA1slkRRVKFCYnFnBz Lodx8tNu3ozV3jt1I0Jq90DlnXdJWksVTItDmGisx4G0bvvGSF+hEXZEXVAM RjJvNKSvM6S0LpnSOkJ5IJmygKiYz31qURH/8tND/ERZb1tNgynin0x5lJ/I 9k10E27TzITmvHznsFr52ml+wRs2GTWqjh688PQBiMITjeBzMNCCpwFbNMFw KmydU2crq7OVOFWPum+uev+6h0pfrmx9+I4Vh970pqotVD1/6XiSjK3pYcx2 2ut2bI5o4ybfpqGzShu76YJ55Z/Om9bTmOgaU6HqJ3g/eWf1awSM2cFdozcq W/1ig4qyKuWtCBLVUKAZp0Mt8s/9Tv5rKQtPNGiMDfNGc0lsqitLt+VSVyRM HaR9eKcaWWcYWXN8WcN1sjLVl2N/Ak0knCeLnAksjWrB4mjdA3vlo1HxME4f 0rM7p+xRF7X5PHGXaZwtnbomVpw1vI58hkMMvtZDqNmBp57+qdHMgVq8+bpb EzO+3HaisBI+76Jh9RteTcBqqEr4yEdsJSycLS8aVsS/QHCYn8jmVsq3uLiN +tW2UW9yg/U7N7wGeO+5hjUcaNTjAKxzAOtswDrbhxWbyEpdWO/uhKX6dIZF aZWqfQcyrY5e9EqDq8PWTmtrn2MrMS17H5hGVY++1e/R6eQLtv9aP3hiS+jQ a7gq9iAkAm2VMKJiiMr6LIeJiSoqhxH/JOL3+Ilsq9UApkJVwodvsZWQRn0F d+uPqORqquR69GOh5Gqb0Ep4N14ltHTLTqeIhS+KjnsWEDUFokYDLXsF0wJg Otdgoh3nU4EpopgCJrrjcchlRWO/f/m2rYTyz/2lM3nQyeqtq+ePvfuGvljt 7cGqspZMfxQ+rMrgL+VxX40lOp4ugpbe078lwTfidbMUm3Tqw1LO8wYPq7JX EdTg7vxRbBa2Ow90EiW8MdhtzDfbxjznKQPPTYNnnrSbqY6bT49thJhoesDN EriZb9zYEBrupWWh047nproJpYXacV3h9sq39sBunneqI7OzTzKqb+oks7w7 mRhiokSXMCpjcYeb03q4SSbSPaltK99R802V0lbBQ0UuV0XuoQ9WilzOU5na Us5TmdpSwXNQj6oi11JF7vDHK0WOIinim7Qf4yfywgltug6nlCfJPWQ5bxXW 5W6a7tAXyR7q6/cSsqkG2cnlszRZKalBGi3S0JL0hcbcrIA5UTX3L5geZ3Mb P7i2XHrh/PIf/xVLgDqhkkqbLr0B3F54eWC3Xa+pTp3zCZlu/qLEPZflTTqo hUFg9GoiXzd1h+3h142tV0dCaQODvumYH3DsTK++FHZPL8uuj8wKscv9CGsG 2NFJdGHYNblpP6zq30AAW0eiqRY+iC0FtkGTaIxNlC88d6D8wVe3anRT4G0Q 3trls7984hSgGyqfxcYqSe0SUJvnUwuVxaQLOvw5Ca4GnRNyQXSJGi/a5HPv 1KMTgemJe6OGfm3QW+p6MyUzMe2XUOheNbtdfvaqZd5yc/8lMzPoigC6oquy rGu4WWVUKAuebzjsVsvBupadLjFr+KwSXmT2WCVQhb5durrubUspyOi4QwZY Uw2smYA1DFivBqwzu8IatLCECwtPrGxho8M737OCbMX4pEoqaN2ZhOlQky9T l1HhidrZQ1Th3qDX+QPVW6Omp8kOD6ua9AwEt/QoqptUURValS6swnV1zVkz y82Y6OrpKqIiykfb30vXsXcRFvEvG36Xn0i4dfV7H6jU1YznUh/CdnUNThhw GS80a3AZLzTrWCt43lTHWlvF2mNbbay1XX+P3bHaxFrMmxw8fxHfTvUCP9GQ X02FkvjONQuMxEH6TMpnf/EEJOKRYwBtci5M5jB5qTF5UleTdJ+2/OqZoaV2 KYeVY391Nyqs/OcpMdq0Uxhl2GEM4GDsiLf9HVeGEsao7Z+Y3x716XKKMyBw TNaSTAJ9nldcxy9dqk32GBpUPIqAx8R4zLsCTHlRSANMDUCqqynv49IAUwOQ Ei/npSANsAWAMfx1xJ4eH7SNuGFeBfLCLnOI6aFBjs8cwk4ysOYD1mUwdUZX UwPWVOKawv6Gf9Eh97n9Wyjkkg5XcqSgpyskFe2KYXGrtjsyE65O3E2qL77d mEYPTu4ldcgwL7LJa+I6hxK9nOmhxDc3V4YSteU1MT3dxMPP2hO8h1CHX8he ZsKvYo9OGArYG6hGHoYO/3hwq2NvkKvtC5ji9wAWCqA7bGgH7GXls795YhkA FgCYl0//FnufXYrDzq9XKHqGHRjqwUJqaqtmd+Xq+WawUMtO7+bab4+Gsbng vKyoEuRLQbKQQPRxvsDlJLBSeWMt0NtRyJVXl9/ELb81WfeahVx7YxBM6+SF CnDCP4rSWYD7DbxGAJ3grdIaneCt0hpdxnsoNLqGQTdYHT6cJ+vs77zAawOd MOimmrmQHOji8hjJe0L2eUulvq99/V45JvHkzYO8Ach7JeSJ8pnf4mzYb/F7 PZ3yso4iikZPhl3WAe4cZ6BgwVHpFH9EZsHhAjNLqxu61Pz/Dg48NXq4ZFa7 Pusmw1kaKKwZLwZ8Tw0lBG8c7Iw0KqcJn/HRuhKji8ppanTRAKLgif9qpD0u I+2jsqTuun2lo6sFXVkg0mgAkTu61sreTbqKGgFdo9B1HnS1oWsWdOXQNdPs HgyVWIntbw+qvdESGtC9c7McOvybdKaxRTR0KD8iBw0rZLh9Ya9k4Y9J9++2 e/L329OHL783XVxrvW10vFVn6+7SW/Vdce+7YF65fP60qrjuvVstsZQXMmuI JXyMzCOW+cQKE2BELDcBloNYZgJM74Z+/PbVxEyGmHzBktgQiDV5nq2TWFvp 2ijbNq2r0rGdCV0zoWs+dI1C18nQJXxdumoiq9Dw40XFQUgytMY23+BBun+v ndyYFEiJCwnV7Y6o5fX+M269wiMU2+ZMC/I29Ozgh2uks3J50/nzuDzS+jgZ kv/6tOFI73IOOMoD2STcPuy7N9s+LA04SnhDfaejRiCqYj6OqB0J3uOsHWW8 t0JHFe1sjsHIyasNKxc4eZXzysAL7hhghPPq2LOyQbOixuRAAKIyI+pkI+pk iKINFjMg6hSIin1RQ44omtPYvAKt/r/tyVxR+7+45egrXkmagqLc40LHI0pf w5aaWNqh+/07Io1qKq+Dr9tq262gKLXL0BByps50DjGhtEoIgqJQ8UvrRCXu tEaHKBFIJisq5mP3WlTM56U9UYUpfjGfCeoURclE5xaFI+pqt6mneMp4jdKL p0EeVUpRw0qU6q1IlDCi5pgKeBpEzYSokyHqVIiaaQ5rVIpf27FF/fy/7WFb lFaZ2rNz5bXzdVLJ1yk/1RzF/fSxa4Kw8iosdySJYKHFKC0LfzR9XbqZv6Oq a6OjS/5tttu80kNKgvbKWe0OaIkLLaptsayymH892FM28dyiBj7iX/Z6mJ/I NlsR/7LXI/xElGWNQJaRvKaRl/L2Q51lHfL+mrt7J8voKra2L68FeU1XntvZ J748yrKzIG8E8k4z8uS/8ee/fQL86LK2aXUQmwrije9/v27zMU9WgXjOeSbg GGICiImBKKob7/lO0jBEvnir0Ws+Y/H2ar5lNJys9F0QmCp+27sUyrtobXTS 8IneRVPwDnyNL+aj2TURFyJHYRdRH8abMugeQI1P/gVcN3KYn8gGYML78zVD OuafVUqqGQJQACZgOOgzLFR/9qz8c2Ao3CFAAOFCIGzxKqgtqNLgNFNQ2VpK w0tYe92lSyj8fvBve9hcAXNCmfvIJ2W/v4LNJcYchZ+a0ZDwqL7ao0L9ZuFx ExS29V9j+zbjT82pVf3NVY2a3SwrJuIvNL4UdT2c2tPxXTUC6I6wkoBZb45N Z3dHJziquHRNSe6A0zMaLZN7EYkDODxypODRS0FvCPSmBsYHM31358FdCncL zdCAsm9qXeQJ+izK++XAE9v8QfETt19fvvBfR4jkvfu3gGRqUlC4KbiPRQrl ErMf9/PDR8UpDxN/n/aJRuEM7A4JOVzV26Ga6jj0WlmAcQvOXTzy9IYL48uW lq+a0y4/u3JZ74mO7kFo5SV8CFfLi/gn6h7iJ7K9XmHKbtPUWWTbR0Oh1zbo Yj7MplOO7lQquqbciFFG2/wTKBuFsmla2dvkmOGujbQWNd0oOwPKLoCyiI/j SmV4onNNzpG3KdZb4Xqjp2ItBjb8E3n0HpOAMT5t6U1sDB59xasInny/3dDF 5mZwi87u3o6a3do/V1vbq7k8UHWmcce47qZ8D8p2upiw0vERNtntxRVpCUm7 5mw9qfaN96xWB76/uZnPldTiUtsePVyhWGsYUo2upKiJa6o6evhWW0dtOxfx D108xo/8T+iAS2GtUQk4DCko4GiHtnzBWKjyYm0qrE1X1o49f6Bcih8+/8a9 bG22sXY+J9qzv8XZNzPZIYWNWmGppwqpJSlhIwmxclLMYUXVNXaHFu92WFFh pbqacEd3Qo4WW0fT1GKUNoRHGeqKaN3OTVQ5+aRSTieVxt2nH0oRlUi+uoJ+ Df3btI8Nt4F7tbIAqrjPxGqAV6HK5CMftmWShqgFDxQeVbWyyQOFw27BHDCx RTcQNitjBDPf0ebm7AWVXSOgNML3VBxzPcXghIHC17YaVFN9VEuBqglU5xpU KVANm+t2JJ/3brGdmQSVOjGFP82NmhdTEeUUbZrEkYAEoBL29MBe3tZx4p7u 6PSUsadVnifMc9BG7SRASnFCIxb3IHWjJGWLYHdSwuRUH6QKGMpV5/Xwh2zn RQOBnOc6HlGxVYHUMJCoCLZURD32CRtRthzSPamtyqwHymHLuBJ+RA1y5+W5 ShxXa69bSoVx1BTG0+FqCVwNGldzfFcDAVcPHb4nd3IK0/31rtQggF3FxlVl P5qtgZXzJnGtuqxOnTMPYv5oefKW3+bI0xWxh7xDrz2T2q/jkJeq7v9bN1a6 /z7KZMx3PfXkl5lEs/xyXgTQ/OhgXGL4Nbvyi8GvDX4x9Ml/nxoD0DiANg/R /QKpn21tvl/AM5gqg2jOtMFhY/A0Y3AUBhcagxkMDpn7ex2DW2WrLw3KzPw9 DB6TXf8L/Mh/1Zl3qV8/3WHAPpoM6eWS88+5lLyOpDPxO25/Il15XH73nXUe q0MB9riePQrymBqP0uLYda/mubiJYawZlHaw7KPkhoDmquQ+tMWWXOroMp4t eVi1dXmd0haU5rzEoKttk0cKj7klN6Js5JUquimqc8xAIdngxQYvJBsA2vCB 5g5QPXoY9IHSGHUGgC4IAM0UUHeMIJFmAaB63IDhqg7ODJ+JG5wflUOGS9SQ IdGfe70tvbvNxvFJsLm4Nitzz2alUuvViA6gulR3Bfq+C+eVb5g/jYFWWr+J s1QHQDXLiH+0+Hv8RMJP0IwXvbTIjBe9tMiMd3/o3LQiKTcbPGHyGDZd2sXT SlDKsYQNyhwOCz8oC54o1g5pANtwHMoGkBy2fYeL4XC2cTjbOByEQxF22IBD PbJQqWjhCbMgJv/qVXJQ8d53O/BUE6j3VFJxDiFzJkMSV5nDbNBzxVt6q3XY dZWSq9w1dfTcGdT+6evxeMk9Bif5v54+HPFetveYa8gm4KnSBqYm5oo6T30E Hg00Ut5cpHmlvKNN88p4bV4HnuVFgddWgff4bTbw2oHRRstAa/iBR3eWDfiB 1wiMNtpmtEHQFvHqqoR2dgBaRL/7UX752/eWb76KR6/Smfw/AoGXuoGng04O vnXIpcra33xxC4XcwX00GUfiHthnjx8nvBOJz8hUruEQ5lcckhDBtH6BTCmc HhiDOJ2gB3C7Bai7wJcNYKjOFrynrZu41ASaFUeB1oI4wRvItbiUt7NpcQXE CSOuxe3f49h1VDP6SHlLiBdoAs6G4GyKcdYKjD6a+JwBZ6J8Dj8C8hxupH4W Z0WfxZ5eKe4sX1ybxIly22c2lmvevrS8/l00BBkEtjiQakWHNJlqh968gqXp VNuH7W4dWyuFmYGrx5XXDXOpinq+Un+kwdUTu0L8qxO4fNKoo9LhaWd9MAuN MtLezGzdtMwynpF7SFXL1K+WtXFG/ZswuKhaZrygr6tlBVft2CLhXZNekqG5 f+YAhOGJhvziOaCs3Tu20lgr8NmAtVFYmwtrWH/99ROwRhPC5/C+JKluvq+u 4ahbvDQqN0h1T/z4nmGnp8M4BKcSmh3gFp5H2AhcbMCpeV+ML0y+TaY/WmTw /fGxP2Vwm9lX0tOfmWtx/anZ37vlIwlW+7ZafznAxfzLjzXgUl7b1+AEb5/U 4ATvCNfgKmkmeEe4BpcacJRmDZ6jq6SZN0yw1myajfq4hgJD2Iw+E+gCLjzR THyeBmaN8jlchP0sLunQuE7iLZU/J2EhXEn54u+PaGGIND0FbIUlgUiL8ZlM ojARnFIZcmUV1L9VZGHMqncq5RrURjMqsN1bF1AJ34l9XKB05/+999tOLTW+ Yt9XWucr4fN9nb5axldufBW8nPB4YAzgBVpEyoAMT2SjbRjc4vKYMmeL53Bl NPDcL9F2PYdfZNPIRoDsJCBbDGTzfGSxQnZIdmka2uf2XJ8D2aBCpiKMkLUM sth2aIgyjAgklIMqxuyQgIegmpbZMx7ShfGn8zMQ/KN/ahCKFc5t0fK/UPMj KsFmuKsO2ph8xnWCBYTZ9sxug9PCVvF8CFXNPpBlpkwSMuGnVgiZqAsxaskS PtOnkcV8Ql4jS/wQE7wHXFdNi2ywrvUfMvk1wN3YsY4QawNUWr5Iqn4oW7Lz Zev/4DdwyZCnaiZU0W7wpVB1plFFdVGBQiOmQDVcULRw9TdbakDJ1DItf2zb Md32u7Q6TlqpwWcfuHZ14jITHD6uxXdUyuOYhyuGLd5taRuyyZFVG18xYGWB opiY0CJPse/JhhZ1YTGfEdWeEuOJQivn9fZqaKl9lRRXDRVaLzxlQ2vAhFab R5bHsC6qQ4uMFTDWqhhDcsW+sVNgrAVjF8HYGcZYoo19RxpbL42dL43tvb4N Y20yJtD8l0svml8+8bM95RP/tqcNZrFlJnRm6RZMLWnRfjc9pBQnCMr84YHq rIpjTlXcvoHbrMSysn2Wv5fDYSWMKHUO71s38jm8ShkUfP9ntzIoeKNup6ii d0KRqIYpgwmfgdIJlfG2oUBCYbskYYphadgQokth8kBM0ZLViCK0W3bz62TD BUKzTA9/JvTQObyLfT0OnA03yJbqJ2ip/nCk5erRCdWhJ6LeSs+96oL3hX1q q5CefPVPvCcn4MhUPMfRTHzE4BPDD7p03VNtiBw+anMatVQ4cQI68R8bUMzH 1jWgmO9J0IAiyiTes0G3f2pKEf/U2mF+osKgivk0p0aV8ubHmt694N79BVX7 CFWDp1a9XNI70F587gBQEaypite7ZG+1bu1S6t1Pwuep4LUAvORffe63T4AX nugSfJ4OaNMVtE9t31ieJ9NJQUsBjWKqGYqpn0ljvraOmLIrUUlvY3ShQtLb mDez7xpzip/urPgMFI8Nt2+wY0Pa3iEotBKzOejqs2ZG3RLLjgkr4CJqqvgW q/fR/XouvczUQBoYJnxq8yHc06ETy4KL+BdJH+EnstnVdDZv6BoYUWTxcucn oE5XQwFmja4tfMqzXp61DNZafuM+AmsC1GZqYdctKB/85r0kbIYvLAWwV8IV bfqeQq5S4+qd0tUPf3JP+dIfjsjvjsbVULjetGJJuXHzik5cETVc5Ufv5BSL nQJYs8aZGGP27uwJGZuhr77qMFZYY6uMMbceigqtsTWvjXDnSx2tSnvVB63E T7UKrVCWNepoNXxaAPWxUIxVpNkqaaVVAw19fBZAlvKiulclB7jRkshmEDLp 7d8PlD98UDZb+B3Ib9473XfWhLNXGGfDlfy6d+/1cCYALTfVslD9/A9+fE85 fWYEY5jI5U+eaLUzE8rcwiU8VIxNmgljLjM3cthfYRbqrqu9zi3t5ucmA1P4 2/R1odFJavbek2U7rRi0aB9HamnR/VWhMqmmHyZESwRSK6mjFfEP4T7MT2R7 +CIQWC1no5l2E8NNKzQljz2Lgpd+PDcJbwjywqkFN03jJgEbdOkKDhJqqpFz NuQMQc5FRk5LyfmKbLHeJlsspaeAnMwkVK7k7NpzvU4olkMZ1VJbhT6GfHq1 X/vS49biVTx86j+GPC80G+96Gevi5eiik6i16u1FXbX3rRtX6/n2b7+3sk49 IT6xKXq1fGrLX0N1Xo9+xHZe1MQ3ekXWYx+vRBYVx4h/t+ZxfuTXXZfJSosf QhgD4ZAfXnQafdAgFArh7rtWmkZs1Ec4BQgvMAiLMMKmH18a4aKlkS6RHQiT 8lwE1mZnmj6rbs+m08QnYHH7rXUW6yojtV5xxSJ1XNfIjqs/iza7KhZF1yqZ 9bZYGHwNaCt4oPioCrCCB4qHVdvVDMiy3X1IVqjPj3krjycr4ovZj/ETVYIu 5elTbSxTxtCKaWMjxthZMDYDxs6HsbkwllaMoRWTxgZ8Y6kTdLdu46AT+KQK 2VDGEHSvRNDtV5Ndk2uML0iLZoUK4nq/IFZRjV2neq24Mp+lUNF8Vjx5stSR Oi0r4h/IfYifSHQ1Fkq0gidOtbYGjyAfcwvnQI+JeY1qiBd+vKSiW1lGjaLC UaQb+iGjaD4UzYGiJUZR7DRaWpFstIb9cikCSZWapGqoHYxIqvdtJkXrvrCf 9+d0QNobBQsnX2abepD22jNMXq+1i3stmpnwaS2/M1w7Ka/UiaUd/KgJrsRM cMnO638QstxHhmmKW2wVpfmL3M+13Eij7qzgCbDHsIXbSbPHt9o0a9k6Kdwm n/fNanaDXCWPufboPBOmK549wFMWzx2IpnQodLp9mX6ewrlQeB4UnkKHnET5 aX9EOerHWBKIscwALBRAJ8Y0wiifEEBRBVjt85U9mrHw7VGt3Kb8GXvru9gz C9lHF9kJMtiLAU/+MzF7KPjesxPBF9fVzgq+1MeX85TZIyrmMp7F7yTX9MlR uLV4VPA49ocFRgU/oJNMWlmbBwTHsI3iGI6fHMNPAhzDdRsvYs5V22oGBgRt 39YZsEVrjbMdW0ukrd08ipzmh1vshNv9f7/F2qISmQfC7aAbbkngchcxQWB0 d21Et7mYP0Y8XXQ+btvVHboET9h7nHQjVuVkloCCnFLe7P9ttfaTH19kod3/ oB0HZL0RZbx+rRHlvLSoETUNooFQV/9OOsP0Ao7DvXCUL9dI/agaAKLMIJoO RO1AQ9/C5ykG0VlAdC4QzVCIvir7LAdSUv6/PxyZbiRRSkUUUxRSV79tvmwA NKJM7WStBtRB3t+fmks3ouolQd1+sbIfUTvu6BA1W7VhniYlarvKq4ooWljE Lcd9iEp6DzQn0VbGi0KPqHmKjPfePIrTmNpWGrDVMraSDltHpK2PyUr4Odp7 owOqydOp2hYFVJsHi15ADQQa+YaxNQ+2FhpbUxxb18nuS9nKYGuaXwErAZVX bCVuQPGy0IRUCfWL45WfZbInym1LD1uyAuqsGvVUmSo4tqZTFTxusFUw9pHp LmwykcXqjrIOZDlUZTyn+rAqdpmfU6mxRDmVGkvUX2W8z0ZbavDUqS52xtLt q8nTErqPRecUXSuV+znVgKUmLE01loYC7XzuW1oMSwthaThsqWEsUU41laUn fnwPMoosUU4JWBKB8aCAJZojTSdkqeMnvkKT9L4pM0fvmcpnjOnat8arfXDF o8besGyLNdmwBN8A1AmrElc5PlMTV92JNX1iVAoLQ4ziqq0ad01MRZZNrJwX G73EyqGs7VfD4UC7nvnKlkLZDE6sZ//jiQGnrwK1jbJn/6ef3NP2qTUUNewb 1LHVMLElqrG1T1FL6m/Mmxg14epyOyulaw59pqE6CFXr9QrjDn6qTbvfaU2i qkpNLIyq1MRVI2BJ8D5nbUnwsQ1tKeV9ztpSzkvX2lKLZx+OmPon86rSoGe+ JsqslK/C8zJrJNCgp/g82Wi6EJqGoGkWNInymf/ArwV4rboiNQRSUw2pwkmv a2R6/fBnWNzRpJJqelGLfrDjYNqEckwYT4nadrp73AwFMQUx1dVU2Pq3tiOr eH5rx4aQJNth9StJmH49D/ippBKm5z9QGeWlfvVLeZdpDaeED5lpTnSpf26q X87ba3T1o5sGhOK0n9t0QGJOVAJTcGr54STAacgPpymBVj0x4UR7bC4GpwY4 nQpOGTjh1y5/+0RVUzRiEip1OSGhPr5theVExTB2E+rdDqfiBPyovtzb8eDn kal2TgeFHQ/0YxJKkc6kQKGzXdSypQlBUmcxzN3p36R9DwTIVZSpqYPv3FQ7 ddAHKsE7IGpQJXxyUbfnFhW1VIlBRRmV8q5SjarhokJGXfPaaZUePeGtpcew YVlnVET3dfJM1bMHomGTVsRrGvESbrfu43oVcAneYipxJYRLxtSfS1gXyAbr vuvL/1fKhPJiKnNiCvtP4SrGZ8PgiiisdFRFubvPVMXUhGpghVmo7PGVsNHJ 9CnWbbvSIbZWCUtcYRxWnFaaGCb0aU+X7qcgLJ4UZxGNCPmCO/pNS09cxgs9 D6laWHEm+MyPHgYmfGa7xlnMB8o8Z7mphXS7U1qphSa8yFlsnNnwmuLn1vRA 636yUfUaqEKO/ccTUIUnIl/o378r+/d3LNW8UviaYnylri83t8K+VHZxbtHq 4YTCK1HnZ31Vy3feWadq+Z1XSU22/NHOQNxTsd5klu3U8YsjhMm0Ub0xJYGp qn4xJXwdeiemhLfCa0wJH7f2MGWmEsZ8TYWuhImPSZjQIkx0P12mMKkOvVIJ I0otYMITWVZ0diwuX1S2bGjNqDbs37oXqzy4e/95/Ajc8zS/rrIrA7LTla2v SVtrpa2l0tbn78PYsDwy6ttKlS2VWzW2bnVarNTs3mrAFv1UYW706FHf3u2h Ud/inXfUUEoW33GForSG7oHVEdULk+mk/giYUmcJuhum1FTA2CQTYYr4d1AP 8xPZBivmY9a6wRJ8TEzXQo9VuF8fMo4Gubd6Ecs2XkbNVI7+6evS0ZIIeKJZ +JwGQkMg9EoQaoLQKRVC79q0BISS8r/KI004GvYdCeXoc3uuNxkljKNEOVq0 xJ5B1BMN3RxlviPdiY+pA1/RKbq4Xe0VN46hdN2Oqhz6eQawSalnuttf93PW /Gq9FAEgIlC6qFfKTOmyQGKTNiEgTSMi4l+lfIyfqDA2EmODIieFjaKu+R5Q kXPsqI2cQUOF7nrIApFDbXhWvkReXvrFATLz9nVL2cvJ8JLCyyU8tJNeZikv Y7JTQtzAy49+ek8W8CJcL27uWC+xzZ1Db3mz4yUNXDySBvaPUonL/E6pRtPO bb6mdPnYVZ4mfborTGqjIUWbs26+cF5PUuqW1Z6kuhewtI5UxL/r/Sg/ke2/ Q+nT4k0xup7Rr2U1DS66Z7qhcKkG3OJqc3N0DBtgdBPeBKnCpI8lRRPlbZAi UfK/74a1C2CKcmgGPk+Hq7h8Hvv7nsPFhNLVjLCrBly14IqmDKaYHIoDOZR2 uEIOfWmfPnyvXdE+97xPTYm6V0Qxovlx39HiMVvROhxRUVsfcpRTe4TJgLur Z7k6q5mllAaqWcYXqE6AUsQ/6P0IP5EtZA2jyEZUy7CJ+Ff+HucnspXLA9TR XbcASACQLV8Fz453ZlIOQCMAlDqAvv6tewnQNAOoACCaJ58OQFMqgGQRA6B2 AJBwAbnBlOGzcHYaq1ySb/NL+3hrcdYnIL2It29HYN+B0qRmxpWmU7k/Wjdm axwUrQ1HkuyNdtKOA6JE26lePafdN6XaxihEKTWFjijFfM3Mw7gMTqdS7gMq VAwd/qiNocL31Ap4ahpP9FswzboGu2k82UCii99agUCivcbT4SlTni6QTZH2 NAWfZ8DTADzR+vBJ8DTkNEaOqWF4asPTgO8pogP0lEfX0CJxhZKKIqbEYWTu gesjlSL/rq2k1tj2KPYTC4VPHRG0xq40wznfmBdXyhjHVUbNdsDXcfKK1QUM vXhVksqO35pdoTVUb/XYrba3ajjbpnTlo1+LaSloKrQstIKnyL3gSnmJ2Asu OtMVly+h+ZbQcgUN3dQFqgOfYoJrFNBOA7STAa0VHsRNCUBLHGjIrf/191t8 aLqPmjxosVpArvzMJMypY4bBbgtl0jMnFlOu2SpJ7HCFr55Et+owGbVRRVt2 dLHTbU0Su8xv3yfEzuZbDHUNgy2GNYq2poq2xz9RiTYSF/HvXB3hJ9JFc/97 Ki19wYt9nr0E9gb9kKPjqqmx13Ds6a5rxNibAXu0V/RU2CvCo7/pvr1R197n 9l5v1mga+MzV5mPda6mHqmX+x/Emre28VXubW1dHq9jWd2I7dOlZtiV785kG mwA2vrSSz9Tzk/gNfh/o1ElWjS7i3/5+mJ/Ijh4b8JarLv/RD9sun4aQueFH TVrBE1aPqQa/yQ3+4yrm2gF0TafV/8HBrRZdbtDZykrXRQ/5gTcAdA2Drhlo 9YcMujlANx3ozgA64XRqGp3s1E4y6Nom8GKFDudcZdhZdJlCd+s2E3h4khNB F/ot3R20ednxpuYl1BlDjY2HkmpSKwE2mnHn04XwpR+eZs/G1jn92qYldBel dZa4ziLaxRd3laZns777vsps1sThFSbo+oVnc69h4A0YeG0n3vSYgHbMpLxj xou3iPIN0vBElaBr8h4/ba7tmBu/eyOZG8TnaTxTKs2NwNx8mJP/ODAhXxld RnN8cxR0ESUdjlWX11w3X34tDDfaqqWp8TzFJFnb0WlNrURjTt63NsMZblas bQhZW7drc+T1biNF1Ke1lA/pf0ctQxcnQCrnSbBHVQHNeP1GQ8pNghGkgue/ qgl25LbOBPvYysrYIOVdfdqVWjH0IOW8CUtDGggMC9oG0pmANGAhifIuieh8 i+hUM8K0uaUj60scWWRI6B4NkfUWNpQaQ972GNeQ8H8WpltpjKFHXbar6iIm 4hWf0yp1cdzjI6jVz2mpWYKhrksXQvkfU78Df4JiBF8to8Xkbrf1yIcq3VZ3 MRlvV6gR0+LW/ojNn47WXhgnVOkGudK9iGU/Xeno6IMAllGDZbDS2ksw8r9P YzkbWAqLJTFY9tx3vfxXvy+PzPW5jCguOG2P+2Z++OQeic/hQpGz31mS6YPL hHuqcI07yYVjG/hxxsM9lVi3fa3XwCc+JK+jOkFIEU1J8M0g9DNpEyWV8bqf JpXyhirdxWe8oUqTynmBRpNqdpBC9OiOnUpazCcedPQMgJQwpGz+oMI8fwCk 8EQW13Cgd28YXOcClwCuM1USPSjb9nWyg1LAMvg61S9pdOJL/ltx/uYTn1oB X3gokZJKImFbaPZHIMa8qLT5xLi02XzSbXuF2LqdtH1hJ+2R2bUpom5KVzhl bHKICVPnKsQynvl6RFW3fmE1DazUwGrwfJcD65rXVLpygjVgYLV9WJRVowrW S89ZWFMNrJFAf17gcy5gnQdYNaaaMHWKMdWCqSEns3C265+epLXkJ/dQcMVO cKkDEbwPJjOqUnMf1vENATss0ay8snS6Xt1ZZRzxQ+NASamyG8aB5LVKkw+p klWYYthiG6Y04CoNuEqNq5R3E2tXWcCVgKuW24PPd3rwiH4diBcNj8KaFkZX y2R+dA1zNZTAphlXUwI9eGYCazEH1vP/wZMNDq4bZOv045/eM2Bw2YI4qHDh ahAElo8roszSiYVJhv31uCqtUwxRMV8us48nEnjC1GhShW+WB8ks73RC8jfu 7dzAcwmwtNHvok4fbpfjb132P8mSMJaonxLGEhW/FJYyY6ngFWjHktt3qxMQ Gk+Dl3c8PAPcd3t4pgb6buHjyYFndqXvVniGfTwtF49KpTAeFUyTiofhYKpd 4TmD8VA1G++SQjvMnjxHzibbNv3p3JnldRcunJCcLDAdkJ0ApJQ3vGhIgvcR Hxek3EAyjfn8SmOOSYCnbCjZfqoIuGrBVcN3NS3QogtT7BbBVQuuZoRdTYGr k/1QagdDCZ8Jd1RqAbGpmH3c6agSfGYTZhYV1XWd6rjOl7a4XlrL21q1U80S KGmmeVLS+mnO1TXu3ajRyk7CF7rrHTIxaOW9RSV8xk+LSviMnxYleGe6FkVX iWbVaNJ9eZPbp2PYPXUMh96P/Zwvfmz6juhKq7bvaHqgG499R0NwNFpxJLsm OJruO2q5jvx8qne02OmhrKPUXG9V66jP9mmXnT33OdlZpnHapkfNuC15O9y9 6jTVtAt79P4bHeXGUVrnKObD7NpRwoevtKOUN+A5jtw2nO6AoWCydS7jrVXS 0bBpwzOeHPcczQw033ZANwpCA+Hme5Yh1DRR1AxEkcBny8met77FHPLrYiYJ ZA+vKeed2WMrnDq/F51ZU+K2r9HBk7qHGnTwaCzUHGEuclKwpHUTBLV2BG8w r7ET80UIutVOjJ1mnZ0Cdpruat5VC6wd4duhO7LbfgbR3Y3Dxs4M2JnlNtif 2Qg10anGzjTYaYTtnAI7c4ydlmsH8fO/v7Sl085iPdmk8yafiJ1ge1QpWr4d LlqrQnaaHfuBnaJ16IK5xk53OgJ0khOlk/IWqho6CR9Rr6ET8wVBmk7Mx4o1 HWHoeJ31bdxZF4bOkKET8+Zfj07MC8Fe7MzW7fVS2QJ9+16ic7KhMxN00sCw TNI5DXRm+7FTOLGz6rr5RCcNVK5c7fDUKQRN8pksTCqFdm2TNWtMY5qnZ7Yt JCCi+W09dbRDnybGpS+q83nzRRGN8hfNmtYjgE5EUewHUL+KIv7F6cP8RJnx FPEvTj/GT2Qbo4qshE9XObKo1X6SW+2c10q8UIr5eIIuaCQr4suLX+InGvHj iY2J8qVfHij/6RtbtbU5YLYQzGaDWew0SM7o/0yfWctl5iZUN2Y6sCbITP3Y uc8sDRa7Oa6xYrk3EcCBZY2tV8QSzqpN9EhGiDq+laUGlDqQ9121X2BCjBI+ kKcZxXyH1KO4vEyHUdEbT8Q/xvo4P5GtbTGf/HRqmwmoJxWjzGeEAdzTB8AI TzRgomqYo+olrKx0RlUMRWi3paO3v30p5dUsA2kOIOHyQWnoAjtYO8sYapio ypzpSR1VOT6LSof0JZoE6GSTmvt/hLmzP+nBpjqx7bERMypzSG46qe126lRe Sm2SonNo/ixKqInpKXpzEWboFXdNHVvFmkZKCzRahkbLpYGE+cEXuWXOeD+J pjGoaLz4c0vDVrFBboA8GjZhhKJxw7oFhsZJ+DzHZIxDY5Ok8ZOf3hOXfyiP nA0fs/yM0T6wJKIzxvPhhErVhzC3KHb3ETX0mMs8lWChI1JKyXxnaba2gK3X BUyYLkjxSPni4G/xT37gBgJ+ongiTtQ53xonEf9W/aP8RGnXOtWsExPxj0ke 4SdqBFvmJ3HnOW2A033PQMCOrVMDsJPCztSAndSxozvoGcbOScrO12UHpP3s ve/6HHbOMnZstohAthT4zAPZknS1Y0uStVPtfMIl6WRPjTvxAy9rzNSiFyzC rUkvm5rYFKPuahpuRXrsY7Yi2TEWrHw8VJG6IcKYXdcmAUQNE0BtICJDwyZ2 WqCT18VOrui4HfQ0Q2emQ+ftsqtRdJqGzklhOnol1tBBzfuZbW1EIIUEPmm+ ujCnMkOSujY3geVXX5I355NUS9T6SonaaCRhaYMb6OPkFNFIi28doJ/7eLlg NQKwGs4+o0opo2b5SfVTRE0jqcUjeE9SA5IaAUk0gi+c3kZpYkkLIGlGWNIg JM3zQ4gKWBJYf20EJCWBTEp7SzqBeqY8ncWeTLO83dQz4XrCE/sNM0oaN8zy /245uActGplNoizBt6TUyCpM64xe+SOVXqjgEf1jqrwVPO56vFLjjmy18USt cyPQOid8MkqjavCUokZFla0AqmZdPDUCDfMUg2p6BZXqikZ8VIWJpzgQT91Q ufGUqnKn7z7EXqV8QrwKj1eg6J3iyXL3Ipmk2lFNKl5TK+Dq6FAzKi+aO1re eOk8+p+IresuWlje/dZlyctGK6ImivchfQjrbZOBrBlA1nKRmSZcIosNMmqk Ch8ZJRddotmuS65WoPUeMcimhVvvaUB2pqmBncjc9Q9CFsNYKK+y46PFE0m0 BgJecQiZArab55OQXwrZ2e580io3vrJqfPkL/4mh9rfvuFj+s3/yjsulixuX VchduSyyw7g4gEwv1n7vZjsJkE2KuZznBA6rQpnz3PZjH+MJyoLntrW0Bg/y jqjKyL5St1E300ltk2MFL7F5xARvAdAd+lQ/x9qBDn3YEJsSJjYzQIyKY0TV US+PyG9GVZcbXLW66E6V3PwmiPuzkNiqdD9tU6pxllDDJaoJdqqHy8x8d+Ba W4MrpeZ992ZuuSQw4pWUT33SRdZIo/J9ly4sd61aFiW+L8HXs74MvnLVkj16 i23JsgC3zHCjYMt5OVdzK3jW0ucm3JYez4CRlvOmAK9i0rXSQ3VhNqikDbSj 8sBBbugHjTRaiZN/1RkHRieD2RlgNtNPskqINQ2zOBBi+QkzS11memk3JA0x 5kuzXf0qf1ZBSUOtXI9w3OkfHwA1M0UuuaUkLSufuvPy8pbl88qrFo+W86ZE 5ZsWTIM4cibgLJkUZ3lXWBmv7/aE1TQ51gnL6fDLYy4sumq6CVhDJsJi3gKn YVUiTMN6+P9spX9cElc0YGANh/v7ub6t3I0wXGm+VXVhrQ5bboT1a8v9+dF6 UXFFlCqOc1nUArXiu81ml54AhyIcJaA5cBVXFUNPSj4CiGIYisujdyK4brtc UjpPUpoqKZ0zrbx52cIoOQFGCV/UelyMUt7ApBllvIFJMyp4vU4zKhQjp6cH o0HDSBhGthKO1EXTsCPo4ku4z2qbIwVDYUFnQNDppghmrqAlTjqRIGrjK8FU 9MYT+T/rHvfRZ+XBPkvPOXiWbCe/XacTNfKhTFIzDjB16Kw51M5bToI4ZeXR bZeXt62YV66UpOZLUpczKXF8vVUIU8bT5o+qjirlPXDdCNkSl/NugSohnUTH qkkkeDOuJkSHMNHgPHMAjvBEw76o6SaTRpSo296/0ohqGlGDgeGhFHUWRJ1m MolENZ1MWn3d/PJHdETFEeXGEYlq9ibUbzOlZ6/2+TstsfqrJZ2j96Gsqkkl xiSqBU7tQ4Gno0Mt8sT5hKZKFrmj/ESUVDFkxeXPtwHZ7QC2RAKbJoEtlMBe v7C3r8IHlalm6pEP2mYq7e1L8MZv7Ss1EUW+Mt4Rd2QrL8sUgan12BeW8IEC LWyAm6iXsPrbWesoqaYoV6+7ZEF58xZu1wvjaiDcrp/ju0pdV0iqB760xbqK latVb5tvkqphXPHIj26G+gLdCnVcTXqg0C3/3Jg6iKJJ0bHecQ4nQ4ryiSvd up3r9ZYmOkOuPN0UHR2WnmRLrtrzgKcEnhLl6eefurz80rsvLm9/8zwytUKa ev/rF042JcFnCGooCT5D4FGqRpXaFPfFrUBUpRTzoSfdNg3wyO+lLkVvqkNJ 9+M5Ps8CpXaY0iJDaYahRLfhYyvTT+7REYWn7cxf/e+/31KetxSbYbtBqkRV UkdK1Az0kEu+Ibf9ZkchQ2YHeG7KnCp16/bexO3TwXdhSqEnJwFN8vV/WXr6 pPR01nTp6Vzp6U/QV50gqJQ3qnigKJuaAJXwYacaUKnJJgKVVw6lHKMpUQ/U oImlFk9UdVqabixNC7TgmbHUqliSpQ6WlsDSXD+WChVLuFxax1KMz5beLyc1 IZquktH0FViaKKjUCNIpRNXNphCfPIkW8uaBagoJwpO6eHR/pDIoQwaNveXi qJw9QHDAxnRJFStx+bQEk5dPf/ry8svvkWiusGg+8CcLgSUqXjYkCZ+I00gE HxKoIrlV9tj3yh7bR6JOxGkkTYOktnZNryBB4KQGSRFeDL7QILGBkyskTuDI f+UgUXEDIJOFxClViBkfiYkZhSQlJKIKxPiQwQIj73h9VJ45GmkfqWl1Kj4E eCBVFJCzJZA3L5JALlvoJEiszkdu4ZvmYtjIAyQSU4iOn8RSzoxKISIS2Clw 9ADvFqCrd7WQghdVtJDRQIzMDHTNiRGSh8dhFxsh0zuEuDFCQppOUVIxIl+x NoJNA/sqg7FCbWPrUoq8IGEnCBLezB+dGwqStSpIHCPshIzEIAJ0N0WH/mRB VF65aLQrkBRA4vIZUnJos1TyFqlkhlWS9FYieB92p5KGUZKbueqEj/3rwbng Y2paSeYEx0bZ+frB0eZ25UWVHkPGRsMvMZX0OMlpV7SNGJ/zYSML23gVbJxq 0kPARuakB7rfH1FkODawLUmlB9to8LLtl3CJ7sRE7LWlBadkfRGUGuNXd5SW nWsdERuc0sIsErA4umS2ZLF4NOrDRFI+MxaCsUXCmEQTMd9Co00kfAxWm9CX v3//9tXlKtnGPvFF/H65NtHi0dCLbttBV+Y26yrKSTAxO9DCEofU6Tic9dfX Gg7TOzggKjDp9yPa9Co/9frrqutMtxHkEBpl2yLCK6zZuv168X67t/jFW/Gj RSxinVmXkM+ONcGM2LWBMSQuhjkRpvIiYTAIYEiAITEVhDBkhCEjDHdKDAtm RuUViyWGP11Yfv66ZWIiHmK+GkR7iPlWIs9DYSpJzPc46NGx6+FvZBcqK4r8 x649NHn+xfOQ8p6hbvVjdrUN/ft72UMSHs0sg4dTTDwk8JAG4iHDZxGIh6TO Q+YDCFSIxR1vn1elAnngv33Kg9gSEOgl1u29OaIFgb+/4eKkt4KcFIjy2bHL y2fvurz8yo1Sw1vnxeAg/19UGGgqzmIQvDNRY0j4XHN/GCL+MfDH+Ylyn0U4 JlTf6bBoGBa28Ux4F2JN6aCYOLnaeP4WvwzxPH6oOcjiMsNiegcLvTbQwcKN ie4seAlAfjrT//t3KCOJWzPUDuZosRMP26828ZDoeFgbuUhiWzG41dwcmY4C beeGywyVuF8qiaEiH2kCn5lmQyGCZ8ty6WbtsolriaiW8JYxujS7p5uIf3b5 CD+RbT7o12xiAKr0qbbaFLzO5HUgCW+E7mRk00UzeulXB8rbPiA71Fcujc4g THTNQnnzBzeWJ51EfcefGUHTOgSpULGCcjdYzmdBwhdU6Eu091YGL7oNeWBX 57Sb46sugHxfXgDV+0qUr90dvhLEkPYVHSeu1MV1pcQl/5GeI58PSlx71i4T vXFF/Jvxh/mJ0t7Mmr1dJa4rt7OtuMp8V7FxVVu1yFUMVrq9feVSYnWqwiXL GP05ZNcdn7z+cuA62cRTDFwiEE8FPrNAPBGugvdH1+ASqqn5wu7O+bgOa3G1 x9F9DqcYb3CNzlMhNn6lCrE1hEwtEuykKTmtbBdNydXFWIqmB9QOXXZOREvh aipugtIyfMosG8cMzFffe3G5TXI7x+cGbdFxcmsGfLUMKPppwESBUi1xBVTO Oy28NmjYtxQqdcKxBDtQNCds6QpjaVqHJTeoyFIaCKr0BCxxIWxUC6HXJ+/l oKogWuwOnUJJtV43yhtR9DZjLE9dErs5ev4c4wZqoomzwZ8bv7x8jh/5r/CZ kqDVF46yoDdIQeuw3czTE/OdVT31NNwi+PittgjacTc2In7ChpVtoyIaglMX pR802TKyMoMr4w1jGhelFarb0wd4iZPuAO1ZD7W1h79oW+5ZFWuXXrqkvOOO 66+EtTm+tSSwvNlwrVFuvTVoTa2VH9xr5vH6Siu3Mu4IVkZM8ClvS7qEVo23 UGWMIQ/zAcoe9l0cV1pV2GWa3VWS3UWS3ayo/JBkt5fY1YgrJkKs3c2U6tCt qZQ3U2tTgwFTQ3WmKL9Ogam0YgqaZihTWPTEn4Opw4dxzuwPR67yYUW0cA5Y 5lGrnE3IEtUUux+1q1PWpFZEm2bL94ypjdQKF99frNp6yDL7qZUuVEf6fYBd +uQH9vbg0SvoxCuGLvn/F7X2my6m1c1kUoDJcLsbyj4llV0rlS3Uyt6+DFc7 hoEVquF67KOVhqvgyYHHVVVsBIKs6XTznY28HQ8Kw40arjY38i/1VSRzhUx1 8sRrahhZAmRXA9lst6XvCK4WPpNAcBEv2ismJs4rdXnxYzb7BIUhvjxhGc80 +hFm2i7WJdbtWu/pisGLwiux4cW9/dSo/NKmiym8Yt9WYqeYJmIrKZ+3wF4h gc2WwP6MgdEFMxG1XLyFjH4x57ioFTzhcESlWssF5i5y2Tyj3/RqGmB034ww wLpXxiLQ0Y9UgMmqCGApgF1jgE11gblLGAQsDuRX7gPL/MoYQ5U6LfvALrV3 TLhVEIRiGMLLRkbdzX4Uo6UqqO5GUF3pBlXmBhWXQS6FMS94mYjS7ZcqhWqk uDzCPrFoEikJUIrL5z+DP/mplR2e+HJjj0/O81WPqXqY8wJHP2iQSrprt2hi Pqami2CLJy+7obGp1Ay07gNOO+XAyYFmlY8mDqyMtl00JpUmiibur1efsW9M 731WanIvfHasMuFDQz5T2taruc0NJoA8PXurerZEYxulnpXnjXKRIz0CepIT 1ZOSntTqkQ3bLW9cWN63fhknT6769sMftn17js+sq6Scl0W0pKZqqr5/W7BR L+CpbTy1jacmL454nirTCp2e3Pa8FRoK3nF9AU/XGk/0Ezjy3/VfqoVSOTSg 1lKxu1UlEFZF7u+hKVjZilBlC0bSdhtJCtf5OpKuqEaSqMZRQtMJiW6ZSBVV N2EL27p9W2RnfjKBiifZU67S6Pntl5efvnpeuebi0fJcaerK86fBVTwRUhnv 7akh1eB5he/fZuYV3iT/Hp1lLeLfqnyRn8hmFV3wmMPWiG+rUuDmwFY70KYX 4aFfE7bWwNYsayshWyqq5FjzR/pCLDelCrCik0IpWKnfxT24lxumUEjF1B8l riO3tlFCdUDilNpeSamda9yUEl5K7d6AmYVNuCtrrw0oPcOwbp9jCjtWJ41U ClIZkWoQqX93ng5eb1rIe+1DtFJexK2hlfHCvqZV8ByoQwuvXLfkmbN3TFvK eWG/phuv5NRAoBtPnWZJW5LNUguWrjOWRh1Lag3XWHJapDpLPQqe3yXt9yIJ mugP3k0fXTBpkZR2EJL9djTZfnKQkf+UCc0lEo38+1x5AaNJJhmNnjjfcOnC cuuNnEe5s3FId9h07XWjz2ZpMNBhx+Eh3EAYzY9k+CxVi7wazWobPgE0wg+g xEcj/426jNV31zSf2eEmW1yTQMEWiQNIJVAaSiD8HeWn0E027XHWgKr7AQKA GhATQ0xmxBQQE5f//uf493z6Gp/Nh9+0EFwaASUp75bXSlLekXpEzYYXqqW2 SvDiHvrbrVZJW1WtF5+qVC1Ck/IGxM6OKFS1hglNZjrsCpRBQFlnoIwoKO+S yXKbWlcZUFAe8NOl0RuKuivkAZ6EtP0ORvM79I9Jqm4aDQ9vL4wupM9i3bgN FgtkbWeobLDTQ2oUv1dPQeY2WThdmMe0iDYuC3/0lU7Ehvz3/ftnTCWSsSI/ U6KSEpUx+SySVK66UFK5fCGnieCt8P05yXmDwPdv0xsE7lm/rHzdRQtkHZRE Wtwqv6jSZNDAaHWFYdOk4bQzKEPykWmCz5SwAIl+JBY5lpdS3g4pJ0HKsFOH ECk/ro8UkkLXNmQBKROsQ05Hc47LReWJItORJx3NTGwmfRLDJaEISYyTlUtG g0ZiEMknIiODjLj8BfH4+gcuLsdWSR6nWB4iwEPwoS7NQ/BJiVoeS06dhlrD PJo8nePxoF/xaPfmMUfvH+mQkbgyzNUpyy45vfzklsvwyD+HT1kmD95Qlr8Z pwf/O/4zMm6Gw4g+v/d6ipsfm7hJKG6WqPmeOMAo4WuuDlLWdAuc+wOBs48D h3cmRhdVAmfH1f0FzsbIEcTzhjprVDlKuKORL/rqJRi5T66lpPzFXyCiAqAm zCnjnayWk+p3mVODp589TkmAk+1dphlOU5ztSNjpLB9wen//nBKXkyyE+Exc VhGVsXcYV0NqMK+CST9tJ59W2nxqGli2kvUDy1QyJ5zMHwtdWgkv4F5BzQ6a 5FW0+r/G0FK2UteWKWpC87o5wOuW6OgFLq/kBHhl+BTglYBXFuJ1keS1YiGf PtWyEj4Hr2UlfPo0KMttiElWYWTZoVTMR7o6ZU3xg6rBq2efvxuUcNXV/HkR 7lvwKX3gMjyg9AFD6dfjeOSfk59TA54GfE+DOqfuszkV47NVCasHdViRKVEX VgKmYmuqVxttWmhH1it4IN8RWmoQ76jqSKyNllQ1sWIEViTIFE51SVGTp0pA VUGqZBXcIlWtlqpOlYVWqvrIioVR0ieplA9nMCl3YF5LKqK04pXZp3GFTLcq qC/R//z4SuAiYDE+UyhLy/s+A0g//ZaF1MLn9AAkGr1vAKSZLiT8LujfSTMV SKmJJgmJHlS/iVkKFL5QPp3rKipsPlUlcT7FdZDw3yoH9DQgo9X/vbTvct9N TtdtVNEU9lnTjKx+VdEMdQxURcCSzKodAPUNCeouCWqxAypkKeb7FbQl4VpS LTZZauIz52V+z9JQVzyDfBGotJPiF2Hkf+l9d18GMsQmxudMaJkR0NI0Wih2 2k7sXLt2PmlJ8NkMxo78bIEKXQWad+2RePQuqrHjajFtdqeWGVrLuKtllcmd 2thB7lgt3Hfvu8lLnnX71VIHOXnPxWREwIg4USNJ+csdiCMDZa6E8goJ5c0L y33vXEank2O+mqofK+i39ai9YaxkfpOE3SA/t7kzUEeH2iXh/AgMZc/4Sk4h kpQCUlqWvxo/GX5mOn4wmJdyIlrT2GjSpu2mzZe3dPpx0iboJ+Zrqg/SKG0i UWOWL/AH7/ePLuaC5bZCXtTsWtulYOFefl8O1y49aEuhB3aMH9URhfFgA9td lelCspTDkoAlKmI0Z5jAUmosxbCUkSUp6rOXl9/4oPR07Tz53ZaiZHupPOm1 +QqpiGoZ7//4BGYZNa6kGkS6A6cgyniDpMY1EMA1GMBFHdMwcMHVg9LVXSvx oJ7dBV03XLeAfriKo0ozGwKzOWA2K8CMlmLfBWYzwKylZxd/eo+JqRSfRSCm kgkzqy5w7LcLHF5GKWaX0FgCwnAutTOc6mtZDGKJn0rSnQMLD7fbS0dj3xZN G2WTZ0uAlvwnrXBRWOEhXBuXqWtmJ4Zqw+ts8x1C1ebm+yVsvX0JN8B0Nt9Z L0rnRXjkn8NnUm5ae3p53/hleFD7xqlx+sYN4IUnmmGgzVbQMPTT0LIwNPwY ts4zD5rMs7EPvdfJM3Dbbw5G8xRCXOcuhTs+YkArtfpR29xUeYREnkFYDINL HHVOZaz2UbvWOn1U5zBvLxncq+YuE/DjYNP68HfF51H8GI3UR0ekhd861eqL aCUE+mjjUTYRhzk5zKzD06LyPPl89IqF5V9vXGbnE5rGXMx3eHR252Qu5aMD 2lyLpxJeCrdVw/Tbsln5T1+T3MZW2kfSk9xEL2W/HMcjvyjyc6YpnXMUNQwP NTWBz02GWiOQaRk+c5tpR1/7WifTjoOaqFJLXGX7nCU3peyV9JnRkpvpva42 8RbbQZ8Wxotu1KRztHFrTltLLLL9AWQ4fY8T1snLiywHsoKQyWr6l5eX3/zQ xeX4GlRTyUz+OQUNzqK4TpubcLp/b+FT8Dk6ra3J86A12jJoSwFMNlyL5T/o ctN1EtZdl9lHIpOwpsDTSSa6Tgl4SsKe3OjyPLnRNSFP3NrTdpMv7FYbTyYQ YlRCeetS9CrmVRdgmldoNqGel62c+FuD19jGN0R064ck9jLyiqjpBy/V91eg /YofiQqfKdCVa18z6qZbVLEWUTnlLUx6M5MeCfzN1lp1DV6c6VQ3CHWi/Pyn qc+XuSbVkbwEnynIIcm+LpPsF+N45N9Sfk7z+Z0a4Ecbxd8NfvTTkIUTZxgN /Pgp/AzJj3FeqibOYuhrqeOddOHaPnp4DoJHlrSj9yDt5q2BKEKpZgYHPjuz cW7HlcFU6xwTpKibPC7Qj5590MF2sytPDi5viYy+QxhcekODPwa+wtX2Wqnt dKntLVLbu7C5nFu5Ix+3rVzhrBtXhgY/o6uQn+SfimwabQVvLOjURr+nnUKb jLdFsuLdNwZeyDXNaxif031ecwO83tMhC8F226d5atST1RFsJywrVr6ciDNr hzuh4v4daqTgRBzve4pe7VRQHXE7r65EXLg/45STA02bcnqeC75uZmQxjMmM u0Equ0b2aSih8YkyE4ZZRM7AjBYTRW9wTQKXlb/aeXk5/rYOdElf5mjksHml NRfzNRbaXM47oDxz9FsCGCp8RfZun1qJBylHnxecG4EgHgwVFiHrxi5rlOW/ j08xBGcagqdXCUpy7za1NXemOWSwWYJpINyET7ChNm/2G1/7t9OJFvrDJ2X3 /TrxtWuNja/1oaoZg1PC8xj7abhJxfIW8xy9cC5Biv2RZspnOSWh/OWVIwBH /skAHZih2thUtfH7Wztro0qqipymmVHNeB+mJ6eCJlZobrh2AcM5N2JCEs2n L5tSh+YMF80yBw3lVuYu6ajcKlw0HbmVGDTFhEsgJ5OwyYTlnXG1dSF6DQsy O6JQADtCSVRDKTV+uNdKbcXzK98t9He2lHrPWaSTYOqXf1ExRSNJ2Wx99vIG YOUEKyVY6ySsJRLWx966sNx/wzIOoJAq3u8gbJ/Pstr6ziXsl+InahhiKYg1 DLFMEzskiW1biQfEthGx1ZLYwggPcmkhDS7XnA5neDC4/DS1ZF+TLdnz43gw uHx+fBQKpwaaM62w/O14+eblp+POjYBCN7pIoaiLLlLYNNEVUpjWRpdZR+Q9 eNFr6bNhDro4saVnLDi3NjjLPbbl0jNm+2gtUa/57KeFaT/M7ueHBMq+679f XwF9cflrInj3dZLg6yTBMyxB2ofV4AHm97eqAaawrb4Dr22kCT6w8NLPeRcW Ji6+LJHdudI+EpxEJrSta6WtT12GB7bkpyh/+lVp67lx/Yz05hVDF/7b3nE6 XTaJpKOh5zQYS6tJ9xTOHDvGuiRdQ53fU6gStWz0wE67bHT/Di3Mm/T3hBV2 u7kbbUrZbsyL7TYbhBUwnrSoxaWarftNs4VbAg9tpgHl/4RkS2BLftyD/8TW q+aVl5w5qra5XP/ahbGvK6suP/6M7hns4iviU8aKFd7unejqz6FJi9US1bbL 7COBSVQDXTXNhqYzoSlxNP1Ejheh6YYOTW5ikaakd2LJ//Ur+2y/n5veq5JY TqHcx/v9eBtN9DrWtHj7FV3zytPkRpVwNO3v0ISRwxbKKQ9U/HKAopFiPmFQ GYFKyw+80YCiSLr+ddhhSvP9DifaEai6duLUUnXyxSdtnbStWGKm/+Ug8ZMr ZYu1AEXwHPRZ26jqfUUm07PjeDAR8ez4kE8q1IURKREg9S5TBJPqMvdT+I0T h5QbUN1JZX3k1U6bV87qkWrFLqXP3FTEQFbxVESoEhpetgfzRob30xSr9nXN +aM9bNGgsACmBJgygynvqieDniSgp9FFj+jQ43bu3fU0OJt234Eg2v3JleX5 CyI8ERGSeu68TIbKM+PDfZqhopYqMz/9zg10WZl048RQEljaJjNxXQwJmFGz qF/Zxz18rnYh04zpF3b5M6YP7IzM2qMTR2odW0lJZ3hNO2cROna6L0P1TvTs 3cAjPi+DbqoiSSySoxeeVkVSGfXV0sh4el3KKAIgaC5AAEQTIGQXtAtyPvCm DhXGRBqYB0jw2eQh3YtP8pBO/skfHtxa7r59pdZwhyxL558tEez9JCLkD8+M QwIe+b7k5xBMDAdMhBqdLGDiXcZEHMiRlmuiI0fIROGbwKTU3uq4Ll13cLcZ 1/FD+x8QL3k1XvTcE3XbSssynStXOLniVK7ddOxO5coG2wR1li1+VIdNCzZc tWisd/8WM9ZjPHV0Gubc+InQSUEnhhyZH9oNjDhk8KdVx8xkGjxn+SJlycP3 b6UlaWxcj+kzoQ4oqmwKbjejcu8dlylF8rNZ/uHp8RMGlQdAbewAZRZtNKiI KpPOGKlDWkp9S2qV5kt7ucOZSMjsHdPrydHr6VPQuQYTMKtUviRQo/MFUtQW BkiRZYnmKWlPHk0x7b+pGjOqeyYquB9VKonil81KrmLmN7suLw++7+Jyi4wb h0wcaIEFPmNVdbDVqh8pl77i9PKO916GR/45fCbl4f8lK8fPx/Fgoffn4wMB Pa2AnpGunXJRp2cq9OAweXnEriA/taft2FFZ5NjJeVOMtjPhHErcHMLL5fUW 58DMxS6qpq1cVxMqN4tM5dq7wYEVyqFYwdqC3NGmBF26/BU2dXyiGhCV+qJS iEqNqAyiUoCS/0wP3mxIydcuUcn/I8AD1QqP/N+FFnLR6eXtUsjtJOR2FnK/ FHJ0HA/Wzo6Otw2TQd/FcNcRFKVKM+DindYF9S46VKIBhaKjYcl8FJkfKDUU 1DrIAzv9VFGz1rx/IPoTThUqRnWpomZ9qMtVm3y9QAkx4KKkS5IbMmLs3bLj XWBRWBCF6WQsiEyNmH6x3Y6YMnymvg/aJJUaH6LOR1L+5nMaCfLi9hvpzd+o 3/zvnxrHExXl74/KwYp+/W2VEuXTNiXavTVUGtlWQMMGV8OPnUVZreHaaqtC GjI/IkhDerzBoH7YCn+oanMZfWZcbXQorDKhENPoR9j+hB9aEUud9++1I4ma osH7XyX7kWfH1JWnoZef4+WnfOr2FyoSjvOVC/XK8br16xX4zPGO00l+x+3A O77efcfu8qguA39X/cbn/jtWu/17vOPabzy1n69y3yzf+uB846vt53rzfe9o IFLTQCDo7Vt2vuPrHrglOvSm88x7FnjNiT9aqX3Ngrdp17zmBK858/vOrPrN Rq7jNaeB19zCa47xlmvjvHYkOlD3ckcn8gWml5vyUQ4vzlNd3/2XG+Pt2per jsTi3coHac7rjtGf8pd2+V9Uv7Rrun1pa4YU9jvMD3+H6f3GeL2yW7xIdour Lhil6QoRGI92f8PCdIsTfcMo7jKx7RvO8IYz84ZpQJAc3xsedN4wLkXH/NQ7 3De8Rw4pbw98fS9VX9808IZT8/UVvO/v4G7eulB5s+7XVndr3rsVM8b+RL5b +35jmmQQtlCvt41a7XcXn/bF6q8w57P7bnEPtbpQY/LfbQvvNsG7zV+Odxsa 4g0F3u16992ej6+0msluO9/eW8Lf3nQi79b51iKR5avltd5oOX0mi7e/0cxi q9darNu9xnmt/Grpa7sPj1oSsXGc0Pc00VPXXG75fdIl9fp9xh07Bp4fr0xZ RzSXxIf36Eqwni+aDkBk/ovOzZe480VfMm9UN1z8olO86Ny86AZetPBfdGjC MPSih9WLvu/PLzMvmo6aj1S+xD8JfIm/qV90EfgSC7zopN8XTd/jMbXyFb2B X7SJZ/uiE/f7iy+vmVSmL/CmcKNdE9IeAbx89ZUee/cbI83gxAkU5tS5MJU6 niABtyELEShAIJ0IATsgH3HWGTSBdS4B+q7L0fdPAt91n4Aw33VhCIS+6+pW N3TY+jHfeA5zD0KLs7wyA7h7jR11O994zvK4o792X3vCTfYDPMh6o6nNvV+1 DXPBGxj1d7z7C47xggt/9rjo+oIFXnBxoi+YvuNT6l7wkJpxcb7jeHi2Trhf czy0yt3Aa074FhvvNU/km45GjFcloz/jBYHFevSkl45204LAbloQMC+XXzC9 Xw703l9wXhrI1z2whb7h/HxUdtxLbENG3XZ2fG88NalObzw3bzyi7zTeOO2X yALvPg604Zn/7gfw7jO8++z43v3UwLtfa989f7kPfHnLxL/cKd56zMdk/S+3 qH65nWk184f6gr+R3z8lfeXLrd5/4r5/tOCb+k531Yc/QKvU6s3jOXrR6fT2 o9px1iS+6oaaa5PvWrdsmDJ5Sg6s5FtuHN9brrTi0wJvmS4yG3S+4WvWzp/M b3hC7zr33rXTtlFHfqn3ku1A+mp31U99ydfaL/m+DRP7kqs5k/B73vZWHIuZ aPmeHAARVXKavQeCok8KKSjkx0dheoDC21wK9IX/0pYqBec7j4cOAjZ9Ckng a89bBmiFRj9m9kwNz+7fHi3fd7dezYve5CS+hoCnLvH32cTfvzk8dxqs7Vsw KedgKM+RDd1XZV//slJoTMq7L/DuByb87mcE3j1dqDrgzLmoGJDfiZ/gTHtn Rx/77z/mO3v1+xfm/dPkC6/Rue8/cRN/v5P4KgwuV/PoXuKvUq8+5RxYb3IA rx/NnA0DfvoJA+7mBV7+2OY3GgDH+fKpjY/x8jO8/Nw5y/4rfqJsYgxUz8cM 5J/7PS+l0HJKw3R+AiAadSBGus6wzgyAuNYFcYP8kyoMfBBuC0AguDjQ6boH 6WTdg/o37GgvkXy4N5hASNQM9l/vOkm92VdlxXYGtmgAyUaWQkFRmw/kQ8CH GvAbG8/dZY+U9MJBKy4JX5qhk8HiKPg4QKeG1oRff4LX3zy+139SYAfZany2 3Ty4jvMgwWcjkAdJ4PUXfjLE/kvvlgyVosCratEK+mzSzI4TCno+tpoK9K7V pJ0OhNjGgn7pPM3T8cLXfeGW6NAKOQBYfeGovmlAvu/8RF9z02wX++O+5lmB 17zKfc033LCkvP1TKzpfs/stp9fcCnytM/8Ncx9IE+8H6VxZjy+4KQXb7Zq6 +oq/2ZmFd77edhZ+L50rU12Afeh6N/u27+9424l52zFedpQcfcVp9Lrp2y3M K6euv+j9jht4x4Vq9X79l7bVyzte+W1Xzyv33HaZfeVt845jvOPW8b3j2eod q6UU+46bzlf5/PNpokb+P/gTXO9Q/1X+5v7uSU6vnKOc9lPwa+98+ZTuQg31 Kcsf2OFlOS+hRVfwfJ67imbm481Xe71u/LE62vl2K8VdeG8Xff6V8+zb7be8 T9pr/8y6yX7tZ7pfbXcVzXvt7lfbe+2hAu6+9qbaeXUcX+0v7NS128/yP3Vf tpixs9rg7VrDg/mkR3rff1N9uU74jdNv5+HXGO3v6k34jVNDF1E7z9uB6YY9 p7X71Y5Ka5fzVN6vVUUveIz/m3tk8vdUEFHC84r507Tr7ng8zA54oN8EaigP v//DERMDKT7zicRA47i/98qBTnlF4S3OPH71e4/pW/O9tyj2V1Ek8BAHol1R 4PaNOfRNgep6zNdP6y//5FJYeqad0M15nPeHp7CiPqke5gQ80I+QFY6HPXuv R0bI/8MdD0vPj/x8iMGhZRRkatOUnujJ8LXniR434rerRbnorTri///uzgS6 juu87zdzZ+Y9PHAFF3ARSRFcJFESuFmmVlMKAlWiFlMUSVEmxJiGQIUVRYUx rSWmxJgpDJkSVYg2JCgsXcaIEUMImCBB0KOTxj7d0mhJYosWnLRpLanLaU/b c9qetqexJb3e7/vu8s3MnXnvgbTaU50zQ4hHpN73/33b/e6deT7UnhQPOd6h Nkt7ok2V3B6JyeT7rmGzolssCHmqmv9/QHaZh+yONFkT6Ug21mSf+fW7kmt5 DPSKLvPjZ4rLfKhPV+j4hoEaY44h3mf2ZQx0SvXbOXRpN2QHcZ/ONO0Y4GyU c87DfMgw52EOzMfu2kRNe1C7g/tkmc9MQs7dZk9BXu6BjF9UWfKEb8lBDnn4 WsSp4I30KmzkdKJ852RsTXS7ydh3UvE+7dl5zSd6roBokCQaAFDdupnGPJdo mZ4k/PEL9HqtAAjiuiu24HDxVbLgzNR98okt1Ye3tzlw0gMOp6yzGgG3wgMO v7o2piPwH+HLjHR4uhCNpheisSnEA6kS7E3NxBQ6MtpcE/fhvUSp+X59fi25 gQo5GXfSYX2FeRl30rNkA1uNXYSGjmfIW3EPTZeTc2lKG4Yl2gtXNM3U7Gt7 VX91rMNHs5la7SocTpwW0ss9SO/NIIVgNBOTuCAgQwDaRFOS8TM0JYFF1mC2 scpQVX8uFbPeHHwHpyv55gpFrJ2o7tOTVDZRDRGtSgIOLWuzhg6no1USXdt2 /zXRzR2ZBA3Dxoc0w9qwsaOuXCzslSnYsJzGrzmP6Dk5F79mOsriN+Txm4Qt G4Ed1Jmg6USExr2Db59Ayb0/vWEapomHPI4PsjiGZ3dVhh7i1xGRxW5b7N8j 9LmN1rQ4P7S1pfrmd3qqH/3Qbn8bzk00GpsW5zVpzmYAfjfcQ875zbfcGLTE 8zRvkqPpRbTeMB05rTfH/cn6m8/pfTFxf2p75LR5IQ7bHvEFswS0VHjZQGzo sG6lzOEHStbE1S2dFFORghoD1Fh3Uj9+3nVSOB6JLGOckYR0qjyfMfZPP+xz jCObuH2MXadcB+M2D+O74C6BcagZw6DExDIyDv2xjJjLNpb18PP8oNn4Gh3Q 4+1Uku73J+ltnKrezGBkXdRGyV0vdZ0162EadlLo0oV5OvTQxagNiS52yw+o 1grolhqmK20EO7rYZEWfKN1Vni2sbXAPOF0ewWVHNxnBMaAt0VGW8TO0XYVo o7ri1oMX8rImvJPiNpmXzbam5BsYpnc+200dVmgi16VhVoNp4QtYzRXpzvn6 No3XzDguId4I8OJJchUh0EMzxCnCZdqkrGYWQcWEl9lavNpD+E68YwDjGogo ZyMZWUtPV51i7QtjWU9mBsK0OSV2mcx8pyM8sEckDrDsYwdYzibmWedwnkWx e4gys9R8h4/k8oUvO6evPadG618952u0EHdEA+wfwzsOciBHNkNnIdtuiyDr A+XTh7w4GcY+yHfohstGsBlnNHGqNoLPFkRwKjkjVRpgcKgBUE29AH0bh1ty CXq7TdBmA1LvR0mbpM/i0QSH+RzHrEvx0CEW0FK3Vwy4od018qSYun6VarEO bWksmkMLGkux/L8Meo0H9O06mj/+2B/NZgPDH81nYe06cZYe5ouAe0gHDc4P UsclfdEcEXiXr6HH0nsTYrdJ1nckynEmlPfpN1CctfPKc7wQ44xjCL8eWvfO 5gqAceCKcQh8ex9V7dbVS5Bx1DDi0MZyCnFIz/BZxJIjFgHcQwsZ2+qYDhpV M+OP1HAyF/JaD+RfoKKsGId1hfRBFtIOrS+k89EOMbS01yAewHtMWfoenaV3 2SCWLIbPdvMYVmuhPL56AD18hGgGAFN1z49uI5yQmsMkz5InI+dSrNi3XiUo 8q7KUSzZUI3p1Gh2cVQHxbV5FH/eUozYxMMEKFIM8gI0oicxcwI0oIHVCFXa dMtMEGmeLPYQw66T2xKVNskwMusfw1HPrM7hWtcMNoYSDDH1UpMMIDE0gzTS B65rMWMNf80VOMqi56zx+wXrYx3biJX0aocPXrIP4k+btVsIz817WA9ZX+Fh fSstkhhrPrBMsOYRi6zDQtbSV4SHWRHengDdar6FlFddBRonGXDkOwlaehgH cA/YimiYLpaJOeiukaep3CrY0wWNww5pQWP1DRoGLQF02YKOAHSpsP769o2W 2dR8pQf0Z2jiwVJzcVDfnAZdAtCSjoOfx6yM+XmArZJoFm1AAwo89XOOnfrR 0f0ggw7F93QSOka3214wdZdfVHE1b5OXj1ITxdiq5pnYpvJySMd4TaxKemmG idVchKGnusrpIcxdEK1NIzRnfW6mXpkhzI/VjQ3FqsvLAZDzgdPR+jkCZ7sm ADeQCy7EKKUR89Ahe+mVj2IWUVCO4O1pBdr0v2bnHgJSlAprai47rKlBIbsQ 7sHFskvV1Ks87G6gHT3FTnp2ESr6WB583eozJzD6RBNgk4WRp19sADMoc9GL DYbxXI4uqoiQRsZiL82gsDM6xarqIG7uKXaYaOG7m9LxBgQPUoqVNJgYPkyJ NeQMVfBFtikyHIFh2ZNMYxuJLpkGHpolG4lIsww0ZW2a2OeGF0HzCk6Tn7rb QpvwjCbfJmjSJ7Hwy3MvvGKCsXxJgA7pVpemiaKLAe3PBYozpoAH48FkMCLN 1KpU1sW1VMg1N8MKbIfoQB1+rUM+YSiXZm/AEW6y8Srp+eecHjiX8LJMvPJd v09nCHvj9UIqXgM6UTeO6xdcyZgtARwsjg7oEaN+awWDzBNv57fY+4B15D5k QOsWaeB+m3SFOSR7xrPLZzZwWRDD/+agTcIZ7oHlTsU05B0xMP9kkJsOqXHk ucueZZmg5sg/RWfoGHI+ZeTIdUBTRPuQs4gO0xFtgnmY1q7ImiZPYh8xtuMI VliJcZicGvNgtvkZu6HDnpmidEil6Xt95TWk1xUYikEhRdckCeySgCJcIs7j GZmm6d0+4AmXKHnIunRdxyIHyV6ZR3YTnZZVZAPPXkFuMFOyxqMY4/jW5XHa 7YNjGYN4Uf5OBXjg5y6TSZxNHDX3Mh6h4uwH97inHuh4JH4HXmq9i8ckQwxs aWaN6AGY1CVb+4wcpSGU5r+H8/fFs7wknoDNl0BXMEdxYC+/QSeodwGETrDO 4wTr6WkI5gQ8vE3NfutComb7/CCu0w/MKlij17m9dZgNnmnDSPyiHjzjETo2 r2L8KfT9GwqmL8O4D4n3COwhONTjqmLnLWl9qTug11LWTN0FqHVjlo8a27Og Nurc4p2L+lp6vO1jM2I24U6hHgBkWOaecMvccp2cI71V6KZYI/1usqFTOiCm EaT4PA2Z3eFIIhtgSvcXbOndTXC9N2OMcyxFGkAjbD7CukY1auOPbaHoLnsS u8D6TAchT8H0smZgN+XhbbahKzB2gSdcYppt2VV5ZK+2ZAPP3kGJBsyElxfq Jn1uA49s+BN2Ic9+PaUS+4mn7cJwZmF4hmmetGkQJjYNDEiVkg9RhnY0WdMl ex9jDHPDdpoZmoPUR29snH78Qxen5UKuqQpdL9erPVyvpNdRJCNWranMRj4h fTYdsYi0rHcKsOiOns4ruu3nTvKBo/iCRsnOLXcNapTeSsuny3oX13CksEzO GyUQlW75RET3fLrFPYdSL1GXiMsWYUUjTJ27uAQI5+Y1WctzEcKaeC3c5zCE OjLNaSpCmBlMKYkmzmST7vhgKunWADwMnfQLfLgouhlgM18c3MMAU3jGydmi mydLJBtyspZrBFwhjTwppm5YjVjzx8X15t0mgFvWZfWD/mxZrYv1DDoJ20Dz 5OJzXRqumR6vondBsbzLR48RJ8yD1Ee4xNPw+QFvGo7SaRjZ0vBKPEzdEj9h YzulM3uxU6YRpOR7tknG5gSGlzDm4thDuN6gbZxwrAlPfskes/EmZLcEnmEr a7090/JCwivpzX4ufBNPDMWe8I1p9Ttxhla/qaANp0O4ixOOE10ToxwgYmnO X7D925KPNdsDNCVXL45H3EUBrdKL6qYMclV5I9s8OcRleozkvVP0yg9ogV9M FdkixF/7nBtYlmi2oQhXPGDrbZkQ7NUcLN/4WU5v03VgE48Gxp6oLQYbmbsD SxcOKmkXiLEFwWnd0+/WPbSLIHo8nAfSnCPO2VZh2lmIOF+8bEDDpzis8SJZ LMSjR21rtZRaqzAva0t6h3JRTPv446y6RGOtD/q3lTj1L9egXkdDtbBO6kur +F0M2XDWDwjbcMYHQIF6ROPpiTOUoQOAHl8C1jprH2CsT+ezPpvH2nVcwPeQ oKRNVwCoqTDTcuioXhjBUo0COsscozr4BCDj4qiiO7DqlOvAKskUXtyBOebX 5DFfVMUvdk1G+rdHVcvCmatIH9t570UwDwA5QNArpGFaIdEQSzxCnDv773N5 W29IQHUmzmGS8wGGmCZZbrdQz6gRcWBbagfWwoUCHSbTtQPbeLqOTM+1SlXj C30+pk00wKhOuxi382UuJ7kA7os1Sb7xENCbO7LRG9Im78QZ6qAdyQBABrTJ O3raPGoCQasD1xeztNkgfgnvkY8llF/Y6T27X08sTOWlrQYTrQf1Lr19tsSg DO16N4nS9lqyzrycSzYVo3Ga5wXNU9pE7ONZRw1eUptnC9yXeCIzwZNHZoon luBo2jx1bB7UPL9+HzsTp3mawMRia65uFpiygGaEs6iYg+QwZV6+LQO8mPZ5 39er28aRYVZtbriArgBk69Mb9gbZLLgvQ2Qh3y6gF2RlA1DS6beJM3SGMRcY S6Ey0fvSaEn87VqMpIk51+WymYRM7QMMmX0A3g/hiIKmh8oHDTX4fLDNa3pf cw4Kv1KklBd6ufQogYauKBJBBxBzaNkCnFG7Gs73xNyGPIDNcF+emkdAzDV7 wi1FLwR6YSP0vsDp0U4OZswkQbM+lSxvJhjqE21DfKM2YMeLbdNzhDIofJ2J IehpdILagefLmjEdevqgnx7x4Z3NBTyydqEvpgOKJg5zMRaXwiU2DjemDz2Z r+MtwX2lxmjj8MIrFiMPwiAPI65DaXCPEyRzjVBTk8FJsyPxKN4lx6n+84E9 5mkeN25gPLu9MSndEtRQFOYoKgSlxgghiW+kfuwOi9HT1MS6W33vBdetRp5w bIgkBmSJDs1MP6N+Kn2s2ByakXBflQ7I1/wBGdCR8Ikz9JRHiiSrf3G6/hmG NEQQh1IIB+pF2O1HiPPesAY4PeX1RN/0wUEVfPO3e+oA13gmRXDXpR/dQHCK 1hoTfW++VN20UbDoC3n0JYlFQEzWJjbiiNE4QDxWB7GzhphEUO54Cz11Y2DR gC9OD/jMQjEkcGP3bnKDeccrtrwwW0Z0iNsAiuixiw/66e0EqTZFwj2iZ2tM jswFlJsjXWRdDoC2uKeZQ/ix+vZkT3UzTHPeemm1ZvTxRyquHt4AseSNqzIA khaQfsqiTkC0hheHqUVpTTxaYVuUQXzWUQEyLWQNRhhQ0p4mzCzjEZHpJH29 SOMhlUssFVIxHQc1ubBeYi6kbrJv4IzhJxi5OmSijTH7SF0qtsSMdFXDiblh FgMziipcn58f0CNW2h7hpU2aqkbHTfDYgeb3ON7DND9JcxgIrZinQVPRgFuY yYOus9TEAjZpo1by8BZcvZWSkRV5sMV5gYbYAjYkf/izbYgtLMTWeCbEQLvN fvvcLA+2FXRETFGDxfkrn4f4QmqVdLyd0fEWXAJ2NFcRRyg5dn59l+Vmd5/1 MSGKve5M2PGTf5pflDcpVVZg86HRxcmIi2hn8j29BMjNjAIDzbQcsGV1qZKi Y/U5D6FlnJCOrGTPuAHpuOi6FIRoWiJ+JY+Q2bYwqVF3GJbR0AEvo9A3/pK2 P/z9w1vqjqyQngI2oMI6QV10LlyZB2opPcxQEEpfUaF09yUGRWMQ8cU8UFKD Orc/1QoClQNudeZajMyOg1lhB4zWg1taXDClaOUGU4bRQ59pgTYQBiEX+kJ6 Ft8EU4pR8eb+fE8w7fUwWkQPh2WDyTB6851XTEBRuqNahZtG4zhKplHIAO3e w5go2VoYMLR4FkdTXAaTAUQjqnPm6jZd+tCBzOw4E0GROzM1du9mRJIOntDi KNuQQRxNGRy8fYgLcTSU25YW4lgIOGIWMnsepPWwmSK+pXA8Q2FTAwfEjIsU O+DIxAutgsWXzGRqV/Z0It+qY2hc0BTHiuYydeNqFyZRYZgUpbIMlyjJJaKn KROpLHfOO9+Tynxc5gGXUipMYHWL+y4BYPHFSqkRGnhWnBa04glq4pI09ujc FdkxbgYEdd4mPtIBUmIgfl8X/6jOAPGAaEsMbjMB4kD4GrU5nvMqLkAyIA70 bMB+Gk+plD0BUoK71CCeSReW+kEMaxC0ThVPFoAwQ4UMhYCNaYf5tjVSiM1w 9qioXnsZ1fiGwkHanhkmPg+qqv6rNPEpJylgZcevbS41UtlbbTi05VGYBfcm Fg6wKIVwSFDg4VDSmx1Y2ccH0pXdAwXmeayKGC60PBVPFXCh+WtoVzZDdJnh +fBBYeZ0Remq9/E7UnwE9sj08obn8YWjmXiRnsQVpEm9Ayd9FCl8tLRk4yVF qt76vjRD6tWTHZZUM9ybNSkY8Zh4wQNdISNlqkpMjdjEoJkhjA/QDKEBSLQG FU/jvYS7Hbym6KmcfiGlgzXUnYQVAKtM+rJgAEnYcOA0jqPe+t5qcaziLfGB fW0WBz5zNsMTOIgj8gROdAlw/DLh+FXTet3HW68ze/V2r6kqOq/h+UmORK9c hg/mndFgic32X45PyYaLtHxkLp+Qyss7febyIZL0PptGSz0iWp2HCB/BnsUi Zs0aYZqvC3CiKhMxuYgCICQ5mFNJMLTeF19uCIzkYFigsANw3oQGXEwPViNu kEuU5KJPUGgsMKT2Q2k8jbXWhoLvK5nN4mbPng3VnoN3MSgBMEmt/gMaWE8M 0hZDA2RonS+OaTL9jIw0ZNxeugj0swCJLKajJSQuNkBCs6mAMHrvXyM9LIpj xMeiAizwhRPlwgDJzWEuQC7LZ6EAcAzf/e5LVVQog4G3YD4MWPcxhekWbBSP HTEOsDqhVbx4xoOBAoSeyjjrUOSQwAiJ9Gn+EZW8dIBQcOiBpin3WFkCT2Ms 8yIk0FR4UZE2Qoqp1BshSGUNUHkAqATwE6B5SKF5mNBQ2goRzbPPfh4iBMCU HZiQx0eDWE5aLLSIF8+msew1WKI0FrdVEFAtYYFxiC/fcdeG917S03qFteMk l4gvTgJLpI5a7+JkmSWyE4hEHiJY6wMAIugrgOERRCghpbxgiSwQbJSDuoDQ 6l0crwVknwcInQLCQBmGi4PBQiJZiCSar9wQwV44SIaIwMxleMCDwv7oCOil ovVtUaei4wogsB1YlD0sKpyFDQ/DQqbrBx5zn0AMCKQWi87h55AFrd3FrxEL 3IdJ5iw/CxwWmxcfaRDYbMl01jIFPmBcTMPluDQeMppQ1y0t1TeHe4hQxWyf wWMKdInSRcSNY3UlELoLWM1grAbVkh5YNWXi5p2iuCliBadooEnudxcjpleS 4iu5uKTDtU9X+sA7mRw2lw6eGFFF/AyP7b9ys1pILxcziLJBtMH1xZcoiBYk E9pVgONvAZjZDMxbqhMGMCVWYj760JaZMsfyWyNHqhvXXxwWWjuKE3lYcKfF ByOw5b4Qguq7WP6K8qIDpS8x6T/U0sdW+lR0uNGLwEJPh8KnIGwajRPEsQ4g /Lz+lnfE8eB9bdh4AYhI3w0OuCBcBs8eyYQKMOk92qNLTNAQk3Z16QWk+Dts 9pI89rbPLBvZ5rIjwwcwI3Dh6Q1MZKOZiVhuDssNkFhT+sMvbql239MGpGAu 6afkcliKUh19mY/S1cDmFv31zEjpeyM9SEKRErgJJgGOrjybP7UWsxktJ0Oz nARCYzvvghmMBhTpJUsRGxzj0xpS9NZgs78BNhGGjvrfHtbnoI4kGjNTavwN ckDfDPD+i/QGTGXjc3vWVF9+ugMjSF2No/EFkA/NgiSaa+3pmiUeNAEGkAra D10AsSAy6/1nAc4GhAOzTBpjwp7LAF4USKFeVWJXMHoqAYhWkuKrPj46m9Es zG5KSs+mZCq5hdSeQfREvDOj63l8uWwmr7mIyZD5wTTJNBQ0iyyZ9fZsKB72 VZ/Ekvnjl4CICRn4VxMyISOySRMpT4cILSoFfX912A6vXGJEAl1f9qfrS2gR UGdGfdkhYXplhIGHznQ7loSRSl8Cqwwd0n0RWLz/Ir2pXf3YdXNL9Y1v9xgs 5dpYKrV3W1IRshw4bLSPfq/SHNRvVr/3HcvCcNi6dQMEBRIIUhx23Y1vYhiE vZaE8NII3/naC2aJIugVWGFr/54c1WFVsp+dTuLq8yG+2eXS8TCa2WkszlCR EzyqblgpSGxzmQqCXXDTxXq/U30FCLwZtF6hX936fh+KrnyEyY6JSPt+oJ2f yd01OcgUNwX8fH+ySFjxnzNrEvG1Syg+X53oQqHreWj6LBMA9fq/NO2Ww6Eo qruLgEojLj8vmXpQ/FtA8iYQH5NQCcVXXZvy++8yAODwsEpMqH4GlbdJZ2LA JZ3IkQiTJOC1uCP4+rfX2OvfdDScNEDuEZ2vpIDAcT2+7+641M/ksGXiivfz PiZxsnQHeSTU733oZvOsGXZB0txIVDgwvwI4yvCTBBrqrzY84GIMAoDgYxAa EqpbOs8vfIQ1WQpG6H0+tMoQ9IaJmCPgS/UAxDfn7lJHhfwM9MEu0F/2Pn57 orutlZQEfSGxrs0qO00rAHJ1flwHwHswsH8PgB7/5Q7QeGzDVaCTUbhEragS OG5c118nXU81omu3r9uJ6BixXsodFlbMRmur+j3W7ajfa8CZ68gyTuTLQdpH QeSKc2aPyNInsuQiw/qs3xysAoGtyNTH0HJMvGhEVp3lmT1+kXUrM4RDP+bB SZ2xq4RnHW7XVbRGqjDu+twDTtgoT9iy9d4mXUqr77pS2lS4VzE3mc0XW51/ CXRuhp8Cj87S6hzTMKJQ5yitM7Yt1LeLv0sit6LANUUO+GEQnhxCJrNrVvJl Tnmy1PcNl7u0HHvyQ1Nt103lB5R0JQjZDZLOxLIYYk+y9fo2oygKGiYFjWiS MH6a9tZytXzOdNyCnmCNfFqKzNEaHJAOdSdOOWlFudNK13PkrH5SUgZcyu8z KXN9F5q/C6nmu9iVsf7N8Hx17Lyk7m2g9i9y3d+e6KnemtI9Bt31rs3EAFU7 9GM430Tp2F6jlJrxdd86W7A1j3hJtx1nTB+4R+hzTW5YsJ8NC4a6KW3ke7M+ W/b4lvykHHP98dLal0H2pto5onjePNcj7CqQc29a2ANdbdWZM1DYsFjYMCGs ElWSppAZrKa6q/s63iXVOvJqLWiUFhTzcOQRVKazMLYNJKo3PUQJTTEPP9UB nZpWtTw9760jayy0Iq8GaXeDyLNSIm9WTVvHjSRyCUSWdFZiYoC2uMIaIrN+ mVYu4hvTFfmAyxpMZGlFBq8t+RQOrcJaXXmx4vqqXCo1OHHXgKQ78sTdfTeJ W65fXF9WeJ5+GSBx289MV9yDHnEfvL6lVp9m3FYmk0HJoyxudJRpo6Pqb4F9 GQH1XGL1vAf0nI16Rmk9u14/oxuHJhAVT/fEICrukmMTLEFL6dFRv6juZdIR smun1rJQx9Cjox71pfJrDTG7bmqpvvFbPSCjuGg3bUjWK0DMO5ysGTcNnK4g K66jUwLr86HQmI2fFt4MfD7hvzZBUAcsBqlH4/7rnsrR7ZlZaNC+t97Fy7iw G/HpbdegNgTTr603DcX3cZXxfeXH1FV89IN6uwrn4M2FCcNH4krQ/zYg0eIn IYHEDASAGQOX0BO4wJsOBNwfch2yeNU1yp0/Qwg5nUZkIKwQ1Z9qCJGFUG9a yVU95f+toPpSUH0daH0DqD6/QHW4Dzr/r+RBiEF1HCPplfXoSbvoo9ZNnKEe 2km810rM1iEyV9mym2CTuul2I0oKG2phJ45sqX7hrrbqT/8C2+WfeYpxEl8L wm4AiVsLJA5A4Rl6aT0AA1Kdr6FJNssRSh2Ytk+TnH+PNcRwaTlxWUcTCvJY MwHyaRriZkCmb0sJKXVX0bd7TXXgyQ4QEq56tcx10lmeRs0peBkouN6elFlS oCD6aLN2zckBn2vCCwT7kwuO885LYRef+jTxTT2asJK6RFDbR62enTbnevQM dB+c0hOinxw0N/2W6PjEx3rc03jSdcpeB3ou1mP93PIX5Skb6sw7cTqVeQPQ WaYTQR+6LnVr4u/zxXRS4vxkGzF9eU3z6CvQYat7b2wBedW/QeRLk1zrqHK+ fOvSQnEb5xN8GQj+GZA50l/1kit4DIJXqMuYHCAHDkBlbOPgNdMFXmwyBHVz 4pzTmdy5QZ0LewdTsch3SeRSoapxnc6b+lbulqSWy0HLnqSCU7fdJHqfeoQU LIGCTbS6SCgYFrlnp9KNmjHxLUqs7dw9i9qAjGLZQi+NYsudYqEnh9Yb37kS LbIS7U+uFYxEWNPLhRJJkChIFSAtUzu4F/VLYsgVIOteNXWSLEN6JwUBl+rP mVS+CE4p11CLlKo+qOF862YrQMOHCjRsAg3LNIaZHKB8KAs0JP26RnopRH+D NPw27/+Vr53b59ZafIKVXmbVlFFJ0bdLlZcnOkBF5YqXIgfWu5T1CXo5CPqg P26bQcuYZrQJLWVd/kidkBh2a9gu7Y+2G6rVu2dETQ+5JYoaclHhalxXXxaU Vk3f29JTai6yau7yqzkD1Iyon5wcoIl3CGoG1KMrNfXWO4jJnLPzNe2cZ0nQ 77DJFbRCum7g9xEwQc1pbJitHtQTbnPQxJ4hdScXpXbPryolv6HdM7h0WqZC vQ4t20DL7Wktb1Ra9oiZoGWY1DJKaRn7tATHpD5HjHC/3FvDL+vTMNAatqsk +RPyRBBOa3jRZbhYtMVWtLuNaH+gRNtrRZsFogV04iPPAbOijfZhA/ObJNpo qg03xwmG9gvbgedpZTetI3MS84VtVip1hR6lpll+nTQLrD+tBmk6aYNP/VSk TwX0CaxT6T0+aPHG8TAS9So4t2BttO5QxO94+mitEdvTS6nkSoZSyb1KXn1K plBtlRovtT690JXW2O449Os1G/SiTVFcg6gLKu+A2YXOKhdY5QIQTsj2UfZd V1q+86zPM9Lh5r5dMqcGEJHVr21B6lQpfmsoJLWda6r772wD/dS/TUvFUl5F cA3L3KSKS0DFK+yirlSs4usDTkWMT30kBVZyE7gzN+GqxPgpF6Q6UO0qg3oX 8bt8ldHlWpghk+AiLSGIt2eLqHZc1cJOs9NBaRTuG1/qqP7kz5RkRbq59FVp RK15SbXWgUZXg1qVBtUqF8lz/iRKhPL8NskzXuxlmSaEhJqa2yyqW9pSQn35 HivSJyDUUhBqo30GZlZBMkOdKtqZJk+nnAkcrD8VnDCVyQoHvkXlUvwB6UYu 5ZI/6VbiupldsqRm+jj+llUt1T/6jR71uY1gvjrZuGAum6FgC61gD2iZXu3r qG5eL3JkCkClUg1X6hzTkfYaSTLBJn5pVwpAEXbSF8UYfsQ9m6D+ZPVvlN+o 62cjhktKrSDGZSDGDr8YM6lDfX2A0ri0YoC/OE+hC6sfZvLzlMlPukyuhZk0 MbYv6ysoDLx4k5wEdVC64GEsaMtAkJ+dHs45loEe9/r1wI69BHqUaP2j9KCy Fqb1CECQgOlhncR1BOIfsJX5Nz+fdBRMOSLq3X0dafF455rqZza3Vf/m7b5P RAx0juUgxp1+MSo0nMiKEYAWQVIESSIkvspyjH55ndru9nPOKXT2aHLPjx4Q VggQ4bnHOqp/cq4HxQjyxMhdotShzQxPT+S0WQTarABtfsGvTZm2Cl6HfnES Wp/J02Y5YrSRGDGRzar6wrChWiT+SK/rmGskYmUMvuxP6FOsd97YVj12oAMk cYpEoEgdi7bGFZnjUeRyUGSrXxGcl85KKhJSXp3AgYHOIfaibjobOlqbf2gW a902dLTXhNxrcKt77JrLlJfgf0/ec1h5z2/2QON3cRL5RixuTeYkmm8DahVI dINfItwdaQGJcNpXSkkkuUQUWj59qB6L7+ZFFeUV9lAWNDSgkJBTy+erJccy AZ2xEkx1MCSRWWmo32tAq4YGU7mqoWOtAdU2+1VbYAUrg2A4Ho0LfEqn467z au1vFht/SL98r36fClG30Cw0xj67SUzdtFoJ1L4MlHuiI6idi2LPyj+6WOVa rHKLQbm1oNy1XLl2pdwNSrlusRCU09tF0AtO4qMeSQ09TucTkAqZ+Ed5Ako3 dzJOB5ek9zSMHlLrRJBw7LObBS5v4dq/rQ3nTn/6rZ7aHle6CN3mWo9bYHVb B7qtAt0C+AnE+2pWvApqRptrUP/J62rrZgOWap/4JyndhszJ1KzjSaubBN3w OYAAdFPhe9MVAsfxX9gG4TvwZEfuPP5iNJuV9DWn2V0FSkFyO51yM3C9ficc OlyYpxTVQvHPmFLf4koVeRgqFeonJo7cIcbuuw4vJdL6FaSUUuBPh3pQqJ8m znWUGj5+gEdJZyarpXOxhSDXEpDrdr9c8ymfKbWa6hUJRnIo0h+TSP8c7xEX yb7aKahLJ/WX4+2I8i0lFOqkzITTGQNPdcBBsOTEl59qriOF5R7YSAVli1Vs KSh2W1Kxsd13omIt1FUoxXQFUIKVqM+aOGX7rHHTY5FemLoo4Ys39LLETkS6 RV1JK7JShSAVONc2dKypm68E59pwubq9/FRHcElCLqXIMlDkJlREckXEHFqv vX6aokzWJQdsKej0Ld7yyXGgtudEFGGgB8iBkoTmflSgODs+jRdqoz63Egef 7njj2z30dIcLtzqOaqe0mWe1WQHaXOfRZiZo02y1CUEbTNgStNFpWkkDfXlS HIyvf0wC/RnFV1og1CdIJumgUJgAdFFEjqowU6qoFH7LVQIfjOu+B1K4ksb3 ZFx4ETkpV7OVoNl6j2YV0GwWaKaXMXVp1jWqNfunpNlf4D32aWYVC+tULALF VLR98W7lTNcLEA08aiV6lPKml/WrmXzPBjXnec98q8RqUOJKjxK48p8LSkS0 2J3sp948TCoRgAgBKJAaaGstflCHFvV6D2qhCsKT4ELXC/3AMbzE7eF72/Al VfDaHVlnWLmyNTspTCsIsxaEWekRJgRh5oMwIY2IJvtplhjVKcyf0C8XCgKr IQ8JQZUSqCKisR03iLGdN4ipreusMMpdlDSp5/EqniBpSSrQAQqA8b3K+GuV 8XcIsQjsxtFYGezGFX4MdlOdxkyrL7QfkmUv5hSU4E0y/V1uerfH9DocQqZN 7xp/WrUNT4veo/daCZTpG9H+L3fEeaExy2P/YrD/ljz7m8F0PT9WpqP5CD/k dp8nmzEvvE12/8jY3T19u9PIpbEbLvhQ6l4C+8d23ijwXd9wwfeBwNdawavx ZaEnzE4qsRSU2OJRYiEoAb2bEmGSLlgi9MNehF8J/OfP6Ze/ylMCdxxG7NEl kMI+gY3dWuyD7xFBueYxyJtHt6MSU1uvQW9YRd7gewGESRSZNxOk3GSeFWcZ iLPRI848Sg9KG+Mrk6dSvhIxhTrHet1M4/v0y790fW173QrJwmiRVrAA9IpA pjApE1xGpsFjINNb3+mxMrkvtBOeF8ukfAhlWgAyrQCZ1nlkmkPNiZKpQtlE qUTZRCF0mQQ+uG3/jTP9kGT616Z/g/bfSVSsUL0+VEZxSiTMzaK6aTVdPdvb QB3QhjRpSr4yLFeJNlBilUeJmbQGMkqgv+h6ooTAaIJ7n6B1ImkwRRK8RxK0 DhtPaUwCn1c0oeHKN46L3id2iLFdN4upW69VPrFptXUMdIp38RLlpP0uYJz9 rWD/aru8SdnfBPbPBPubkvbLHPshXP6S7P83Lpd0Dj/idt/s0Koh+0NrfwDm q09yXHUbSgA0Xn1shP+Mgj8C3zKSeBvpTI/di8DuG8Bu2Kb8vZ7qgT1t1c3X KLNvh3FePzUQMRgcUuZUBktKDuOZ9Pkv6Jd/p5MDIOcbjo2YHIPJ0mNyZE1W Pfqt7crl1yiXvw/qqLI7KjR5Ppi8BEze5Dd5PpiMbXUTmCyTJksyOZEP/5p+ +Q860IcZ5SIHj8DaMM9ajGwJ1pbAWpUAn9ip3PwWAQYD6jVkrcyzdo61dilY e02BtbhGnwHWBpT4J05ShyiTgFuHVd75MVn7n/Au2zNg46RtgXXeXNuUB58A nLeQWeDB9zkPzrVtAdi2DGxb47etBWyDBkBVtUm60lYSVAxbstTSbR/VL255 n375L2Rvq6Fr7TV90OgRV9FknvnSOrIzP7Lmc2/egd78bEdgv2JjljV/Lpi/ EMxfDuYv95s/C8wPwfrZaLqk8n4SL3LpiPEd13z/Ldn7Xx3fzuFH7euvpm1v aAO3DPY6fx7btRX9eS3Zq3i//VqPrdvSWj47aflKu0DMWl6hrMUsnzzpLJfm 3ufAYyZTt940/X9Pv/x3R7894e1hbTUwsMM8NSqkRtdkLyrh1IAw2NFWffXZ DhAkLUQLCNEKQmwEIUCD31UaPKA0uFpp0AmdyynydrQ+rmF0Iof/R/rlf3KX 5y6Qa3QERlM6A6OxawmT5mPsR9b8ZnR+sF5EvU/sRvunbl0vQIHq5rWgxavo FOgQP8JLYPWeY2VYDDKs88swG2RoorZt8qRJbUqFMGU8ZnT4t/9Mxv/vdH4r Mj4oNB4XfoFlHyXZh2i8NMZrB9iMDgDwXz2uHGC0R8y07OeB0UvA6NV+o2eC 0ViwK9ZoRI/EJRgdgM2pZT+lOPETj6/rM974COGou/CNU0g+BuNLFrWzNgZr Q2ttiVCjpbsV6tvWI+bqgfsh3ylbmy3b+WDmUpvks2bOADOxJZ8FZobUiBkz Qw/b/0YWfsRz2yPMwtCs4hxba1wuWfJrsJWacbiXbGeGVjdpxk/t1lZvQMZX kMlNYPJca/JaMHmm3+QmMBlKmsplk3Qx4yMwnooYGK8F0DKcUDJ8hRLb/yAZ cA/+5/DHmNdx83ZQ/bLDDGZMaLHH9DhpOsZ2hUzvel3lt9234kWmK/dW0K17 l6wIC0CEa0EEsP+8sn+3sn+d+qMdYP9JldomTRrHfAZGxx7TA+3oJ9DRj5ML wD//i9kvPd4eOI8wHq+39kCIgLvE+SedS8hCXZpAl8C6xAzUJe56vc/qAm4B yoAu6Bix1aTVOobTZOq2T6EmJdBkttZkss9pUtZ5rhdnTycE9wHU4idMhzip A8SF1iGkl8wdSkZ9rgqhVQFTfQXMJn8As7HaNVkBAvjAEBh7Ut6B9kdgfwvY vwTsX5a1v/epLoqGGVTk1N9W8Vid8P6PmdUVuAXtZswrPC/UK8ZdsoY2g6HN ScuwsAUQ8j6Xl2DePDBvlT1MmjLviS5ol07C39sHHgR/5USv8ezxE8a9u84f R+PQQLQsYFbOcjFu8p2NcbNrzSvaUUEGB2BvaM0Ei485r4443okTKbwxmB7D T5EpcHt0dU8kPxRhAYhwBYig2t2/AhHeGuup9uxqm7p1sxLhcxDyfcafjf0S 7IeqC3yPCyNBK3xSNDtiEszFH0Pu3iBB4I48SPsSZFvRw9oihBY9atAEfj7T Y7Xp68DqweMdYOFoj2lo4GoFCRaCBBW/BLNAAqziTSkJYi5B59gzVga0vMxU WGDdPbDWQ7lzPm+3TyPbv5Kj4+wJ7NfdzPgxSnIzbTtbBttnWfYBmIwWQyer 3F6ZDUbDPOpHsLn6l7SYieGn+X6bK5Qe4K8Dm+FS0aXuIRgegr3Qrz/j+nU0 s5n9vNhT6x31wLMQTy1Wm20XU0oamHFpAzcGA1eBWVHarE0C/gw2QXOsHTJp R/uoceA5zI7L0g78qMhDOJpBWLLNCjKr2HqEbejs2szKYNIKMAms+R1lzU5r DeKZCdZEEAKYlkC/49YnIYaO6SKM1lmr5rOfV1pQlIxNeiJIoU3DzqLYtppo 0QxPqZltYxFtgxW2KrLKQDCPcM0A2xakbNuqbDu6h7LNTDDLZBtr1jG6Ro9B RIFREpfP5h80qZX9vJaSsAGIEF971DZamSR8BB83zPSdEc9EvMnAIjTLZiKs RNR4kxjHhZ21uNVGynMXghRR9aMfgRRvqgT18P1Kig1Kit2g7gny1wBEoOhz Mjydr8Jl7OdrLGQThJnSU7JLiSYws5K0C9vLCo3EwJZkcvWlGvV7YIoyCg2b 6TevTH/5OPxvzmNiV9Z0jj2NDgsXfvxVzJSN+GNTEuhhwbtGW05KtpLE1jAs JCWbXXC1NA9dOO49ulOM7bxFTG1Vy6ONann08I626iswDFI/KHvMb735Wo+o VD+agmM+6mf4Pfgj8MfxL6poUuPHHKnzKq9Ze65k9myxxQH+g8POO03LhyFI Phlyn4RrLlgUg0MuADvKFIrGDrjUR9yIi1plB37YD6fw+Bve31D/3q0+/C3q w39xJ4UZ3JOfG3BAFvG72bXs562U9S0b7Obata8lNuyMSZhVmsGUOWDKIvh/ B2M7blYfbsMahaT68jMd1Q/f7cNf1e9M3dKuPuoO8BYoitxT2keP0ijNyap/ vtMVo/bRxMcK+VcwwIcqezrOGXBfRpVJfTxyo94j28XYfTeKqfY2UV3UIr63 fJF44LNb9Kc4nBCEfr6ff4rD9Ckq8J8L+7118D+Hq9m6LDov6KVSDnwmvI6K cvs4Rv5R+qvvYf8bvL3z//hviJ/7P9iV7s4=\ \>", "ImageResolution" -> \ 144.],ExpressionUUID->"f463328d-edfe-46da-a4e5-4f68c6e69a83"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Convex", "Subsection",ExpressionUUID->"640eae56-a47f-4ccd-b545-da03172e8675"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ConvexPolyhedronQ", "[", "p", "]"}]], "Input", CellLabel-> "In[796]:=",ExpressionUUID->"80789be0-096e-4a8a-8ed0-b66b366c6d4f"], Cell[BoxData["True"], "Output", CellLabel-> "Out[796]=",ExpressionUUID->"e0e65b6e-af4d-4de1-810c-797792eff330"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["DihedralAngles", "Subsection",ExpressionUUID->"98fd4c3e-0340-4163-81b2-8017e8f005f1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "//", "Tally"}]], "Input", CellLabel-> "In[797]:=",ExpressionUUID->"ac242428-4dbf-4c42-a8c4-5a890f22a4a7"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "-", RowBox[{"ArcSec", "[", SqrtBox[ RowBox[{"15", "-", RowBox[{"6", " ", SqrtBox["5"]}]}]], "]"}]}], ",", "50"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"ArcCos", "[", RowBox[{ FractionBox["1", "15"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "-", RowBox[{"4", " ", SqrtBox["5"]}]}], ")"}]}], "]"}], ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"ArcCos", "[", RowBox[{"-", FractionBox["3", "5"]}], "]"}], ",", "5"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[797]=",ExpressionUUID->"4413785f-15d2-48b7-9000-4f9ccb8c0fe4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"DihedralAngles", "[", "p", "]"}], "//", "FullSimplify"}], "//", "Tally"}]], "Input", CellLabel-> "In[798]:=",ExpressionUUID->"97636360-891e-420f-a00b-87adc26557cb"], Cell[BoxData["$Aborted"], "Output", CellLabel-> "Out[798]=",ExpressionUUID->"604b1883-0a54-4ca2-b257-59c57d7840e9"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["EdgeLengths", "Subsection",ExpressionUUID->"dc94e98b-b86b-4b8e-bcc5-800b4323bb37"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[799]:=",ExpressionUUID->"51cef676-2313-4b29-8c2f-22e387b89416"], Cell[BoxData[ RowBox[{"{", "1", "}"}]], "Output", CellLabel-> "Out[799]=",ExpressionUUID->"51aebf7a-69d9-46b9-ac15-7d862a689328"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "/.", RowBox[{ RowBox[{"Line", "[", "l_", "]"}], "\[RuleDelayed]", RowBox[{"EuclideanDistance", "@@", "l"}]}]}], "//", "FullSimplify"}], "//", "Union"}], "//", "Quiet"}]], "Input", CellLabel-> "In[800]:=",ExpressionUUID->"c36ac8c6-309f-4665-a7f4-ce08d73893a7"], Cell[BoxData[ RowBox[{"{", "1", "}"}]], "Output", CellLabel-> "Out[800]=",ExpressionUUID->"06fd8d12-99f6-4e0e-a350-f9de0b02624e"] }, Open ]] }, Open ]], Cell["Faces", "Subsection",ExpressionUUID->"a5111090-4170-4d68-bca8-168cb9f80d2f"], Cell[CellGroupData[{ Cell["GeneralizedDiameter", "Subsection",ExpressionUUID->"584f5b57-27ca-4d34-a9b1-f8e0869f4237"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[801]:=",ExpressionUUID->"787f18eb-9632-488a-a890-d27752eb4298"], Cell[BoxData[ RowBox[{"1", "+", SqrtBox["5"]}]], "Output", CellLabel-> "Out[801]=",ExpressionUUID->"21937a0f-8bca-4b25-aa71-b943ff3ae569"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"GeneralizedDiameter", "[", "p", "]"}], "//", "FullSimplify"}], "//", "Quiet"}]], "Input", CellLabel-> "In[802]:=",ExpressionUUID->"5bdf9f41-b159-4be7-8121-0d37c804c4ef"], Cell[BoxData[ RowBox[{"1", "+", SqrtBox["5"]}]], "Output", CellLabel-> "Out[802]=",ExpressionUUID->"5bcf8f83-8b91-4d9a-afac-ee0e795d78a9"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["InertiaTensor", "Subsection",ExpressionUUID->"503bcd25-314b-462d-80c9-c30e2e948e4d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[803]:=",ExpressionUUID->"c9da5367-6759-40f1-96d8-9a33bc50b16b"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[803]=",ExpressionUUID->"46865d48-9dae-474c-8bda-635c7f2243fc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ FractionBox[ RowBox[{"MomentOfInertia", "[", RowBox[{"p", ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], "]"}], RowBox[{"Volume", "[", "p", "]"}]], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel-> "In[804]:=",ExpressionUUID->"6479e2ee-6afd-4f5b-aa99-fa727f34129d"], Cell[BoxData["$Aborted"], "Output", CellLabel-> "Out[804]=",ExpressionUUID->"be5269ec-6400-4552-a234-b85fa3da51e5"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronInertiaTensor", "[", "p", "]"}], "//", "Timing"}]], "Input",ExpressionUUID->"5835ff12-6b37-4018-a144-5ee0851a4130"] }, Open ]], Cell[CellGroupData[{ Cell["Insphere", "Subsection",ExpressionUUID->"f9bd7034-d5ba-46f5-86b4-c783d7874853"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[805]:=",ExpressionUUID->"65a78189-dbd2-4c7b-b68e-0a14aec09681"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel-> "Out[805]=",ExpressionUUID->"be0e304e-d41a-4c61-bca5-171050ab2191"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Insphere", "[", "p", "]"}]], "Input", CellLabel-> "In[806]:=",ExpressionUUID->"edf52556-5d09-467e-bb59-0a8795eea2bb"], Cell[BoxData[ TemplateBox[{ "Insphere", "indep", "\"Insphere does not exist for \\!\\(\\*RowBox[{\\\"Polyhedron\\\", \ \\\"[\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", \ RowBox[{\\\"0\\\", \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \ \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"-\\\", \ SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{\\\"1\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \ \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\ \\\", SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]}]}]]}], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ \\\"3\\\"}], \\\"-\\\", SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \\\"0\ \\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\\\", \ SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]}]}]]}], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \\\"+\\\", \ SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{SqrtBox[RowBox[{FractionBox[\\\"5\\\", \ \\\"8\\\"], \\\"+\\\", FractionBox[SqrtBox[\\\"5\\\"], \\\"8\\\"]}]], \\\",\\\ \", RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{RowBox[{\\\"-\\\", \\\"3\\\"}], \\\"-\\\", SqrtBox[\\\"5\\\"]}], \ \\\")\\\"}]}], \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \ \\\"+\\\", FractionBox[SqrtBox[\\\"5\\\"], \\\"8\\\"]}]], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{\\\"3\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \ \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\ \\\", SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \\\"+\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]}]}]]}], \\\",\\\", RowBox[{\\\"-\\\", \ FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\\\", \ SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \\\"+\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"1\\\", \\\"2\\\"], \\\",\ \\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \\\"+\\\", \ FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}]], \\\",\\\", RowBox[{\\\"-\\\", \ FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{SqrtBox[RowBox[{FractionBox[\\\"5\\\", \ \\\"4\\\"], \\\"+\\\", FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}]], \\\",\\\ \", FractionBox[\\\"1\\\", \\\"2\\\"], \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"20\\\", \ \\\"\[RightSkeleton]\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"26\\\", \\\",\\\", \\\"22\\\", \\\",\\\ \", \\\"24\\\", \\\",\\\", \\\"28\\\", \\\",\\\", \\\"30\\\"}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"20\\\", \\\",\\\", \\\"22\\\", \ \\\",\\\", \\\"26\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{\\\"18\\\", \\\",\\\", \\\"24\\\", \\\",\\\", \\\"22\\\"}], \ \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"14\\\", \\\",\\\", \ \\\"28\\\", \\\",\\\", \\\"24\\\"}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"12\\\", \\\",\\\", \\\"30\\\", \\\",\\\", \ \\\"28\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"16\\\", \ \\\",\\\", \\\"26\\\", \\\",\\\", \\\"30\\\"}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"6\\\", \\\",\\\", \\\"2\\\", \\\",\\\", \\\"16\ \\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"4\\\", \\\",\\\ \", \\\"8\\\", \\\",\\\", \\\"20\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\ \\\", RowBox[{\\\"7\\\", \\\",\\\", \\\"3\\\", \\\",\\\", \\\"18\\\"}], \\\"}\ \\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \ \\\"5\\\", \\\",\\\", \\\"14\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"22\\\", \\\"\[RightSkeleton]\\\"}]}], \\\"}\\\"}]}], \ \\\"]\\\"}]\\).\"", 2, 806, 134, 19518561545030772728, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[806]:=",ExpressionUUID->"48a57630-bfbf-4568-8da4-4cb3bdce816a"], Cell[BoxData[ RowBox[{"Insphere", "[", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, { 27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], TagBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, -0.8506508083520399}, { 1.3763819204711736`, 0, 0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, {0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {-1.1135163644116066`, \ -0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`, \ -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, \ {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.8506508083520399, 0, -1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, \ -0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, \ {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, { 0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, -1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}}], Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]], "Polyhedron"]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], TagBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, -0.8506508083520399}, { 1.3763819204711736`, 0, 0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, {0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {-1.1135163644116066`, \ -0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`, \ -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, \ {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.8506508083520399, 0, -1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, \ -0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, \ {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, { 0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, -1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}}], Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]], "Polyhedron"]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, { 14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}], Editable->False, SelectWithContents->True, Selectable->False], "]"}]], "Output", CellLabel-> "Out[806]=",ExpressionUUID->"24533a32-b979-4b72-b6f1-fe3865646cb6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"sphere", "=", RowBox[{"MyInsphere", "[", "p", "]"}]}]], "Input", CellLabel-> "In[807]:=",ExpressionUUID->"3df5a779-2116-44ba-a63e-aaaa08d359e5"], Cell[BoxData["$Aborted"], "Output", CellLabel-> "Out[807]=",ExpressionUUID->"57f2bebe-ac22-4fd8-8408-3aecd8f54bd0"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["MeanCylindricalRadius", "Subsection",ExpressionUUID->"74f51c38-b35c-4828-8ec7-4d2ddfa84f1b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "//", "Timing"}]], "Input", CellLabel-> "In[808]:=",ExpressionUUID->"50d11bea-9019-4499-a610-ecb22f0d4353"], Cell[BoxData[ TemplateBox[{ "NIntegrate", "slwcon", "\"Numerical integration converging too slowly; suspect one of the \ following: singularity, value of the integration is 0, highly oscillatory \ integrand, or WorkingPrecision too small.\"", 2, 808, 135, 19518561545030772728, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[808]:=",ExpressionUUID->"86b6fa2b-98e0-47d3-bd5d-4977433f44d8"], Cell[BoxData[ RowBox[{"{", RowBox[{"4.327084`", ",", "0.8812884160408245`"}], "}"}]], "Output", CellLabel-> "Out[808]=",ExpressionUUID->"d5612617-f6ad-404e-9409-04335a85ffe1"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"f066607a-0956-48e4-bf4f-c8adb54f28ad"], Cell[BoxData[ RowBox[{"N", "[", "i", "]"}]], "Input",ExpressionUUID->"0153a3ee-89cf-4621-814b-abb8c15da0e3"] }, Open ]], Cell[CellGroupData[{ Cell["MeanSquareCylindricalRadius", "Subsection",ExpressionUUID->"e587a634-98fb-4844-8fb9-555217132c1b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "//", "Timing"}]], "Input", CellLabel-> "In[810]:=",ExpressionUUID->"e85d2134-d47c-424b-a10a-2530ea173762"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.90305`", ",", "0.8937754633809951`"}], "}"}]], "Output", CellLabel-> "Out[810]=",ExpressionUUID->"06c2d390-5b47-4d81-9a36-5a7ca6e26dfa"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", RowBox[{ FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "//", "FullSimplify"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "In[813]:=",ExpressionUUID->"47ac974f-ad6a-43b8-b063-9f5a675c5ac2"], Cell[BoxData[ RowBox[{"{", RowBox[{"2.209788`", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"]}], "}"}]], "Output", CellLabel-> "Out[813]=",ExpressionUUID->"258302c0-fbd0-4829-9f7e-d5e4e439901d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "i", "]"}]], "Input", CellLabel-> "In[812]:=",ExpressionUUID->"09ab9015-d6ea-4f65-a989-82cddad5b443"], Cell[BoxData["0.8937754633809953`"], "Output", CellLabel-> "Out[812]=",ExpressionUUID->"b27ed880-a2a6-4eaf-b714-d85278dedc27"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["MeanSphericalRadius", "Subsection",ExpressionUUID->"1a341244-0765-4406-a02c-66e6c1c3d7d0"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "//", "Timing"}]], "Input", CellLabel-> "In[809]:=",ExpressionUUID->"5ed94d0c-1309-4d27-bb8d-0940ab689a3d"], Cell[BoxData[ RowBox[{"{", RowBox[{"3.578212`", ",", "1.1202890665936815`"}], "}"}]], "Output", CellLabel-> "Out[809]=",ExpressionUUID->"cccf5094-d4b7-4fa9-a2c2-803cf27f377f"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"695f295c-d860-4640-99a7-6c7686d5d353"], Cell[BoxData[ RowBox[{"N", "[", "i", "]"}]], "Input",ExpressionUUID->"02ca7c28-6500-4185-87ac-193eb3193476"] }, Open ]], Cell[CellGroupData[{ Cell["MeanSquareSphericalRadius", "Subsection",ExpressionUUID->"bae003bf-862f-40b4-87fe-7e2d75b98102"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "//", "Timing"}]], "Input", CellLabel-> "In[814]:=",ExpressionUUID->"8b65ec49-3b11-424e-8f9a-66f24cab9362"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.981873`", ",", "1.340663195071493`"}], "}"}]], "Output", CellLabel-> "Out[814]=",ExpressionUUID->"c111c764-1498-49a7-8b76-744b1206f981"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", RowBox[{ FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "//", "FullSimplify"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "In[815]:=",ExpressionUUID->"45eca3e5-0952-4004-82e1-bbc3b3c7d8d5"], Cell[BoxData[ RowBox[{"{", RowBox[{"2.194783`", ",", FractionBox[ RowBox[{"3", " ", RowBox[{"(", RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], ")"}]}], "2900"]}], "}"}]], "Output", CellLabel-> "Out[815]=",ExpressionUUID->"34d14718-2f2e-4542-8fa2-f8dde22b7daf"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "i", "]"}]], "Input", CellLabel-> "In[816]:=",ExpressionUUID->"cf0efa9a-f1c2-438a-870b-218f055f0887"], Cell[BoxData["1.340663195071493`"], "Output", CellLabel-> "Out[816]=",ExpressionUUID->"cd5d79d1-8607-4498-a5dd-540458a0f678"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Midsphere", "Subsection",ExpressionUUID->"12f4ad40-7e4b-4a16-a3eb-b163ee02b3d3"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"sphere", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "In[817]:=",ExpressionUUID->"cc169e74-abe1-49dd-a4dd-6707415a6bdb"], Cell[BoxData[ RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", SqrtBox[ RowBox[{ FractionBox["5", "4"], "+", FractionBox[ SqrtBox["5"], "2"]}]]}], "]"}]], "Output", CellLabel-> "Out[817]=",ExpressionUUID->"5beca25b-b77f-4dfe-b39f-836074c652a7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"sphere", "=", RowBox[{"Midsphere", "[", "p", "]"}]}], ")"}], "//", "Timing"}]], "Input",\ CellLabel-> "In[818]:=",ExpressionUUID->"cb091267-61bd-444d-b244-8bb76f8e0430"], Cell[BoxData[ RowBox[{"{", RowBox[{"1.135331`", ",", RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", SqrtBox[ RowBox[{ FractionBox["5", "4"], "+", FractionBox[ SqrtBox["5"], "2"]}]]}], "]"}]}], "}"}]], "Output", CellLabel-> "Out[818]=",ExpressionUUID->"f5e9bd4e-ea5e-404e-85d0-ceffd57d7f1f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".5", "]"}], ",", "p"}], "}"}], ",", RowBox[{"{", RowBox[{"Red", ",", "sphere"}], "}"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel-> "In[819]:=",ExpressionUUID->"218fbe15-e60e-4e67-a198-51b48f4c948c"], Cell[BoxData[ Graphics3DBox[{ {Opacity[0.5], TagBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2], 0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, {1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, -0.8506508083520399}, { 1.3763819204711736`, 0, 0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, \ -0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.8506508083520399, 0, -1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, { 0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, -1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}}], Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, { 11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]], "Polyhedron"]}, {RGBColor[1, 0, 0], SphereBox[{0, 0, 0}, NCache[(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], 1.5388417685876268`]]}}, Boxed->False]], "Output", CellLabel->"Out[819]=",ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzsvQeMHUfW79evq9O9d2bIYSaHFCVxKYlUpkTF1S43KKyyuAorifttlkRJ pCgGJUoUleMq55xzzmlX2i/jPRumbfjZcKJhGDAMBxo2DBs27Pb5nzpVXdW3 uu8dkvvwDJhA19yZ4XRX1fn9zzlVXV192m82XvKHNb/ZuPp3v9nzxPW/WXfJ 6t9t2POEK9bTj9S/iKJ4Gx3/es8ooc9lFIWL/yCK/v8f/H/+B8v4o1pBxbfm ZzmXCt9vlSMqtprf3uP89SH8MXf/Gsf2Y5cegq/bfv2zs6P0u3suvS5S+Lz9 2AMPxxEVKLutl7nKucxB/LFrfrdjYnx0+7GLFuhL/PT07+753Tp8NZecu3NX /I1zxQN0t7hXJFX86uiDI+VeNYq5VO7Vo6V8+WTbnb9dt/22C1fj2PGbFT/L yx/td1Ckdvxg6aG2Vr3StEubwP7jSvzM+byEP6YrpNq6lxct4CrF39398+Nr FUt1xXZMzJiFSnGVJlDmqI8qbz5zVVpuPO4s+rO1h51aXrz0RBxRhnK0vGjm IvrFad1p5WF0LTqoplQWrdU93Pm8L39MXDBQ3UTXFN1pa5oHajoiFnS6MEpQ pqh4hop3ub4KVS0voitchKtymexYM3PO9k3UxXTsOHLmnA73NV1h5hxD6ICm LHQ+Lw43Ja2aAty5EZ1AUxTKmFugdtx6zm/RAByRknLzCeehPWKMfpOMS0Mv XrjcNvQQlArto066UV+Jr9ZD2W1qrwbab+oM5/Mi3dSt0lQ2EwGWVU1F07iR XU3ZtjsvvKTcc/rM7b8hAaBl1JooQSv2MPYhiEy1j+y3D46pqHSy/fzjV9Gf ziN7RpUrSbb/+IgVcVPlpzmf96oqbySLyueBymco1fbbzvkNAb/5R2eWG486 mY+1Bx1fzutMLU9buHyvAF8ruMzc+pve37bunEsVmpCUhy89Mdn+69NXF989 tfWxKEUDdIWmz0avrgjWfqFfe6PtIlB79jkx1z7ZceuZF9ja05GXFy9eQbWW RnAbFrgAaWtEP0MZl6dB59uvP2LFtrvOv4SrO8ZltmOPuQu2H7vksG2/+slK t+Jc16lOveeH1dHleieoN+NBlUVHx6gj+KZ+popyZXuBKk8E4DmTS7VjHdVM aky4o7Ycr1DT7+7+9dX4Wkptqq4ec6o8L1xlBkVtv/WkY+nCGw5YUu45dRSV imY4FTyMaEDV5gToOJf7FHXTllfbrvvDDeAZ1YKTplKhU031dHVGnarNCQuQ 3Wasq7Zj81HLuHp0oAJzF1I5Nyu4eqjoTKe686j/UNHZKH+pO9Azd6JrClx3 HL/8LF1Hv6Zbbe16Tk1nhdWmQ1GybcuKo7dvWnbQjo0H7V+u2ft7udTz1Omz bT1nB+o5M9CtfxOwe6yrveOkY8/dfv6PLuQKJ03V7jjV1t4ur8sMtTZ1JiD7 Kzs3UNkZAUh/axmgX5Aj2HbFGZc4tUuMnkpXT7lTwXH+WNThRAW3b1q0YMfl JKiLRqaMOHXEfztt/iEQTV8dp6NcLYbfRHreolVSr4+n79SpzxT+mLn12XEE hTypS4JT9wKVWRCozHjAupeKdS+fPtvUTwAM1005dRv11VLOpbqtHB8tcMpu oE4LA3WaGqjTWm1Eqo4WbeKK1tbkXzg10crQ6eJcmzFxy8qLqAZUF65PFqjV XoFaTUG5yVYjRLUHt9r6B31VvuaoufLIFHvlNHDlRYErjwayjaskbJON+Bpz dT3+b6caWVWNb/8gfzY10AFJoBqLA9UYCZjlOjkfVWHrofra0f/p1EEF6jDN 1IEcZL0r4DTp+nz1fQJ16AX0fYM+H86P6/C//11/+X/05Vf8Tv+K/+Osli5w L79f4PLdwOVv0ufD+XEd/ve/6i//V+DycwKtTwIhY2ng8p2ABW6tLm///c/6 y/+BIsZv5gfaHIpTBzRd9M5AI/8n/eV/C5h4QaCRoesdFLheEejjOwIm/h/0 l/8lcPk9A82NA5c/JHD5PNDHdwda/9/pLzsqE9vL7x1ofejyy5ouf1/VXHu9 /1Z/+R8D1/ueToHd5vIh11oeuEwWaOV9AZL+G/3lv6862f73xeaqVSv5kBB9 ZOCqacCRPRBo63/tdrF/VR5OKsdjmc48qul6jwaatd3tU/8C+3GZep0pnjE6 NnCNJNCTjwTa9F+4Herbb2mgJx1n/P2mqz4RUMV/5vagf5n92y/zg8BlVECL F6KktCEib9Evi/9Ef/mvAtc/sNazbrxZEbh4HOjZY1Eeg4svDjT+X+sv/2XA rAe1XPzHTRc/An90Eq62VwCi/1B/+c8DVzvYXE262r3aT/lqqXs1PjC/w393 OC7YLS9BqLrY+lIPpn9ff/lPA5c+pHZpHObSJzRdujstWoK/m4cLHopLz8Cn uYFL/3v6y38cMPBhOiexfSzR9KSWq7Jl+VrH46qM1czqqvbfv6u//EeBqx4e uOph0/Y0ieXFFM4vmrYnvkpIT/yaLFy+EGeYjkuvRCXG8GlawOD/yrW7X4nl phLS6+J693Ar0bHJly7xPVWMDkm3+io211ZsISq2b7kaJroEM0cX21zOs86/ dPnwwTgiXEUzKOCqyH/tBqq4V6CKZMEZtoqzUbFjUcU5+JTiZ1MCVfxnlyPu RXvdo8x1q+pR6tJfv3HOwrlaum/NvMVEuJJjtpIzULVTUclptpJjAVP/o4ud b+qjneTCVHJewM5zbSXnBfxL11ZpOiqyH6o0u7wU9l2N0YKpnIwbbO/h39/r L/9OwMi2cjTMMJWbG6jcwoCFZ9WruXB5lPg9txCVO9BWM7fV7AUM/Xcukr6h j3EypMOoqqjmHNfQUs19atWEiKfVq0l+c5rtyDmo149Qw5l+DbsBr/IXl0jf yt+XK7spxqwAigc2oThSryZ5uxFbzRmo3CGoZl5ehvz8UojFq3AngOW3+ss/ BSxvK6y7k68+o+YDrafiCvcCNcxtDaejNktQrwWo4Tx86uFnma1hHjD6n/WX fwgY/TinhpFEpOkBNo+V/3cxWgGjU9/mdWF3p/l9uRfqtww1nYVPHb+mWaCm 37iU+sb/QaCm0wJ4ck25y2JTy4qA8hI6TH0vob6dYruVO/MEVHYcn7r4WWor mwYM/5X+8rcBw9vKygQ9KjseIJU1xwQqXAoXpN/WK9mxPTrd9mhSXo5BxmX4 c9O3VXWTgIf6Qn/5LkDBDwPVnRqo7tG2urmpLlUT1T2d+thUN7F9OgNVW4JK LkR15+NTBz8rLAqJbnw/Cp+76lLf/mFAdccC0FbV7TVUdzVVd5rt2L1RvyNR 0+n41NWuwNRU1Wpq/32qv/wp0LErAjUdba3pCC4V46LUNatRXfpvXF3EHdOn E6jfKajpmO3T3CLg1tQj9mNXZX6f/khqOlfX0rvj4CJwlF/TjGua6pqajqX/ upr9lunYGajkr1Ddju1Y/stEt7aB2A9dnfkd++NAdbuB6h5pq8vhm2USo6b0 /1wIYltXNv3+Gtc1mLa4HBU2ncy1VrbWIRw+cOXm+7CfOLU28aAI4MC1HrWd PCIX9WtNmcBUW+FFqOYRqPAs281VheN6hT0q3nMF5/uxUIXzpgpX3TzGVJD9 yRKriQpznOHUfcTWfQI1PgN17/mdnfh1jwNe4l1Xgn5n/zRQ9yyAyBF+Z49q Li/lv3UaAEQ43JlGnLFweXlpd1pm28E9/0u0o+vbQDW2w/57W3/5JGCDUDvS pnZUNhjRmUt/OxSXKbcDPknawf+T2zEdtV+Kdswp12JQ77WowH+MfRnEAare 1F8+Cljm+ECLVCAtClnG+A5rCtMEYmqqrf3eqPMy1H4ePnUsV5mtfWw9pRaF xepN1/n4pghVPA7IIWSKUfHRfX2/Wve/rh/Xfg/U+UTUfqrf96lf+0aaXtNf 3q/63jbhBC4zjkjSBD4khQp1+RQDEVXaQJSGGkIDOzQktQ2ZQPXPQUNGrRk6 OntpbIgH0Suuh/IDlm5I4jWEGlHzRKO26xNcl1pxqSOFTMq+VsxcZNswCzXf F20YL69ANrMW5zdmyZtaU4NKGvJOwCInOg1BJbghYokwQ/0NCXF1KRpCjnaK TmjWYOS2Fg24AoSthbc1NskGt4L/veQ6K98c9VacpuVweICnEZ1fSyvIdKYV CUqqRp9NpCnlZd1pXN8ZqPneaMMP0JoZ+NS1rWH+VMDxUpUvcmLHC66j8m1y Urg1hzXZZFRfkqpfcPWVW326+KU8aUrVR/1w0HfGKmyL09GOqbYdud+OPoe1 4mJHJM/pL28ErNLQjmV+EleJZEysglpSO7gt3ZYWwShUXRwkjzVQPDXhfDRm im1M1tQYMYqn+GddD+Z735+FG3MoftwLGGXMjpPQ96SWYVp0mdMidlqz0Y59 tGjWYUx7Bc68FqytQbMa2qYtBd7cZr1SsWaj4cmBZpEP4GZ1AzYa0VG4v1m9 QLOUNOtyQs80K0c5wzbrMDRrNj6N2mYlzc3yJPS0/vJywFqnSLOcJsE/Hxxo 1oiVUDfQrJGWZl1Gjto0K7bN2huNOQHNmmqblTc1S6cxqBCLSlr0YsBQp3KZ umMO46z1lFOnyTOM4rpT2tpB1FElcZCO1mK8TBU/yzZhBD/L/CbE1sPpJlif 8KTr3ny/dqqTwByGaRyTwBxg6x8yyxQxyxrHLYxJc86U5pzJzblM0wYREXFo Dld9Phqxyjanh5+lgeY4FrHSeUJ/eX5Ac+r5mJsa72eh6wWsM4Y6JKgNmygu L+trWCINk0Zxw3KUc3ROsA5Ty1ciVzZN7Axoom0e/j2mvzw3ZBNNrizpJv+P fWwTuwF3wQAWLBNfXByu8pYWX04KMy2OUc5E6/ZDO49Ci6fj0xT8LG9qsYaU Ffa7qrHPTrKxnF+7je34jR3x1dYNNDZF2WtrLHFLLcGhsz225wlo57htZ9rS TleGj+gvz+h2emE51M4kwO33/HaOBIzKMQo1odNIO3FMDbQylVauJYhNK3so 90bbzrKtHMPPkkArtddEJb79adXAp4dsII9ZFwdaNFL3k9pyl1NHUCO4IdOG bE5u4/Qq25yRQHP0YCAxzSlP0yu1HtIteqqlRYc5a0XSAJp7+Q3sBQPBGtHS rJZmuSzGKCfQmH3RrBnletzoNw3sDmjg6ZFdivaAGyHCDXTvVYSmSxZaR9Np auCIzvrW9plxZqC9mbT3CjIjNQYHNXAdRH4lZvPX47bglfCq6+DC+puquKk8 NOZIPk/nUSvQxPt0ex+vfI2N5qcF2stTW5UFqwbWEGVPymnFXGnRWU6LYrSI qqYjBpnRNGsM5SI05iQ0axyfpuBneUuzqArbz19ymLcq/l43bPgu1G1WpBMV f8ZO/t8Cv5Vd34wyUl+DpnJOeIW2JZ3A2JL9KPWG1/yzqPm5tNw1aIFyT7T3 bLR8Kj6NNrU85pbzxOWONdNn15e33q0b/+iQjS8CDE/4Iu3Yxndtbl1rfMrN oEYRKdRkbva8lsbD7NRGHLrdv7Lt7jW1my53GRIsavba6bNDa/TvdCPL4KZ3 0PT5flu7dhKtsIYu/Lb2pK1rqF2mrROBtjLilDdxg68ka1MLcVAz1+NU1NZL bKu7OGnmt1r5rUb1tt2o112763jv0K1+eDKtrtE+x3daXX1Tp78TOGsrdP7G VrqST7/OsTojP7Vcw9dYKd2xkrqjkJ5YS6Y3PaFQZuUGuOv1uN23AQmU6ZMi 0CdxpYDc7ZB6p0S36V55KODKQ70Sujky20ej0DeQzBRT0dQrbNlE2reWeoD6 gvtjj0CvdBw+qPE4KGfcgInZ9ZhQ3SDhbKy1Q7Q3NB7BPHlhHhDg/rhF98eD Q/YH39ua43dAbqf+04AfqHVARzrgys5U2wF7BjtgrXaHhMVG+hkdxNBGRLUN uOR6PLGzAZ2yHnGmvxeSei+Ig2ha/n+T7ogHWjrCLJOxHVGTywxfLqkFI9Vz 6P0+o6Ojs+kXRp77hQbkfV3SlS7ZQExsop9t4kC3CV2yEY+GbMCn9ahBf2+o pt5oeFDjRt0b9w/ZGyMBmUyzvVEEeiPR08D9Mql6o0CLFFueeKEzU5dwtyxq 6Zx1xIvpnHGU4zjBhTjVuPWveaBz9JwU981llVNt6p8bdP/cN0T/YEEQ37ye YWWT+x2S6JsUl4t0i6YO6aAVBdqzGD1A6S13w8+lG35O3UADE+6GjcTIVfQz PObcQTnN9kWOsxyOT3PxaYru6v5eiQNuhLskDTxqdr3uj3sDweb0pv6oqWeq 5SW13VN5ldTONmQBr1L43cOqqEEzhnJOS5ddSeRcTT+jg5p9NbrM9NsJOOkc nH4UF8qtwFJUQ7X2VhZ4buw63Vv3DNlbYwF1jVmYUr0epF9dqZ5pXStpUwVT rbc6aGKMxi4NdM+IdM+GmYts94yiHMdfsMRW4Cyzcb5eU/foWTgzjW88EDoo D/TPNbp/7h6yf6agfxifXK+JaFNXqoNDg7vpoCkFGpWzdggL6gvqFe6ZRSiz ch130tnSSWdzJ63jTlpPDF1F0ruGW3wN8DE9NYKT/gCnn6Uv1N9TcR9IVP3t Vy05jLsoCz/iJxsZ3DVkX00NTILxise0VXmSbq+Vmma+8mpdxw5HMSnEDUFr +m8M5YJA/40G+m+q7b8pOF9u+2+mzQCq/kvC/UfV37FODwqiPOzJN+r+u3PI /hsPeK7C77+aFivPldr+S22aXNNi1X+59N8mMhQYRKcdFOi6Mafrrqauu5Y9 /rWg7hoUV8v5Mpw5wTXm49NCP5eqAoAa3JNFuCfX6568IxAT3Z6UZah2vaRL YmJ7MmnKGdJATyZNXq1AyzvoA8VMqfIquhp1InfkPigpW+JqnCN9eg7f+72S H0zZQH1Kvtoc02y3juCUGU5+IC4zFxecoi9tsAx1ph66cV9eSblXt+pHd7i6 Tvfj7UP244xAdOBFAcpXdMgZJn4/pqh4ZhUd6sdC+nG9RpL7cRrKPQP9OJX7 kRim2CF9SM7G9OQUnCrDSXO/J0cCPRkHsUQ3mqFe1AlEkit0X97W2JeJ7ctI D3FmyrQy/tvF1dGek6SBfkxtRl/zjIXW5DXoxmu5M692oFQolwU6c1w68yrq zM30s81c+80g8joU14pxcsvmwbjkbFy857vMrLlH0S7bo91Aj67RPXrr8D1q 1przAmidWus5//akpdadPHJOA46y6s5CunPTNIaR+3AJSspxuQbzqZ/PwTwD P5m9Xqd9S08sryW/ie6cYruzh1PlPqDcnbO0Jtq6U7fBzXW2baVEcCQw+r5M d+Ytw3em2dYAq0Yvkc5MBuc6NSy5HzPbjzV5c/hQrFZym9RnGwhDdOYslIsD nTkunbmRvkdnYjiQo+R+HcOpcpw08wE9BBefHujRNABo5Tyd7uwLQqt1j94U COdntOBploliQe5qnb0PSIFCPZro8ZVHZtWjhfSoi2eG8kjp0QV08XOlR6dJ j25CCJIeHUc5jh7lU2U+owtwyXl2mFf4PZo0Sx7daebKol64W+Xu3Nbhu5XD UsbdmvAauEtlunI471nJPbUjuiIg9w56gt0gck3NKfdsjHIpenZ6ucHr3g28 DwGVWa2PMajvouSO7uGkWQDdqqPHbEcX2tmbjtaB37kD7Ics29sNEMvKnhuH 721+pKNAb8eyWhUrxGQyQ0+MtmdPaaC/U98tVP1dSH9fS9egDmZ856HcL9DV M7gkR0JxawtVaAtXaAt6+Qa43OvRcZvRt15XM9MLUYM5qMuonboodE37mdYw Gb+Lfp4SmKn4ve7bLQP61nnWdKrt29T0LW7ORc6KtCG8beJ3ax7wDR10Q8JS J1dKLJu+7aI8JtC3MwN9O2L7lj1wbvs28zHmvp2NCvV8f8EVV40eePu1MiCd EsgOfqt794YhelfmDnlyo4Pe5WWlsV5LMtDfJgFUUx/Vqk8L6dOryW6mT3OU S9GnFNJtx56H6WbenIPKnvTutdS7pEUcdN0bEdW2iKeoujgLuOQ9UauZqF/X 7+KkvYuNR46mBrr417qLr2/MGeSBaf8ZYj3lVvVzIuuQsNDDLAWblF9IdBTv 9wsddEnMzpRyCOpT6XW49MUr9kCPL3F6/BjqXPT4LC4pvSULXE/OeCv//Vbw fCM87RZ0nenxLAA19/heds6u1uPKdxi6rablps+j8fAcy9/oLt88qMv9zSr0 PYKu7fLMdDlmJCNnbVCjz+AuT3y+Uy1gj2/u8pS7POHu3lQ5D45+xzgdvoA6 dyNv2qU7/Grq8Bukw0dth+e2w7MmxLs2GE61HZ7rxLIdcS/hkLQYO1lhry10 e8R7TUqnXzfJTu/YTs9tpytZboAb8Ws7U6vFIcM6Fe70NOBUCuF8M50VnQ4X PY7yUPR4r9wEpR1D8ku47xFR0P8EPV1h6YnTAzaYhTKzNsh86GsJCc/ETqCe owEbqIAN9N2OHRtkLkcP8TLu+uOXn4VNxXBsX3nMBdt/cuAJ8XfXnbFR20Pn fvRvlf5y7SQNw8sper5hzBI63DPHGoF1bJi2HLDyPZVNct/3dMQmCIiwyzXU /VNgk8WwyUxrE15km5Yn7bU/9RYss3XlqvKcI49zrTQFVirESteRq6KBBQ66 5k1wNFtxhoFySe1U3BxUv+ebKvX9k/bAxkOwsdaTJnj6N4adYhgohoUyWId3 r/yltsk1k7RJ6tskh00y2CTlm/YJGwa38WVRxhCuKdUN7rdIwtmJgjnKq0Qq PZTzYJYFvlkSmKUoH/zJufQX3xufybZ5a+1mogNl5tkKB8LILxYunwl7QY/0 7c30Yzqo429Cn3umCqmKTZWgDdPRmlnWVB1rqqTJs0UJjMSrDchCvpW6lYZ2 zJs9f6ujIUzxRme1GEhZAxW+aApZWYJ76FhMsJ6V05BshqyTWesUui+2WEdm rFOgnAHr7Anr0G9/Qb8hE7FHi62xFGtIlT/ba39YjK2WoczLh9iAa5atKPef WFi+zQakMmm34oyAFTsoR2DKrjVl5quuygoSPYNxDax4NezZYMoGB3nmzEXs AOmIxirrbbvwzN+XjvWualSbvzPRYdVaOTZlxzdlDlNmsgZiHfWuWfDRHonY iqlustFYR6x4PV3tWpyJpxg2IAvYiNxrEy+/dKzIxwIGjdvCWoMd6aDuoHK2 2NA4SNiww2VlPtgWvz9Wmy8ur1p64rjY8Hr62S30u1sY0Fsw4rtZ3GcnoMnK fXL7lNXkHHsnrWsNmQ0w5LZNR54J87EJR7lkYL+7deMDRooXaltuCtjyNLEl TwHXdpoie3KS0bW2zKwtO7BlLIsUcA/aLGBJ9T0Yz5aZb8vMKpJtqXjQodiY RpaxleVEzaDHylEZNHUNygdpMdpDbIrvjS7HuExD9iTZXYXZkn6D9lB2AgYN KVNZZbJB56ELxnxlpnrJR7+T1VnLto0/uShkSwjz28qW+paeP/o8xd4RQdBz jHmabIhWWGvmvjULWDN3rInlJVdFgwyZapBvwJm3SEJXUyaLcgZsSPpG9CPb 0d+ZRNEcZEFtK/GkZDu23/ccZZLt2H7jXCrXitSBZMdxmJB+cQNZ71b6g1v5 F7fCAregdgM1mejJCc+5LkDjR3xNJk2ajPg5ECvHES5TY0IjyRWo8QXajhsC duTHvnj3CwiTHOvFZMOLKzviQf8Upuz5TjazpuzAlAp3oileTtuz5lUz34Cp NWCOPollWHodRE2RF6OqqSin6fTFWDFpEd98mG28fJhtt5j+w7lkq3dYgVTm ARkiFyUT0pX6bdhDmcOGeZMM2Yapb0Nl09L5aH/Pt6FqtuGOdVNnWxv2+m1o pOjZ8JTKaLl+bIyMFTCcvq/RsyKsLJdby3V5JUHK98twE3IjTAHvyOmsl91U FsysBRPHglfjz3lt6kZESJ3ikAmNH4VybD5K5psBy+0lllu7jLddZ8vN5TJl S9aNNsUx2m3089tYeLdBN57lsibLJdZylQPl+e/Z1nI9vWDFqK/mQPVk9I41 +3zfMVrmGg2Hmes4X9ttfSAenmjNqB9qzJrsGFtfWvi+NPPN2OU7ninP2eOu iDmuIVvWLJiiP8QvaQveQG5SdIjpOqwA8pPUgAVHYMFDHe3dRBkMbDdfLIjv z5WEdA+xYKe8eumJqZhxi2PGDsrCmrHmRBPrRBNrRuULcBRmnOELMGtyojUz dsNm3H70suO+rcx4ZcCMJ1gzqnYzsgU7AQsWvgW7cisLM06YfTIHJv88+3GX dAI+tEA52pKeVibsWRMW5SNsxytkdPEuWbCLclaLMUdhTLHj7fTz21mOt6Pz b4O52jSZ6oysQZO8XmlqwJghbxrxA1g2n+lUgwxjyCjmUqdx5t95+su6QGA8 vmbVXD89GLDsGfx4x2rYzZi28rF5wLQ9WJYH7jJA3CKT4cq15xZM9YpHzVB2 Bw43wgFyFBZeDAvPEwuj1jeTMd9lX0tlly2ceRaOJGE9f+HyXsDIGcpisGJV k2LZyNPtpFvXOt4k4HjjgJGLZiNDtVtrRr4iYOSf+kbWD8VW+r2EjtMrK+dW v7VAmjUZucN5acJDDehTDp6Hj3neS9vZ+F2FsqhmOYdPXtnIEzDyEjHyyTIY gZH35TJjowfs22X7krno2zvox3IUvokzX8cFGqF0DmBMrAJZ0Qy7wKun7396 Jq50bEy8ZuYia+I8YGIV0PG5jomPD9mUPtIY5RKy5SW84/YlvEn0PPrZGXo7 mSjxFVw5Z1Zwxzcu30DkybaO2A1KvUbUmvpzbyLLk2qynAaLTYfFjqjJ8j32 tlQurpnN5ELfJztdsHA5DfsQSLU2t1a2o7Z41st9gbL1ct96jV6YrdcLWE+F rXf5wuU2nc2arecJVKy3NhBbf+Qb0+wzsBrG1AINGpNv2veajFk0GbMnxiTz BableA41wTzcuDXdUphuvHzUKu48MhPsNwsl+9ZaHiu2w31Va7dbKZjewTGm 326Z71hTa7dGx8qqm2nt1tWrPBocqw6fO9ZKFtRiMjtb55hsTcBkK3yTJQNM Nk/vvKO3DckD1sqbrJWJtc4LTqKytXjWtBLaHrDWXmKtdTLggLUWoxxjaynX WnQ+slcuprp+4XI21538izvRq3fALP32Yi+Z+PYKeclGnfGiJxXwkhE/0bpj zaFn6rFiwF6JtpedG8e/c/SXywMx8Idhe/Ez6dpm+IVnL9x35ThYBJIdtlcn YC8d3Yy5tKki5Ua4KLaW61jLTYPlZsFyB4vlMNAwOluGMhGdnefoDAkq2S5y jQed3clXuLNPbJl1kmmT8VRAbKnNYiqxZU1Osma8pNl4ntjEeJcFjPeDgPHs LhA62gUVdymv2LgUhmqwYOFbMGcLkisj6x1NYju6IflElDPH5cvgiR/4ybld ufGEZOU+nbTQON7Ydpq1bVE+ZqV5ANnxfbLqNJT7SUxsM7Aokw2cWnWygXNf nYlv4Lg1h8ntWKQycBrwpsbAFABt+qICBk4rda4wBj7bMfAKO7Ga2IjHasRU T2VRPlbTIRaNMmvNPGDN3LcmT3knMGJjiqlvQZEJYUAcVB8qezBlzBbMy3vI yDJxxsedBAB+dv8yDFmMfafDvotg37liXwj4FsppYN+9UM5n++pE5zxnhIlg eS1yHN8B4+GcIuCAWcMpTKwGa7hywF07d9DzH++oOeA4YOK42cR26s4x8aWB gPn9gMXtzp+ehlf3aVih7DZFTdZwB1bn1VlscDclPZFsZQ6ItVezsGK13kH/ 89ZIuph+dhd9fy/9xQP0F1OsgOfBwPuKgU+hXxsBH4xymgg4YGDkK0tPVI6K b6Nf3MXR4C6xc+5LOUV9koCU2xMjXhk4Zu1c+FKufLXOjMp1VI3Llp4IU4es nAWE/HP9ZXXAyse2WJmfb5SxiWIrJ66V7X5BIT+dWxvHvo0TmDUr74dFjVmV Y1aI9TZG4TZ0ze1ck7vph38U22bWttNh28PEtjDdrWTGD8igIyjZwJ2AgiNJ dy/EUOVaPWtLCr5JFJyizH0Zs3mTgHmTwXlUTcZ5k6fWrpr3xsC2Zy22NZN/ rm0vCUThYwbY9lLJoxJR8Bny5gC9C2Cby06cB1eOonB7FCdOnolhTvLQ9+uD +tKzeCIWv9+xeKLD4e0w+x1cScTN+8jsdJCkH4HZyeL7weJTy8etpH9BhoXZ F6DcB2ZPhze7UXUWUHXqm30I712pujJ71ze7qpk9LddSrS5feqJJwNgTdqrp BCvjlfrLxQFTH91k6thsTUW2Xq1js2hZ23uiozfDKuxqk5q9U5m8P7syNR/z q+laFvR9yKc8G6cBG8c6Ht4u4uqgv9mfxjByalW9ADZeKDa+UoZEsPEBKBfA xqpmY3ck69gYsr6bfnw3hwpP2plvYzXYc9ekzY8PjVgbZwHPrXSE5n1vYGCj 56gIzDi4Bm4UrxKLXtZgUfTBmfMPiXiKoeNbNJO7aj8PGNOky4vIVCeQqsxx KafLf/zJuR3fxt1q6U/i2thaOLMW7mgL343i/r32H4OFZ8LCB4qF96E/NSo+ GuVMWDgOpNdiXR2dHc99t44TMK+n4xQ1SQLuWw3WccjGaSAL0+vlyiu0jPlA V3YDM4Jn6S8XBSLxEYMMzo9FaaN7LtsYPA0YXGx9JNnYHJWtsz5bryYz3gur /hGjnn5zFwFJp9bWhbV1R9v6HhQPQNePQtfG4Fn5BJ9lvej6Q7LyHJT7w/Tj nJ4ptvoB7nyHchR9O3ntu9n53O3KOmsyech112TNJo9h8lFr8sKXtWdy7Nmz pjL3ti1/2Gq8tidqMbl+2MffBXZ5q8nt7gBkYyP0WKx/KX3v2D7xTU9/hP0w xOL0R0dWCTZMfjyZ2hxkcuo7Y/Q8YPSOY3Qk2bdzvxujZ9boBWzR1Ua/F8WD kDoZfW8YfbYYHVK/jVz2hzz/T+VeMPoUNnrqGt0m4rEj9ZtF6rkvdZ5ZTqw7 V4MzNRWw+xjs3rN2TwPunD5iByuxebnhhFUhlZ+pv/w+EKgPbzW5Gt7kypo8 hsmT8gibfZFZaRAMY3pm7fhm7QbMqnQXGrMW1qwdmLUDs6ryj2LbFLadA9su dgQN68G2y1HOhW1HB9o2YdtC03QVHIU1L0+ZpNa8Q3jyStaxfkTFePLKvHlA 1rHIeh02TRbzbjxh1Y6rTr/IyNqbunRt3K5jvX1d4hoVRwyL1lx4bBdlV/ak v/ypo9fj0fF3w6Sehdlbc5LdtQmYsfDDmCnRVq5bOAtYuAMLU/aOPnmIE/lH 6Y/JzBysR1AezAbX21eLmHGMlx+t3XyI/kSG74nhb6mNro9zRA1Bi9Hpu3tc ZSdW2TWPHkrUYl/ZNdNPsaZPW0zvmN2avghMfIrpfxcI4ocORcLlFMUdGhST kFgSlpPfpiMGAvSHE/0z0T/FHZ+7YPp+EvImEmJeEJMYFMwt81T3sIEhD8DQ 0TDczzZ6mCA0MKQo9wMMI+WTzNqpMsVCIESLUC62OHQYhyKEQ3kddf0W8gF3 4JUxhoLUOoB2/x5yALH177EdkrED6NqHyGr+nf43tI9abTphFf0ZIUCGv/EP W0NzK9YPnKG//DYQ3g8JzIIr+/y+Ehj4wbQql09qMODYe3ymgs3pxxch86Le lyMfTEHHp0DJsihQgGmVO6I+BNImBApB4EH6O/gEOIE9UM4T66OyZHO2/qEo p3IsUOWbZPMXyeZ00He6fLNyHPSdoSQPUILjOJ34l7fghnJ3WoHqZahoYn1F Y5hQAV9RURL7A/cpduVdzVfETElSXllRgiMESmiqVUD5TSApOHgwKPaxUSHl UpMTULlcdm782cQEvmaDwcgDYCQBMJIAGHkAjC7ASMsHuIqPaTKYjiko9xE6 kPqdTyYFHT/gUpUvaSjKJycW0lke5BPQafB9+QJhEqNkOqaCjozpyIN0/Bor 1nni9l6pZWK9yBCxRPl8xIFYklkvUgS8iA4mBg/6zsBRBKZkT3doqIJGo/mV Y/5LPfNnPCW7eGy0fPjII/gABuwxhsOg8DFIAxgoiwF3Jssu03laPwZdwYBs WT5MJ3iC78k8gbGfxmCDDPs+5ik7KvcACzFQ6JUP4VQPoukPoCDjs92Tmt1N Hgm7/x7LFPjNiveigvcIp0kgejT6hcS3ey165HZUWD30neknFGUHQnEJV8ET cPhQJoNwA4fnD4SAXweyiAMHA5EYIEj7Bggl5ZkSOggE+n+EBP0MgCCNvIsf 2hoOimqYkDmpg0BhU8gKiVRH7n4kOjBmR9T9OJ2DQGAYvodytHzKuofbyb7g 4kCUHfERb9EP4SeeZh/xME5qMMlxZsWeQpXP6xkknkXqoVSBkYcQQzW+F73o 0dIYRWoZpxpMy5j/wHqq98rb5AeQw4/HETtRxBDjRhFvDvg0/eVXgXRDXuw7 DDV44vQyoqRyI8pGkbVL9qPqamoeIXeCn128bEXUnnBW1HQsNXnAlYSQYVMU QKYLZDoWGQ4IKYyNQQjRa7iZiXKecAN/ciBZF9wchjIuXz7yuKx8BDfIH8aZ DS2FuCY6f/k4/cXzHGCeZ3je0PeOGJ4cZRyA58fkak7ghMm4mvYQU0tUYx+e UArCD56PBOCJZSNg7HzL8Cw6iMMNfY3ipjwkCdwwEoL+JpCHVATFrQSZBygF IQYodpzPhI5IGiOmiH5xxZL9EJbYA8Uos1aWcrDEjwbzUvCixpJdThFiKbfu p8ZSV1giKspH6Czki+i3TyJFecomsMYHHcKlKl8hAJ4hALCx/AyUHUtVYalK OTVODVb2IKzopxoq4olnuQ1Ni+ggmlBZJ3glg4OXaiIqlLR0fKJSSxTVCDCt lVEvgMIzb/wU4/jsgVB5M16nOlAdZKNX7C8VqVGkd4wtXIr4uIwOE8LIGXEE ywQiE8bu5sHn3YCoYdhT8cO+qOPwc4/wo/zENrP8ZDBJ0cRPAfPTHz8hgQzk 7C/8nEZ1gy/6hIe/n2AOxIcIL2YYQznWRFIug6z7+pxUUb4uTuoXtak0UESp bzJkTKvcUmwz3/aY1rW3NCu3xHsJ06mxCfUVBNEVAtJVhx8v3orH1fyc80aE OsEpC0ySCz+/DCRD+/thLW7HiT5mHlIxeMIsimTJCG8KSHUEKYlvjFTchFQV 3nKLVFeQetBBKm5FKgsg1YH1OatJ2cNQoKNzPSVczUc5Vj5tnRMhxXDtz6Uq 3yEiXiUaHmNTPIYn4R/FSfvh4lSJR/DMFn1v8iUsm/hF3/zcLbjjYngKhbmQ U6rxFPGzFmbPqkC4q3HFzgmPlThIWaxOWKUTqKyiCi5LJuuuPv2iLOCYTtFf VgXypf39aKfsIsUGsHi7jmr8ZcByA14FVlw+ynSto6iH2t/NefdAsDouWI9g kwUN1zBgFX6qXYHVBQ0xux5VPkknNHRx5j1P6ILruoAoAFdLhK53HbpmoWTX Vfh05TXXxUmcdVUNgGHGL66G6/4ccHsIVD5t7UkVe68RvU+JoczsWb2pooz+ n97/HFW8mpC6itKqOm4bxme7uKUBPya4XRhIrpb6YbHyY8rHLZHkysEN/8Ub 2VknVoC1VFg7hQb+uL13D9tzIGuFZU3Jkx6ADWtu7DKoWl5VsZa1slYIa0/s tb9lbbFgtlFG/5/wo9CfYMLv07WbpwtwgO05Cmx4J9UIypmgrmupKwI+LZWA iWApWTz1rk65bm2YRbyOTc4hsz9aVkm8srzFdr5giJSr4o2fvY6FN7x6wOct cXmzWX4su0iAufUSPIk5JGHBhdgudAcEomXs34BQljLzwD4wu0xnXlEoXsYW tQyoxeVjNhm7BP6JZ3jaUMstaqmD2l2CmmpCLbWoFU2oMRoJOygigOAnypi0 7wlv+9LP4NY+5ecpPmXKXkNyTrTg5ZnzQdkYTtAJUJY7kwz9lCkusybKYsZM mSlr9m9xazSt8TZsdjZiV4SnZt9uBzVVc21X892NJtg2YFzpw+bd7zhZf7kg kKnt1+Th4gB7Sl5JeDm5NGHPZv4mnFbc5eBOCXcmpmLpQto6dMxt6p8zd4nL 3WDqJGV60M44edR1hbqn6JSGOuZvtHyG0dskExOf8mBAo/ceoQL8gN50lDPB H5+qsJkb85dbL5c08ZcIf6FZUYe/LbJw4vbuNIe/2uhAWf7iScfXUbuvltl/ fyNdbh3xt46dnO/q2N2Nz64jmFgE11Oc3XD48SFXJ/SdH0jn9mv1fCpEHz9k ZggUz5e4QdbnLxX+Hj/yiPJK+uUivp8+kD+euujU/N7dkYSdRvgyC1/Hwtex 8PVATMpxkuKs4/cKlPOEQDi/OwkOsLenQ+DruOMS4fRPwgM+IcG2wrDmBjOL YdyEYWi6TDiMNIi8ItOu4iEYQ2G3huGwYZcHEz3rBul7vF/EEKhQ1iOuRF1V Ta45mZ6QeGUU7bjq+6clgRs4P9NffhHI9PZrGlhUy7oqEpNGEqsYfAXF4ArD DBgyhfRf9qFfY+XeH3l80Y9hlenxbGxPMHwIA17BUA3GMGvCkInpGQzphMQd s7eXEHi6TIiAvVGUo+VnWJ+tWRQOmcW5KGfiJJ0mFtklJnpSuJrJlWEsVdJi WF89SCDGesThLyWDR1T+YENZCuMhk7/YX0rWsw9PYqDhUJhKaQa0BsKrDz8+ SgZQuP3aZcepwE0kl8IlreG3uovch90VOv2L4too4+SJCY1dYb1fKtg9ITcG sDhYBSbeath1gV3Mz0kmLntDkpf70bdjyeuClJyDKcVhQs3gt6fghzrCAX7G m798xmi8gVvOhAZeZDyGcj7IG8FZ+HwdS15uyeObEKlL3gvOzSaHvKxvmZsM duuPmuhg7DnARvTa88BY775ipnrjAHq5BGIPO0zH8StznLsLAfSikPc7SX85 L5AF7tMahyvvpyyG+iH93HBoD3NHCu4v9znMwGEMDJHsSj74Rx6HNIw+Csuh kud1DYf3RDLJ1Q5h5ru/GoRd4KMA0gygN1o+a93fhQQEyJsn/L2P25kEyNMR NrJ+Cnngk3ICPlXhe74cl0wsf0kTf6qdvzTAXw29eOdSwNTe9Iz0O4DwPiXw 1hGHh5pcU1FXXs23rJrQk7fDwuO52zJ8W0Pv3EAKuDhw5yEOeMAKPb1LT9aH nkTeirrMer9UqEPkxWzLfezU2qjj3C91qPMmu9LB1OWt1HESV/N/Kco5AuFV MuXyGa+zryCEIwSEs1BOgMSeJbET8ISp7wlVgMTcve0eWveZ1zC8jSPwXTgP Pwo02RSwCr6pXe0pGOKVP1fyVAuVhsX5VI8LDj++4pHn+QyLekGH2cgTOPJm u1G2bcuZvw9toyYwnhPIAhc33beIfT9Y7Q2fCIzukNiJxVkAxgwwxuWTRGTC RFJA5ufu2njkHbVyJxrfU03AttOY6sFAP40dSyMjpDi4qvJp0gcxyBwuEBox JjEukZPBTvm5XiOIW2RIIbkTnoFzfBrO8Smc+Ulcw3BZecjM5zJxuTTrCy2X SQuXhcMlHvalA4uCkDfufFA2L6y5Bq93xjvPORRTmQuNR9GVvr/oIKZRiIwS e2/NGRwr4xp3bJo9P7hbzYkOifsOHoBUflBV6PErhDz8jnBCcGr5y31nmDB/ VEWJw/fzWKQNvkKc4cMC372R3AEPkZdaP5jpAakhrxMgryPkPUNnNuRNOH7w IIqMwG1mALoJlBOArtcEXY7rpha6KizruFw+QacX7joVclnTatYM1GXufknX 4RUB9Msb+M7IDeDvetyI24yp6uvwPoENyCXXLz1xFCBlMr51QCLTXsML0K4Z n+2/6bYRKni34AZWJ+gvZwfSvEVDjjZinzG9WUFqIbu8CrbNgGUC2FM06jht YoK3gkiaZloYsI4D2L0CWDwkYFkTYAwEo5Fw3PT92xjK0fI56+TuIpsDshmC 2svExrNUFzroLM/ivTHP4OUCT+PM/bzluHjWwpvD2kDe5LHJ1OeNd7vkN1Sk ePdBArZSy1bSxha+d9lyUrnEHUXAX4XclZD180DgXDTkAKIiS1VkVakcyDqr ip4J4OoE4EoBVwK2JKnDthP381DCG8jWvFfM+w4kLmF6Cc9wfOWWLxlzGr66 Og97Gv34LHI4DdQZVCnju6YLUB+QkQ1QjBY7sK4FqhMAKrVAJX7UxOClAop6 k8oCSKU1pMzYwn3OOoRUAqRq7koFkFIoY3tftgmk7dfZGRDPRR2vv6wMgLT3 ZIYDcc1FaZAu910U4mDS5KUYpFxAQg/JLjVR0gqSkg0sHhGQ9Gowc6M1baUo 871UjSImgTMpOv2zBBChxDjNFahQSeOlRlGm5RdM1tu4DUu/pCOagnJP4DWO UzGanQBeqcUr8ZMy1YRXp1rRn4bQipTdZSezbCXWXTFbCmyNyTtTMd0haFEl CKvE3n51sFLuUNOEPe8el8+UF/b2mkxWXzknJWFvnTB1lnOXqwZU5gOVAai4 fJqp2kgZFnbIeYDXKrVRlThU/VGoiidDVd5K1QhQmFfzTV/wvliaoFfoe0PQ 3ijngaCedVA1gvImghKXIDwo4j0xVFRPDAUeGNf8AB/exSdpjXseSH3+CX8s IU+OurOyVMFRmQ1fvXtXQpV+HtyfuNhr0gm7R9UVlKW74e4KXh5iqCoCboqp SoWqfcmxgSr7QpcKqNwClQWAqrFUGyJWLGV6vPa4nVvwWOoCipyjmCqfo9Mb N9VDOVI+b30VocV4TRXIPsLyJCyRjDBOfB5u6jm4qWflpDXSClw8s6QlgVAY B0hLaqSF93trz6qYrpFGuqjEnIQmK6oFwyitT0psu5Hy9TgwLftTB7G9h0zQ q+jnMMXvFSvXEE+16BcHsMosVimwygWrZ+QewRp+eKABK7O3HpC6Tx+RmgxW uXVRFVYdPYZ7Bn5KsCK8gRVYmiVE7Uc/W0WWrBP1PO4pRZjIfp59HE5qiOr4 ROWWqCSQXCWtRHVschXa58RglTRFvwqrXg2ra7W7QlJl7sir0PAv3XHV7Pl9 L3QQL3VmwEst3LnE3I19IOosb4WHh1Mt9lU4MU2YnZMpBnn/VBtReEb5IWwe xYoyCXk6mKhMj/b7ierq/OdZ/PY5Nurz5K2eF6xmCFZXy2yri9Vr2kkxVuPl C5gcfB5PpzSwxTO6WYCtWlzUgdGgRf/5Q/gok1Sp1s3tGrBSFqsuY5W4WOEw Duva8dnAS242NTIGV9X34hdxU2cEcvaFTZEw5LXqgz9+BaiXY0k05KXeIcwy i1kGzDLGTJWn60kG3j8hs3cxC58xJZsXPUD/Efeh7+fEfRKM5ZaxToCxUcMY MVxnDK7rbjKrpusLPGbwJX/8GMuL8Ogs+68X8O6e53G+53D6ftByXDxFNdLW sBj5T2unPmhJC2hx08iwAq0T8F9KSp4Yxc8iubEZQk3fMg95Mx80L5Ff0Boe BzgzHR5N2uWEx4qxPODKmLEcjMXlszb1kv3yI9UEGu+yMARZqU9WESCrq7Nw xuF53P5+Hpd8ga9+jUyPfskrcyueiCLmSaEcL19EavEC7nM+j/N5ZBWWrGww WUrIesoZF+YoM0uWu4/fubXprAswneVxpXyuimBcrLgy3qviqj5SZK62b152 XP22z080V6cHHNiCXUvlTdrlBslGqKosnqFKGKqkvEqCpIAVQioT34XNPOC7 HogErmo8mDbBlekBm4FLkmwPrjGOdL7vmiaYoWb3kD2/5EkHjdm7WJKBSBZh GcuLmMl6AcmbR1jH+q4c101tkEybgmTsEPZWH2Gce2VMmMJO3YayKJbn9+U1 FDIz78XKmgvLAqilxpE5gbIZNb7/XX+7T40zz39NTCa9V3aZheu/TKB0bvLk FrWiyX9xjMzFfwE1bJv8MN9z7uesEM4ewqSFcBZPhrPMd2IVZ8wFE9IBK9OF rjNlLsKl63X63tCVoJxevgQn9iJm318Asv2cFXruzHDW7skaOUutJ2PO4oYX Zwhocas7S9sYo9HjdTYZa2Is2XF1FSLLCq/TArn+xK7k+j5eJjyaxweGwKsA XnH5nI2ReDvJwzzp1cBYjB0mJk9W3krWmIl75EgJL0ZsquPGCC9GLEGZl18x bZ9geQ/9ko7oAJQTAK0XAK3QEx8DQascmk77LWcfgav+gJkKZgHEfC9WIywJ EJahjO2SxvrURGamJkyeb27y/NhBqzEktuf0oZAY6Zs5EYPUaQUptSClAhL+ GO/ze4Rv7vQzpGQbu0cINoyrHoxk+D4sTZlPU8fS1NNZ+Av42YuM1IvkEA1S XZRp+aJN7X9JhvuKN7HQSL1H3xukcpTTy5fhwF6CA3sR1zBwdXwvlqIuaSAf q0XLpAaX7OGUBWKlhivBm7lcwPjto0yW8snimz9xE1mgir6H75JD+ZjFLe5L GDs14L7m+cg1Zvehya9YNlsHc05oHNZ3cWjMBbmrJRV7hONjP3KpIIeNcgxy VWqfDqYtb6VtzNBGRIO2F/k+tQbtWpmncEF7k4xJZOGIDkY5D4z1mhjLfcaq jCxpipSR3vHJ7BHWCFjc8qpN1UQZzOfcASoAWGKXxAZHjkndb/1IM3VKILMP MTXJzL4WEqMaU1mTG6uYwi43AGs/CopIvB7hoOiBlQOsQsACVA/pQ6cpNbAy +xxJDazMB6vjg8VIFOyQNF0v1uhy3Vg3QFcH5YzyFbixlzGsNJx1fM4KXDxF NTKfs8ZAqcSXPV35MevLUj9QZkBNyUsGA6hZ0Djdj13QjnY8WS5Z2HWU6YsX i+J27pSZpeChhg+dl+bPbYJuiPkw48hA3VnuOkJzq7EROnZkmYUuc6DDazgf 5QD6KFAzjszwhg0xsFOP5S2dDG95K2+jwttLDm+jjjdD3g/SOsLb12T5t+hn BFm0DOUEUOvhLF2LWteilg9GLfFdmmbNkEbffQSwGhKyNPC60sqled4sdiA7 rgaZSfUtZCoAmb5lZGYu7L3tFZqzkwPOrcaZTtL4bVv2fRE7FTXTJtgy38NV sBUC2zUSOh/l0NkPm5Lt5LCPD6zwsLGHrAkdCFsWgK2rkXgRA4CXgMTLfcSN CHEv0ffwcveuXEV/8bXeqUzTxsSNohwvX8WCJv7UwB7fS8gse6GULQm4Obqa 4+Hq7NXCqWaPXzpebiX+znH4O4Yg28S4GfwiHg0Y+kDZCasafVxouKmXUbsT sT55noeb00re8EMEeLmVBJ4XWzNLXt7q5jJLHtazA78zJyY4wD7KAbYfvxT4 TZ633GZpXZ83RmOUeUvKl8ibCW84eoCN6nQWYXgwGf1rdnIauU/JnECOOIsO RzkP3/Zwom6AtgyXTlGJLJC8hTydaqKtMXnjwYHiN9znHm44gNt5NBDdyJxt 8PzcdbzCkMrM0EY/3Cy0qWbaXEcH0n6oaftZYGAwBG01PzdEUDWjgzRAW8jP VbRlQhsiK15l8xjfcPJAy8TPPYYpEAwlIjsj4N1NSluRK6yL69h42rXIpWBm ilCGFpFTY74Kh7JXhbJpKLvla3jQ9VXcxfR461jeOkPyVnk3hRbFwtszDm9J awbn8EYuuHJxMpGbMnPnEnMbHK+WgrNUz254ryit06UwRLC3x1205k2GpdBE mWHpispt2ZiZ2fn+otVzpZalQlh6UdZdrON1Fx5LBbOU8BZTj2iWAkPMdpLy gPPq6vT9ZYTNVzDsrPwVBgEuSZ85JCmUy0DSBD718LfdAEm5T1IVJzO9GLvf cynZgQYNfEb2hsxaQ2QFETNE//tGqunZVPulzqCAyMkATlJzUJsjF6Ha9EWU 7LhGz1wYB/UDTdFJTeEw4s2gARUf9u2ZvDMVvwhGjsagGMsrxcIRkZ8eV+Wd ExN5edfEhCrvRnHPxAT9xb0U+LDQ/imz5D7kvHILHPOGaRy5E0C8BZiLsQdQ bL3WsKxllrVOgDXOsBKQMyrAXSdzGl+b/D8tv7HUEWY4olko4/J17FT4mqRo 3QB6BS6ZNaEXCprKRU+wa0cvCaBHA2V2eeBuIaVbm09YhYMdljKTZjQKEO58 71VHj72XvZ8k3J0YGAC0cqdc7uqxMe7zZyYV64uNZtcCAs/eE0v15DK/hIWf oeenp3h3B37W9I9A07i8NEBgxgTqGIo9hB/nGOrhp2R7xsfJIT2KMQX75/55 tbQVxI4FseODKI5Lu7RXqAoYG7zE45aXEMBf5osvoV/8DfmTb9gbai7fJhsb LjOUB4HLBfjU87nsWC5zy2XaNHSoBVfmUm8Al7hc4kibQmtqJ0eSyismYJO9 ImxL3jAGmuwSY0ETI4Q6mrWJkIj3HzVO0dxUj47z6PS84uxJ0tkWba8kOk20 XedG20hv7XI/ebKtvJnftVJ9eeMbb3fDj5tWdG5FcRM36WaqwP0ENo7H6BxY SlR5zMzymoNXbHdu7klcqV+vEikf2lSgfQyjEIE29UcY7bzmNkhXvHYtr2PC K/B7hXTxMq+4fdn6UQw0XFTfoe+JTRzR8Sin40+7AUoLXC3zKW33nmoQpVkT pUmYUhB68qFHc/euwhbbhtJI6YVs2n9GqhFR3pHDOM+tFZ0nBHznJOjcyYBN vxAsq3UENTSVRTP20VT6QVV+ZPVWruc9dJoHiVIcT0AB/XwmzKcO6+hEeeNL RWcudILMx/RB5+8f/6atdBY2rHd8Otn7ddgvKoMnw9l1vOkfKap/w6PMfkS7 KJeUb2BR+Os432v2pAbWQk/xTALWxIdVmm8STGVJrYX6tCnUiwO44uRzZMnJ Zsy08MDEPMxeG5NoLl3X6XI5d2dArE3kmZfR/tx79NcB8Q6iBiDqnb6ulXrK q8nbfGRsQZQtPPl56tvZreGNAn/ESyzo5Die5EcYPCRzcZln0a/3kRdLZJbH gnlMeM/Jxyom09YkM/NpzH1f2fFpHBMaX3Vo7AiNZmbGpfFdbJFFtXiDHeYb 2NzodRk4VyB2LIgZrpsOzjmTMIjPOumm8gN7BWISADEWlwlbP/K79ew2Ke1U rsvc7AxzVDuamIsxLvP7Gk29pNyfh5k1SVInG9D1Xm0Jw+o9tXOtzFtWvA7h OOWpf8OrbNTD+6bcxVW4ny79KF0Kx9NL9lMW2gLQ4oUEIHcJ/a/18t4k5ZMb y3aV2MIS6OodtSbLbuF70q7NS0dAXcGOMQwwrH8fudM/8WjlT3qOD/vXC8BT UC4q38T9ujdwPuNTOzYBYJSzAMqNPrWGchxAOWnKURllVZv+yXj6B215lEgG zYvnzi9/efjxHs3XV9lp1Dj5Eykzh82u2UV5EkOlELux62XPlWlRu6glEXBv D4ArqusHd1hHW4Eb6z1X7kaht6J5kODE1BEGU6lFN2F0qYMkDxB8K3ATgJtY UkMZaYjU3JLa8UllqMaAVww0yUkynyvFwbp8foE9bITPGOVPwOcsy2fX8smu tpg0n0rvZWKGUdrXMp6f8K28hnAfRDO3WOJYpyM+0Cyv1y6W1yrojzSCut71 trXhfc3bmtt7x2pEfxrwtjN3htiGvOAo8rReXmC2Zb2PELmRINLi6WdWXp69 i862YlbJtiGPk1IEXIttLh53M9UJucKTnCsYZlNxtk/iVYbibJOmjDVEb9ZE LyPH8OXAsCf0or+IWeY2deglXHHQUOpNjPrfiqLv4dNoE8KZRThtTVsTvX+A cbHKutgawlkA4cRPFHhsFYt3xfoIoOtivBBbuV6PqanNKDTC14FrutD1kY20 AYTZxdpVEC6/kx1RhYA1IyqkBwvoP9sRVSwu1gFWT5hN1s/KrlQNfjZuYpaf dqTyIbr2s1SHl3ii4CWg+zJq94pNFk7V7zyiUz0JV/gUhl0Vuthv8wnugX7H m7aim9sUoeOj2wN0jF9X0DWzVk3oZih/CHRn49OIxv51GbwxukUA3Xbvq8Lo PqexrdCtJQYhdCOeF+BbkKdQZvvY79bHQJd+jNTgB5TYErt9/BoX3MRvxG+q cD3wCmB7jEb4JwEXPGPXiG5PGiL2wZwzODuy/Btywcq+L5jKh4laIpmZji3T qTCNSm/QL6CIeAKhwzgnvG/dUxXS6WA/nPkwF9YPd3yYGUiG1KQSm+UmgWb5 T/Buf+aPXxLWxDEOyvHeQth8G5tpvYX0902cr5/tbDJsJ5ZtZTPfWKLPq/rV G+ZIA7NeiX2q08P73AptF28nvbB48811AA3sNd52n7LaLFiUGMLNvU8fbm96 dvpOwx335RdHC9w2v3Dg5jsaAbjjv66vTgC32YD9SaoHIc0JRoYyF7g3S4r8 FE/8G7iV7ET7NN4WFemtjuNJ450HfHVXj8GYyTe5aq+Rgohx4fwV5OWvWieO 0d2f2Ylr2t/HQwRCewflMaB9Lj6NWNq7NgkpcN3U0p425dGJpV3ZJKTKo2Px 5HixjPHksc97GnDnqloTrFzeMWSkUrnJCJyci3vSQrhMpRn/fbQmXK8r96d4 dwfhJiHB1jMmIdGEJ+UfCR4hXK8SnYQHl5eX7rwHjy3k/JRpLBsoPkq+/Dmq l06lDel4SYvJT/bRr6qKYot7BtwrvtMh+c4s350A36PgUTGpqnydICeqmexM +L5e7lfU+SagcUTzUY6U7+ClT29jyYqBvGshZ5eeByCvMu3Ud+lJE+Q6XzGM 03efAG0vXUkCfEfVQxXA+/HfrVcO3chWfLojTlaMLzdkeJNzse/Jt1+g7wP7 nHuefNqucd6YpiQO51uIHOE85MxV4JbGbnTmynIuLzR40MIOt/4Ku/VXMN1d cb5Rv+JDv1yhAOIV3aFMO0R3EaC7a713t4XuSObm/syMaLo/cOgeQ3k46J7Q nPfTXeCSqZ+wpE0JS+LTXSXjsdD9vJOHJ010qz668djjPoQxkY0jEbpB9t9Q onKDnpzjBVmWbpOEt9EtXtzcRz5K0/2jgBffnXSLB8eMM/BhVkD3DZpuvf6i 4jv+6/rxuIlv3tzPPKD6NEWYVwRyHmcWAvn1krs8zdgZyGPZOBXbXD6FzCaS HLby6Gkr87llvhNgfkyYB8dvaO4t82a+r4l5/qszwfy4Zb5nme/oGRiP+TSQ pKc+8yqQpLvMfyrMp4GMpYF5dKrwXnn0xM7/EfM4POyvr5LzKPZ3tlayYka2 3mTyj549n9f2+Nh7Y8/x3YB97Dh1k7wY7G8jrPAcqN4HbWD6wm49aRqA7opb Vz72Sm/ApJ8MeJx0+QJhDuBzlHgPGGr/c6r9vvoNOmBd2E+E/WcIxKehDO6c fn+fWfblTrLHfmHZ7/js9wBsB+gWjpcnzstvmXVdfkq5ACGOgzLQd7A86F1M FL6DnOhtOUuFPd/gyQLYh1x90oq9zmQM9fQXxssz8Ymfw6jq4Xbdjic07Uj3 K+ZP0TcWg8zfUA1Go9hP2DXzvJOj6+ld3HcxOe/j2ww/4ya+J5+2hNy67HE/ Cbce4lt2INCLpp8gyAlt8eqvIot5zWYxeMOnzmKeQaLez7dMwDWkMjW0M5vK VGh3Ldqck5AHtsPPXxHKLtpfUTJg0M5RngK0GfIRi3bXop3jGimuljXl6JVH r6Fdy9Ej/Q4sOHMf7bQJ7YjnWyzZTyB3eRwzLY95E4ku2BGn6OzLb4hkbqI2 CO3341sB85Ea7BUBPz51t3GelvOr9IXTluvZn29yAQ9NiA8xg7jLDlwFAE/c d9i+qN04o10I4DAOXrhn335RCODP4oeR3uE9bs1bQoAXNm/p+ID3tO9+hx2u HYSiFnXK38VYMML8+Lt4ZOI9rEh6Fw78HTlLhXpHT1b2ox5KXhKLugok7Br1 xEUdR+anLky76qPdIb2PdvxO0vU67XjHcyPtfR7cBb0tMecHKSJ+BgxQ4wiS Ldu/nUOHgfteDbbsdr+pLykfNjvZjd67Ee5E4Mb9uZeo3q/xQPQ13BB6nQm/ gX6IPEXPJz6DCZdnkaM/h8Jz3NlgrvOA4+5arkddruG97yeKvuW5un6ueyhP BNcz8GkkwDXfDE1tdlLjOp0M1zK35KGcBlCOZWMnbEh3KmUeT3A6YmCOOClx pgwdkm/QPjtEcsQvuXTddnlMFMFtH6Fh/mHAa0/ZHWxnlm1JTgzXNZ+t/FVO 7Tcx48Dy0F3x2Uq/oIp3bPawNi/oFa6Z7RhlKmwvpcYYthnrBFin1lOHiM61 T/SILnxPXRHNVKbMKw0d6UrEtvBdee9DKNutKE/KryvKcUxo3/0+7tK/B5G8 i5Mb2rs6o++nvTEXTwK013JxKl+Qgad+Y6LhnhOWxE9Y9HuXePhpsX8S+XeN ejOVmFRTLsZ9R7H2ft5ki+u/r9ZpcNmHvDeLOLb7kDeuHMjDnfcjP0SaUkM+ tD5qJz15CPnUIm9udxjuX+exZ4X8VfotNREn45lsp46d+s1rHZLWNKUGfx6A v6sd8Tvipun0b9LpDfyxwP86fQ+/8sBK8PCdXv1H3BHlOMiFUfkjkD8Ln0as n+9a8vMm8kN+viJfBVJ1Q/6LDvmJ7/EbyHeox5GAfMXk82SjzV22YOR5A4rr +X4oXL4kLy3811z+cs2/fqbKn2ccyH9cPaoC9HEE+HdTmUcIH5f/SWUySr+c yqTpcavLD60PbHf5oUxGHiDX/GMq4WWq/Ou8tvB15DRvsAi2yLzjs7wK4Flk 7VoEz+F1FZF+f0DcmtOERFDoScB+ETC5CTOtyrfoGiD/dVbC63zdn9PPEAa+ 4zDQrwT+2wVQwuzyAywOeB/WNproWU3wHVVedpC15vSsiWSwJmLRxPvOyDUN aEJZTbhvwj1NawLJU00VV8pE5Bb4f08VzIxN6VNfEvS9mwgRjzwH6UvCCwmj u0cSzuoAVxJxIAuKh1zKFTeNXHclJLRLgld+ILMlYb+u4wKOlFWRlGfLjKS8 WqrDmkh4J1VHF2mrInKddRhF5AFFdG1Y6DYqIjVxAVrg4+OJhdFMYP99CGAO Po1YAXStAIomAdTSoaRJALXkX0cF5v8znrVpYz/iIYBF/ynwXiffTEe65ANz fEvhwIW/PgrQ8DvhgMewh2v4jwvEg12EHzqN9HuaJRzwvvn0Y8HfzE5OavK9 MSna5aAQt44DKgWY6bhnSQZEPtOfSWQw6dFzvFTsOYwInseIwDCfDmY+s8x3 AsyPAtoY+AJTupKAzwfCwK+PPM5EAGIe/5H/cwflHmC/V36ILT4/wMScUUHP qqCjZ0DbVJAGVKAGDAo+A/aG/cTPhZTDPmRL3ONI7CjAsL+P3HL12NcDAcIB XAQHAg1e3wff8/ojuwX8n8uS85MnJhrAHzYbYtefBMDf3a6/HXy5m/5UH/2J lG/S9zdKbkQqSCGADAJQ+o5lWxpUE0AREEBXJ/Dv4bfvow7a1d8gM5jG1X/B e6i8Dy9PkC8H7vPwaTSAex7AvXEkoAK417IevtcGXZD0iHlz5GA/bWHf4d5n P5YRsMl4iH+6iEM/vP5W7fXb6K+7/cMc+ofL+3luPuJnL0E6Dos7fPyR1RMW w+E+RKaTNOEeWlswhJ+PA4Nf1Yp7KssHnqtwx8Gso44yu/kcpx7PYSSg33VB aIARHJqWkOcPgZ9b8Ds++D2QO6bBf4Mzq6V0YXL35V/wjMbKVVMA+VnAfarF nf+oa3HPmnAPefdG3KscRyc5hvagn1eW9ZhZ1/c8ntacw5v0067z+74sJ3E9 vX1lcYV73OLsBXf9PJw/0amdvbL0r44mgT79zHnyXbVwP6n8JsR9Lb+Jd9XN N3Ivz4w/VaWwzxP88O1v8kD4TZvpnKFflBBp6BO9NTQ27dXgTwr5IoB8V2fo 7+O/fICWae63yKSncJ/hd/PA/YHlRxjmfgj4P5C/rBRQBBSQNuU3yuY3qinL V44CTIKfWAWkAQVEnOZbATwN6g3/nOVHnOpwovND3sPQgf9GcfSD4Te+foH4 +mUO/GPD0l64tIN1dvJnyeP1J2N7Gw37owQGZvUnCXvNyasA7LvbyatW2BM9 YfFMH/HG178lO5RdvWxFJFmN3lQfyJs3NSjLfBqY5sl85nPLfMd38z2dqljm Ffv6B/Gk88pV0QwQfgpYn2ZZ57/oWtZzy3o22NuHWFeBXD5ShvPK23Nmk/iZ jRLW8VrLjeTJhfXEH9EK6+jRX/lJTQIWWlinlhBPnp//hZ7cFNKPDbj53pDg 86Q+XcFQv4aIX15tKjEc9cOmNu3U70YXryz1qU1tKuoTnbo+yx30GgUvgz5D T+VWSeolt8GI9gXt8Sv09Z3QBmcfAr/wwe9a8HsAOgXaVL5DVyAJlGfLFOef eOPaD3Ff6yO8ke5jvIf0I6jgQ5FMJYViMlJIAlII5fnGRXxepfeO269JIZa3 vv6C0rTTDz0aMsAYISQGZ05TiwFDG0p44PcdPZhU4XphSzv+xKpBHL8oQT/9 pBAGGke3sv1jUAep1cFZTp6TDBJB482tUJ7TKILQcDYe7PqTgAhCrj8kglRE 8DoBD3//liOCcyYmeOtknfFo1w/uzTsu4snAn1v4OwH4GXD6EwM/zAfv/ykJ 4ENM4hPwPwX6My36PYt+B+fKm9BPA+grvSXhwJxf91H5sn6jO44M4KcB8CNO eCz3zwD2APZ6QnPP/lT/ZiFehrYN0Bv3f6x2/4d60H+7V5/7nwz0awn2M2Wr 3J/xsyBDQ19t1dKe76gm6HfZ8ycWejUk9Epe3Bgif3/sm6TfJoRpTPb82OT5 pYr+tIn73D7JKll3P/ddy/0ISFZgmq7wNl0RXv83xNBnEwvH8OP5gH5e+Qne E/kxstmP5I9ENgb/LIB/GvD8yaTwVy76UcU+5/rKZf/8inuf/WqsS7VFnv+r akKT3f0W+r4x/Wn0+BX8Rzse/9Sdhv+y6kV+5dol+w0J/+TTHjUY/naP35j2 TAp+TnRjef2fq4C4fNtLgF4w41xl9tOngGDeDqKsBtLAKLemgcJqoBPQQC4a eJf4v1HmN/+Moe5H8P5E/g+ggVn4NBrQQG41kNlZzjSQ/SSoomrKfmoDgVhC wAcUiEQDTSEglv3WHRkgbwL+3qA3ltxnveQ+N9rcJ2Mx3ESBYTgx1CLBIZ4Y yqgvEqRWDLLzNa/v6RcDosAZjhgeZhnshBiGTX9UQAyNy9niSUcCNaQYUhHD GwQ+SYBloMWQ2ERI3gSm3wGW8OsmRAp2d/ZQElQTQh4QQtcKocdCSMsP6Hpv 0vUwDkZA+HxiYTQd+C+AEHrlp3jK5BNEBCMJvs/FJ+oEJNGYFbVLohYWzJjJ kQT97HPooV8UEQeH8jb6v/uS438WQmiWxKmSF7mSQGxAYtQoibglPogkjpLk CJI4rEESq1skkXBsOEMSo7WY7H8YTyUNLYkhkqOkaeYzJIldiQ+JlYQKSEJ2 v/AkoWRGv18XOk3Cmzxf5NtSEh9EFK9EkmcMq4gioIieHuN+hAp9bHMkJz50 8eO50MHhUAQnSqP42YiviLxVEVWilDQpojFR0pmSEUSkBogB9SYhDBKDTIh6 Y+Ot9H1NDM4wIW4IDsiLDtZKONLJlKJJKYE6B5OjaygmXDp3YTmvSpT6xHBr 9RBWoxiGSJZCIwXliyE0M9oeH5JAsjQpMXCCEMu852vU0koR79jHW67Vb4XR Q4ZIvyVG3jZk9ZAGhsmZr4fc6qHjD5MZ7YL14IeJh8AghYlYD5Q/wZO3n+Lm mBEFxxY+R6dVFKkfJlgUqmn0UMucjChecQYOiRVF0icKRxA4ksDIWYsiNzOn 3uiBAAEpEa+a1JmGWR5qpUF/SrzZt1eaMHF+pG+V+erAj3acNmfCUUfG6nBe GmIe4dLaSFkbJkjMs7fGasLA01tDCaM9cWocQquAMOLdEiWUFUZqE6eQMPj2 F8YD5BpIDva4iVpO6ROPIJS8AkLehVS9XyQUIUKKKKwiqgjR0yMCrQiCvXyL FLGVZHconhRYuSqagp/OgxiWlp8hhfoUidMn8keVLAqcMsPJMzunlOlHErxY MawsqlgRD5YFD6pj2RnYkQWSrj5hxPXRRD11CkQLO6+kGgOG3EE7SEtCPzqg oKwds8enlxeNTPEkUQsYriRMqHDypt0iiVCsSAbPKsWBxKkxVoTuotXGEiow lmiUBPMAv1/TBdIn0gW/fSIJRIVKA7nG7x07zelpoOtrgCVA5fuUib0lc6kI DV9QaMjwu9nA/0QIYTo+jVghdK0Qcl8IjUlTgnqqyQwjdICgoHlc+QXPKX0O /D0NRBwbuN7PkQSeA/cDFIB8qa4AjKUHKyBKg0FBFLDcT5m2r1txwuCUia69 RiJCLVv6aylAtU4t1YYOuzsoDKEABiHmOaNKBu/KARlQzpSYyECZDCLDa5FA lU5GEB0riK4VRKcmiHPoq4kMrIAF0MJE+Tlur32GyGBU0bOqKAarIh1SFbWh BGdNutfKDyFTrOiDEowwqoEE/a8LSDdn0Ei5TxjVQMIRRq9vxvVG+iw5U10Y URyODWaFxR46NhzoKQNi2Xbm939crl6wlyij15QulZeNTPGCgr7L8DBWlz1i N+YxOzi06yFuWiSd7KoeYn8Hh/ap1lpEUJPRQyJ6QCr0GmnA6OFmPfVqMiVs AY83a7zGfTIwScqsHoqAHnp6bPwJJ8UfkdKgB3PAJH8H+ihQdKGBOVDDD6GL mfg0anXRtbrIcerMjiZquqjSpkTvDdc/xG4fTVD5UaWJqCYKJRu3OaJAogUx eOPr2A4lIr4L506/mmhxM0WLujAGRotjJVqIJvQK68TkS9s2nPkL5EzdlpTp 0pEpcbl67kK6hll0oW8/7KIqGvOkdlXUhg47ue4iFCXUZFTBzhKO35HFuXoS VisiUkYT/LKEZEhJ5AFJdK0kEvCNgEIjB1cXZgr2myOPo+t+Kmo4D7oYw6cR XxdFky5SP14kVhdJ03AilEWZuzavUgQzuohR1oYTcUAcqkkcTszI3JlYjhlb dcyQ+cngODuuRQ1lo0a/PEoJGTsuO+SI8qKs6DTkU6tptKFEG8ihvkcwPMSZ 0yS0Ue07264NjhjJYG3EO7cmqT1i1LQhO501aINvM8Q8cNYCeZu64D3Jo65b tiKKjUDwsIwIJNY3gNtyqMwKpLAC6diY0QPeOQtE2UTqLV4E/hZfbatMyv49 QTcVqpgLfRxWfoGBt6eUrlVK7isllFmlk1FKLbPSIcQIhb7rF0nEeZXVyPPQ xGCJ9Oz8rJHITfS5Ka1SvkD6QwgUFR2gNaLXbSeIKtuXLV7y3cbzflVeNHdh VxbzGX1AG3F5CWkjhULcjKpfIxhobNxpjYSyqsZ7dnEgq9rJe3ah+KH8e3aJ fcomCWiE4YhlHPEOiUQSK4iENRISRRYYWGRWFB0riq4VRVdE8TFFCUSOt3nS 920Wxf546T0WsVLkyCGA2ZDC6RDFVHwa9UXRwUmzVlGkTaJoH25UaRV9lLF3 FTlSfxAuQWM/Yvx5zqiehxiMLHi0EfujDWqIm1ZhwGGUQaC0DzjaQ4fIQq/u S1dIZgVZYCzOM1Ids9CV8qeLSQcXz13oaeNwyavWkPmD2pD7d0NrIx4ytwrd r5i8NiYfP4bVBk83gSjRBnYQeln2JU+GTKZ4SFwEZMF3qGPwTdV7T+vC04aZ n0XAmAkxTEAW3yu/xPrWLxAwPoc2PpNTsUCKVoFU+VUyWCCN07WRP+RoEAiA Ilm0C8QZd1QCqWdWkxCIHzp2HCNb0e3vacSkV9DIjksW719eNH029YrWCOkF 3yOk0ClJKYqFkrgJFg5HI2n9Hrdsm7tTMmlMs1STTOLAwHzYqdrGEBIaglQy Se0QpJIJ0wO4SCcHUF+slD38sZd/QwAJKSX3ldK1SklFKYgiRimZKAWsmSgy AlXMhj5+CqXMsErpWaV0dKrWoJTUDyU1paghRyJaKuVrpN8vOYvyRKIckbwg IlE2uVKNIslYJPXc6ma8ueiWSHxs3+A8qr8prgoiF0gQEYEc2p9bYYgesxpS rY1I1k1pnUAxcxeyUHREUeXpkmmdxG9hfwjTubtTKsNmW2rSUmlfLqiaIoqa tFQS/Va4N9hi70rOhbe5vIpJ3oZEKwvopPB1wolW4ehEogoGMqwTM6/793qm COP0L7AHwJeII19F0cH4NBU/G7GKkZN6ismaYssQimlMvkQxH5OOv+T6mcEI KyauKeYFnqryFKPs7Y/+4YibdO1aTJGX1EVLtWQOqfIuXASS4dzr8sOO0dpA qeMJf5dYvdB5L5GbHyb5epAXSuxOycRNSdhfWTLt0WUnJcMjESpvpjEcugzh hSQjr+/qDy2Nkun4kumJZD4keZjQUjih5RG8s4BCCytjLjRyFNTCn8Z8tXRw vrxVLalVS7JzmZhZXvO6ji01taTy+JEjFByJP3SPA1qJlDtGATonrKJ+uIXS sRa5xO0hZscFsq27p5fE3BUxeulWstARRNItOtWD2GXL10R4VWHEGwmYF41G 1XMXQwijSrvaV9vWhFGNTuKduz8YiiVq54QRsw7S8i3qlvNIIRis4A0cb/KU cEPilfnqyAPq6IJrBcKp/MSJKpx9qfIdHrKcS9r5LY2J/4GA/HpiYQFZzIJA VkIqU61UejgRn7KwUsnsVFclldQGlmTSUlF9UpGgEgos9NsDSUjXEPUv8FCl QSz1Af0Yi6U+E0zYtImlKbLsuK56eVO0RCtFr7pKtzojejOqx4jelwvUfjnv 9P4glPIQNPPXlgvHkWQyN0omJZfQ4kMVGKUofzI4sU+dJq1ySUUu75JUMF7B vqlGLo1xJPOVUlildGwcyUQp7og+RpmLUm6SeWAo5R+Q2HyBZSZfYnj/FZZf fY2M7CvsVfkl5r+MZjo4ee5rpjG8DKGZxulh9FEVWXCkdvASi2IuJKWfSei/ wFHDU0yVijUPXkwmdjMNYhif/sHLjQMjy/YL9UugjF70ghS7EgVaiWIulb6R IhlYLnnYxZJ8YVB/OVaeeIHGXYNyW2jFbqTXhF1bHe3iUU1JWGgZe+hOSkg8 8WSG+NW9d+XHmp0Uj36RWWLTMajntWUr1JDiyQPiKUQ8JhODYnqiG0wVmwjz 7ZHHjUIesyGUkyCZ6fg0pkcyX+C8n8tQqF0y6WDJhMYvVUYW68D8JaKJUUnE gcWK5EUogzSS2lmwZo0UfVPEtYjCW8BomOy2fqGIsv2GZcfhPBxR9nMVktZz LwzxdUSh857m5V4PQBKNuhhmbVZs12bFTXqo5V47qYd4F2aGQ8Gk2qKpdtdd tgbo1wMvb8IQmBzKL5wE7HXeHcTTQ5V2Zb4eOlYPXT1dpfXwKZ3qfYobUMII lynHEQzmJY6U30xgSMlTXl8hhHyNBOwbvKnhayRgXyGYfIlTGnnkrfJIbURJ muShBmdhOqSU75EU9DSYCSeJCMURCY7UDyZx41hlpC/9wrC+Jf0aFE2Olmgi WtF35O3KXjeaYGxvo0nm6KZKwoxuqkxsd+imtvtxLQlr103tjkoc2Btn2MH8 sHGkUTfyVJ2nG44amOmSdOznsrv36xjf0+d3opZ4ktlkLPf1w5wnIJ4u8BFO I0Fl1AkqGN5DQH+7ctW4Htd/jU1hv0F4+RpBxZNO4Usn88f6qY0sSSCyqCGT sdiRzlcybKmko+Q5Kkc6GOi44qmiTHDsMto3jXwriahJPEOHmX096bi3WYx0 ytWLlljppCKduZKEXWakU0vF4r+mdGrv99lJ6cSTnjpuDDmTlw7f7NaAlR/I bPL1yMNe07cpMRDBrfco8uNPKB/L9U1ETz+Z6AdByOhnTILQuTKj/I9EKY7v jjyO5PcVQg9J52yIaKoV0QhE1LUiynwRheJP0hp/2tMzIyLEHojoq6CI0FkS e+g7k6oNI6KURWRStZt09In4rp3OZqyI2qPPjs2z5yP6bHUkpG/qK/dGjI0+ fFffnU2m8lSKPkZG90M2/YnbX0FFcSBx20kVxbs6m7x7VKQ4zqjyXerH2/QN f/wFr4RhMWFj8XcwBxZFrXlcpaOO1VFHdCSJHCuoizIt3+WTRzLXLGJS0Mx0 qGcCOjqo/BN2O/kGMwNfIyJ9hYhkFJW3KiodUlGNGV1sFaUgpEpHsaOjl0RH SUBHceOQJ/du+mNKwAlEmrHm8U5iAtG2rWf+vqwEtH81GWDTNxWYDDC3aA6T JTA6Bt0PuTTlcHpJzMDlxsPqJ5TANd7r3z36GSIKqaYlMe36YZxifkELgSap 3BL9lqJM3kyBLcrfJhm9r8XQl8dV+sl9/XRFP4S8yeWwZwreK/CuDUa/I29v gtHfrVxFgedr5HGkmpOhn+n4NOrrp2jVT2ojUtKqH9WU1lX6iXhIZAIS/cxT UqQ3kBMhYWIB+mlQUnBM1LNpnVETsRRM626MLJbXc2LtPP6LlM7Eo308NYUy Or2Ev6YmhKJFZPn7+H6mUVMwrVPuDNtuUlMoGg17b7OmpnjSc9KN0UgFbuFU apIHZvvVZN719aGsq7lh2Qq8746l9BZJ6T1S1wf8P9pUVPgqYhFR+Zkzr5Cg HGUpUXosk9T/yJz+I9P5Z8rzSDg46D9/jdUD3yAicVj6Mx4N+xNi0zeRFl0P AusGBJY1BahGganWlC92ZuS+gpjMZJwTlnZSUSPelPUtFJvqiqoNkkKh6btb Nz5QVmJaGphZ0KGpcGcW+DhVZhVOJH3cB8m0JXfmLb+yRiC0TqD2IMxOaqnx dmilpdoU9RBaar8d2hiZGqeoG7UUyzti3pccL+J5h9eRhumNdbHF4vskjA/Z iCatywKC6lhBZSyoxM3tcIyLnDDNIJHJyglS+kYfNEb6Bg+TkX5+CCXNwqcx G6pYSR1cIdfXMjMQWSBUNSpJtaZ6lZJMqPqUMlEzboqtsJQjrJdFWCogrLh9 8JS4T5hh9oFvIeo8qG/cFAhS0JRZirNY62pJlfLZ+z8Jl7k77WBTvUvJ9vex YFrTveoWkGjqryepxmfL2iUVT2bKoVp6owLhaScllYqkPqBeOp+OpbzkgCTV FUkhUGHjOr2H6Ud2xsxTU2HVVDjhCUqCiKbXItM/MZb/xDD+Bc+eiZQ6KGdC QOdCSlPxaRQ/G7FSKlqllFopJVZKqX7JwnCjpthmfWg5gqadfTAJXywqWkUV P+vQo6Ek+DRXRWqIoVPPToBj+mFAaOqLTdu3LDtu24V62ORryL1DJLEp3b7+ lJVWQ5LgUQtMVGrM8HRUSmxUulofuyKgavevZBcEVM3Zxbsw3V2LSar1NlG7 gJQMiT4if4NM7+y99ido38AamzcZfWzthe2MPor68juZkDYC6oqAPkdyCO3R 309DSQzbgPQoOXhXRd8SqkZFMcrp0M48qOjQ8lvMQvwZ+Z3RUw966gT0FEry El9PQ4yiVFhPiEr9eoo4LBk5YaICKpqEnnRU6tp0bwWmIUhXrqYGhCXM45mw hCD0PS2p/QLpng5LCc9EOCmeCuR44dkHCUfDxKLq9fbDvjfzryylxliUWClV sUi1TtwlVkqy8NhIif01eKN+ul2mxLcsW9GBmgpWE8FH8QhqIjqbtNSxWuK5 OCo/pj96VyLSFJSZCAphaRkJSEuJSg48syCZ0yCecXwaw89GbDDKB4snHVI8 KhCMYpvX6WhuY9HXyOUc6bhRaAjptMw9oJ9/S9Ihiqx0hglF0A1C0beVbvZt TOcSnnNw0jjWTXsax1EotOxtCN0M+2rBYZe9hW4bsW7iXZjwDoWgxgm7dt0o mU/4mBwNxLOUV8S9gckBHYfeIdbxhPMn/N/6ZVNY2aQiGzcOjaDsiWxgwXoc +lvCkXSCg677JyxoIO38Ciqagk+jVkVdX0VZYJ4hHVJFodGRqqmIY5CJQPSL ryGhrzAmqnS0UnSkrI5S6EhZHUUspPJpGv7YrcuCQ6SOnRevzzsMmsXbtvUP W91ItMhTlHdTKZE5cWxeZmbskmGTOmWHRVdHbhiqPY3wb52cGue/28NQbUg0 rJz4tgvoo76CpA7UqV1sFZXJBgF4Nho7znzK/71fUR09l6YVJWpiRfH895go 6jwSpheIFOQyDcKZgISOKr9DUmfENGLFVEBMfPrciikLiCkJjI+SpvFRlc/F fj6HiFWFI0dMsYjpHpLZEsrEXuGh0cvQkQlKLCa8Ygzb/5FGnqD/9ijundHx GH1+SmsrqKquTe9MjBpiJg8jJQjKLBISQe1Thaj6TSbe8QnO7eR9FlNnDczr zCjJGSHtFjnx7aRk59bRxf6k3bByGjY6qdYZhqRVTgrkxZCTxBC8AO5Nvp9K 5YgI6gOSAqHLT/ekvpYKfeNUa+kTJ6nLUU5jLWVmnsEe/4ylditXjUI4cyCh syCmafg0ZsXUHVJMiRVTYuft1JD5XU1MaZ96UHNSTk09qlIPWY508DgUE4lt I95kAvYuH9UqisNLVN0sb4jB0Y7NS5ZDPWYeHHrZ21NQ4MZSAkXt2Hvu3B0b Tj2lfPBHK1I/KrWJ6PYqKu0+EammrTJ3UkTxkDPfQ8SkxlmGSkTyvJknolRm uBGYPqHAdIceKHUgoVFISMkzcHiUQbTkSCi3Eor5lpCf5fGahpnObMPvKTn6 Z2ZTl39H35NkcFAdeNKb5xhIUPuWf4mihfg0jp+NWmnx3F5uk77cHzqlTdIa IulTgaRPZ33lh1TRr3m2wYybosTVF47UZntKVhI9S3kgmRX21aamyj8GZUmc Mkp7CJ9JbU9SzHrGvArMm5IwE+W3y3TEwHgVQ2iRsita8W8v/UVP83XcFJBX gGOzKdHbd2/duGXHMxf9IUoHp4GqFrWucQQ3xNMQ/5YIbojbtrWoVRtTTUpw /C6jGIKjjxfoyXKZkTC664ju8BQEHrj7nBn6XFhn6nneLRXdufErtrpT5ft8 lltkwvyfGdx/Roz4swStOdDY8VDbDHyaip+N4Lc9qK0IqK0WyNIh1ab8QNai tm+wkt2ojUNaLZrFvt5gLhII2ZKPJ3G2J9ilSGwzquMhAVXYiO5BCBCJI88X +qIreF6dYlRfiNvaF+JSIG5GXCbEmfim5zJyN0M0euOYt+kX55FcSXFA9Nxz oDi5J6UHYiQ+aM8cg4JePXP8N6HBIZZOxLr/TeYYT2bpxBBBrzYQG0KDqbxC 5mOJfJ/IsOxG3hzOZJBjIkPcgcJ6oy8YK6NASe6qyGcUOAPiK0R8B9AvHqOR TD3ykdBwkNC+FfFdABlOxacpVoadwTJMh5ShCuSTLMO4T4YIeJ4MlSPDV0WG ysqQ7/5G/DIIfvGxI0XRYlrXIkuR+aDfGTESPKCIBelNg2DA9huZAmm9t6XT TTNYMwO2rVX403LM3HTThD1IUZS47ZVNG8uHTzm5mgyJlKvEqE2Gj9H/qeee uyxDvsOV/DVkuJO3iCsZqtb5kGSwDBWINfFQUlBsfUXSeAvx8G1MkLzDYsLi CgjxS+bGaLAQDX6BJRtYEMX3ut7DHGMVADEjYgMg/ewv2N1aNJignA7lzYUG jyz/FpHxLxCiUWMPaixa1ZhaNSb+VEmlxtDoTgWCYuzMO36DnPNrc7OrPIjq fT3Fu1cR/owCIx7clc/jtWrUJhHi/8vcm4dLVpX3/uvZU1Wdeeg+TXcjajQG NXEAxZgb8sNETERJFMUBgZvEGJN7ozFq4oBgO0bFOKEyT044D8ioIHPTDQ3d jDK3giLI0GD0/lu/9/uuYa+1aq1Ve1fVgfA8e7PPrtN1qmrvT32/77DWomc4 gT8oZUMZQjfgm3JsqA/ipwAqPacli++wBid+WM0LEZHFXe+roz4ji4pDmT8x Q9tt+ykKCeHO097yL64cshWljwEUfrbegpa0NHKoLCkw/B8gh3V5rCmHTRMp hZmDq44BQxyqEUmDHJZ6dRD64M6mjxabsqd04TWKMwpFYIjujB8Jk4D/Md7K BYzi2fQoAcgozmM/r1DEvaPlUHnRi5TqrYC4V4C9RRzN4dysYa8TYK9ylbAw 7LUypFmAPflBaiHE26opPEwl+SGEXwWAXwGKMuV/ChZxkwTCU/J3i5JCTaGM BTtGCXU8aNlSeefA/SkI/wuPP/eFflkAnVMfUpNyJ/TQhlDr4ZMkh9KlmsmL HFtaSg4RCnq2tJ0Y+p5UcCbGGgSTItFbyyfUIR+apn5sErMxsjGeInrBYVMS ua6Wg0Law5seLKcUBtSKRR7DWKixIyhMExN6Y0oKhaOtjLPYLykcda1gC9/k jONWlsfL6SYn/rDRDXcx5PESdPleii7fy+j+wdECzs0aTnsBTquARjblNA9o ZDbA6ZmWWWVO2bHSAxan9IAmNVetVlhL4mS1naRhLX1YmVW+P+hNhDI3Si4F 5yDIs2taPwlykdWxhlmqmfpiemmHkLory+WUJ03Cae1XKxU5Kq+q2u2HSKVP ac6UKrkUXMQTckkL1WqZHMD/eFGaTU4voymcYjilpVoo4mxLNLEpD8vAMqs8 XrKrWhiRI0XORvpWxkSCqiBlUKewX7F0k8hkOgvF6KUbn2gYzWWy9BIMdbkU KZ3LEFVeChnVjM6A0a7LaBXQ0sL1sVFGc1dL80BUqRm9UPLJjLKjzSxGX6UY zQ2jgk1t/3RMyU/vT6FKz3YS35pejDlKiPkpoe4+MhdA9XP0p+zBnDzzLCEb UdWdR+3/OltVdSPyEyWt0uRyxxeecedL93m+6Fih5WdftF9aTSOWVqtpwtI+ ZoiGOr4yN8vaCtGmQloka4NFAFFuo8pwK2s1/RgFmc+Us8gSZRrOOQUnvCsE 8wJRC+j5i2sNl13DJYFscjyobmzlycUknADzErkRfpcoGl8HLhdxxOdm8GvT LpedgMcth3OZxzxuFuBScLqnfx5mzOXXbDI9hsivgUUdZNJvnIapzhWMjYCs DJCey+U7h6ICP9LUsnk0nsWaKl2vY4mVjpVsCms0tQ4zddVDd5Hxf3s4QGpr yyh2YmGmqLOuSjYT5taKMqPmdvWYbNCFGWUya5juaSCbXpjZgEnVlHU23yfQ znPos9QbzC7h2TUWd67usywYTzQpA8kz99qvY2isFI0fVuUOm8Yr6U7XNHaw XwaD60Hj8/uXq6N5l8tejMsqwGURyMLmMU9b62U2wOUP0ftGHPpc4h0Rk4bL TFf2MW0hPXaq3OQimqW2tXZOVl57UfipIJkJym1bK28n+qIK8fkFNNwoW/tE srOazyMVn3rdG57pYHGdKCSXZnZD/PeEAS5Bo83lruPfcEjI0+Y2mCJkaDOA SW/TU0o91c8R6qW9Tzx+ZIZqklEyRzS0+fBEbJTMyqxMUIBIIQPQTWraz9wF c8EQOJXQwyvoZ01gJisdlyLncxkW+7gc5cjLYFYvBXyXQBQ1gR2XwNqxlgEC GzjWKIHyE+t/l1z1hRxLXoiczwWm2q/oMwQKlsb+lzALIj18Gp7rVCFisWUk EdSNNgUofZSRZccgCKsKedQIHv68/XEf8wptQPD9ol526r3P23/nkYe8PQ8o 4yCBsKk2gYNR5aAyRtoBoIyfIpNltwOIwlbG2ECfBvSFBnKvMn2tkj55wKtG yyBFTBflagdV/xxPHD8mCySZyyDnWNeCwVlLBZHZ2coryEoGNxODBBg2AuxS eNLLsLTn5cjnXCHE7+FoAedmDYi9JIhVaxBzVwqzQHpHgahVkEEsVOxogYiP HP6UxfB0/NthCNbpneOEn95Zl2JwQAM1gL5HfR9tR+CYdPEIgvG9Lzl051GH vF1roG5+4/92jxNYWcFiUgM/l9TAsv9++tq2Jyl9r7CDRcFpVxZsuQrXmBS2 GiMUpbBOvWaj9eWENDCd1IlSyD0umbqr+ZN/A/H4TDkqVc7dU/O3BvwtWhp4 LLnOrXwHb8UdfNUAhCX2rHy7Ab39AOFaHM0bCKcBYTcAYWX8aNkQwjymhhEI bSvKOZzMgvAMBWGBfab1kHDAlHWny42JlJfNjhsb5nGssFHIPM50lElbFF9G x+RLlSiWhsn3qu09dLYIdMgN59GJFX1F/Ew8xcoZ1khiNQ1iPVgvC0xN74HI oyQElyP5S+qTYmQaQ4WQKI2eI22gifnwFGsRo7FQM6JqYTyXr8W5DOez6Ovu NWpioI6ZzYThXAacaxScr1NlDxDZwT6X5YzLFH4HA8QFHM3h3AwenQqAWLlq WINYxIodeUANPVtaJ2ykL+2fhUZZttIXshm9QIWDQPAMmFHJITfm0L0PAK2Z 763gUEWHhR8dDu8TCEWH04ZCEPgZVewAgcdaRQ+lilAdrCRMAJYBLdw4lL1d X3zFX3vslb4bZTn03KhWwv+k2yWohELOyacssxUNjgggKyF9xp9UH4zaogxG O1UbMJj2pQ0UsWjNYGmmuM+U2PBn/nHVt/OBvfYThUse1xrXgry8/wNTzIA2 GvxmQNkyeNsI8p7d36yO5nFu1jDYNQx2A2IYYjDtSOukaRYLDRWDxJ/FYN4/ XKVJz+Di4hnwoayDekJwSV9h04cLlnHetDBpGSWBMjNT+vAxerJtNQ/0B0wb +fsi6a4NHz5gigttSyqYPdIwigd12cJuFN/UGMVC1y/05hcb1QJ5IREUhQ9h 1I2OzWAWiAnTXeLpRoCavayhG03rXzojk2ZPz2h8Ln2rneuJ4MdVdUPO0qoH Bi4Z/asUhRDBN9FtDAq72HfAGaveOrB3AChcMhQyo1OgsAcKOzEKyzYU5gEl zMIUno81mBSFRYDCHPtMayGdpKvAs+1NBskvDiA5F4wSVauOg+O/EZ7IlCoc WQrp9argkBm0AkTz34YhJBaNVNCCL+9/WiVlTOVQBBKigodFcSJJ1lr+hzGY jetB84D+RbOiRYxBPSsy3eSGwdwzot/hKFEzuGgY7CkGP6JqFYZBOreFbnRC DRvdY5fDkhKDbwCNCziaMzT2jCZ6NFatacxdTcxjAaL86jKWNMM+t2h8taKx UHvkar6KQbz0j/QEskyjvGI6cypk3qb08zbBNlYLSWVPu8ae+kh+Srsv2Tln u1OLSBMfIjYsA6Joo5jhiumI8OS//zvPleY2j6IOB2tLqpVwE90kvhLSacuN xlpT0wxG1ykbm8E6N5pNxIPmSQ9aJBksDYOFmuvoPCWG5/FVOM8MDf6gGpHY MSAuAMRlgDirQES6RothhX3Wv1pWDukk8YaNbrPLYVOvQL2QaHxh/0okbjZD IK+ATb0cnuwy/N4gl5VRydLlsoglbvKAV80SXH6fAlotkMxl5nH5dS7ks0o6 EzpnatEni8e6lDhCsDjYVG6Lo+VVM7CoLhLsqokTpTgamxoSx/Xyf0+S4ghQ d21YXuZfkWyWO084+NW2TWWXyiMZYWGVTz1Gbr5NpZufHniPo5SFrZSmdEGn IZSb6i2KqTcX7aQxDZUwPEzb21VPKvPhydMihmmlMEWD6nkepp9Q4aNsZXUw XQKmC5Ze6sRNjn0VwDSXZYwrUF7cjJbyK+FjN0M5r4ByXo5bdBDTjiufIUwb mNlaPrNAWqdkOmVD3KdI55+xfnd64OtoS1V6idYbeh9flVsNqTQ3OrNqSh3D 6/2pqLIT1EuVyhFy6dyusbC4QJ5gIpos6/q+0ctBOne+cM89azpT1jULW1cA +TH6hm9tXUMjOtI8cgpV5HYKZ7WhTPvXBtpZjAGlntvsfPp4XTKL/qGq3qEG N866XC5b8nkc3c+AsaeQ3IKl2ujTo42guwLVxs2oNl6JQuMW7K4EppuhnJrL bpLLsjWX+XAupX72zzZJ1p+YGgdxyaLJhEpL2z9DAepMlpsiVIzQaz7tjArR jNoqegK9FKWiQsuoKnzYMqrjS4lo3QZgpHQYqHm86hj0tJZs1p42kGEVuS2b ozKa1TUO/uaSbb2rymi66pgWzgZ5nsJltDSMVgFGC0Uqos0PquEd02a0FVci 1wDQrH8mU/p6ikj3JvUEn1PYTwG8RSC4G2D8c2C5FkfzBsspF8tOwNV6WBbJ aLN2tVkg2sxsLM/BMGms9cgZn0Esc40lYk6JpDeHNcchuiDi9QiMH2v6uqnS PlI2OyybX6Tt90lOD5PulmUTMWYV6InbLY6iHIpVhRytmRVA5MbQfp75DAko 8j9DHe3k0JQt9jxJB39zfVqE0WwwyqMVmk3TP3lAPtMp2MKVz9Kgmctb/zx8 6Ofz53208rREpuwZZyoXDJWVohK/o7WTqSxlznWzYvE1oHIRR3M4x1Lai1HZ aUNlHhPLLJ4Dugj5nprFbzgs0l6xaObzkJdB539WI9xcdICMiKSh8W3KyIJI ZWJ3fOj/fkRnfZweuaFEdmJE1rkfkWskFZZ1P8CxcjACfaGrfgCRSgGxlxWc h+URZHJVpKFERnOxggd08Of1GTGMyGijXKggmcUMbdNkUJ40tEVDIvXkOOcT h0QkU1koNrWrlS3lDptsaXsBxZzGnhFcBowbgeWz+lsxKnILjOyVUMzNMG8a 0E4M0NIFtBjuZvOAm/WSQfJj6/+Ivkou4hTQRTzTj4PqNyzZBKpfl6iaeeQy Ncm2VTtJ85qKPGdDkWdUPY+VeSHhy+fbVPFEyScizqB8rrNhLTSsvL10n+cX xsxaUeeAn6V3CVC/UG8WqqVp3bF6WEWW1E0h1zT/UL15tHr95OnKieDWAf7U Pss/TZbWUOq2lX7mDVO3RYDWStGKoR0/IjrBaaWYhb99bT2jALM6b1idsXSU CGVWO9jn/W0yTYQV9ehB2ugpNysxXQdqXwp+l3E0b/hlU9wN8FuNxm8e49eL Rj3Hy/wK1tr+s+kr6NU8TdU34C9rqQW/X+ebzSW4sAketfg5Hyp+BsX2s5gt 0hVb3In8NQP7+2dPeRbY3XXkq/9PFei8a4xuFUoYBdJFEtjC1ta6zaCw2wzc ltfMbXltgGmejECRaBZ1GrwZrulun6yN3Y1mi3LX7jbIFpUG19LgqkdH/pj4 1ApbKYUFjZh353s84bcGdgnAzitgdc1Fpoto32Vgi/5WLJQkgZXVlSthhbdg iqytoHcLrPCVsMKbobQOrh1XbqsYrmk/XOOaBXDVC0idiTmEFK652v9vVWz5 BiNg9JZp/QbfHF8fF9fUTFvTA+2zttbqllnFqtLaymjtF1Tv0GGydb0T6NRb SbKaq7KoZYtFNHs0RG0/QHdVUG1FIMnrGeMGQ7eaMpy1McYjshs1xtEsUh4L VZuyq2ccIChcd5z1f2TCVxD6PZ5fXAO8CICXFMC6ewEAzyixBbuEJjZSUq68 bMF041sxr9ZVqJxuhVneArG9EvfrZtAbQbgKIFy4IW1TxfVCWvkN2L84QW+O vTcdV5YKadMdDYMTcy2EgtqoxqqJuGyN1RKrY1oVy4Yktgm2hRPN6mlfRW4L rYgo7WfobrFgHaq0IreNcTtUo1mlxwzVpq44JLMNEr4hVJlUSJf0xnorFa2w yJrWCvs5Q+saResPyT3/Ef3K8QcdSuwN0lrKeswWlE23YlTmVbDGW6G/mtZe jNbKCG7Zhta8Oa3nYkIizxqD1oNtWqXX4dFjamuI7gjR7cwAuX5k6znjkNge QK9+j8V1CGo7gSaHtcOp9ecQqRNPhUk82eqaq7TTx5U1NrMUDPXFgrNNPOPf h8UwWkOT4gk34zQZWrNADjgL9DW0yjjlsRi2Ka1879PTXEBYEqAMacdCVTvj zAjrvEG1AKn0ex+l30HuCaQyr7nMAW9BJXUrhmxehSzU1UI8FUeLOMePzuD3 ugFUKyOspSusxfBQtkY1i6WiMoXqDzEvEaF6cQDVb2pUvYm85NSzhd37MGph dTFUWE1KK1JP4fA1Z0ophN112IsOEp1AZ2ADRP3RKoNGOLcxFRan4THTTQ2w kKupfqTeot26IV5DOadxeM0CNZssaYRHVNdohjjEaynHUV6I18IzLtf2F57q e9xFrwFdBqBdBSgeJjFlQLX9vQaLhNB52uiptsD+boXpvQoL+14Nab0KIrsV grpFOeQa1U5AVdOoNlDVLIZqwYSy9eX38k2+7Q2h3Oj7Tb7m/nxeVrV14hHs VFJPLRcc0tN/lU4YVZyQnq4JwnrxRw8/HL+WBfoGP21Py0Wv2yqxambF6Loa csHprvoop7UBFpwX1p0jov3wzqacRl1wA10NBawhTutKTimHeF2oOKDn+jEh qsW1Utj+mH4+jC4BeWGKLR1spxS2uqazjXvut6GH8BoMfuEk8FaF6KsA6xKO +NwMHu0lYS1dWIvhFjiPWWAv5wQfQV8ztaRebGo6BGuN7cBUJoPZYXnhtP8d kNfTbHlNha7TjbX1BH51x3NJx67DYvs8bS997gtRxglqaxNc6xLsp93ya1Re MxvX4+jkB8mQGVylwBZGYDcJkbTBocJrCNd8eNAq5CA/NQfFKjLb1Avnrrbm ySRTkWS2o5i9gNjUzBbYF0CWHng2XQSMSPs+N+p/HwGszjTNWXpLuKokMe17 AJce2IYJpZXozsmKzlXoNCSE9+xvE2IPHC3iHD86jV/sxmCuhsMcMsnZcJgz BfN5KpRNwix9DmvwtwY1eFUi2mkDdKhO66mvCMnvMbQ9df3ugLgKNBu6POM0 WHZ5zncds/+LvXb9QAaK/jl4/mK95VYmamTDnNuGuTHWDaJbIUfQq6T8KmLd 1DLnMcucDnE9rCtpSS/C8xHMHQXzJ5V5/jCPBtcqvAiYFxjmgjNR/0ggKKBn FcpXY9ow+pe0EZhblQavA8D7A+W1OJrHuVk8OmV0ueOiXAVQLhua6FqXs1hq SqJM/lxibDa86W8ha8xyrEevhuCVl0zHukL2K5Z+v2KdSZb4LtjNisZAp7RY t1h8Tiai9DoOthQrcneecMTR2jxXgZ7+5eH0RkfADSajBlQYxnlk00y/D2g/ Wm/RxsTQVGEiGeTiu0bURfCJkZslg92mgtw02A2Ry+IGVSZe4ZxBb5f3BTOM jDLRa+R4AQQvW/kp3O8Adz6Aby4rPVcpaF8LfJdwNIdzM3i05+LbcZW4bI1v HrDVWQBf+e3H9F5iifBzKCrYRBHktywRRkvVt+UWhFmMHw0vhqLhoVp8IlE7 OAqgNMb6s298+463/993s7muAs2NDXCm+8PuabSMtV+/tTU4A86pTkbBo1lZ fT8gEq46a81xVrcy6oYLi+PMTVZNht90x0U0WZW7ypsOgqP8dhS/REf/Qvr+ BLlTnqH+AQ8KcOAlRWOCtQaHCCZESWKvUsjuDnif078GCedtoFpjPG0w7gYw roZjXDTE2EtlSYzRbLKvxpgF+G9lnjljhlmGmeDv8I0wqMfyopmO5eEtGaWP sDUR9mwrQf6C9NIipMjg93NvfPvFXznxO7uevMdTwHCo5XHJRrjnIwyCd5z2 z//UOI+V2TYakvxZZaWduTqFO+DV6Zry/POIAKezWCMCnAVquVksIm5lnfOA dS6GA1wagAtgQU9zERGrVZidNAmz6aVCr8UPePZ53UHFKJcK5f9UxaJruFh0 DYpF12J8DxeGroaD3oZux2tQO9oGB321wnvKANwxETEDXCUBDkXEhRwHkYqI a4DlN2D/bHrNUoIv4cF3il/gy9u3eS3A7wzQK6IZrnbx8FIoHjb8xnqWA/or 5bdiM/05aaY1vpDd0PACB9/KxleXj5DbirdPBdJamRFgesPIazUZ3BM01Llt qEVo2usGEEfTWpOBOBse/6ZddEiFQ/Fv4UJcl3hriCsFMVFiIObcVqUg/i8V E/+A18bWEC8B4p6lxyccdChD3JNJ6WsxHOgqBexaoHsIIF7C0RzOzeDRXgDi yqhwmYTYM9N5QIWzWFqL/sgPah/NmyfAxC83WkkBdjiWF0g3aojRQ2P6hgsM 5UsKsT344DhZ/R0QYissBskw07iAVaApctEmuRMjeUhGK7edtKittCjNMD3L SQtrUFBhZ7Lc7uVagqP0jpjCWmWEGxjpUAorb2OkQwgzwSBD2mm99Zjion+4 rC2BX8PwIhieUQwfoqpL1/BEMrSfBsP0AGEKXrFhKBGS1NvQGHkNGiOvxQjc a3Anb4MuX41f0Vx3DdcdV5w9rovh7joPuOssxDV9Mlgxw2L6NTz8QEL9HQW1 GXQkkslqMX6IvKaVPCPX5cmzsdbHSH3OgLTId77kzw+ApbanmXH6Jh2yeyGy d31+/xc3Tng5+oyM15DpZJq562inZN4qzZXbaa7VRtuz2A1yXEUbi12jXcnp Iy5WlNATAm2imYmeVuqMaBkW+0werqChnldQQ7e1MGfYzymor8G4XQV1R1aZ tqGCTCgfCKjX4Gge52bw6FQM6ioAdTHccecxqL3MFz01fYr9H1nB8mfplT9z /e4kxwbp7ymkM2s0YST1JdrGzcuhuHmoVPvjBBXUSqoLBtuKl3MJNTw3IPbn jjJyvTDUeMtZLz7D4utNFVUP4xVy5cRj5SZymfcateVDcLUJOGNrzHSDlJfg apNuVZ0409lEHHcRKCSnmVbD8S7BK+CJ8i/Ax38hX4lPKbNNSBN0uuy0aGn0 m4kFMLyoSN6GgUiK5Fymt7Ypfp8Cktf2twvxNBwt4Rw/yjLeM0x3TBqsMkJd Dme6GJFpbk3tX0osX6qYFnx1JdDfVUB/TwOdrWIUvTZIc2rUL7JfIYn+fB0+ C6XR2ngjdrY1elMQ56D75hRYo/RXZttu5L8mYruzhhw3zXwJuYjX8fU2NsrZ aM47JM9FMnhOo1zwuhh5/0L66LVGcwRdKrK1AT+TBzpospcV2R9TNSkwvaQ1 GlVmOreNjfc2BfB6oLwvoF6HowWcm8WjUwGoPaGuoS7cqLoIuO88EFUnUmOX choM7+HbSH/RBpK/zzeCHnq4aoH0wkjKfExtt7Uwe/FzXpPsu22nP3PeJrlr k7zjsP326z9tt91sp93QaOf9D6lEWHL2KeEO1W9Lcp4MoMXwHFjTtulWGDdw 2WlF9lx2EcC4riSrhqlLVEckPfVFltXmbHZPYQy/jUbMM3kQhMZ4CRjTHzfZ MK3S89jn/e0DQFeyHHUNTDdh/EoAvYyjeZybMUB3AXTXdd5VEugi4LxzA3Qo nPbSZIJb5dh0a5H2BRpF6Bja8tuXyZZN2OMMlZgLgj2sf/O4Aw7O2G+XRqOt EJoIHrTbeUCfHaqnbKp1qcrv2zRD+oWbFLOorvrH00lPndt0VwvOaYNpbCLa 3JUPD59FMjO2emC3str5cKtdDAe7ki72MiFxnlE44xqiH+SHPFpCW+2OIvlj qjh1LQ+UuBZ57e3Ia3MOm0tS16JJczvmhNwhxJNxtIhz/Chrdi8AcRWAuIjl xGqrnSettg9xp38uvXIL4P53al0W3pwA2WSTYetM0NxEln2L/cWAxbaCZVFK fLW1tvF1RHkuaq8Nvq1TX58gXQhPcNXSVGdJYkcMjleZ2BEdddEmOPaI5Tqu RBbEMrXTit2fvEAu1kl6S3RqdqcsFUbq61oeLXEt8tnbuV0TPprT1tsxceQO FSEv4Bw/OhXAtjbTJbAtkxFybabzgJlOp7Iz9tFF/+9k5pqZ/T6yXc4AqBET XbHgeMkPjkcS3RPhomvRtYLiHad8/EQtujootql1ujUdarspaut+rkBBGQ3e 9PNxaoPmwk23mPNqTHobhMSC54vU03WK6JxXE6S3lZHOXSPdIB4O0Zupuc0v pq9OjTC76QIEK0sNWn/IIyg0xzOKY12XupbjS9rPg+OezE9fC/tM9L4aHC/h iM/N4NFejONqOMdR+W3AMWe68HHQlw+k10bZH1GhMtcqe90szyVCwfHGUHA8 sgKfRC/VVmAvKtYK7BShssC4CcXyE3lv5qEEx/Tr2MuEgTcnlhjioIv+5+hb f/zmTMHNXcAZW2Om28fFTXHO3LERWaD6lCXtc6jBKy3Gobg4hHMpR+BzoClx vpSo1ThX2HctnLWlLkwxaoFxLkxFikDGtqRC42vRzUkPXcMfJuepr0VAvB3D oYjtZ/SvU0eLOMePThm17hrKO8Mpj0bKeUPK2WTjQ6PXfJkLuMjckRatUl9t HPZClO9hLZzHH3BwLdWyEqXQ3vWFtxxZ1aGx8dZZoINzdhjZlSH7c1YZylnm 2UlZH62MtVV7Ek2HO0UV2pt6h2nOJxIRrwrSY/trT6GLhkhXCmkseqCRLrCf YqQLU5XCTDw/BMtnQaSlPr9B1aTA8RqLZgIUG7n1axW0uwHf/QHyWhzN49ys AbkXA7lMguzZ7hDIXsorGwDZg5iLVGmQRftQeaMPciuV9g03YmRbpf0YuQqU oLJAK6fDcc/mmMtQH3jlK/tP6HT6b6EbYHAiLeHWkTXK8NpBlJs2bbZCOR0q i1hvyGOLctps58NRVn2OKZQrOaL/ckUy7S+xHPecUuf/TedgtlF2msV+SXF8 DrGtqlCCVbno72CYt1swVzJDvV0h/FrAvGRgnsGjPRfmznCYi5j3zhvG0Jnx 3nguBfNrJcyZ6Q1b3Rh6XRLnVDvnsR7Kx7soc/BcBepQIVmesXGeGsD5iBe+ sP8n8/P9l9JNMEySc5tjMVKiS3AbCOjlBd7TCKfjZZHMdnlrLEwQ4XS8nDbY RdJgl6Z+XLoIq/ELNcLIcwHeGezz/kV8cZ5DLhuh8Vk8y6XW4xIYi7oEtZ1H VWzHDLU7OK90LSJpCbPMU3PZaQcGSl2H9auvh1BdB8HeoR6dcqHuuApdBaAu Yla7MFA3CKgZasEdsf0LlNOGB/kuF6EiUMtv29jIKdE0ml5qrdGhpNhJ+PY5 0UmIWYMsRIeZruwqFDbdxekocyeFsognwcqBJBiFzmLMhs0ssP5f3RSSTy5a HgfmLJb8amqt85geF8loOQQzN1RlcomFn2CygYtM7QnDn87igRUa4Y5CWHeE bOfVVbZjrfkdyF9vV3CuA6Z/BWDX4mge5/jRXgDYThtgCxfYprGxBJY+J/qK sWDNTI+IB6xIpr9E0wB5qbGvHjKuIgOw9PloHT7WjYy7Ele76oRN92c6ytv1 ce2/Z6+9+v9LKe/wGnHBqCIkHq8Nsz2pIwbBq0dquqs66pyL4UFwVHYZDHrq iyno0dpbYd9T4H5aFp0Y3MyAO2Vp74kHHcrgcr14HuB2ZZFpB4rGhOvrAe6S AXfaKG0X4HZd+1wFwC2S9rlw7XMTcPP+5Y7COtRKz9O67SNooDf6BnosofXd s9/robC1nbOtsg62A/Fv/z/23NPGtm6hHqwMa2LfbxHbwivXqArOQfManmZ6 9zSv7SPdx4LXdBuHmvAxpaxFgFc1M47Da0fxeqnllbk6POt5ZQS689jPWBr7 PJKr7eyNab+sbPJ2nIT4ym0OjC6D1o3gdq/+DRgAdT2U+Dqoria45xLciRFc BALg2ivnrQkWPLCE4vx9NcAcDMtGEDbL3HJ9phgwzOmUVsgwS4iXG0M8rBnz OB6fVUvvcYPhr2S41DMK2NLrAuzY5B0feu1r++/cYw8NsMjcWFfktjkGJszx R+hmsYzx2Dkrb85LhjhvON2HCBSIozmrbCIkZ8OnDEh75CLmkcvhJHNPFM8W DX2jC6FwxjYHmLP+xcY6A96zeY6Qs1FjOscMeNLiu04lsHYQFkQoNtLYHYra deD3pSB5LY7mcW4Gj07FSK4MyWVDEz0CyTlT/Fz6/vkIg6ELytE8lmgf8u7u t2C2UmHfOn9h/e79kwlWrcKBWLdXA6y9s2m0nI4CzNlnAPz6lZX+78/NirRr lgDLCfMUvEMsc7oU7NFbl4Lz1nN9pCV4lcFtZZmLgGUuA8nmELhccZXKC1ZZ fGewLxS1n1FlpLN5OpCz4ZvPMTUk6PAOriHtQO75ugF0S5lnvk4BewjQXTLo TuPRnotupw26tY3OjY3OhyesMhvdv6eX+wZ6uefwzZBCV0wm+N1tZPnV/tkm 14t6LXLtri0jvQ65TsjL5P47kftu2nDFB5PM9FHrlBS2E2irS76j2GbGVXB6 mRdEMrPWesxOJiE1aWZHtM2e2IYKRGWA2dLYZmY24wlo8/5lZKA1uBzrdhW4 f6uKRrKF42wUjc7B6tznGs0lZpneBRnrXscu2qJXppOvU8RuBLvP79+I0Uw3 QI+vh4u+TslzlOIyRnERsNIexeksVmYKw/SLFsVuU5cHsvyOjQ1WFE3j4aWJ qPDJyLSdxMlmLwxG8kpMSY7tji2jwFNRjne95/nP7/9HgGMRqPxq/T2GvuXf 30h/RcOUlTdNT74aKatsDJaz4SFwK+Mc1d8oy2rcLoeWkuXNc7OGZU44TzPL BQfDyjpjWwDJpSL5WcT4PwFaLhvtQM5Z6vB1dJLwxEaMXodM1vWw0ATvy4Dx GhzxuRmDcddg3BmOcRHw0floPlrp8OvJlkodHmRYeiJOaf1A2Ga6fTgsNjQ2 08M6MCkSNnIc6OmYZoQLXS/SjZYOvY5/5qSzRa8IZa502PtJ+opXrjk5Y3yD Em8o4o2mrfwBwrk9QDjIbL160qSZbe+Z85j+hphVc9INMlspZjF9pWa2wH7O M87ELanoOSgSSWA/ropEO7hIRPuFALClTDNzpYgwfQOAXcLRHM5Nu8B2Xd2t GgLr6W5TYDMLWDRsSBttujnY/HD6KtmSJQJdHEELvdG20K1l189eHW/xage+ ugdrRgKrK0Z6lEMvDey7gsCKcLIKtlmTO2YFNzQXXj7hINcD1hu+MBlgPcOc J0XWM8zFcGArOaJ+i+IV+kRwXlSHvMwsQSAnS1OVIoS5XB+aspT2pIMOZXA7 2C8rz2yBi21O1oluwL1L2O7Tvwme+UaIrQaY9bjnAtxJAlwEjHM+GsBScvuf p7fyh+t3lxY6pLhNw9+Qa5bsbjDsDtPaJn2UsYQV+WWFra4Y6XZJB1szLomT zO/ac0/G9j3KJcdUtmReLZX1lvxNj/FtyusEA9xV4TUa4DYwxWmBLQ2vdR23 5rVUk7tfTt+XhChL6yz2lYIVzhiZqHN4HBLtpy2V1ekp7opcUSp7PUW919Ot TxSSjl6vqFwHPl8OUtfgaB7nZpKkVi6p5XCpzWOJqhSpl9JLxf15Ht8RQ0kV sfg25I1lfLvRjm9bi2yoRHQKQXmyV99VoIrZ2hGDVN0J2Q2SarLJ71ak7tHp 9N/29D0HhyLofJSGteFwolpZBQ/H5yru0aIRrpMp49a4ZquBa570w/nkcK3k aFuJK6afvEIiKziGnVK4KkOsUsjnYKWHc80QI6Wt2NYC1gqsdmS2+AYF5mFA dAlHczjHAPdcRDttEPXE1Atf04hmjChMvyzhnkPRq05JRSkVsa6MkCGWEWxl R7A2pLLxMbc5FXpunWG9GCcdcHAscEX5drYer2+mqEww+u8Wo/vOz/dftnFj 1AJngFTkET0Vo5VoQ+P90osxyGWoeOiuXt9GpAPWNKBZYPhuGtB0wBpKGNeA FjH/2wBQ5pP2V1iiylnjmYADXlB6eqgq91zH5Z7rMJr3esySc70ikZncCDpf 0L8ZRY6bkCO+ETniG6CiDqcdI6VVklPP9BZtTG9mOJWfosH0LEwYHeFUJBsv RKxsK9ylwM28ObuNLaeheFVhilLPbO17+b0J2djYsUk1E8nuet+LXhQiNViT rVhK/6uOU1NlHTG8FDsOpU0N7+oB2jRAzd1GqFpBi1gWOARoJce+E5Hzls1F +HkujwA6F3Wc80wd52TSzeu4jnMdmo2vRwqYU7s3wtfeBF97M/JIN0FIb4Sv vQF3hSay6ypnTWRpqrAekbW5zVuHoRkTmds0iiw0KiiZRxJtYlFRhIVzjUNk kybGEyLZoy9IGufqIfZ4byyaYRT771ZpXmD43hCKIrdrrUKLJoB0RFM0TBoJ t0MxymQ+kfJMKzA9a5vFOhTTYOYNrW0x3NrWmaPSgFnJ4XBX4fWxUGk66cY3 iCLoPJcH95yLqeXOM8qJAs11XKCh/aL0tTcoHNcAzMOA6BKO5nBuOoZoFUA0 bW7zQPyZRlRwYye9wX37b6TtUDo+n2+Aoea2fQgq6vJMXV1daSyZobLMKV53 hIo+d554xNHz9Uj5vlD/VUFXa9K6HqCeTEosi/6naiwnlxlKa6QY3meYDjWz CfMYDTUbONky6WTTPBZgIAePc+Cxo3j8rKq/nMtzt9K+Ujx+QtVfwOM09muk k71BsccUbgSPL+j/FJnbm6GlN8HJ3ggnq+1s15DZaUhmbWdz1842zQzx25RU HsKZW6cNYjIxJ70lz8v6eSE5+eMSgxnzsX7LQygl9EUHSu1hN40NJYI6ks0T ZSpIyDRQYdJASirbF0Un417plZysPjC1hcTysYAz5GLzpFgWreGs5BK6lyAF JLn8O/qq1FY2x76ruNSNDNdxeYX268AlPXDDW48AediIvBsVjevA5ctB6Foc zePcjCG0ZwjtGO0sk4QWrnaGCE0nhjJF6E8oSgahr+MpG4cSKmJ9DaJBtKno lLK5tpFshiosmk4vytx17FuOFAsunvxfOWBqBzK1wPPQlZX+08gWue1GWjPB p6+Zok32R/AwG17k/lMibGTFhEsqq8fmOEY2LZxlgM1Kji29Gi9yG39Ml5Nc EqUcb/awn7N8LSzseexrawnVyaAS+xWgWoJUevRGekTzWshqyk2K0kPB65Lh dcrw2g0oas1r6SaICtfr5q7XDYWjKV4Vq/2zORJ12oPHD0d3N+FoQlBbdzOE eFVx6GJtcTdpXAsb19LgqlNBhCq92iNoL/PwVsbWArb0gW06PVt7KRWj1VPS QWc2bj0lzWoDk1s0ZFXNgjbIaqFY3UwSqlntYD8PVrP+ZabGAkDP4479Wlt1 mijDfi2A7SlgbyACNLBzssByMyzwT9G8cAvK+D9FMvdmCOxNCE5vxLe+Q20n Rm3UB+fDI9QQtYIHCOvmhf4PDziYE0pNrfCQCLVrR6i+ytbrDi237hk81SPW atsXi3WtZb/WyJY+sk66CMgiNq3TRYXxwEpkR6yDTqYvsEFwOmlu08Fp1P8W Sf+b5rZS3F5pcVsabgvFLSbIBKfncSvDeYGqy/VI7yqNJWQJRWyE4k0Kz3UA 9WVAdi2O5g2yUzFkq+HIFm7eNx8F2c1qmPoP6JY/j7Btg6yIRq+VHb3axMru o5WxdBbEhlJJ5IsXao29KGiJJbBH7b+/neNVwMov6EBFtLBprR1xYWBVPfcN qqEisDTIY+GHV4/VPNbDG9JYL1YtkrFqGWCVZzP1gM0MsF0F7HMtZ1wqYM// i9fomozgPO9iANgC+wXAuQaYHgpglwyw03i05wLbaQhs7YzzZCTrZYEzA2ym gL3SApaMsSrajBHMFnYwW4eyZUhkhT9LTBOV1bwGmhqaZZh4eiY7u0S09t8n 2wP96LViVj9GN4BlhiecVRITrr94mHoTj4+NadOwNW8jqSFMKzlDwzb820FM mdDpgBXmimkGQJWu/jMRiQTTHPZrApjOgcZlcLkRhD6/fyuywbdAa3+qHp0y rHZdca1cVkuTdSpi4hqKYqMVmwyfpFRXjSqsLcaT6cakPACqaB3FimKS2hri 1Ipfd5z68RPnhpVoON3EmeB/X1npv5s2j1VPVzOgSp+9NZzNtsBNh6WuXm0m ymruSuqqsBoKW/Ok/S0a2t/SZbUjJwi/FIml2u/icp2vhZP2R6vazPW8eM/1 SCwpLukmv4nYJOYIupsVg+tA4wHgcgVH8zg3E+OyY7gsTb2mjGnoWFzW8nkm 3djK84oazVpDczWNEyZMPEtuokGwKuq6TV1JLUPpJfmFT59Wk6b70+Jo7jzp iKNV766ro6q/YQ8JKk5hZAzz+c75+f47wOrKSgY46XP6Mzr1cvq2Vm0NFqD5 YFqJft+yvWP0ADZQUhFrBGwVoUYRDY0cb49o2vUWDV1vFFE2lLlci+NSeN3L cHEu54vz96pqcz4r6fkmqaRFtGtgLcEqPapoZWJLmfHlWs0tmAbiVgirJnYa j/ZcYjsNiS1cJc0DYapXv8lcYumPXKhEdC9M4HLAwQzsOeR5f8w3wiC0rSJV ejue8fVTS7JVcE0rMdW0htJKx0laGdaMNTTfT1j/lWFikVp6R6fTfyc99bs6 HUls6RPL7lcSW/ZPop89/yuiDQ9ijMSSmFxC+LHAtkGwGnLBUWVtgG0pJxAl bBeAbcnYlhyiQlMRliptBVrI/96A/K9E9caDDjWozssKzS0oXRCle/dvQ/73 VkjILWiBGOS1YxS2SvJaBBQ2ymu0fgObQayiaPN6YlQLrNOT3769l57Vsr42 qX4LfrAXYj7ZRahBDfRAsKzOBNoGu3FI/42ekiHFX38fZ5QsSIWlqR0mNGB6 01M3iOF1VSmrhS2rq5ZFylYDzLy15S0ahqelySKpAZ08GkXraVeBeYwyv4BS FWfoL2gwZwHmjKy63AKbeyumPbsN8nkrMke3QKJ/qpwwk9h1ldMjsYx53Tzg ddP5otzkiwBvTSIUkBenQXoXFZofya19LEqvzDK8mkch66llqDAj2kzKEiJS 54vI7O48+YijZ+qCzK6nPukJmwaAnDZAvpPiz7fXQPaPoJ+PJEgjROaGyNrl lsblKr1cldIpPXC8Mg4niJZUhgLRSVPZoA5TJOWyCLhcL2lUulRmQAO3O7FI fHK/Q2Yi1BnlfI9RZZnnbXwiPapTRYsgtAMGmcY14PIQELqMozmcm44RWhlC y0CWyPO2hRyx05ZQ+Yn1txCg/yABlXzSZy2d7YTcbenrpdV2v3akXocQmyoQ 3XXCW44U09ZC0Af+xZ+xpenZcPISGjzP/tux0fG/azjpZwtOJz0ELr9IlzqU HhKBrgbRsJ+e+cxHkUuR242C7WLQeqxLaG2MbAw6W5nZqGaGzGxNpzKOks4t 9C0KOi/jBXEug45ebpK7z6eQDQmiJezXgMlc5mZvUSQ+AUw+u3877OxtkNNb YWI1nT2Xzk5DOguXztrJNsgVSTpzm0x89ozmBRLLVmiKQMVF5AHlrNItDQtD iy2nUmgcyhApKztlTcFAogk2N8XR/Ff6/zsUmu+20Pz/BtCUJvbTdBd8OGZi xfAqi4hVRC3pLGzpXI0Q8zGjMnedbB7IDBUNqaxMiFlJJyup3ErX4zJFJVdb FpSxvQIzrtP36J9s3MDbKWRs50DnOp0Xohuf+MNG6niLYnI30PmX4HQFRws4 N4NHpwyn3SSnUZ+bN4w4PU4z6XO3cIcj7lpEmno7n9O5o8ec9Da0xQ2EnPXU DGtaK+gppO62ggYhlUtFHvmWN7F4TjUj9L20gdCjdEXUM7WKUOHPEjiRBJBc T6qw15NatShzgmymo8yon42yWQ5nM+N5d11AewbQHHyqvNA79tm7/52DDuSb G5ROgdIVUFoC0q7Mz94KH0dEvg5sLuOIz03H2KwasllraN6aTfmtxhK6RRVa fijXceUIFA7XktL2JVH6JC2na2upNUymCmlpPbh0Llpx8RG1U0JkcuXsvQXP +ql09CKfUp6BrL8PbW9TlP5HTSm9gKNML68eCHMiYD2Ju4w+o6TUcbiFcbhK RZumg2p/20xE6XdPVIbiJDGM1lD3bij6DHXaZ2PQ2jT6TCtpKCfk0VoEaO0Y k1spWnEhf/WWN/OmiIUGIll0I7K4N8H2alqZ0T1A6x/274DtvR0SexvuSM1t z+W243JbxnJHRcD7hiLThKZuYQuggGVcGdrM9OOPGpHWpdEyVGeRNwyFCU21 9NQApCcNQIp3Ah0FqPv5kE4bSHXGFpC+B2YXUrqyoqW0rqlIREsfUcvpFoZR paP/c2Q0ZHFXGcy8ocUtYhY3BGYlp0KQYGJKPw1mYWS0w2DKqihklMCkt4V9 zj/rsDQzYeksIKVHb6FHCENsJJ+3KjR3A6T7A9cVHC3g3IyLazeJax2qFhPB NQvhWmss2d71u7PGXiBagkvvQcerEX2V8tqJySurqyy7zDroamxPjyeQdpz2 8RPVGo4ssBBX7YOnB23wCyx232WzS/ZYsZvX2HYYW6uz3uR0R0saMbZ5QlTF GCnddAV00uxGw9OoqNYp3bQFLmPsMrqFkdIpRSwuKyRUsir3CFNB7I2cSLoR E/JKWH/6gn0NrKWsvHANhhB9DWBdg6N5nJvGo1MBWKsYrFFtDcWraVjxsdHL 31rb4ZxZLThW1W7YmRIpCmrQDhe2zNaDZcpQN4O8lehrbZjKnqZQjaSUUIcR lbeSxVmnHKPzSiFe/5g2uxgDXt+neH2/DltPRBR0kpwioOZV+IneQCJJ8NIU nEf6tLBxzZurrEj2GY0dsWYTxrVBxJqWWs8DR3FlMDKD67TCVWeSjMDm/fsM s6cedCgzy9XSNcxsYTOLbV7WZIjTJ4HYp/XvhDm+A1bwdghIhN2Oy24Zi2eL gNDmDdnNmF1kzPZldrc6GeEa4AslvK0tMr2dIUprNQ92h41N5RuSPiYf3UCi CehW1sT3RCzIBX4zg9C+VUGrizTv1dDSZkMrRbbqn0xuzALXaQ2kT0xbY6Wx I8yrUti9u6tRl/Hi1lD7bjYas1F7HGU2LbG1PS4DzHbkZNeXo2B6hRkR811S VzBaKlK/q1JMp3KK6UYkgpUVpnud8MNGDHJx5nY02BOcLwKm63DE52bw6JTB tJvEtA5fi9Ew5c8lM5gKXkArRKmElIs37Icv5Fu1Bab0+q3UsC+ySmWrkMrW kz7MB0U2RqmVa9p5CglsWQssYlgtsNyC5LA6w6z+q8WqzgmD1aMUq/uR0B5I bFqeWOMa98SFzevwMupjJLHpaDZbNVwbOOKQxDbAlfWLJ+zEHU/CSuBy0aaH /YJlkAlchrfyEIbYVtivAOGif/MAx5Us3nAZh+h9FTheg6N5nJsOcNxJchyV 27xN+jhjjgeV9hBS2kJBfB7RopS2JcSFgVgBPLwzYqlRXed0eklfCgB8Ug2w 4lfnocCvzkW5/E7zBdTZYlN1VTrL/K6saH5FrlLFNrxmSFvpp6BCsSzyzPTI Z+utreCKNonipjFtbZInTXCDmDZkkoukSS4NwZUR3FIRfDVdF01wZQjO+psZ 4zfSo+/cZ28GuKswfqfKTN3ImakbkT7mOs8gxpms83DFh+D9PWD8pP5d2N2J u/cO6L4Gugege64wVwboMhb7FjGg60RVCOjMBnpzAOgSQGdmLGuNsb9oHF9U HnlzttAsdx2WPUGuZ3XpxHoprCE3M4Znm+VIcgosF9Zyb0qLTY121mVZJ5Xt yo/N8ibiGCz/Na+gfBJui5MZ6KPJoA2Y5tw2zU0ccz5UggtbgscYmhqNcUNd htlo+LaKcWu/XMQE2ItxSxffTgDfAvt54FsqfG0V7lkhL/CFe17Gftoil2DE Rncdl3vuQNM+ofpngHY3HC3g3EwM2k4A2jroLWLQegmraHaZoUUXNL1KMHuV YvZYiuD/iJzzWRzsSiH+sXTSrdw0vUwrazWoxVVIi+vBrAtRKfbRDYy5sdDV OSonT+Wha+eUnXoQJDiKrj+qpnbPpXHPaqRqumf/sdTekHvOYi0VY8PbNNgN aW/aPZcuvBng8AjODMGVJcAg1ghw3r/fYHwa3fc38dBz2s8rjH9KJzXGHVkG 4oIQwftKYLwGR/MG4ykX446LcZk004xxPiLGpYPwVjP6nCDWaSuY6Z9IhgNC HMKYntUaA6splneFKMIqvCalwgOOOoTxKS7Geb3kuU5a6cSVmBuOsYmEgXGn E1LgTqjXX8uvaNpuUZOcr54IN6gLZavLcT7cQ6dF2OO4MlEwc1x4HF/BDca0 7ymEB7JZlUL4eyoeJowxWwsWgrsZXVO3Kz6Z1KdJZncK8fs4WsK5OTw67dLb bUNv4YpwHkhphejNQvReZdGb1/TmNrkS3TyGrihsD11nngs/n+XP1xQcAjs3 wC64/RJx++UAtyfX3GbMbWWXiWwJdtDtRKtER/Hb3cSfhkJX1YlO5n2qodEY ZxGrEYUSWEkJLmwJnnCFKItViLLRwG0a/HruOSTA0eBXDWm7XrX/0t/ElIVX KHBnsJ9S4H5eDa6Tvpn2Ux64N3Ei6ybkoqX2QnfvkBs91R0K140A94+B8AYc LeDcLB6dCiBcGYTLQPBbxBBOZ7M8hAWnszTBdO4qrnnhLRG/etMqDCc9QRUu E82QS0NlGCh/hV4fUI4ktSyUdYOyLcH7+SjPGJT92hErsJDL1nxANVkZDa76 p9BNY80qoTVYTvtSGDOtJLjdnIeFPeehKRzRaUWxrh1Npmz0uIIcUuDC7cwo h4OcyyVprsCIu80cDFu5K2yzCl6dvrqJ73wNL/nmtx4xJUtFd8IuE6gHAtm1 BtlpF9nucGRr1S3GRpZCDUtwr1KCWwDUTAnu+cou/4R5GopqS9XtxlTXHQBU NyzbmAY6NIApKNWJqgyAihy4XiTUfw6nFeed/brRkbXaWpgqte0YRuM+uTCQ KrVNp6pWUWybRruPP6NF0iWXMUZLORvhFYhx6wQVYclozluRLQC9mScrvZnH x2IVRy7/cCHoLix0sxNycRduuDuV2PbAZs/IacewWcXSUiE284ZsZjWb1QCb mAPmPw84uMbTmxoxBKXgaXqYScWlP/CnHplXJnowloMCCiq/TEoeovLUQSp1 KUgoLM0A9giWA0N8PCxXViwsCwdLPXMEPVMgB5VcMXVU1RzH/kbjVq/2k02E yLyN/S2S9rcMENmR4+AsIq+kK6OSTpLIvP9rJ+EELDnXNA0sYXrpXofpJQzJ 1t6psHwKAH1a/2dCPBlHizg3a2S0RrUbQ7Vsg2qdeoqiKjj3xKRebUxv3n+T rPeo3LHJINti2kRLS19Lh/c9rk2JqTG9X6HXEWP2lJpZ3YYscslrX1j/eUkn f7CPzhtrq4u5mD5Akavgd8Bp41OY2qDRzW2jO8Tl5uMoKP1rAlYm4cQAtHnM 6qZj1klDG002tZLRBtBmPLco3e0UpOroNTMgM8f06F5zsxytQlmnsa8UzXbu aQY0zymabyMe7lQ0d7FncncHw/uB5g04WsC5GTw65dLcaUhzETPFeVOaO/0t kmSjuZrksw3JHMH2zzngYB4snw1nuY0Ed0IS7A0UKg3OFsq4aWnfCaWidr3j 1X8rhVJibMo/+G/exdiu3Oryz1Eexh8cxLiyJ6GwM08y8VQYK6wGuafTTquj u+2dsJcvzkZDOG/jhKO6G3LCpYuw8qES4WtIboHwZs4cb0b5VtL7BZWAup/L t/cjAeXSezOvcXUzMsdske9UaO4GSA8Cris4mse5aRfXbgzXUAxb45oncfV6 LrIa18rgerWLawZebVwxJHc4roKn32JaFbGygtuzM06hdkhrKotuVHxB61dh 2oFr19FeO9n0B+t3B6CW5O4XZHUmWuMJsApScya14w+mtf2xiM5HEfLI+apo bvsCz+MPbFpzQ6FrZYDtKGCvJWA3K2A529RRwOqUE4DtYD9rAatj2hz7FQCb yWLOXQrTpwLYjf2fo1PqZ6roM+ui2zVKW8XQTStt3gZdwfknTS2du5rzxJbQ YiuVa4Zjvkg65tGVNtIFORUT2sFR819lZGPJp/844GCEsnkg2bRgI9uJ1XY4 qJVrQeb9D3U6/ReZ8uwpcko+ugfCmabSzzR5zE5SX+nJuOolN5/Zpp1RXnC7 Kszmw5sramaLhj7ZYzbjOUldcLnK01PgKpVlcAvsF62oF+DCHCtmb5FRL0FA aGIjIO9C2mUn6CVw/wQIr8cRn5vBo1Muwt2GCBcxs+xlqTyEM2OWS8Us3qDi 1Rbcc6U3HkNw85YlHnelDlD7NZ4FJ44tFJf+4c73/d0heZ2MMkqrsH0C72dx OlnLsScaBrp/Y9CtGN1RjPHjIbZNazlZLE+cjQFuNCvV1B2XMXfsgVsEwO1g Px1Q3Az7ZYCb9R9gev8X0Xv6QYcyvYvSIkt6b6WTmt5C9lXsxFAhYvavQe9a HC3i3LSht2e8cydAb+l652JcerUAb1OWuRbg3IZZ1P65nlI1BLHgCb6YYcWx LNV27YSVL7519WcpLb4k/V+jF0QQBxH+G3r8GevX7fz2ke8M5acchHmW4niZ p0wQ3DEExw1zYRAeGFCQPxbSm7bL6fj2cSA4Lb0NCFYDcwjZ2UBOagm0VopW XHdN6wz206A1A4CM4hpAeRjwXMbRfADPbgDPcri45g3xzIw/BqlkC0DnNmZy kMwc+1wJ7Y+UOTZC69WC6BXRNWNENabnCs1oqp2iExuRa40TKkOQCpmGKg2k eO3ffNPhgFRXfZz006JN6TJT+ppBSp2Q1sOUyz6nYmY/C9Pm/ji9SDpdIWsa i9gwWym0hS20Y4wciPpjL4+cPQaQejJbuEmo2h+XMUgzKWObMQ63zj/BAMMK L2DfU6R+X+WfQGoP+zmlq3cSE0QlNkKTS7Q/w+ypP8cSAHer6HYR5+bw6JSh txugt4pZ45C45sMLuJkRV/xM/j1E7zmD9BZsky+W9KZFtrTp1UZZOeVuSmVD a8dqlQW8Z9DLUvDKrFRlRHbP9bv3D97r2ZrdLCCwDro9RvdPRLIAJOSqkb3+ n1OIm0DXalksfYMMcH1y88dMXkc0yKtCbp6sANXkFsPltQyQW4CRHOTOK3K3 0JWCzv77PnsTab9GIqomdx8VzxbYL1nxrCa3khXbnyGRTLz+FchdwdECzs0G yO3EyC3bkFvnpWpyM2OLpfD2ryaHsI3N8DaYg5rcjxGk5zCuFrkWtQFyRWGv MTBSGWgqVQaSBlmiK0PcKeOP30svFy/72286vH+i9Mb2uPllG9lFB9lQscee b/yNhOwf0MW3kTXz0IhAvZbOWYb4sRbb9o44FNN6yahsDGTzhjFt4Yqtl4wK OWLVg3Sz6tSXzHLLBbBlg8zsqjuauGXt5bLPohXT7mMyUrdgAP1OReZaMPo6 0LoGR3M4N2No7bWhtUgGsXmA1twdOlDWysoJ4zfw2h7nIFY9GzBIPGGLLUSt xe8Ke+7ViZZ95NofTCcpp6JT+Hg+nR774Mtf0j95/Trc+hpPnXpy8JwdwNOv 79h4ftjUZE+VbeYSz2ZGWPAYPF59+RhhA5pPWlNFLstgcotb4gZlnklTGk0Z Ry1xSFijlniQUuKjf+OcDGBnsC8Vpf9A1440lintYb+sKH2Q0AWp//KCfSWl 8zIfTFg+EYA+vX8PZpC6Gzr7c2iqFtaei2oVQLUOaIuAsOZtUJWs9rfS98k1 PEX5NlPhIWDZDJ+DCo/pqTBW+GJcveaKWvqKWq9RKXIbWHnv0FsOSerX6TWd wbB+jWHV+aaD6PwzCdSvkA3GPQ9gT6rnZFwThjVQ2RkCa2nDGk0sKS1lGaXT YPXz9fbYyWnaAadj11BtJxs+4G4yoBYxB5wGlTmFnaRrpDWVCzwdS1ORefo1 T0qjaS0Bq3r0S2Qu4YcXpLDeyhJ2B9FAeGKjP/QzhewGwPsiYLwbjhZwbsYo LmPcjWFcNlTcvDnGV9GLvEbFs4XS3n+sMfa1Nw8A3FJz55pobghfn1588O8n ck9SinWspFcnnxL06uKOplfnnPSkbh8hJ1zTW/W/QHeGNduMltmoCRa5Ta+F br56Qju2Hc5iCeIJ8psHItiQHS4DdriM8VsG+OXOiq7i94tWPqrEfgn8dhW/ P1BJqS9xS+MtmJJG8ns7Qa35zbFnVldA7avA7xoczePcNB6ddmW44/JbxmR4 RH4zxe82epHg95oIv7nhVwmxts4Xq6smF9Mr7HkeJ1X8KQzJTDEIPoMJ1ulk 6O/riGAo1UlKxBTFuCRrBwn+XxbBZs6KAMFoObYJ/jRWIhXOPG+xyaJ0ECvc BbMee/Ud0SaHyjtZbMqoBvTmw8s7tU0ukja5NPSqweY/VbUW3PEWvQX204pe lY9iejND74xFL8LaW3gV6FuwbqWkF+T+XG7kkLn4czcGw98DCf4FBhrcgzTz 3epRD+Gui3AVcNJlEuFQctlDWGqwoTfDPlcIH6+mpjEIay8NH32JxLeFFJe+ FFuTTk0Nm3SqXouWEKbPSOeU36cyUV8hB32KUi2AAHHbX8iFZB2ES4OwVfgR sj47E0OYU1Gn0ebZ56R7jumvv+x6eI4K+ud4P6fKbQQFnoyDDuWQM3du5AYM h3LITR10OdxB1wxnPFG5C3KG/WwgNcVZqQXFsE5NyYzyLZgBXTJ8JwmZZriL /ZIsBhG5LwTDG3C0YBiechnuxBiubXQRsNF5Q4azAMO5zTDe77kyErZlmFPM zPAlfNM4FMeEuPSF2CoQTQ8rENUQc8uUSzESVgcTwaeJeo2gE2uK9xugeN6h ODQIyFs7pP9kstPvIg92Gt8RsWRyWIUfk1Sy4CyVLJiJhIEOlYBCxdusTQko dwcBtcc3ZKCLgASHDHSNbxHAd85LVz3Aw21pv8Yi918w5TmvXTAIbS7rtnej R+oejIz/BbLN98A2343vfAfa7nBo08KbD4dWKm9/m4x68YGFeS1s2/xjsqnj aK6VvhLxitCCg+s36W9+g14MwcqoHkli+4eE6dfCqF50CEUmNqWLhtLYGB9N qR6d9+fz8/1X0IWG1roV2nALI522UsoBTHPGtDSYWjI7cZ1Ne+UGkW6DlPJk QI165TLmlT1QKwtU1Gu3cAlIgrqVfsZ1//5BBxK8BOpagJr1HzKZqi+TsbRp Bal3y43+BZeACM9DAeoyjvjctAF1KgmqF+QWo4GaeaBeyxnma1C1dUE9l/uQ zkFWSgrrecocjySsg50XK40yVT6peHVHEaX2ZOg6wCUgNv2nR+pSa1JfTJtH 6sQccWlQtXqNhdVs3FJL21vhaDg7aUTzZDgb0tJQMqp0k1GVnE9NIkpI9K+T mJLYbcFQyq3M6bHkhqCdD/D4Ws1pqTg9U2WkiFUsqgeFuk3GtBufaGDtYb8k y0G/wCLTv0TD1C8gt/fAD98NWB1sOwbbKqmv7bHNrMD2WkxFJ73wNrU65rmc Rz4Xgmq54EslqDWs8sLpcUATLw3NSVqJUE3rq4ncpwt3kqhhtC4jrN11yPJy sgRkT7MYobWZ8xW5vfbWYx+/tjfAofg1mkFuBW3eJn4tAroaNcA1tMwsbnRL XDmNXCpykY1CM9QDXLnVVrhnkYtIFto6hX1HkXsX6Zgmt5Dl23sw2OcXWHjv l7DHv4ADvAem2CG3lyS3FtzCdcZ5LKscIjcz5FbKFesMslJZR2S1G3ZFVhT2 ZG91f3Lh9yfLeS8qG1pbZmV38oJRWZ9ZfJ98AyVbi9nThjC7wOOAjtxzz4HC TxNmh4zkidhg4c6K2lJkAyN6BK9GKycEEMO0dhw7/JhhG7XDRUBrQ3a4xrZU 2G4jXdXYYuj4Ph2FLW4bgpWxrQy2swpbnYC6lSdmvBUzukls7yC3rLFlOteC 09eA2DU4mse5aUNsryGxZYBY1to8SWxmLDL20hmzO85s1bXYlarL9GYqloVF tpR3POG15q1Rwrs0YJO/s353A/Az6PjVwp1cSs9zrjPIxwcAXnQAPjIAsE43 6RG0+7sAt+23iLhjORSvNORatVoxYrFWcLKJ28q+IRImuWnNJ4vVfFYZ3LTe ljFwO3I6iS0o1m4dyDWV2C+D1EUmtbATTtjmweksIFwGjr8HMH+vfy9WCvkl bsZfwAkPItqNIVoaO1wk7XAeQDR3RRWHFqIsr0UA0dwY41x2WVwq1DXR+aa0 wI46AGhe0kmvAnS+X9Vy9Mg8n06dboK8EmteBMt4HmXhGSvLajzfTNue5KRO r/EcVo6NrO+eh1TV4nN1VHVEMzwinHV3cSs4Q2a4iKlqGUgyMZyZ5GIL5jce 1NLMELrWSzLdxvO91e6XKMRGT3WPInMDGN0XtK7H0YKhdcrQ2o3RWsYEtT2t UlH72wnU7ZxpuhYBdw3qoQrUwoCaWXnhplpa+lrKUjp8ErgFI6YaVYjoJg/V rwRQPV6i6pDKA/ov/ujhh+u6jSy+9qKgouiKK3o6l27au+DcdsEJJdVqOlxJ 5fJGPG2bnAZAhJV00hY4SzYZTwbWkAVuoKQ1rAWw4KEA0wxrwXKqMk3Ylgyq ef/hQLLpNg7/LF5lhfUXiFCJ0b8BrWtxNI9zM4bWXoDWKqCtY9OaAdI0o+x3 BTdMGLurMG0QsJY2oJ6erk32PX2L/t7B6CgW7hg8PTOUnxAmFvb7kK+lEULL UCJY6FXdcf2+SBd6HJdLf8LuSlRFG5FqTVwVQY263XHC1FaM5snyatrthgTV Y5RhkJByvQacTlvZJXQ0PcgtEg9CWh9Cp+LDTnbpNl67R0rr7SRbRCI2wvEX iEuJzsPB6TKO5nBuOsBpZzinhRum5g05laD2r6FXup2DU59Y3K7nqfqNr6pl /yLSN0tVawcs6zilX8fhMs7wNqfFIK94KR+I8OqnhFHNXGezuuiwOqxqo/uX 8CePlbAOzQGL3O5BlLSK3J4hxpbT8BwxIpfr8cpNyJW0c/42+rLc4poqp6Pk yRT5I5JzA7Q1wO2j05rXeq6nEK/5aAY4qqllgNeO4hVzFfu8HqtmWnyQGyM0 rzOKV51Wuo2Hu9/Ga/QwAHfTSQ1tJUutXL0haPfq/wodTvfi7vol/LCDbzeJ bxnA1wth80b4XkuSqv1wjW/m4Xse46rxVYJ7gfLEAcEtfcFlvR3e37Q0UIb9 Hn1FvIb+0GtFPVDAnhpKR692cvg4D94lA29oUsWG8LqzFrc1wSJSvins8g3e QD3raUhe5UrcPOc4fwJfF7a80rN9S31MamtghaNxa9QKTxrbtBUuk1a4Mtgy tbNWZuk/9tmbYZ3FfgmwLliwvgWL0LIDpn1PwbqTTmpYM1lg/SUG7xCifwlY 1+FoHudmDKy9JKylq7VFzBPngfJrDWumYN1OwbaGNTewChZbzSo8Ejg17rgy sP5YbT8hpjSqvtJavU0DSjvY3LRgWP2Ayip9dwindg74WI/T+SinfuHGnl5C cTq6G85tN/x46us4fjgNqtctPEFQi4C+hvxwDWppg6oUlUGdMqCuUaDi0a+o BNOMYvRO+pkAxEaO95eI1AjK1wLPZYPndADPjsGzimlpFE+vYlPjmdl47pBo NsCzdFsk8nqNnpKXtDzX2pop56JRzu/zSNfd+68TdeOSGV4nwokkRaOL40Jr HJHffQpt/0qxzbAhNw3t7mMjnLktnHGz26oUkzUsxbQKTotYcFokVbOMwdiR q7zWqgltfJAbHjSMaxnGor+LMP2hyiARlLPgcRqwMXZPBoBP6d+HesyvYLnu BeRaKXvDUayVsghEpWkUM6OU2JPjBok7OMNrUbg3PfAJkqkAhfVUTjzDOAU1 2P2AazbfJ/U8k/7ZWTw9xQ9pv9w/E3MbC5kfOhPTQKBlVwinlUEPhtOxps2c jjUTzIVKnzHmXkLbX4q2w9wa9dgXdo+9Ozf/qihfK4vqRZbZRGDLk3VPz6IW MeUrA5kghg0SRh/CDcRaLB1UueyVQA9fO/TwC+gevt1Sw5+RY9VqmMtC6L0o t/wK5Zb7UG75FW4qDeMUYJwCjN3hMJatYcxcXcQnRq9PwYiNeSwUj29W2dzz ZEOvMq2eKno8ZsAx738PR9+lf7fQ/w7hCbn7yBD8QqlZ34AuOvQNq2zqDj+L vnopVnrvCj0dKEab/MTqDRJvpXgTtJ/ZcAjrAacNIPTSOyH72UDxagiZQdy4 kkJmUHclXEU/q2SPJHHRkNhTJP4piaQmcdoj8V4OZO5FsPgrVFHug0P9lTo3 E4CwAwgrU08pXXNauOY0DWHumlMpif0d5Jh3cHpnKIENFJEFMbMJfC09wx+J wY75UBjoJ1vjIWBbAl/JIWBLwznCDNyJpvjJiN9knGbemru8YdgXdZoh8fO4 KwPcVdgzdvTAm6zETW7g43hw1oIP2ZvbeRj47ag13IGx4Pcq0A4Dcss4mnWR 6wWQC+neOMiVhrE8wFhhGMtdxgrDWGYYY5UjSfquql3YNY0UYnZG9FSlM4qx 3Xlf7Ee7XRuWlzVnsu445WDmZ0MtzEawmCKUY5lUc92IIjdBp9ketqjIRcO6 IilypRvWVXIOv0HYCuxLhq2wky/YFgxqiwo1FeophbsdPe538OE9JH73KrEr sV8Cb3uAvOf078dicPfBTWkGpw2D3SSDZcB7ejmZPMlgpmTvutpyitwgmXlI ni/zLbbxbCB79L7+kPzmIWKwLSCVbtHJz1NCSPIQzp0v3HNPI3067EtVKFCZ +EvJ5HDjOdBOF2xSn3w7XVr7BKdZ+Pvse2I849mAybrrdVWYTAtgzSTPV++B ycPFKk8FH+JZtR9CrfFhoFnHgSDzqwcdivViuIjx8xfsq4HEtgD01gPClwDH FRzxuRmDYy+JY+1Ci+GhYB7DEezRC7vOZGM0iYIdaP8E+m55FrF0PlSxBYck 7wRi/0Oq5mDXDJugqMPAU5QXdFBcslHc+YE992yM4v8RstNVFSCGjpyOuc/V bDpvqovjmNCsYS/OiAxGg7/C1cU0g0WAwa7CD7kYNOA8xNVDjd8K8Mv6jzCD Z6lczB1c75eiuJPuZkIMG3H2K4XdwQBwDY7mDIBTrh52AGBlcjFVQA/TnjQE YKYAvE4BeJ0DoJZC4HM+1jJuIYWZhSCU8GMRBJskQhsg+MEAgqEkqK7T4y19 nq5gu1Fbbrdqvlp95YJHfTB+3xIJIRzRnHqRYDa8ADhBCAtXCL0MTOlGgirD ISG8kSBE2uUqDgclhFfTz8fJsdMSwiUDYaUgfDdJpAPhlKwC3odKxP3wo7/G GJH7YUU1f9OGv16AP08AR+QvM/wVwM6SPQ4KNXS4bkr48ubUfZhE71nCGQkd nK8glf8MUrccFb5U6cGm7ni6jCooFKmyuwjV+RIeVIxRdg/pn1xmjnvF+QtK Tvwd0b9Je1APvXp6ghB6eSz5mfagaf2r5HQeEj261TV+guNCJo8e2Ju+QrUH ncJ+EfytBX/Tij9kYt5K8nIHZ2KkCMKIahHMZCXwPnS53Y9FD38NU6pxnHFx 7DbEsQiEhyEcc1cOpSE1SpgPgGkrIYNZGDnMYyWJzAZTKDJsMLUkNkmLajA/ 74PpBIe73rphwyhgrqIdLWw72nCGkFY6uCpmdBwYoxnRwjWjXkBYJmFkFj0x zLAvFZG4ksQhE9kxishR4bxFJIWFzGLHsqWEGzaSwPvQz0YIvhwwrsXRvAtj z4WxcoPDalwYMwXj9ZYtbQBjU5Ukp/26576QBdIeuezbU3tSn1D+1GIxkac5 fH4+OTLZmwKkEYptbenjr43j2NIJ4ujlZ9K21NPG0o0NVey1k/8asjJXD2Rl KqOIzN+SFRbiKiM1U4C/on8nahP3IQQk1t4A6pZxxCROg7qpGHUhCSxcR9qU OqmBDN31HAdq4AoFnJ0SzQPq55UqMqN+9B3yEZWGsdtEQ9ANS8t8Sd7Xm473 BdDEgzvedsABuw561nMaFQVt6k6gSzekFzRoSquQKZ1cKX5EFRzRkjbAzmsH bYpd02gwrYKVHPcrVRAKeLXcRGUJoM7LFAbAZQC44gF4JwvgnXxv/5JCRC2A hSwO3o81VgjFZ/QfUGHiIs7NBqDsAMpOwJdW40KZgcXKoJhbKB4WRjGqfWIF LHI25jBRD2lMkehnZ2wST69JDIeIOw974Qt3vukvXtwKxL+i7UCKKlR5QrQt y8uumHxwALFoWZMfUffoz/xA1CNTWox7itrRbHjNcBwQvdiwCOhfGbOjGkS6 0wdAVHkZNQ2AHlnBIK4DiHn/USdBcydPtiNpvPsF+xoaGboNwO9FAHEdjhZw bsYFsRsDsYx50iiIuTvkIlMBIhhMgVgkNdEBEXL4bOEM/jey2DZNOhTEXQc+ 4xk7jnz9YQbEWIHik6JeLgwgvlIqogVii8p9FQoJH3dFjE5H19SIZslCYT1A Im8IYjoujCpiGQAxl/1hV3Pd3krNuPCxCnYUfLpJzcA3J0uBxNhBoG0NjuYN bZw77QVoqwKyVwRo42+SPEBbLXtS9/o30Ku6nhFzuMs87n7ENYnzQVYqE5Mp 7iB+n4xwNyxRqmPAYdyZ+K+/3x57XHzcO9/NLWrDCoMed+1taCo3Wpj4T+nf 2NX5ISqY2yroe9FaAsf2ohMkz/Oihds2E5LA2ouWNXl1CuZhHgT8MAI/jd20 hd3XDjqUsSuV5t1LNzxxho2e+X7F3tNB4Wz/QXW0hHPM6HRDHsuADQ1lZPIU jzIkDPEoWAg1jriMYE/rYDQZI3YDkP3XE8GQQT0XTgzJHw5B8usekseGgsNd z9ywAYEhI3lUeyRH6RJta0ebSmC6RC94CmX+tOR8t6PnYhp40cmAGAoKi5gE lgEQu7Ii/jMQIEH8R7pm7yIJfJhL9BrEtQBxXoF4tgoFCUapfwXYYsqeAN72 BnkbcbSAc7Mued3h5JXDA8AQeZkmj74kHPLqUFBwWoZf/Y+wjpfNXVQHyT4L dXc3YS6WCtWxoGbuJMlcALr+k+bnEQQCul0fWrdbo+q8hu4gG7qRmkYHuSsN d1YxQqSrESEBlIsA8xJ6/NF8VzQXwGgyJl2SyBqW5sfhLmo9PQEsXevJPSlC Lh+gA8FCYbhNLUJw5kEHihmD4RpguOxheCff1lIP78JMNiQrhB3WnkdV8AG0 qj2IGPABuNJfw5VqIHsBIKuYFBatgYQWkkDfQC/qBhbtkAoqFpuoYKZUEIt6 HS4GJrBhKkfJk3pEugHhRQpIBIMAcucn9tq7NZAn0nYM39PDOkYjo3IrMyr3 NCFsGtsnZMZRwLGtaNaQxEKur6qbZPIkidEgsHCzMSEFrElkEJm/DPjRz8er bMzDXKnX7dsM4TovEXMX3993oVPm14gFH8AMxw8iI6qpmw5Q14lRVyQDQo+6 fIA6KKCmrhqgzlI/SV26LiFYBPsflcUI+SUr1g6Ap+WwTVr0q+peDkqhLPwT eaCOyft4hDw/HwryPikXj25EnogM0S39IbpWJbAwlUAVCk5QCOXksnL9BTVJ 3iQNaJYsBk4GvyImhGUMvxL3fQb8CoXf3qpbFPh1DX7LwG834Jf3f+PkY+6S 8y7yPa5EkIUwl7XBB9C89iA86kPqaEnGiRrOqQCcletRS9ejtoJT0qkVEZQC SW1PixicRTJRQwIPNcQdryeGioHZJk2aBHMNXuSu5+zxpAEwhxUqbDBPoy/X xvX5Ec3pYyaJI1YK0+Z0bCbTQWFaElVK8uf8GdxMX6JwpNvYoW4zGZuHVcam wn7BpbNj0Ym0jU3nr4gBQg8b1sLDsKYHsRzlQzCsD6J88QBsqgNmF2B2YqpZ xoJHD8w6jeqAaQtmDWZpg/k8es1HkwYO96q8yLvY0P9P+u3n0Lu8qCGcTXOp X3HhdNhci+uy80V77W3Y/Bix+YGGbKLHFNf1K3StdQ41PYlMbttVJZsdu3Dh JFEnUrVoL5vRGuJji2geqCFGES3cvE1INlXeRiJKDPR/KjE1iNq5nNJFdAWI TitE7YSORvTnRIRGdErWEAnMlwHRFRzNu4j2koiWYyAqGe3fRPjdyHbWoTNX dP6TVdrIk7IpNvLasULd8m3hTGVVv27BeWIwu4M/u+OfX/EqTeeOT7/iVQN0 2pVFm87P1nSO4GZlHNmJxZGTbmgTPOJQL4fdRDRbGdloHBmq6qeJDJU0QnFk VDRL18iyaDKQuIEt5cwDypkbLJcMlvMelr6v1VgW2K8FjK8HlssGy2lgORXD sgoopxdvRrHMfSxvpK8Jg2UdamZJLEOiSX/kEPpF6OXFEks5geJah8xheVeb Sp3lGUolX5Gdr/qTPwWRIuP9HNf9Y/X+/7L00qKyfxLG8Me9bFAtU0FmbgeZ Ij3fWkgqWxX4Mze4HNHIZg2Z9LKseYDJaJY1FFymVVKlMgeZzCyp1KmeDPt5 l8llxeR7rHyPZvI++pnQw4YJxzFlG+H4tP7D6IV7CN/6DyLMdMDsJsEM6WUD MDMGk4yE1Eq9eZLps/ljhi8imXqZjo+pVlQ1mbicjHglqpxt6iI+n1/w8dwk JGKoQyo857k9YFg7TgDPEexsFbOzsh+gNEkg5WYbTFEztmpG0z9NfWzWuv6Y u6Fm3obQIpD+KQM+tkoQameDajjXAs51gURQ3t8pu+JIoDScM9hvAJJ/Bjh3 w9GCC2cvAGdlzGzZBs7cTQRJ2ezfpAQzD5ApONa0wSwCmmlxmXPy5++EvQDs ukaWdlh55NsWmKfWYHqJIJC5c+89nrrrZU97utMloMm0pxP2A02Q+eL5ea6P nP70PYcNl2q4iEYdYpYGSmVlQwtniEDmZxzBnLSJbY+jl40NhZWeiS2NYFau ie0oHLGEjY/j8WrWfsycMYf9osFxPXDM+v/NTO5LTJ5B9/xOi8lf0g2umayw XwGJfwMm1+JoHudmwORUksmQYBbDmcwdJmutxJcYSHScLO44evl4q8SjYTIP +Fh6Nsjkc9av4/Xn+BuXcFR2diL5WSD55RpJsZvEUU7xxnnZi9/9l6/RODKK HxbpEqWP4lfpQg9tFsjtfGyL0LIwPKoSyWMmkRM0sV6qZxwmQ4FlVCJrJhlJ P8sDEmcMiWtA4m4gsVIknqPCyTM4yyNJvN+yrmuA3mGAcAlHcy6EXRfCynWt 5WgQZgrCm6Uo1hCGhdGHMGRYlSZ+bgwIz45AqFM9NoQnRCHEtvN1z3l+/62d zvgQhmcyHSmCpOeyAHyc5LC9Ox0HvVCWNYqeJ4eeOy14AUbfol5jEjuYzHsX 9wtoEpcNiVMeiTs9n0rUYSP0HkLoSCT+YX8XCpYPI7B8SPW0MpM9I4wdMNkJ COOITCpNvIl4u4kTO0EcLRRjmpgpHLFIKzTxMqEcDxlvFUYykjaWo5ZGznCR dIhcq12qofKIPZ7K46qGlUJ8Ik+m/6u8jpCp1txOtaYtaidUptQWtV1aR7Tp oGuQ22lvVbPW+da8IZuhyLGBLKrWmXvYUd5C14mINBsUkmJDRnLBIMlR47xC EnmdP6bb3kbyXrKpGsmurE0SiH8OJNfhaMEgOTUcydJ41cKNH4sAkrlJ7mSM JH0o9FoUktgq16kWCSo9kRRsVfk3PyehzKTjgU6uRHWyTTnkWy6QF/lArgSB /OB4QEYH9NcGtYrVJGW8WIXixeHy2L5PwJPHcZxptroIFg3lsXamlZJHLPak 8DPyiAwOpljcxdNsaBZnuZOu6u+iRx7AIqsY/gg7Sz8/iuzrb8BrHUz6lMLC akozWZ4kNl8JStfiaB7npkHptKG061JaxYSzGE5pbigtAWbpymWhpuGwwMS3 LYAMoKnSOXs9G9dXXmr6zqGrbq/jmLSxTeoiNp6nqFkBFJ97SMF0LOx7R2QT KR2LTRFNsDaPHks/elyVRoFWGZ1sNAvrZXRCjKplBSNlyQaMRmWyYzF6FzFp M3qCldapPEZzw+j9/IHdjz/+axw9vM/eC+B0XSDpkylO76GfCUdsZGa1t636 j6ijZZybM7BOBWCtApLaHlYY3FpN6SetpzW2ucLWLpFkAZ+bKWw/rqojl+31 bHnhxQbcA/Yijo0i0FTJRJdLPHQdcpcHyEVvAQLPWE+BJvfje+zB7wDkfg3r NKQs7mhhZ2lrqm4nEOlWggnq6jjWdoLMemFnEbC2VYzZXC12GvK379pn73I4 r1OqIfYhlDpJZB856EDii8jdoMg9V4WmXz/oUPrpZ7JbjyjQ5E5hvwd4fQ7I 3R1HTPOsIbdnyO2YnFHlymwZi0+j5GaK3JtrD4xPdsAJZxa5hyty84DganIx SfIxJLhXCPWVLVV3t1bYxgoqPrZq8qv9TvSwNXUUg+2mBth+LoxtAyNchoyw 8Ic312FpaahVDUANJhyPpokEN7HrJS/j8ejYZrhBrihPQhvKFRUNzXAdj/K9 XgQyRJmHa2HjamDtcqtPzrTuog2VToa16P/WIVayKve/3vhEQ2yB/Xpw+mIQ uw5H84bYKaO1XUOsZ4xL1xgXSWJzk1Giw1sIQgB7M+eRBt1xFFZPZpXCPpfi 1SvWr5Pf0PQhXA7FVVtbXEPFlgiu66OoYuNGhI9GUNXqGkL1FPrSTjUGNYpZ cztmFbJVrzCkqoLKBOspnrqmHbGnriFHnAWi1tUDNa2ufIvnDGphF1XMNJBz YUx7sgn2AfzNB/GWCFN6nkfptwhT1tUF7HsK2PeqVNPP2Bz/zDHHuzj8ov2r wOoaw+qMYbUXYDWqrkUg+5u7rCpffDO4HDTCggNYA+gFoHIwsaS+2KCjm4Vy UNIG5zac0nORSW2a8Y3B+TVh5rTTdD5R0mn7X65+hsi0fW+CTLfzILVoo8gD wWoVClZXt9CSFs8RHa+XSYo26uVJJtNRas1k6WaSmEnB6y/2b5WuV9jVFqST HuEOBMNnztkjPSnIlOy4e0B5UwgpkfsIrC9RygWZOcWlTi7ZXML67lJczmL/ B+Byqf+oOdqFoPVhPH0zQsvWhEpEtZj6rJY+qyfTV8mzydVeAEId45spVjEd JbR0M2vpZjZ4dAewnmpNrWuna1rnhH1kv1kje9HJQ4n9iEg384HYo1dWHGK/ 9PQ9kzOI1JP6dPxJfQKBahUKVI2QTrACExXScRzv2NBGU0tFILVUBhwvt8pl vHIq3Z10aXSciuTSn27cEKe159LKRZcMpOYAdckCleJTB9QHCFwNaoX9HsBz L4C6EUeLODfrgtp1Qa2SoNYpJg/U3ASqlSHT87lCrpuFO/YCrsA4FlfwFMy8 gDJ+44qXvwQXVF5baXXX21g2srqpUo2PJUGwaUBJF2yfy+tmfVikW/nA5afU 2M6vYoTK1+SMhsK0LFhCmpm1H0XeMAitQkFoYL1HMW7KKGuTMoqa2qYpo7w1 i8VwAfVMbYFbObeqMJi1ALI5PRzEKdly8BBLJ3+6uwi/RxGJHnQgYfVbHluG i66Q5O0XnD7ahVv3Ecw/8ijKMo+gZLoLz6Yx7BkMOwG9LIdjWEefuVz/S+rl rVbgWWJfxvVSURnQSyHTQ39PtvZKlsor+RttMyBVm+JS3hDk3Eet0YzGpWlk SLUUaS73p+1VGJ8ylMtRgs7SDzqblmEYTcHLD/CncZaYgMH1tLKBwW3AZyFn NB2dz5BWqryK1ErlcPvXqg0XfMbO5w4g2jNaOS3zrw/j3RKds4HskNbK+4gO YhEbAfwIVtJ6FGHZIwg2NZ9TMT6jMlkM51Ma2v5PCbufck5o0MoWCTRZMzM1 bezROiNEerlFSDqlm11vo9k6OxRDU0+PoNAUGySWT+L9vLaxBsmPN0dSaCZP o+vvMBm0sFWsSirjzk4s7px0b20D2QxVR1tZWC8XNCKW0VxQGRggVlvYSmF5 I9lWjeSb6RK9myPHAJaorXRd5ZyWPUIP43l2KTbpX/w3YUmAKvX8Ldrlf8dP dR494AehD9LPmtcp7J8GXtf0f6OOmNxZQ25vOLllQ3Jrg4vPkL42FLnYPLfr 6KoFrpszyixdPQbgsq5qfMUGI65eLDpybvcHwl20S031FYHX7nUY5nNdeAsb 3pDNHT/wpL9hUTt85RARK7Q0CDtHtLrp/G0DZkP522K41a2llFvSpTIZZpWU YgmDbhLbXgDbGQ4p8/4j5HpB7O+4MeJ3zK2VMTKulxsangAsnwdAN+Bo0QA6 baS16wJajQFoJj8bzWQZFlTMX/JfpJkDXlew2a2zQi9/SYYLKng4IC4ybyYY LUNcym96svc/mSCXS04M+oF2XHJe6Azavvz0PSdXCU0HoauSFcraZIVaOd10 eWUcPMukpGZqdfPb6CppPnVqqANAZwLtCz0XUGZoRrYM7WI++VN+lH77dwFK 7diU7C9ZxEcRlv4GYemjuG8fUaRPGwVlQDsBBS1jsWkRA5T2lnjST458MqpF jWre/+e63ILLbwuokHnvz5N2XsV30lb1JUyvV2HqB6eaU1l9WRyQ0FT1RQ8J /bYw84JtGjC/bq6IfuDWhRSnn3Y5zQCqhLTwJ/oKLhEbmkeojkWrUCy6ukmi VsqZtQlCo5XPfAw0Q8rJaBYKTdvyqoQRnU2h2XW1c9qg2UmgiVv5G4Tmz4kM bA9tfCKx+Cgi0t/A4T6K59BoTsXQrFw0WfyLJJq5jeYttafFRxl2tnkMTdbR TKGp00VbuA/wKqFq2yykSkxliFr4gMpay1KrWotu7A0Aqvh8sutvuVchxeYx is03r6z0n06X/WtcbjuD/e3J9LNuUnCsrT81e+totPa1SjknmCIa0dfmMiZZ LTpDKaIykCIqXeFk0ckBpZIBApLzuFkMzW5ANadl8w/XQySav6V/odEsFJrn qcSRxvOX5G2nAOTvA821/f9G8PkbVQtlSKdjkFZGP8uAwS0CkOZGPyWl/TvI vN7CK48NutxiOJ/0/JhT82hVYtn8psNxQSWi0ux2fLMbSO8utyq76EpoiNBT RQzRnUdSCKqbFkIdfxrRT6imBRvRr9C39okhRK3o06PUij47segzncqdYM4o GzdnlDXMGXmlltzlNJrKLZIGt1bRKmBwdeIot5c0CaPaC6DKhOVgLcErYlEt pfeTy+XffwIofR543YCjRZybNbz2DK+dpKi24PVW+saApt7CGd6InmYBXnNj dQV7XZZTON2tez2br6zgbk5WVKWqMm2U28DKm4VgbZo2igFrTbcpNjqwar+7 830Eq+5XsHsVtM9Nwfp1uil8WCcdjxY2rrFkkeA1FthRnC0eP8s7QViLNpZX wsrtrg6wuF5nqfaiprxOmYzRPAjrJHjVuSPN68NkfVcA6EuAKh+xE57BE00Z ae0GUC1bo5opVO+UssqoZtiHeHX0FZ+KyiBZoSk99SdVOQbauk19E0sLXPkW WNMqWwTXjFShScAaZnXHe5/7p6aHQbNqx6RxVktm9XQs4yC8RcLigWknNprU mnW6ND2AVlJXrEraKK2qobRR1P1Gs7oTBDWkqjzwK8MdnikLrJJGDOeUas5F Utdqzu24lPaMqk4bVZ1hSov+b+oAFVve/3/8hAD1baRSygTPg8xXgVEuwMy7 jPYCjFZGTsvhjOYmRpVBav82qab4DG08yzieFyo8WU4z1VSPB74gpZQ+vm1C XVXWU5NIslK+DqKFj6jM9s41JtSb6k8R+nu8nzPRqV02bUCnDedX6U6wkkbD 4AxljfJkZGpXXJo6XsFz2/IHcp5IAFqXSrMxSqVZw/DUy+vmDQEtG9reHLc3 IJ6bdTJIZx90INFRM6r4dBntuko6bYLUBaWkRFz/vwnI/8caKgHF7aCjVHK9 HfzSHwDQpf5vzdFvcKM9iqd0UO2YSLUaDdVcoXqXpaRFQEmLAec7gCo9NYaI Y7zpXiSkV5KQXiPUdZX2t/Ltb/PKzFy04T7B6qYvD2X16BasZkDV76NXXjfe R5/bGSThzxdWh6bDvO7YCSRPQtNN9NHCqOd1xyG0iCWQSjeB5BHKdzXyUMrs niiHfHfDcHZNcrdrBNSDkzWwAmL0WhWdzKaU0Gogl0ReF7/9BKC5FyDdiKNF nJs1kPZcSD099TxvEYA0N543U5DebkWmZVJP45ByPonPA9CrEJleI9S1ZUU1 iSV5+TWmwu+0HxwYM58szdic2oNhFKceqNr27to0u2jKpilQn9Lp9I9EqVSD Su/0S3SH6P4jo6dVrInBXwCpnpuhtIswWlKFLMQUdiGmTRlG8JwM/HX2Y/5p ENb2cpo1DEzTZdK8NaxROa2k393OflflkNSEKTIktbzuEFbZpSoRrFn9HbFZ s1qYPNLdxMm9Bx3Kid4Xg9F1OJo3jE4ZRruu540Kqcdo4calSkNvpT97Kyd6 B/GsNVRwpdTQeSHCUAknRr68EQ27BOe1+OSuUQpKf9nyu5pM4Tf1Do5/WRha k9Fk+k28QQXVYO48ao+nOv0MMTBN364F5jcw95EPZrsJxhpFoVGnO5mcUTZa zihrkzPKJ4dm6aLZUTp6N7lb4pM3vgyD3UWdGJhTBsxZ2YegwKR/54OpE0YA 89cv2HcGv/QqgLkGR3P4lzMxMCsjnmUbMNnh4jMi3VRgYquS0qnY1IndCxGD SjbRfWSc7fp1GS6evI4sntuE9rl5ANHCR1TWZBYa1WQShMqZrMVTeD+LC8gl GLtK6md0P0dSaZEpBtA8je6IodNTjxmDFjaZE6m5RNWyfXYoT2aHQrXRPIZk EcsOhaytUsv75F1LarldVV7+dOOGysrhai6rAJe9AJcsexU4oydQYDKWmQXn v9EdDzh3bXxiiV99JuDs9H+H+Y1+i4LEf+PZHEy7BtNOQD/LhphKTvs7pXzi o3zrEVH9LNQaZxajuBE4/ERiFwL6RSSKaNvON6GWUfoFy+NqRGWkQ4/F66bN GQ0NhTkjxChnc/UEKSFGsXLZ0WFGS2b0y3RXWDHoqgWgIpnDFbwqGaeJzhWr qZ5pY+tFoQ0SuUUS1SIWhZaueua4ubW7fZ7MEjGmpYL1QeLq1wrWwoW164ro tEnlMqzTUVhzE4qSvaUY9LeYyuh3iEF/ixhUQzodg7RKQlqa5qMaUr0W1E7L 3xYupGXI5HZtEeXtcJUb2gJ3CwXdLtRlZBU16SL6ErMQ9bNFXqV0sfGIUt0V 6A+JARcOo8blmlaGT3qM6mXpLUZBaC5TRN+QHUfCmVosPrPYZGLOySSImqpo NEGUtUkQjYNm1NhWUm3uc9ytyhJpMH+D9cvI4cbA7MXAnGcwu/3f1nki3uwc 0QMv2HcNaHwRuFyHowX8qxnDZc/lsnLFs2zIZaa4vK22tvR7gwa38AzuIJd4 4RDNq2jbwd9oSjjp+Sx7q6EUyWrLUuOCqJ53LMDkJl82Gcldu80uDjQs6Ma/ 4UiW/dPpbrDn6Ux3J6SjTavpLx5tNoBS8MRh/IH8SIwsmtkY/nZsMkMhZ9Tf lgF/++599i4sMh8hmAyZnRiZU4bMOdlu8N/4F7+N4qmjTzK40/i1VwBPBnXe 4Dnl4tkJyGYDPHl9C2lu+3fQFwIIvQ166cBZhpxtp3+KmgBFC+Y/oCFXCiZd 1h1CXT5WzWuFNrddG1A7/nRrLFVsVJpcrXDalFh0Z5HNpzXgZZOlmU+tfe2u DxKgdg00BOc/raz0n0EgnsG2ydBZ9c+g72iPzvSo7cnEm6LhQLOoXNa9QyG5 DOWBsjZBZ7qeMiKUpQtlpaBEZGklg/J6nfrCNrPDuZyWfXqayx5z2RngUmeF 7uVFXeh3DgWUyziaw7+bHg7l/8/ceQdaVlX3f+eUe+/r0wdBkKYIIkgvUp4i GogtWBKJEmLshRhDdETUl19i+8WYYn4m9l4QEenMAD4UUBHQEVDqFHpnKNNn 4P7WWnvtffbed+1T7r1j8sc9DK/et873s9Z3rb3PObnvZTOh4UwLKFMXSDgP tyKMvV42rJktqpGf5Q24V+PSCdTK3ypNpDaymWtki1XPLKRRr6S0pJWUYnPC uLfgGdIYbMqd/l4A4wjBeBLD6K6dOOYVfhPgyA0FXmr2fdoyZIFsd3+AdxPr BbKiuczd5tKUS6VvEZa5twgr7mWdufeyHsoMaJAamTSZAQ2Mo+ReW7qxfIBC 4wyBEMeMnxbI9pUv/3yIHWTB4ojA4pReBFlL+nN6y+5RPAB6+JAjd0QC9+qu xwXOdbwLYcKyOGJZbDdmsSiQGsbuHUD+rdRN1qyOGkOsjlgVEcPfQDvpYah9 a9v61mDe44xk29KqSbDvYKwJhvx8CMMgOtbui5XqWb9swGCHGPw2nH2BwWGv WkbNqqq5Eyi6z6BGXawx4UmFCU90fWQQEHMfxJRBvJ0dK096DIjsVnmlpBLE cb2Zx2zwwSEPfPM6AHADDXk22CHPD6BSPbbDs+Dr1uEjP9fjfZ3XYUFdiz/F I7LjV8dWzLJKRKZM5J2aRiIyjxGZBUTqi+BwqIM0XgNF8XpSiGFSZa5ZLZYz sxBKzWQrxqTeYjDec+9NF8lgQ+3sGSKRuyjVs3DZgMgRIhKtaoTIigYyC5Es JTJziRzeREeqidJER1qqrNs3Nkcx8yc6kkUlh4rQ46VCeqQDX/eEHbaC2OmG 07k1p22Bw1Gfwzl2pQOO64FmQJBeS3moY0Acwa95BYK4EP81ZUEcLQUxj/WO mQ9iom88eBuS5/nSXCiICRdEnOXge/wvXPQABJcDite7BGpz2rbmNBjmOIsg LWkRpLi6c6JnmFMB4IxTE59Nxw69VaTPXfhw6CuHL0H24Id8ExJwhDzkrs5l 1AM50T5HNoNUwaS6O0yFJcka6GWl3WGun1lyP8sWUwCclndAJfzQwQco14sa 9DK/L+xY9EZ89CYsemOE3kh3PfwUg57B7zAoSndBUXoc/otfdSLSNx//Oam/ tZe+tlAG82r64M9YAZwDffhSbaECZj6C8KPfxfQdvvNObhFMJARbYX9oENTj 1Ja0xlHsFJgUx6kugcIuWGwMBQCllUcPwMwFEF9pgd9I9ztw9kvw2xatoGq8 0DhI7asxnpFsqDQzTRsDGLWhLQZwBYR/Od9ez/WgHoBtH8COX/vGLIBTenli HX7bBhrzYCvoUPdMBG637galdsZ/kRedsOiNCOi1mqCXCOgVJbDgL/cdKPx2 fODu1+C7DoL3imr9++kjug/MLCEUsRj+iovhDaQXj0d4n8aUCjgyj3nJmuNk dH3DABnZlr6TByP50Zeo3iXGAEbc3PpRcDsujCnXwgoQNYcticNK8ym0gzU4 VLSVlYJxmSqphsVwJqk5nJGWFst7wvLhTFYTRsmItrgnxMbv93BquCIaHh9x vGhSzeOo5ZGqGkGWIG7wo5yqyN1hZsc1zOgc/NLDkNHt8V+E87jAaFsoj7nA aNAlcm9o8MxiDpXKY8rPNvq6j2bSfXBmCQrt5BOpUCKd12KhvKGXzlbYMho6 9b70XNoQoJUE6Sy2+GgWHiN70Wdw7cCjc9zSKS1omMWMz8DrpVNT3dfiFlef zaz7LfCp3i1FhjirkTvD5pMaaQVj2CUybTKpaU5l7lOZ8kPCuEbSpVupYFQL Lts+lyN+nRy3XBJYHUQsD8Y095/wRv2J45DCRfivKUvhqKWwE6uUUQozvc9I U3iXQ2ELj61YkXQAfCHUwx+ffGLGALrl8be4B0cAMJcA1KccPicsLuoUDvEp u+eluSIkRuAZFsDn0HGse0x9+FQS2NRW90x8ugKkZbc6fgffasPRTG4BdJYP lbN+mLnrh0NZrpD6w6TxaCbaH9ZlL4tNSfOYPTXsoUf9Mt8Tz6wfOh61mrxR S96EJW+cK+KGYkRjK6I7qgEYX48YLsCvn8TvHBMwbDfGMNGG9XZErteh0r23 Uobv3dwXMnyQamaWpE4JxM8hgddhCbwRf6qHIbwbOJNEoWtUq9YU58RWM0oZ dHasPsvnT6neqyRr8pcgfrjjhuFrepu7IbWHyr/KqvmQJqk5pJHWDMshjA5p BoYwYwjRl+JaxYfovj2+MX1YcXvGVz55BI7Y2jdmCZzSSw/sSfVqBRfBjUTg Mp7W3I3XMZ/wxp2QwMXdjXjHrQ1oaT0WR0pZzP3mMRNYxAAB6sCiebV9W1oU xADHc04+MUccE6cgvnX/fQnH67EgCjjmEo6qdCVjbtnqYh0eZ3FU4gNJjvRt qnftojaQLaqIAZBFnzi8eU3mAjnotGbY5TDaIKaDkhhY0VZgRZ+giuVbUUti UQvbPomjlsRxSyLxlCJZCCCgBxASiAZHM8ZhHOfglx6AOO6A/5qL3z4u4Ni2 DrVVE0e6pQn82lUFjvB/BsjAoSYBkB+YPgKBTLsPzyzJkEoM2cwSWyOv0TUS z1djMFNhiWNebInDI9O9flm4tgN7RR/MaXyvu6piqmrA/MyiRfXAbHfPgGwt gCl2ic4EZxt1iYoeTkI56ieqfqUMWsWk8QBniHxm1a2i4fNuqJJmTSNxRqoP M5+54FU7Pp+jPp9UKTvM5wZA3fCZOXy+HyhgPtv4pccgn4vxX3Msn6MCn22f z8C6BnzC778Dfo9BMxNqZc73/fgmIHwwz2w+gDObR5BKQJMKJnwBzlixViKW N2Ct7OUSfjOcUMLSoFnsUs3ClcdBqAy2puJaB1O5Bx1H6e9w1zn+ha9JNkS+ U+9ELRYYaXCTcqUUpqkI47AnNpnLYn87a4J5jVQko/OapL+eMR02hLRqQX0j nrULTniFrZMAiuEwsxy2qzmcsBxOIFJtB7wzQegM3quQuYX4BVP4pWM+cx1r UVvWoualzCXM3D3A0QpmriUwlwjMfXD6iAyZy4tymNky+Gsog7/Hny8wl4XM 6V1wmbzSOC+20tgIubPM/dMZtzbul+u+Q/Fzg9rt7qcAMcYNfvNn7ML+9+3C vo9cu/s9OP0CcgPNaOBbnGv9Gy/k1xjUDLvy1egR0ybQ5f61FwV0Ke+V4UkN XXuBr8dPeIVT8iTURgTUiJ+50ZKXU4eI59+hT70W8ZuP3zRhS96Ij59U8nIB v4yXZOBPtPTBq+N70RZfv2i4w5bwg1jrHkXkDHwpwZeHBQ9PTCMCU5dALQr4 ayMXNPYgGN7zKth7OoMlx2OwRR3isfD6Z+Dvk8AeMvjpnXYyK4mf4XtaMYK9 BP4Qt5uWElh2vw35KosIgRAcrng0qaGyBx+7hHPOpWqwUU157UsaG9DyUU02 MIbahZp5TYJPjOWNY15bKDE4Zhmc1NtjNlBXaGpe7s1mDHlT+AV7dzfhPu+N DO6ELYESg636DK4Gupg/fLX9Apgyg+8BX4oMHgEMnotLFI8ifsZ0pk4BvJYL 4E145rwqqGgDIp4+etVdROwPQmEDOG1y8yActd3gx4E2B0LPe5K6PQSpEUyQ QLyXOehAYLD6Qqc8RJAIjF7oBD/GgbC/lcJgPCMVwfLxTBLbTFO3/cuElUKJ Psl5ZkzfTXo7KXKn6Uv9Chilb9Snj0DqIFLBZCbn4+lQGkMYc/z6oxDG7fBf cyyMoz6M7SYwJrxhyIERjYOLI5VERTWRaMQAII3nnXxid83MkpZfFXET68wS KooHQDFEKG+E//ZCSYVRZYZIUxvDC/6LVcWWtKpYXFM8Zomssf2Ub52snktH uhSqisRSFL8PprQcxTxEkUjU98/I3PtnVK0ZbhM/Gi2ENdYs0sZNYHMUc4ti 7hRCM46hR6cnthAGZrQjoDiut6gZFMcNimBwDYotRtEMSe/BmyPjjakAxeOQ woX4TVP62z0KO7YktqwtzUsphF99F5BlAMx9ADO+AOq9PnwZ0pf79VBRR0hf 9QW8uw0uHTZEb7RsF3jv1cLjVBDrovfDkDxqCN+yaFH3E32R1+mehbdGlsmr ekhAQ+4yl7sm27ml0UvdAhgdvZTbz/LRSw3qAvvZYupudgogUSfVvgK4Ees8 xyxwc/TaQm/ta3U3WeB+COXIALd2h2epVyBwC/CbJvHbxwTgpLKX+8BRGTfb D+4DplcycC0fOEWXNnW/BW/CMLdk+gg4F48hawJ1OS1SmHr3O/jvzSRbDz1t XMiJshutXp/IJfi0jCCaxo6G9Ll3b3R2fdP+NQ8/vVp4zNQU4fdJAT9ekAhm MT0Efg+fpFVGYB4SWDyUTjVfHoy2gDXWCLdJ5Yu2gOnwGbwHb70HHB65w/bw vdQCVjI46jNIVWs+4pQgWPBDN4HhBPwIQQ0ihJhnMQAjfN095Ayh+uF30HdN 4XHn7mY8bMKRoYfniMWz7dfDcjx1QbR0rsThjIEz572l34Y3cQjPQ5fgPPQx tKGGy6zgMqXRDVdC+Bturg1lFkIZ3h+u91rhSdsiuu1hBZO4IuEjSZ3hLu32 oEieCRKpiaSzYN8PkkrYQANf6qwNxkxpjelMtDzWmM5IplTqD9MB0MwtmmRA uUbiiOZC2lOqK+VjgBfIHF/wdR6u7VJcxy2uVDI7CNpIwOc9dD1EwScUTEO1 Ugcjn9vjv+bgD5jw+ez45bMen3fA72A2fT4Tmc+2UDcTdqvnQBNp6uYtSkS0 dITTKbtKo1g9nPRGOIbPyyN8ml02Z5tbGqs96ahXCz/h9IkRLiUsE6QyeAKd u5OmchdNbpl01gdVdLEefoxDZROrWj6rSaoXLMpnNXUbxEYs5n6ZNCyaWqko Hr0sBlWzLWA4ajGctBiOC1WzzVSa0Y3mUR/Xwf8DhvhSR+NxEf6AKf2jIkC2 rJ/NY0Am7AgcIDGXIY0GSfirv8M0Ytt4Ae6jeRyrpUGyGN8kTsn8IpTMG+g5 Oh6U+izi6aTaWUpmOzZcda6fmuqZroZoSttsQPq08c1jM8dOcs3JO+7iznCU uVbYsHmGqZmJXdDw4PwB3hCuFM7cNbBmjqr6Xb1XwoVQfXrYgQtl3T6yBpyZ v4wRwJk6hbK4StiHE3SuxyVBjexYOEdsjRyzcM7RqxSbkFpNozO9sTRijTQ0 HoPHhfgdk5bGUZ/Gtl8eJRoz/otwe8Ld0DGupJ7SgJgxiKc48xsAsYUg5oJ3 VTRItaXxOiiNt5I4egukoh0YZGHZxvaz2O9j6C5wVGBIt3jzMcSOcs1hz9y1 FMPvl2LY6f4IW0oZwz5vhxGBUGok4Ut/wn82v/oc6pRXyqR6qJNWN5TBmmIW gzE6Ss1Zur/l7adP0mJ8AeOjDGNWDWNRKcctjPMRrYRQ88tlxwGUpz0eoFwy 1R/jcZ4FdMwC2okB2rLz1gJQk3IeKNpKDWiHB6649S3gE972E8imVy4LBwsR wUr5tv33xUqJ52cIgEp7AaZ61jwMoVX7UbEy7eYZWGwu9R1Sd9+jZ9waGtgS OM/ELyuDs/lmG1Wyyqj8nablm9wk+xpMeQapkNFWUtpvk1VDKbWSBsqVEGas kHbUAx9bi5tvNJghlO0YlGMWSvKchFObodwMAIZQupOfXPCwBPTe3S1KPRP/ RRV3ohTPVimeuoASnasAxFXI5UpceVzhFc4PTR+BYGbIZVuonilxmeI+Afp6 qJzwVg2ZdOL0OIBcLDtZZ0UkD1dEiscDqAVld4uLkhnuzjFk/tCCuRcdaQVy 1T+84KDYGkh5yUwQSrSv0O4ISPa9+0ZGsoZpjS45lk93kiaLH8F0J2papelO cyRbTp30pjsJEilVx3YpiJPWqo6b6gjQxUC8h4rUvQTiQ1AdgTx8qYPxuB3+ gCnL4KjPYLs+g3fCT2b+LIMJF8jvOjMd5PBJIK0dK5ApF0hcFXk7FMcb4XWb clikKqnzqWFRlc5jW+5O8d6LHef00Ohu1Smj8QK9LuLTiL3kqj9//qGD0XgW 9DflNJZtxKm/+l+Xxz59a/OFkHIepSayfx5X4UNOeMKT6i05a/EQKYwdn8dR n8c5ek7aWxgzPObdzQTlR3jCc28A5Xr4GEL5QjwutFCOWyhH/MLYsr41F6BM CcrUhRL/XOwpV1JVDIjMEMmWXxp7icQv/jU0lHBGBCL1kCdzhzyV+wUW1tov EFuqdDcKXKz1P/0tFfKITSU9a+Mf99q3fx7PRuMKqbsOj86mgHIeq3YFlIPY aJqTNCmMwTQnrW4gCxD5AcAREIMGsqUnkbqC/La48ZtemVyLBfJRHphEWRyx tXFM72ozLBJF48ydmeXcS82b5u4xsIamGB6FxwX4HZP4vWMCd0ExlLjjLpGx Q+OAC48+ckdC43fa9BEtRK4ogoEbVTTMsTXwd/gc1eEgt2Ag5MKVyLPNvU+Z ttw0iWtmDnihWeVQ7k3fcGf4GfoV5S1B3CC2AmzbYAOOSt2ZTW0jWmNg07w3 lApfuo14w+rnTG5ayFtQ9tqlqI3rTWybcFKzGX/4Fl37gF+AjsAbdfDDSY2L n+tFc90PblVqF/zXPPx5E7YAjlgQ29Ugpgzig8Daaq59bTwmDOLfAPYGxIvw 3hlrEURDYy5YUkUV0NQ/CODtGEWPR50uyZOyL3XWH3O7yuHg2MOjsABJPLqb xyt4nP2B5fF5dCTmVp1+5PHdT+y+B7LYL4pngViiKOauBTUjVNV42V8Y1DRa Z4wOapoXv2BQ06grbASjcWqm+OG0po0k5rGi17EkjgokEjljyJCpfO48psPo odsE1vCl9sLjDvgdcyx1Y5a6jl/+Wn4vmFvq4G9F4O4CphG61dgBrrK44e9n 3DIft5bgN+ENfrAofDJuqYubKh2X5u5EJrhgeG4pcVV7cS7kVQwfOSwiy1+z 3xHdf9KGM0Tu+w5ytMSfSsi1uz9Gy9mL3FB32jRGrobfLK9/SfWCRSO/WQO5 oPFLg/qHE5mLTngF1T/4JM5HQdAk6iRWDqMQknucq/u3eDk0TN5Lj0vTTD4O nBgm98PjYvwBU9rE9jLZLmUypbefdu+DH8o8wv+tRjfqUwlOFKlslxbBjKnE b8DV/RUUml4qk5IpqYos9S+o2oQjEnm56l25WKpr0LNdGEdN97fmI4cdG1uw qE3j2Xs+t4TGPKTR2WPT9zK+ogui6G/+mWIapU1vdccwjQpgczfaiEa+kKEo gGZnKhVA+GYHRX0JhFcN2wKIoz6IVNHmM4hbwIMaEMeEcUzH8aUGxIPwuNCC OGZB7PjFsRUDEX8eXoul6yJ8YrXpC7vfg485GMJXrptZ0rEgtoTymHJviOXx QLxcGErkCmaRTpHOnXjaqEpuGyDr7rlZqouXD6RpEMmUYoXsC8gEeYRo/ghy d0DjEFfzCxYVrRgSij9VfZvRRpVRWqJIG7OY68d5mk1vWQ0Wi8qIhvS0gw9o B5URZd2KFcWOz+KY3jhqWFyAKGWEFlRGqIIhkO6cZkRwq4fhkYiesJVxRKiM Ldsj5hbIlIG8uzCpDGTW/T587FAeiNJ0Zh1i2FsUQxZ1UfySLYqGxqIy6jaC 7Cpb1pputff2NnOiKNbYd4MXEjOKe9OR1g0vX/Ky13f/4QWHxjBU9Tj8MWTu bcdh+YRGcqjSUuE2qYmp0BSmg3JIVyImiCDrC9ft19LVFZrEJ4DEx5jErNSe jggkTultMVvws1t7SuN4bGQDbpJwfAJq1lPwy+GldsLjTvhT5lkmx3wm24Jb LZiEn3e/41FNfXRx/DAUu/WAWsdnsiUYVUX9I63hm/K4shmWeiExDxcSaR0x rI/C3lQRytgS4vl6vcKDsmO6RzKsn9x9D3F3jaL94XQH4jPp/+JknoO+Fb5V JDN3raoZnKp6F+6XQwnffgWHgF+SYS2f2NQtktJyRXPDWg5nMbFpyUWyI6CZ +mi2S9Ec1/vUDJqTCNUEsZh1twCbl3LPeNYJbxxlEh8GSgyJz8Hj9vhNc3j6 45LYEapjQWLKJD6Cm109p5p13wd0HsrT0otxB/h6NKnGqbZiTlVReaRdbl+i y6dWRjBMXQxV6YpGscXGKY9aKvBHhyTW3VqzVIPxHI9C0zaSS/04uFTz1O9+ KEwQQpUNFcHyyY2ijd/0J1+hqkxqjfFNdL+pVByD8c2w+dMmlfZ3d+8D+48M mmUMM8ZJuutwgvqYvYq+16IW9I369M3VCxBcGJ3hTYrHEWQRW3am8T56VozG cQNgYnB8Hh4X4U+ZiuHYjuGoeSQS76DLs+7AfeAFjvh7GceWxVEqjB6O53FR vIlGqiv5xBCOOltS52g3i0cWNFRkj82C2B6bHh6rNtcs1Tee8nhsm66R7OrM wS+yPL7G3PAU3hiuZThAVvJ4DpjWHh5bEo8DbKGRBjhDNKvReiitYARmtdEA JyvlkdbpjWPlMQ4VxFzvqFmHh0gxlHAcszhSNVvEOCJdWAuRwQkmEUc4hwN5 LoluYdwXjwvxB0xaEkfxx3dKSUyZxAcAOOCPSMzomJNbNSAeBSAuPflE/ANc EqXCmDGJuEccFzdWKT4Ryf8sibEljgv1JcZM4vPp2LJNI1JoKiO9VR/CH9SE 8Fz4uh9DGvcgTIc0Qq0xtunTkTaviFFHKrWLfRII/8QLo0xJxJUNsKYawgwh TAQI26UQTti1jAXIUJuYSrtbgbqQxKOBeYnEjbouqgPwOF/7WkPiiFATWz6J aCXZmGr87qCfbACE9hBCswHhq6yFqVML8Xt1LVylRH+qu3wzS63cb1O2AXzK Y7DuRhusMkjDHh6ApkEka2pKYd8A5gQgVkJn95rSG7tzWwad7TSq3tY1RZcJ E32Xq55pjaIlDPrjr1L9uNJGVVAa2ZS70tQf2TRl0LSGjjXVDObIoG4LyeI9 TpGMlMSOQOO4pZE4GjM0AnmGxkmHRugVicNxphFJfBp+L7zUdnik+c1ci+SY RbITQzJjJO+FH30n18WUq+MZ/tSmLVDZKqES6+I7uC7GqZRWOPJwhYMWOEr3 wc3pKY1199ugQT0noNLuMl1+2otfZUsjxsE85NTOUuENoUH9YfGK0pkgnPAH nwN68tFMXTRVo9udVsxtUnduU8eklm+zSQYokTVMah94tryuEV/v1BOcVG+A W4db4SIFMkBy1EeSOJrLSG6BBjEskM4IBz6mkXwEmDFI7ozHZ+APmIM/alxA si0gCT8F3mX3QSiId9LPvNOUyZBInMjOLCGr2vZnOLlvVRNGEr/vZkBydWMk I4uOZVvhfCTrLv9fousSLm94SKbTqugZ4TcAlCp88PcZhKPTMyKOaRWO52HF rMRx+MObGla1xvAmGWB4E7Wq0vAm8zksVjZS5tBY1ev5hefmIrwxv+EQhQ0+ 01TKVG/09Cpl2/pW3iTqVcpJva2N1vDjldKd5bhYcrVUz8bjIvwBUxbLUaFS tmwbmTKWa3AlUxdKxrIoktg4ApLjNYukoipJK//vINe6moksOkh9yszlGap0 9TEPVx9p8VF3kPO8DrKfLTnoCc8zd6VS+9CxbTpHa1yHxeK5oKPhs6hqDm6S bTG4SWsObtJtxSLPcIjFDrGYuSyWFsiAxDGfRAIpRaTmOvyZvnFScKp74nEB ftukNr29/AVlUQMYoJfTI41RdIjeMmgBNwJWkzH+cpE/Loiav9SviE34i6z+ z/f2qlYtMMbwA5HP4o40nz/TONrpDf4t3z7y6P75SxA/CPu5YKiCfW9Buzi8 sami6w/pz9cPhh3QljYvh1FbKnWNwVpGFkUwtbb0ejod11N64wkOjVJHhJIY MNguZXBC72PbyjCNEFz+KGdKGOVMCk51bzzOx58yISDZ9pHMGMmH+Ynid9Ki hq6GAZIZMjnhm9S2YFIzRnKJLod4CkQk9VA1c4eqlRtVF4X74mrzKC1rGHt6 VoAjPUoDO0bEcc1HDzu2O73Dzt0/3WX3yBxHui4jguN5kLuHh6OKzVCVP8QZ 2J0OXBHL3anUJUo4ZoyjUw0tjqhU3IuzTsDxCcXLd1JJ7Ag4jlsc5+napnF8 ynGoBset8P+I5I/ouRr3E46P4t1UAdEuObYuznKe5vZz3GeyY8tkyzIJPwDe W/cxZBx+aIpgOjieDlwtw+VFwFGqkLnvUA2OXB0Jx9Q61Ho46uFq7k5wTG3k 4jhvYBiXaRr2dEEcmVZFn0jeFEF85R57d7+ja6Mzuknd0Y2qR+P58NXn7bBD CY19z1JV6bCmuTENhjXJAMOaqDFtiiEa0xBDHtgQgKMOhk8whll1VRzVN3rz MCR25pmq6MxvWngcQwpZ4z/Cp4ADMBKL2+Fxe/wpU7Y+jurNdr31MScW2/hI cSqN+MJHjDsc4qjJhVCqiQRh6tREXOhf8YzFELE7lNMrhiQ2WG1c5DaKtSpj bAOO61LPtTDuS8eOaRLJpBoQv3bcq71t4c05TBDDYG3fXCRlLpDaJhNTCcK6 i4o1rKm0oJH61jQt7Q6DiWkmQ4gLGgbC1KmF67gWjuqp6RP2vhSR4hdQN6m3 q9FOmafx9wBmcxmzy3gog4DNY8yeBCrgg4TZM/G4yGI27mPW8TFLGDPjQA1m h/Fo9HS6/GITcrWRGNqgu0P6vwm//rUEO5o49e8b1o6WoVe6wpiHK4yNimDZ 0uKlWu8zZ4fcuc0h3S0Dufvyq95ARXBw7i6ALD487lTphFTR5YkUBn2D9QGN aNK4AtYwouWjmdyFD/vCED6zxcYaUVA4Li96BLYFAkes/RyzBE45BHa1B4Vi ip4TUZzvAIktIaI4X6h7dFyAP2XSB7LjA0keFBtX/Flc9gyL2AUiiy1kMXFY XA81bd3OeBtQvfq4DveEw8eBTDUulMbAnyoa4djKuBJed247ROeWIlq2+m88 Kk4u93L5bLvdoscn1EYVGd404RO+4wLQmcSnanLhsCqdmipa6ac/XT+LpH+H OnBxLHeoNfjk5/QWg5qLgZB1dAM22u62Hg8RI9qxD3ErSuKYvoLCAEkodQyQ 8KMNkAsYSDOjQRQXOEBylVS74nGeBXIMf/KIUCFTArKFz4mj58XhU8MNjJfg pcHE4obpI3L8G3ImcK1D4KhPYEswp4rcKS3xf4PGp3e6+KXFXjg8U8EFxjEG Ixtx5pW607I7a1zuONPzAwLtnW2QQLq8f48Fi+A3AoPwxr+rqyQVyaTYDU4P 0ziLPlabQsjs245CJUxPa1jUgsKoRS2vkuXjGsmiBn1iOYX465w+0a2SbFM1 lBlCmVgoWzWhHLdQEk4TCNZ2DoWnAjHI3yLBp+6Gx7n62zwKg7KIhhu+zQCI b5sBzBFA+KkbkTakbued9Eg1t/txEt6s+iR8B4K5gS6XipRFD8rzeVf4SmoW 7+S0qDMkniTzotqo8ygtctyuhgVnk/VFY1/Ps3C+gI6Z1zbSW9NcYufocamf ckPLGnQz4h/RJ8q4TBBL+A0XQA/UA2XJczIGHp4m/XnWGlOb6FpGjZoYndp4 NN7veNZMmNq09QUa6/UlUxCEJ/VLyzkolm3fvY7qHdwelwTYHMG9LhamNosF 9/psPE5ZTEd999rG35sxpo8CnlgrA0zT7mYiCmAlTDdQT7keY2JYpdqZCay2 hAJaWNiMWeXiiWdGp0zJv4qMSht0nmFXPwIXW3vZQ6LUcbDTZ6oAU3rOhnGx FLsvAaWa1YxqaLjg0YjUlEhNXUqrMVX9DVcVrTlSGK5WQ/CvyZArZwNW3f4y F4Y7LZfVtXhzRpnVtl9DJVYn9d42Ws6nKak/68Hlje2FGlrAOW7hHPHhdLh0 S+hHpo/QXGbdTTjSAd42AkVms46EZsJ7jZ5w+KT95e2YwaWn4mCF4F3lq6Ce 3lWCaHyzQB5uFnBubrygMZ/S8JXtLQ5jnuehOROgueZLrz3Jovl1KKPiWiT8 Fcjm2fqlqtEERxZD81IHTTW80U8jU9to9COV0WD0k1a3lmVo4t022NhaNN+p 7xJXoNkS0EwFe9uOoTnmo7mIy+jTO2xvy+gzhCHQDg6ppow+B4+TAqn0xAB6 qBzeWhm+40F+SusPnTHsR6hkchlF9OBjG0gjZcBmvI0egX1SAxsrpw6uupy+ V6MKJ/ouFTaldYCN7O5Z2Fc9DXkNHK8PrH7WI9te/O+qL534VqynNBX6Cry+ x/X0TAKzb2LhCy/C4cbQiVXVw6BBjG9SXUzLh0GpsFKSCSslPcSu1qsl4myI rgBpC8QmPrFBMe0IxE7oHalPYx3tNb7bC1OiHYXaWhA7Zont4O9o0a3MR+jZ HQZWAdjuFoApcWssYAXv2I56A24ze5kzcZvwjRIQ3nU46CU3HDHCirpWr87e /b8R3tAIn13Aux8dR1xwL//yOz7ggcvVVjes8C6dQVL1GIm4TRBbiNbFoDxn 12sxOYoiq4YyOYperdWn/40W2Rr+txay3K9aZN3JESHbIWQzF1kB2KDEjvjA jltgd9T7dXonSDsJc9w98DhhCR2xhJpHYyGhWFKLZ7lmltKjgatLcV/dFl1V EVANJ/xfL6KZUFozRhTj9AQAv/bkE3HfAjLZ64UVVVdaaXkvjZTursVn6T69 xdLVXbXglNZaXBeMVxfv7YLZMh0qTnqXv/uPT6CqCmAmSCb8cVhUz3SLKrxp p0Otj+ZF8MUGTw9NNeShrqK1T/PkoXh/WtcEJ41LatQES/1p5vOZ6Oer9k6Q 6J4Co0Ehxasu+MLhSA2VkKTq9yyhhu4oDI92jrleInTU1tCc7zqJN6/DBw3c a59Rl9nulOHMDZzwv5sYztzCmZf63qy422tm6EQ2Y+aX+cTfvvp/lk/pkQOS 6/X4tNdZ0uuYvfdf/qWT3xsWT+VMevuhM0E4IVBLAc9KNFV/E15F92qlIOhH 2tbbFyS53eGUzjS26FKOpvJXXlrC/IhuxjPGpDKlRGruk9qOkTrqk7qrsCa6 ozBJ2i3mdsctqfb+d/BpBlXpp/JEId0MfDGo8Jdtwj8gQmomkJoxqY9yLWVS WzKp+KysU8Dk3kO/6w9OatnDQUKL20Mq3bKna2gFUl2bq3Q5zWw5da+Ehg87 HWo1rinhmhOuTldaYxu76m/E29ziSnOkZHglVLK4WQ+nq51NfC1hmEScjiOn UVdbgDnig0nFj8a0uwiTot0DVwuvkET47FaG8HH4bEJHfS9mwNF5XFbW/TsG 86NAx6W4R12DuQXBhA9vIvlHwIz624yDhGAylCrwtxlTybWzDyql7baL3VFv KZZ1lmFCc6svhVb7a3Mb4mjMbcrmtmdzX78oXgxfvAxw7EFRNV5tUdUj3fLV lqibjQ6IapTMdCjdZpspvAHCdZAeEmkKJ4yvxbtocbVMBCjbpVASXXsIvnZn YTa0Jx6pWO5qyUyIzIxubId3feUX3Qh2hGl0x0EfxSfJbUVSuFZCnYS3RW1q qxTJYCqUxpAMLG1KSGZuocRX6lOp8yjtaFit+kZzkBXSK31fi5uLfDTp4kzC k9F0fa0yzee3j3nZ8PhcCratFp9qKAPcgS1t0l+pTEuXXGpY2tyB9Kv8gAKC dErv8DNUtoRS2fGpHLOlck/Bw+4izIP2sVRSp5nh92bIIN3RJ5cZbCODWBEB GqyKmwnizTKDWalfTWv51dSpjD/UCEKI7pHLo86nZl/RHwhEM51FIaPA+fZ2 1GB6IKYzDogqQRRVvuaLrz3JNpj4+ipB6T8jMjMI0quSwgQhxCaTMWyMoGo8 kJUQrOFWpYHPwCWyOYIJEqj8IdAcrpPrACOsk3idcV5dIkcsjFTmnicseO4m jH4OxGNG7jU1sx/61rl4TPkTj+qvpoum5+ExCSjFhhIoHTGUAlamSOY+pXm1 efUqpUNoaF4VMUqF8jBSy71liObh9j/pNurqGeHOv74RdTvL0MLu4+E5zXiu 2WnhYsazZVc+HTy73znmZWUTIIgH3hn9XP1SUUxTwjTvLgM5OrOfgRdMlD+V lUY/dVvKGj62vE6mfbeU94dbh1KGFM8Szn8Qz7kM6XqEliFNY5AGFXPUQvp8 wcfuJkx9jiBUc7fXNLNapS9vyYld93PwtfCb4PvmErW6xTycUb3s5BNHDarw vzgqwsluuxrVeEEFauFHRUwto4p/0FmVqBbNpopunx8Op+4EKPCzVEaZ0wMU /XJ8P0Rn6k5n4RNfxbUUO+rJrX91CqcqKmdqd+D2IrkUm0zAshaSqr9pbN2F kqh1TbZF3ZSQTPWj6hwG3UI5V29830BrmOtw4KNBtBi2rHFtl2K4LyK0hzDj eQ0e9a1CcjuiQX5+Ag70KVC1qXdb4f8NRKndGiSRFLWmRdFLBTcKH7wQfsfh 8DvuGwo/2w3Ej9QPBjZ0XwedwoESPrrEtSUH2v3Gca+ubAXhr8Iad55+qShP CeIEn76EgeoPJlU9Mt0mJrTP+iaZ0MzCFJhQ2saeOfUNt/SsNyY0Q7YSvw+U qtqIxWkMcdpPsJ7PEaYzr8XjqFOdHLpyxKtl6MIdOcp5qHJBV7GkmNWsUxG6 8NkDZ/0P0xVr8gIHOXNBDboyO2xhuqhKQRy+f+TRPRtv4MNcpoyBLC9UBqxl 8MUIVwFW5oIl3F1ONZl8DuIYk/7KU1rqGCNtnbsI4RHFo5WCqJyqFUgQMYMY rFcsXImtjsDWAcKMZQ9hxvI6PObMFt4x2VlgGEG2UmIro8q1deedzLPo2gJe dYtXKnRsZANzBC0j0DK3jOFrcNYWN2KtaqASuEDemKoO1KAZyBzQ0u4XQy8I H8My5l0nCWELHGHRo5VzliBmEDgE7XJ+d2UrDKq/CeY2sYHNK1ejzsxwhusM HwZXuJ5uL7UeN6NusO2Z4SzxOWuXcnYQcvY8YV7yem7FgCzi6vBiRIkLFLpe gfiJK6pXW5ElQ1Ues4RS0UrDfTBMlV/BUgYLK9ipzcGqc4HVzYpPvprXA1ad McjPdS0w9nDmIokr3JnmcuVOQDCXwjHHCYhbvYrt3hAAZ/ZRTVXKVF0GuZuJ Eh6kMUSW6rrApLpmRVcDBmEpd1zgep5yTOJxxLCEhYxZausdlpFyNWIxOlgY cOwpDDioXKHb94maZKCeKgoU/FYDVEvosaIuMC11gYnTY+Hvvp9O9lAoWuRS 1PeQQrCB+7kEdYwFNGN+pMldb8u4MJ3B9s9eeQjRcgqSgcdpqlK7fayXnkvg q2dBST30qAEG+UnNHqqR4wsqUTCQSKsdXxZzfB49OJ8wlYjoGTP0KOVf+lNe hEaRnkMFs7eXMKY4IaCHe6ik+/TMElOTnsKJxc70aAxFS+BtgSPJ7pUXpghH phb9r+TIsXizF1uODtIcYSuzZvftFq565YH74H+JqVfssXf37194DFailDn6 Jhs8iaNzmnGUIEYQWATJWRHrc+Au7eFKhI0jzW1d2l/7lFXB1LMq1hIGErR7 ZJxh2ggfNDClMZg6PkyHI0z7CGOIVzE9p4YTCKBn1KVHKd46UklPeRXybJ2z tdmilLsocTnqF6XMRal4QunCgcZ+gqebxlt/MkoH03EcUVr+0dcef/lFp70H X4hUd+/FC+hPehUg9QFACmd+X4MX1KWwTzon7JOSapZSZulyYIk5Em5vrwYY 6ZUTVNfMNSpHUTOn/KtpWy487uyhgCfpbqRx+QaoURuKklTw0xasHPHzQsHK PV+YPLxcxmkEcWozTk/rQkQ4tWriVMweUsHUJVVdktIbqk4taEp9mPQ5wJPB F882JGpBY6JK/N3sUrM4rA6h41g3gGnNOW/+s+6P33hC9w377OlB9cEXHqMq Jw4NSLoUvu+nTNOAJEmbGPs0dsFwvEYtSgVjl8Vu70IktYXpwrglKSOS8AG5 2xNFGxX3IQFGQRk6AjHaTxgsHMf7iQ03H5s+ArdV4eDsKZIv1iAEB36Ivota Lzd5tYlLfRNXzY1+lw/YCnS/XIZ0HsPTEL0LIbyfgBxnO9T8WuiE19oIexGp EHns2F37hp/l57/vLd2zgZ1z3ngC/Ppz4ZgTR89njvaGM/5n9BBecbJQl54E 4YFv/xn8OGdtaZBBeKO2qIaTKx/QRetQVnpDz7ZLjztPGLP05EwPOjlz7Sav 5fSauKIIHSksLe0rzBNeKswTAKg5yFNiPB1InllStAexXU1UeSUqjF2GEOXW y8EHT+Pi84DONdsGonmlEMUuWAvc3Owys66kDqVjy/Bjag+xA7UnRXSgnhA/ b3ruzt395o5bfv6c+CkeaHS+fqka3KTETUrceOuxA0MzRPNWXnLSUvNWCY07 RiigaQvQJH7n0xagOVpwbi8QxgjHyNDMR2jYtBleWgIvue/cstIKFDi3zBad LCg6pbwkxW3DaDe8fWKKw0vL8nJbwUtx9djcHlzKmh/Bqk3jlZTMy2Galxml ZwjU9Jz7zjeRTzsHUbG8dLoXvf647hUv2Zdeb951sWXn+aCJN+ywQ7TGpHZN yGEl614GMrqCeal32726kDT3ZdFxdd3KksUelkCQdITKMmohGTGQQIkwkEiW bMQ+LuhFyMeBDMRH+cnriMK0MFezQEDJAEPGu2Xx1bFMtOxKal5aQ/pyZalT UA5nQBI8Rq1ZHUq2i1HSuKMRbNnsZWZMrQ6nYz7rEOI7sZTwAGm/eprQuPIl eGPdq+DY6v41YLK/g8mJkCUbATILUhoWIMOxXs2rSGG90ipA3BFAAciYA4i5 tjAXAOnYAvIioYAcILT+R8qt/wJTQKaPsLvLU4EYyXVJVURyXXWIwbd09tCI SV1i9PmGJqaf7T6CB6Oiwsi8kI4ZIoMTNFNQiJaMzReTQi9gpftzouYXRM3n D9it+xYgx1DzF3jP1ypgEuQFZ9IgIWcFdGBgatiuVG/tKLNdfVaUxLFdDA1U AAcYvl6RgBmxwIwzMJvgM97FuG3BcVFFOUZYuDnQAcb0/IfLwCxkYLrwvwaY PAZMoxJT2C7dp3Qf11u2VWobloRpuYj36TyoeHbSJy3wjpyNOwEw8xoDE3Fh evVGHaFZMc2+Z7x0Zcm6F4PxclhJCJYRhKX7S35dDa//Amzeytjso7FRUVxS wiXtXg6qKtssoOhONfSHXKdcYKQhcw1gyi1YdMhco8L0AMMPFveB+SrfUkoA Julu6qEmEajpWGqORYkfInTzhwaYgAdzMXF8GPygLv7wSkyidUVyYkV3oqg9 oeXNH2s2aqARvV4X3pmAhj6vt1BvUncmFjFeM3gBno+G6eXX/J/jXmTLiEHj fMDl8uMP9dFIXTRQ0PiJX8E/8+5/B4y8kRjx1jU9PH4CGkJErpqcUDVWMWts qIl2KI0MWI16kgptvG5R6EFSTAfBMSI08R0fjszA4XiwlmC/Ci4C+3Ww8ESp A512xUFlsVBNxgRMct9+ZbFqErVfHiZYPl6oERkYk7bFJBh7OXf+nqrc9SlV D7ZbvGKpjvQZEfr2lBjhEsKNSYaYuJAUjKTdawiULwAob3NAeROB0ssIIQKf uQKkw+sqzZxW2piMGk6reeFgMswDuOE16pLhdu4du0uGyGg5ZJgrSDNLRtv6 LLJCLxN81iFCI7+fPNnaTiggEzEyygtIKvisysZEpW4lgS99sFZjsi1AqWGz qJgwKEfRUV93gIuPQfueEyWXQgt/VU9DklqHdTV9zFAC4qZ25Tr4zBcBl7f7 uEigJN1ZktOVQEvZZW51h1x1J8HlPXyNEuKAAkQ55ioRi4jp4QNU2o7DMqik MXP1MmHl5DBhN8w+MirbC0Vk0qLSqvZaUhGRWxImRbckGXNyMW/MfEhxHGtz krmcFO17u2zgpZUAueD3zT0XLzqqo3UtmTWIABwWkAT5QOGGdCS2fMD7BjIQ DPMiQFLkA6L864CSfUFEJyElHiApAZJ1Lwd5XQVCYovV54graTwDHqSOpIyH 464cPEaFjr3t4zFCeGQuHgIcVEeOExzW4UK//jynEXE2Wu4g1JE5AhyFw8qE OpLWdFiZUzr+fphISBOtubUvqonYq5nZAolpBwlcbmckkgKJnKwVI2FslUp8 U5X4NKQIA5zH38BXfwmQeIePRPezeJcDF4gUeYC/Fom4Gr7oWlWfhqAdL+83 kmpXVbdYGBocR6XSnmLxNacdD2gY42KxmX3VFsXJOkDheNTtkUITvqc8q9pR KAxzY9ovLwzlHoq0n3J34ZQDfDWTfx7Kv7gRiFrguaY6ayBl5eCnZgndSH/6 v7iz+PixR1rpU08Bf9RPofN2ZF9D9QmKHrQK+m93v+xoH19/ydrXHcUsXi11 OVWDn4J+roRP/Aq030D1jXqJGl12jRqgZW8cEpy4UPA3wp/yLt1mh4KfYMFv AcGbi4cz20MUxug4wRiF+kflP0fW/05C7p/v6z/3jVHWxBh5PUSwV9jAgCuB HxgchlU9MKTCFpOpfmGYwVs+MQ0v4kLwNoEG440ugOJQ2TlEoUgRCpAykfEV IOOdARn/ipctG3OUIhPox+CD14DYfq36IaJ50yC5ovI6wESwKXKIGHWI8ErA aA8Rm0Hlm0HZAhFFCQiIOFroqncTdizuIpQDeixWq7QcBMOmtHQmG/QJicsC vo+Hm7Ogp+Rm9aJYu6jTUE9EG+oSW8RbRQwJVBc+wPKUSLgMemm/S4BPIAq/ 0i9VTkKKJICEqXcIcTgZxPRvez43QRKoOkA0foYdA9BwLdBQj4M+lydq+KHU rwwpc+A2Bq1oZcA7GxaVYcxyQBjgZEmDYF4RFNwB04uErvlZcte8q1AcFpXS EC0OaawxkGhIuEUwleFhEusQeEhdHlT8MuHxnh1VJZVh9qcWhxfTMZ39Mnzm VYoaZ+V5JGThZ+CTflHhkRILQWo9EkGQIgSgXyLhq0DCuwIS/n3P51I5SJEB nO0CBdehAdFQR9cfGvUDSePuuKgDCet/paP/tq//BOWv/O44FyDICYLCI9nr a9uiPWIK1EuE1viZMgG7C/VgsU9AHqsHjdqD1NW9qQI6UBSzmrrPQ90X9/OE jFCxR0o/ammspwa4undqwPSsCoSfTX8JPvVVeD0XXs9fvMCpA1r7S6E9ruoP yrWfovYhP9K6BIr/IN5RxeJXJPy0ewUp6Fd4oatGWEVHpoP0AzWyfsojjnt4 2wYKfhSPndD4fI1vZdsStN5GrbetuKNO59jo8zt7NgI+W0jv21nvn9dM75LZ kcStyONQTn+h4jTQr7hX94hbGv5MlTa/JQ5nFm9Norf6qWPomM9+BT71dVY2 Dn/OoyWD81HeF5C8nbTen7Izq2zQZ4+8/4rlnZGys+6VoJdr4GM36D+nfNaZ 9Ofqo30u12Gt67tB1zexrsfkRP4uZyk59139OIq7w4kc3Yy5UUIqa92dcb5M 6HMXy33uHkIif4aQyKnPzaoTuaR1ycqw6skXN1W9XpQxl1PYiykgKNznSlsv uM+dFHVf4WQwo/uyp4T+NXh9gy3GJ449UsuefH0NO19X8ylqHrRLxubdgfD/ A+R1BWb1K0lOqPsb9Z+kpIlmXQef1Oxki1wOxxXwy1HuywFAeI3bTE6KT1nx 3MPyE+p6FT/K/n0LylkrPqJ3x7ofJ3SxC2S9P1fI7TuUGpesWu+FdU8cvfNY x+r9wzrD08S3md7zUO8N14bHPcFXJPmZK8zeVPUSLXZyLpjjTwvFbnI82hdx o4SiNWDUOy0DNxJ9xqK/Cb4ZhX8wC//NILTPYV97JSX8q0Bv18KHfqf/vOjw JhFMeyP7UqR5nee7d0GCB9XDx4zeyzN85tsX0vu4Y9W9S6c7sSHmy4U+da68 k24vIbk/04o9MDJSck+rXXrG6sZlq3OHru5Ombr1+cW+dNSu6MaWrjiTH+EJ e8bN4ixuJ4vDn3AFmJfeLXJBFk8EQWe+Jy8EnaGe4W9+T6Do/wQPk6CY4bde B//PT9ipmL80cuJS9kYY8LfpxA3vqzx1m66zSN2FlCeMlEGoRsq5vpYs4lNe KTScE/Jut72FvE2izpvk7agn13m7RY/2dUbxtCD1Qvz0I/2r+o4eVUvjlqnS VakSg0IDeNb1sXRs2YT9LXh9WFHLiarOtDcpc+HNtQzapI3WgqC7P4fc/Cv4 7w2TNE11dDyw8y50jF8DP/938Ht+QzOTeDb+mnPlTFTCCSoYdQxaNzpOe3Xs +I9XCb3lmDw42UdIyTvF/EdW03/06vhJf1uayc6NdKzX9MydM4oHLrTd9VUv Pxct5oSo5BLnMYsXAx/pqrg9Y1rLb8Lr2/Das1CyStl5LAPn4WzvL5d0GhuZ BJLOUNIg0x5d7wc6+2vclYZaQ7ONowtVX9KSsQ6ayYQlfRv8eJAzSTrBY7sk Nbu3skityxj1dZ07ut6q7YaWtDQLPEFoITvyuGRfITXv7LuM8tSc1pL0ht60 rO821UTSeSjp4qqWWu3juNV0jcw8fYWV9Es5MRuzgYn5O/DaC14n7rOnsRsX vvEEYzm03YCPOdvFVHNRm87xxgN2I+yW8+t6UPSNuy6GLhEPN6Pmb6EvvBV+ 1Xsdye+vJQ8dLSltOU6n0W1PToRar+uoi/SNX+Nk7gyPHZT5mC/zTGgeUyF9 k5nusMy3YvoGRdv7QEhm+rVC55jLu8H2EzL3LoIDyWrKvDDTCcpcu2kyIBuc phET9we10htKvWWlHlhr7UHmVznrnswtKR0zN97O7ihX5r2Z+7ss9U9R40gm 5EISfMnKPwQI9wz/ungl1XJXlMSt2iNLnHB6EN3fgcRvAqnj6+ZdF6O3JmuO 8j/Ekf9bqMf7JdqI62mD/03Y+OnoiaYFvTk6HpyI0O0y4AjWBym6BQ/X4e28 fo0pvSKvu92jJHjK66Mk+MwVvLf50TEqrxd6x0QelOwvZPVdY1k9alQkw63l 3iK5o0/Z4CR1UnmDrK7HUqR0Vrve/tKStr8UD26bjIq9bAr+c7P7V71M63z2 q0E6/6jSAxKrc3h/mNPRpVxd4VDqqfsGUPav+b3VW8BXNAzp3gLfeBtRdhvl eUHkKPG8ezU9vowkfyNaHbTw+tXqXoNfcC3+6zoU7q/xXzVytukaU3vf4UDC k5yzsTk0YjtWcCVvoGPLNoyBZg8UUvRuNVN0WluzqNcNjq/+YFPN5qFmi7sC wa8QRFvcFH/CE22NDhGneYFqp78WZOfvwetjykw/bHbOurOvnnan181Vqxds UlLtdfrNqWIDlqJ7xlWvQ8IHbwGl3hoo+HZ4V6eAik/hlX5WcQsVnKJec9Rr y+q1Xsp1W8Qi5Y4Kek05mbqifbHgMV7jWGn0GfCCvwGPOQlZKXuHZxSyOljI vLs3ybxRP61VnPeoWNF7ridhbd/M02t52NGShh3FDvQ5oZtu1B1eZbbZqj+m Y2fGuGhjLb4Prxmlm8MLcHinzcWV4KSvlhdeamgX4gTitdKtJ9/oZnJHw7dT Ir+dfsN34f8D/cJX1hNwJOG6vWDie4YxX8AtR8AoWHwXR7lZV4/q1J9EBZy6 AlYJC2l6h4XdmUP2whd8DI+t7uwJ093uKa+jF/4bvwcy9kFCxn62oPWsb62v ZYeBL1yB+WATrWeu1osF95a04G6fDaumolIvW2f/pW4YjdaP08nasxeYqH8A r+dpreuGEd7kJWwv3DwNn8RVl+v0S9UTPIrduZHBIILX/TK0iKBuzNS305u4 HX/XCiv9v3Gk/1ZyysZmBKqvZTNMa5j4NqNQ/QSqftSoHtRsVH+YoPqXDKz6 1FU9XpsNx9RVvzpASPV7WMMyDPmvg59s5I+/dU09+ev+nNR/r6ozPEldv8Iu e8JjoMZIm1rJF7n675BZcdvIM5R+bjMzYHL95WBVIovsiX9JRSD9hKQP/w9y vEa/FUVXDanUNdqO01a0V9BsMKkgQI9DfQxyIqDVXQn/L1CQx2x2YFs6rv7d TjERbMu4zfrjgv4PdBZnjNemiyVyFHxeU+GLBIXvLyT4PfwEnwlmJhXaSEnh CQ1LUpPZJXkHG2QVLeOap+k0GJhIizbjtfvHX+hdJCzu47W4Z93kjibmTEXP Ue3uraiHNFOSi/CaCTAzjcWNgw4Q2W9Z256+6foglbpTwQp9R5fWlX4Q+u3w a1aQuVmB88SVJHJX4Adogffjaqrye6HvKUffbM31k0ADfR/s6zsXBL2LIOgX CCl7z5opOy0VNBR7ULRnWPCXnte3rGPDkQWx4YjoW6py9s/MLlf1J1rVYrr+ R2UnI6a7vBRcizPcjprzpEfTqGfn1jLbRNNmE/zt4NpXsLATPOYobEgJ9E6+ F6j7bTQ3qZS2l7rdjjNI3YG05wsd556CtPcVpL2voOV9heRcV8uF/RC1nJOW jfvA9HwExX1NiZBVau5HXjwVo592c7JHy3XG2VeZzX2s4wmyHmF2/pGvZZru YXpmMasa3juxa+qKdjx1l4OI+JHO0buJDSzqYHUS/rnCUTaJOidRt7rfhw++ zxd19wt7Pjdw4/FsnbkXKJQKepHQge4uCHoPwYunvr4Pd/SN40BU9vOFXP08 X9+B+Uib6dvN0+eX6XuI3eUEKbtuZ3k1bxBhab+cjiOz31R+R4mmA++h+U9K T1EupF3cF5H7QOcRWYCUjAduh2NB/6FFbS5vXQniRXO9klA0yk67q3vkjS+U 9xdxP2GjjM2GJG5GqNncEYWboZa5uzQyXCyofOeaHWdqRX+sIPq9haT+vOqk ngo9ZdIj+if18mR3KRAFCZ2W5uuKXuwpW1JPWZjuqag1qWoncZSit/mpV2jR e+NCk8vxJk17h6Kv4bH1RZc5Sd15UkpwryJcw+T3xL1ksGCj6MZe/qZt6bJL SejmsTWO2q3Wc9J62r0DPnaG1rsygwrWOyodvtvovWWby3ZPOneay1g6J7Xv EVP7aDBfAcWr7Yc8X3kls4BfY1jYSygAzxcKQF8sGKN+FPyy8+uz0MSpz690 6nX6z1/yNWk+DtPhVNHUAIPEPnSR5kXWqzsbuaM2XZGv6f4GJMdPdIjeChI+ 5rChaMyo6H6p5prMwRFJ+Rooihy8J23aDR8Z4gEZCAH5W6cgvN0UhIjVoVqQ MxtcB8xrJMbGfpaNBDFQ/k7YeUOG4Q0MA36dgWFPoTDUgCHauSYFDKlbFFTi XOA2LBJS4cLNiVr9qiHhGt2r8u5C9Up2QmGjaorCOVgU4PVpWsrXTujn7ITs pQwlCFwLgnIRoNs9wue4XzVmqLhLy8Dal3aFm9HVavD6qxgA6l1bCECLAEi7 d3KV+FunSiAEX3I3ZsUNUWauyI8UiDELwTGNZ4pvEYRM1/DsZ5Wb+T4+ranc hJSbWUuDafyCWuKt3acujPWpoquR0rjran7OadwT8Oi0ND88mwX8Cc5on8ap i9Zwz+U4kruBSKKGnYfyFLcs/Z/RsFllcIVMGs5Rwy2UMLxpzOKH8aYWFrAq Ns+Oyhk8aFalDD6O4j1cGhhm3somvOZ2u4fs9SZBtc8RHpewry/iwJen9UW8 HlLvUr551uNVItbTFvsYnv4WfKZ6dFynJcWB4eXKbBRUr6Lj+My3Ikn4XF/D NGm57PXHlVtzFu+vQAe94k1d8Sq90JO5Cz0D+PNAvMF+WFPCQKKrqUqYBEzi Tbt39Sj4HaDgL4OC85LM67SifuYd9cW7X0/mpayraOMEZl4826DcvVCRGf7r eEHDdGX8/o0NdOobaPi+J/At83AQE+8SektGtLSdKrWiVbRCaW45rZyOMnNF G31wwWplCuFEZSvpJl20p7giqfdNqVfTcWI2lmxxUP9JRb6ZhHox3tPk1dMV biEP3UL/YtV7W1O9t1W/+hVrwttYKYSs2MRXbIsV+35BsYlVbLsn3QbN5EjM KzyndOZH+iXZoqMFKXdBpvgJs4GF/h8/TsYCji8W9LybkJMlY9FU3mvZU5jZ oN3fHchbpe5drfq0xnNLnUVZRl6uFUf38vRFTq7CNIZhRkahPz8Q+i+OP1RJ F5AlxbAk7VW4ngxm4Z6TGltOFN3TIXaVZF2Fp6a3AEcB4iY7nPsKT7t3izL/ Csh8pH5LOCIofMfG8z7M0WgztK6N7tWruvorHM3r1wnT6nBB9nT/qgMH1bm7 9r5EFvlA7nl+qXuu2/pdy22f3juo/lTre6YsiZ/v6Pti7Tgq7HLqOg7d70Hc giXK6K6SqMjJbijaVkL83kSf9W5eEhV5cSsqfuQ110R4j3eC2u8gC+IpvVWi 9Fatvm8k5j4WDHm8keCR8r7J9Jy83yhk/4MEAnYWEv/+MTOeVgNBZhw/42+3 Svz7/UhMSGa8dHlonrc81E8zyY0kE3ECHcdnvx/J9kjDBUgDvP4veHC2NXEY WtbROPZ7sGwv3ZiqRqIPGEiZAaqemgOVCgyk3XuiIKSyqZF6yCDlEwhjQwaB 6gH6dfxYURHeJWCwn4MB3h8CAXgWHg/Wlj/i59NS3eOlxvCW0e9sdDbZfqhv 6Zda+rlR6depBDgAxKXQ41zdT06jyzF9Z1gJUPef1qfEav+Xxx8aNfOtcPpd vQSaeZdlVt6JU5K+dAmmJP2Un0XN+Z9nJnBsW+m3ItJ/5w47OM+gdJvPePov jI6iSyUEF19D4WbbrFU4+J1TUbGJSf/OFz/P0fhPIBWjxncUUn2596mU/DqW +0bH4j9RJXmpi21i86c84dfd4YJmA3tYveNQvYbtz/cc6yMle1f0aH/sNpa6 zj4yJVSNV/wHVj3nj3us9O9k6We+9NsofTgDpP+/c/R/IOT2d9K+rlD/zqUW sayfof7z7kdKdhnOxWMimJkPx2S+hyDzZ/Yn82K8SDJP7HgRr7iHH21kfrre wVUqc6mbFd1+xNnE03ud8eLVPB5npb9WK33WHSmGqf1CVLjyjb6/YavH47Ot YY+fW4/vCP1/h9LvRoPjKp38TdsqPS9RumNt/J23QYZv6dtKFOL+GM5knj7l ddtZSX8ypuFdhf2IQ9SwTtXt7nr4UUbDGzlVX6B1HApZ0ayc7sNub2LltK2Z K+TgWvv5sV0s0XZVytWgHboC4k88BU+7udqsz5tcjQq+SGlzblT8SxrFiHfM N+4kMOYVi/KZu6izzdxJYm8QgUdHvamvXrIobVQvJBMr4cNZwgexhPOS/StF nm7xs4QuATt+OnwBvxIr6az7UVIuCBt1jS+8f/Ipr1toFf6vodeObBzfQRD3 QYL1Tkt9CIlbZ2hjQ+BjG+km+U6Odi6QGJIDh+wcXhrRZNyIuRD6Tt6AqF5H x/HZsOF0szPq+mJH20txY1bMgmSy4y6aTZZ0n8uUQxM2hVSL2xF2YUBI2DkK O0Fdc/41qk5cVeMnwp4z52daLysEDd90Opnuo3pHiiDuke5Tp7xuHCU9R3Da nw/FfcI0NI294t5+UHEn1mSzuNl8sLhTszzP203KlF3baC+QrsNv1F4a73GN vnaTxf16Le7KpL1UFVOVn+CqpuA69GaS63iYYveR5NZ09FyqKYm7fGWokbiL uXni39bHNi9F6o7pu8OJ+ywoRX/HG69Q4u8iiYu9ZY7qBk+6FISNqdy8UOQg 7IxVfTTo9COg049QN6lz92Wg062Qu+GFt7s85XWjVvKTRvLOAtJXjOS13Okr nilI/hkxyUtmJfUln/p9ZeC18bUM/v9IDOoTJXKvbbjz0HCT39Z95WTtvtIM U0BqeLu2V7hqn5w+s0YqX6bTT/efQfFXH39oXZvdkmx2aTYvXygajuApmWOK d3pKSe1jpPa0+yP4ulO12uFHgd5BGqhwI2VHxkd5Mv4IyfhS0N4WkPEWGvtt QRmDlsdQy2Oo5fEwfcNP+pag5e0FLW83FC0bb7K+GI9Yb4Lp+0JlvYkkaaWf gWQe8FDTes+tTN5h8+gm7+U6qfJmKvVn2nLPutthzwky98WcuT/ja1kFbrvU lqSuiFXdAbgSVoKGpmIsjajkuzwVF2Z7HFUMVZQ+jVLGv/100NXpWqfgoafb 3c0oS6PNIs+OCNo8Q/DN2wnaXDxEbYLfd3KsybP0NnoHG9F+UHTNeeiayTTr wcZUZUsYptnfannQ3XtYm3/OrkJajTc5dinn2H9R2jKDq4gM7MzuKGmzST/D aaXvMnWzMo8LGoYszdrw3VqXpM1UaAQpw+akTe2XN0Ge3ESt2mYUX2+ybAuC PFsQpHRJ+yJBkMUaSl1B6srf3Qj620Q/rrC5H1JmPlHZxYleN3O97iCZ0jRx mI9ACLNYkV/lqnFiOlw/lzLlJfA6qVCkqlPyU7fkK710ntulc0eRcUn6N99R 9tGfqny9sJ4kMcKVksxIkhmlSyzpLMtAlUWazF07yso6X+jAFgiqXDgsVWL1 xiy5yWm+OEvSIndaqsralnSBmydLlRkbnZn6zc0XC/MN2o5SCa9Kk5fCa18W JtrR3gKekCTT0kFZzbuD1Oi3Cjkmwj4lqd9KHTneByndylHyoEaOaEKxarMc O7EkmQrd0TIhSc4TrkJcMKgcaSCAs4FCjvgyijxdrzKTIqNNUlNHCX+J0x9V 7rNw06Qp2iCImV+YbXTqRC1GqtnhDiOTIZdxhryMxWh6o/pDLsFNSj2R6m/C 1aco7SxRq9K8Al2OupXb0WVYuUetKFVabIHbYaH6qdvh8NLCHEGP80v1SAOq tJYeuWCHeuTsWOixtpnMXDNZ7P6ZXzs/hgOqsGqjuftTT4+2aofLvmFy/Ikq epxac6lyE8lyHGQk1acaU3ONQ6FGVUix1WMicTkBGppAiiM2P46wFJ+Gr3ma U+NVbmrkZntKuCh13qBS1KW6uwG+X1tHayBNWlTFxSF9+MdO6B/DrKh3h4+X Do3cCg16mP6FFeFfaOs4cwZX6Kqk+K8swn8/+iDlrGal7mrWoK5RNZkSDahB xPxeAMdqsEYj0xHSYSfQIN7o/GpBg2bI6e5/nBvTYNFUV2pwg2cUI7mwD7eY h7XZuSJpTqMexi3MIICZq82uL/VGrcHZH5YkwUucJIgaRJc4S+2LX5XzsCo7 LjF3XaIRYYVRVDXHPI2al0CGZlHkHsAHFEg7f7PGWizyYctoEddJFd1/HH4H HK8V6vO4IMg5gwoyD7LgaV4WrOsOY9U4l9Ig58Gx0qmOqcRw3mdREa9xBThF i/tnqd5tKSYJXspJEEX4lyzCX4E7XE7bVBxn6JTiwhm2wuVP76Kh8lZFVU90 BlFgKigwjfbQqdtDhxWZsmEuKDDF428EBY4JCpwaQIEJp8RNhTn0yrLSaUUs y2nMHoq1OR04KZrCzN0KFmbW5Ju0Jm1hltYr3aQ4C68XSJocRm0u71YUXetD f49+zOHQdYlhZ22Guow2LVKVTlmXT8HXPMW6JEX9VijVo4IuJwfQpU6N3Y3w ozbDDzE5EvPjkco0KzWdYuaqsbgEM5dMotJLi+OlsxxTnblPmbnGbHlSJ9Fx cta0zVWJ0QjxTfvsOcD4RgmLLzUaFEW3CzTPDh+uAO+HNsQXYG+rIguwSIy0 IQ91wgLkF6nnRkGDI4IGJwQNHuJPc6o0CPpzNJiZlGiMYh8+sZjheGPuqdrz G1OenTaFNyYZBVJ5RhWeE0mFrgIvV7ZP8Sqzs9RSPrOR99nVkGB5f9JcfTa+ Wn7m1acAneT3FP0BT/Hdf28SKnNbUN94qfrS0s1FXJQ3c1HOOANeordX0CbR IAOmNVziiHWJQZtSKwmagY2pxs7scPoaK8G/1BL0qnG4lyJMgv8WSFBl3rVY fYxp4MNOGe5vZNhcgPZ2oCzAe6hVFtWHfy52JpuN+jq2/nZYfVtBX1tZfZnN fbca9TmbkluC+sb6U19i1Aff5uc+vch3kay+eP1thfXXH13PqT26NrXXnRFe a/bxqJO1CaT1E1N7w8W8MOv9O8vuGjCBvyUTaGtv5tbe4irYhsZPNW6JE2E3 ZgPhYahRfPpqqNKWeDNlLS/ttQPhbVX2acsgmdvcoisIz1zRMdpEeGkgvMyY PvOSMl9arT14307lNdJT4U5h7zqO8dIxdTgcvM5su2HpLbJF98c1Mt5P4fVX SvcgLD/v7i+O+qonMpnbDw/QDUviC7YCR8tuyjtM7oPe4x5OfWljBeaCAhN9 iywjwxVC9c0FGY7EZJj6K3kRGZrqG8gQU+BpPSlQHNNkbgGWbiNQ7OitnwTD 8SDXXlbiX9FxPtVenM6cWyMJohJNN2xU+Jvi7qAllTcPK2+Ne12omg1wMKHu S4oYdpajI8UaXTBJMTVSxG24LEVqFlq2FK8S2hAjRRS5J8XDqrWnrZ8pvfiJ mSUp+79LeCvDWv2qXX5H3PwXdh7Bfq94AhRqL/a9ejeNejMd59q9C+ep3iW5 MPn9DF77weuvn7uzld11dB+/foYuVW5PCTtpyjve5ooz4wYnA9YUXadHdFtA UVtYdJmf/+4QynDqrByz8MT8d5Df+0Y0uKmowPBHRZJfnRrclmpwkPqmaqU+ oQDPoibe4Apwyl5yhhX4/Bp5D0WI8fqPow9Spu29BirwEKpv1PqpJnOX5ipM eQTr1uFGElSkQUp7oEL4yVvsc/tM3rtbKMFJTII15i25KzInyamk0YilmDbn JUluLLpZK6its1jj9M4D9ddcWN25yoU1Mtx/sMC+AmcDMxw+NsG73baqP1DR NTVza+qg3WwhqmKTYJmoHtKtRURUxtdt6vV1bOkwpW2hP3MLZ5+imN4jFFNJ VJ3YxbZRjSWc1zYXls6vrbzu1qC2wvuOpDa97jYlrbtFK6uz3kai0zsN1Fvo uGjWnaRcpPxNBlJG+xyL7lroK673n9PhuriyrdJlBbWRhYvOUJKY6vjZQI7q 0Eaz8lT5IKVQXZtVt0WnMVJd6qcyqqb3kX7abioLn/UIn+29G7ukuGKSotMa FdItND9xxObkt7piGzzFhaM7rqHTvwnVtmDa3D0PhyimhpaluCvgBfW3uy/0 DybFYQ3dBvWzhosrn5/UFZ0JO6oO9Ea3HMiqldfxlAeK2sz5LhOK6IOko5Y7 x3NVZ0Tn3vX8gNLxHYtuC2e4rCrDSXUVvtRZz5WuHCl2QtfLce7kjgsrqU5v JFBv1TnOK6w4O5HWbN0cd6XS7cOBcIaCwtqb4yobVbmo1pVb0KY2l5u5p+aD 4MqM3NLSnQSFZ8tJbhklus3wWZTcZr6leKC4h4ziigrrKq4lpLmo4lJW3Gbs FeAbxDS3rlmaG3XTXNgu9I7rRsUL+oN6ilrT+wPU2+i4cDYcjlQlNyM17FTN Y68CmfVfSzO3ltbcDSDdOaWByhDw++FvkFUmdwZZkNQ209+8uSezUU19hKST SxpTLSGt7R8TmVYZaWwLfG+KKiORJcGGAN0rlMlMSRtVMtm8TVYmNqGcotD0 6qt6u24WvKWIi2vks6uU9m1fhZODQvs1nIpi9T9+E+VYBc3cCtr7ZFdOzrer +lIr+s8aUjNTUNaaedVQW+KYN85pKhPURlltDWkoC9XWEtqE/f0RXNEmoNDg 67B0bqHv2oL9aJDNLpayWTH5VbQhilT2qOozpY2Q0krK5yyebr3Cqt6hDdus u+SwtEYu+89AZtdCCW1SMpWwsA8hcpYZhGZU0VWU9CetVD0ykzrS4JKMSpk9 XHi1Hpm52+ILmSnKat3NqD94X5tYZFLpfMyIjNsEvkSjZW9IHKgqMQ2Ho6qs J32ZNa11Q01fE9H0JU3U4BTO4qk9WYvqnXScZ/d2ugWyLG8ZUd3Aj+217n+A yW294hh1/DWkVMxtSUqpnLFGXSkZ0+8POVA5aM20jAQpZbY6Pm6kxPNbllIu 5KsXCE0mi2oriApe8CNDUeGQllNVXFRislpQN1n11ERhd8jsjWY5ijW1cNo8 u84sD4QzjDBRoa7+Gl4HAb2oq99AsXBvH1O5AylzE1Xp/CJaD2sY/KbqesRP VOXq0okqddWlEl9fmZ+qngz0xXtCcvsIjMJpJWZRyxFUgseWLYBuqjr4GYuH nKrGRVW5Lsupf6goPehX79JZihTlzimMomJZ6ufw2t9R1HXwX7u3oyVlqVrT V6lRVHShNv0NK1TfPj6pEhNS7KSr0eJuF5m92wULivTUZj1tCvWUx/zVWllP WeyxQIW8UFmQjLaCdLZS/duKqUrKV+dUKYv/Us5Xxerm/MbpyjVWTg2cxnzB 6nq3NlakLjOPCGuglKuMut4JeQofXx/kKp2qcldZxreXqiu6alTuqQZRV2Z2 EDrzL09awaXYJK2WI62NLK20VFrrna1sLCuV2YekZXwtBG3ABJE8Re2jyU45 D7nwsgWzNh485sHecg0VVDzmssmMy09QFSUPNaQXitR76Dh3xswZzNjeSCiW nH7BEvoarhfBq1j9Tt3spIbe99VYIkpKxVPMTY14nNRULZ48EA9vwikRzwZB PKkwXdjH2nN0UVpH3adANU+hksRiZ9a5+0pJ82qnJOn+ZVzrUEp6IK/eS8f5 s8Y5SXVOykSfV9qRo5S4zgWuqXkqqlvomntySU1OodNq4vlotZoy9uSOmvQd GyPGnAS1SRBUIsxE9+Gvo6u1OC9lVk1FgVOpm5xU4j90YyjpacxqKvROQYmb Rt+rZ+3qFDounA1H7UZQbmlz85IRFJa2X/uCCvJSbvOS09epeo1djaJWw38n MSUZi4pV7T79Uh1XTo5hsnJKOTltdJJTIggqcOKbnRXtMEO5tul5jqA4OTmC 6ql2OPQ8VRsmKTkpuhCAeFlD77NkL+JkND/FRgZwvmZ/b2bp6m/oOG82HKWb EiflpV+ylNCDc4mL3RaxGDkNq5Ora48aKOkhyD+1lZQ4StrASkqrlbRFUJJk wJ9rlAQf4xKHP6UnNZlCh2/xUdl7D5qaRsVS50rpVi0lPS1X76PjAjsciEnJ zUgoJdPOBVLyB+QlCalsclle2iSjVO6yE0FGVNlGq3SjqKJZ2dBTVStVs1VQ jTRm2t1RDXyWvqKNqsmD/JO6+ccpaNpwm3tkNk9DEz1pqGIcMIte5B2ucOZO mzmAVM6kHHQ1i+ddwO8N6JHoXfZeUSRMk37v5qAh1LIaHjsqnSADtfUtuHtX VxJXS46OBC1JbvupwBy5a3mulnYWtEQmqhUvaE4WCpNQ5iahYLl4btnu0h5j JPX+WDT0cFL9rU4/0+ayoZiKwvRjVIQum1VUdr+C4sqgITRpjWx1mYAwtvUE 1CIBpd0NhYBUUlNCTwsSagsSeqb5On0hm/mKmSXtuMnGnHSwyUlK34m997ZW 8LacnBRslJ8j9m112v9btb9mJb2fjnOmywqZlIv+S2l7/XWtpNJUlIepqHyP VI061txYJ3EtcUKq0FKuDdF6/CvrKahrlAGlEEMV2w66nasgvgYjr5GEzgmT kKI9UpSDHqfAlfT9sn7Cghbp+VE/eqit/o6O82fDvXehfsIs9N++foS2rH4a UrE96vD1K/nd8yuajuo66sSXEMW44woH/yizeEvCyZwkhDcU4xsulkgo8yX0 R85I29mcIl0xsUCQUtuXEiWjFl8oy4mItj7x9icVNmhyFsIlbOXVM73Rc0ws Z0ZDzh4B6vH17FqdSseFs7H+PixlZuscigjd9O9wSx2IaDn8O8hAKtwE4N94 DP4MJ/9UbwsuV03hgqJ9mJt4HoC3fB/tEg70Y9bUSD8pu6BNcOpZP9VZKJBQ 4mwIcCRE174uQAXx0Kjw06aAhaZapx9nFaS/9DNVu3wFLohko+fV6u+1l56t ckDhjcMOcGTze9wBMHdc6XuTZHa+6I2oc5t2nMarWec1NPuMwnl07nhd4WSN tZI6O5QcrewRrUi5XW5lWxykkSa9+URPOaroy2fxTOihs/oA16I6dcjdfSvo IbrtwxvoNNzxEc0g5dNlybqYbRGcQkgNGT8BA+Rgdt/i+UbXoivQeqcC1XAy gS4yowt/j+RzhPISpoof7L9vzzOcnVQRXIk8N2y7Sy1K2HMbTZziamJq2qxF lOkiuJKddAH+BN7W7+kGBY4ugvWH4tLhwtkOobLUmBVLfgT/X2eIHl2wrdW6 UGRNqLCwAUj7VEXu7Q8yZnf3aMpI3ZShmrTR0sUlo3VaaBSFHgCrD7ImwlsM xeqG0cMXlPWsrIl293oIdLAmFUzscls4nEQRZgr4qsCpojDqlI7y2W9ilZGW ZAy32UkdZRhb2JcycqMMZxOiUcZuNZLGe52kIY7sIsZ0qnTQUmIvKG3o+Zxa 0kAibsrolUjmSUS42YCUMW4bKGPUtRSJq4uHnbGc0YW7EdXoAovIQLpoley3 39XqovCdmbB14r79962XNKDPbVJMAoOBitCjNvUhOk5Ol81IJG+BggBvYdLF TXjvAF8PQbpI3XShyvclb1Nr8ZAgiB6PCR/bWJQPlfQniba8KX6XP0iWqBrF uubiFm5AWBSn1RSFW0Rw1ecAVxSZFcUfNkHUtRSUIFoxAfAOpgFOe+7eG8Ls L1Y7xzJB4lzjcMfLX+pd4yB2oJ2wAw3PvL7L0ki0+3RPvB6Xqg875WFZSWmI nHg67wmed/jrbyjOfH3n0LzjrHv2JduQ89k/q9iiafFfD+Xd3ACBdJDpBy42 0EGH286ex0nsGE0AuZ2jYwLAvrNRz+mt541V9puuAvTAU51eUwHhVZ6ogC8e trejgDYpwNkW1wz8Bs6xvCCUO4TceQq0s38Js79KbQ7o89yjJwiuaOcV4B39 NBDuCdBp4Na3nuSnAbm7hMbSPf9N/ABfqkkC0MNK9REn919SkveNAPDkO+4w pXMPR5x/K/kmfDfTx26hP8g594Pm/D7HC0lEAet2WDiQAka4jey5JeT2Av1e CTD4gxsMzGAemkHnupHJRpXfOfN63Kg+2uDEG+q/WJx4DX2rezOE1Tn5/mAp t1nfmR8MZAGbr2oEFlA6/Zj7ddldi6fQMwHRfULS6Vf+DUITQQ3PKM8E9Bz5 7rcKQxAups53pRCzAtHNZY4UZhBSPVZSHwu0UMcDoBbw7hPLjz804SRgtDD8 JADfdLcqnklclgykCxUr1YBB38iJoEwNRTJI66lBuF2Yq4bFdXIDzpfc3BCr C7kkBx0ZeEMxY8BywE1hPFFSM44piMlBMgQsB1JDgmrApkDroXZe0GYgdc3A QHmhxoJ56jQFG21T8CTGuV5TUOwAy6wCRoV8IClgkZAPnIugU5sPHqEJoy0N bak0mJOvIQBHWGUKVjonX8+K1D/QccI6wjIzgCf/Oj75B9Pq0024kHMzVYbg zFcudUcrgqLt7JS/9HNUKkdFNcpCFpz0DWQAn1S1PUDpSXdu0SZZAnr8ZrFF NLxGObNj5dW6EGjs2yH27mnXQlfjlY4gOO16IKT+T3DWZyNn3b26Cs/6f9I9 /OxZb3dvhrMebJGRVhozt+8b1P+Vp/yURz+m4uPZXnfIXgOf7DHu/XvO7vwq pHHgg0jfu/++Shz9eSOeiVrVPaRZz3TUPzqV3dBcVdWVPq94VlPO4u5Zrdhz IGGs6Fpeeo93qCFk8aT05D6hRJIlO1d+clX8fscf0zst9eP58ui5LtaUb+Hm zto5kIl7uoMM3uR8U0nVoxz1T3y+z4uc77BsB+fb5O5bwB/hOQ8orjRwKjWd e43uvRzlIGlDh+3sNaGXOefrocSacx4t2WmsgyvO+Tg38j03tZ7jA12k6yjQ oB+TqyMlWrhBescr0cEJxmvT+Bx/3DnHS/kcx6qz69SveP1xxTnOvHNcZx+R ZMrqluZypouEDfnUcWb0QnUuw9n8IXupRGC7hjULzPmYYM2kW+pPlbPdtss4 yPbDwLiZ2kvbhrztIXFjZs76bcVZ5xmd+gS78qrTbsrz2/3TTmc9xbOO45q5 40FXVtOQSZlc0QU95smzcVdWAC6lczgF0qnfiBuAIhm9vFzHzrqT0VvOsBZ/ Ga7dTcbOesYZHWF/D7RjqwB4PuMqXKPxNomNlc7nnDNOF1jouYz6FB3HZ82Z DjeAhUYMz/SVrz+O4E7oLOfdW/GsF2e6gQfrk+t49s7drRwU6/VkuL0zWz56 iZ7Zce64e07leCxvu3c9Rnh13i7xYOOVY9Y7/dOoJyrq085ZnFVx22XO4meP PTJ6Fnv27MGbda5Y8Icog3BakaJb9sqFs/jeiGsBKXoWUmV2Tqud1zg3Uj1n c6wczDbNShBMPKNOKnZWTiZrWSzhdM7o0/l/I6dTuAcmve3e05m6p7M/P6Xo 6jc6lfq5UX1haZaSHmEs2UwlsRMZTbhpqZ0aE07kiMUyk05kyz4Ek9E0J1KX 1KnaVtmcx1Wq2HKrpxvqn4UTGbNO5kRe8+pp1x7fyq9bIHDuNYxKuI6ornVS qTvmbAanOaH3+u5YOqGN8mxwQseFE9ou98ct+5hdQ+dDYJbsCW3FTqieXLZL z6eeW6jP0HGi9HxepworfNkbT+j+9vhD6XQSmAmeSzx1eFYhcrfSNKsqyWZu km3S1EpEAkTmnkJ4/nDT0lKqkZWptW6hJAs0IZzAVnlqzTwib37rSdru5CWj x+KZd2VnT08n1L84Z+8nwdlzU+rbS89egicP3tRtEMTb4BQ6CbWPBkbR/kR6 5/eqWhTqs2hvl5HwrV4xbBvAbz5ubGKN7FqjTEp2Vkq2WfmpHbFs4pACTm33 HmA08EBKuq1mJNPO3m4aVPVZfVpnLuLTeqWKGx88rT+Jn1boR6hnxfN6O4Ax BL9TTiT+07kNU3gy9UoSpbCyyUPdzCqdTCnRJkKiLU5mgucSWMav/iY0Jzdz pvU2Eo71lM2SE8k9p/pXfSanL6lxJrFUlpzJlM4kdJZA6Qo4m3bbT12r0whM cy7vK27WFj+XfYJZ41y6OddMiStOY+5BuRJOZ2Fjx0X7EzmPM5ADP6lP47/R UQ+D3dPo5lm8gFH1nkZ7ElN7EiGnEpN4FlcCK5xXm5ubKIn4Qfjh9wQnDp3N hyG6G2id7jE5rRYeJxUWbqMlUlrBmQzOnr1TTJFRU3v26BHuah5NCQyEd0NK LRsBSpu6IZLTt5kxgPp37VfxzM2aM/cL58wZbxOcucQ/bZRFUzpteXclRHUl YLESotm726pG7gx406es+yA/MiTBY/SMNTc1aZM1tyk+Yx+Dj5kzlgoNR+qe sWU8qb9Ze5x+z5hu+dXn6DhGZ+uKkrOFXobPloqerhTPFvzhqyCOq+eOu46z mWVJnDNlHtIXPVNpjK1BMuMcPDXmKeNH86oZ3zUnyIZ0dsh7qrkeTyvgvw3O zOxqfWa4fVf/ScfO7GWRU8M2M8HzAn/X9ZABb9EZUAV1zDk5UL3ga1ZBTFfT 8/SaMmTOzP2c8OzjE+G038sjM6xW+NK3dmmKUY3ER9xkdHJSe3LsXUTFMzOn u5Sn4HhmboLXXbiTNTgzkUtX8Mzo1k39P31SpmcjJ+UA+aTc2ntSqC5leFLo nGApgpjeCdiUjksUPyEe5yF4DnCL29342Jn4ORgEkDSWyqjatIRzkETPAfwS vozgPTTIhLMAsDU4B9yBqc9zmSk7CX+5z56UsK58/XHGGKTCCUjtCQBDoM8C sHEnRNZnQfFjgbFs4CdxS+ldeP5s7FM37spd+h1Q/EXgpe1aY/Y8JPx4SB+I 6HlYam89qM8D8iCdh2Cb5uz/sy2T+i86jorn4dqgzNN8saxu0ElI6STk3Tvg jOFJuMu8DtgNTTYG/C4M+N34pfeQr3t/UQrwVeyhrqH4aPEWt00LXSwFPg0C v4Uo6A18gnEHcD4MjvndEO2bOBPdCf+uiHr3UNPdqC/QcWQ2vNrlC70Br6jU RcQzDHhm45uVxDetKexGJdfG11nqHLXxzYX4Zr6TTTm0GAAT1t/jWBaMknTL Aw7rmr/YcccZ2ziqL3JofxYJrTFBV1WGNsHQZhja1IY2t6FNOFkHoeUZRl/6 La+abTsSLQJqnqNiouo/0NWJauoKFr4E4urMzYKorrlxxx0v//rnP9ctGjn1 pUhY36aKOVlvWAP7kpQqljIC9KpoSQ6DHH0x3r2Do/rYDgu3iWjbduGgCGrm BPUj/KTmIp5ZoNLf8+tWMIruDNIo9KfPWLzmPae8Y9VLpo+aKcL5Zc66VwTh PKA3nNVVL4q/dnV6CZTq2Xqywk+AXLFi816gqFCDvrauUHMh0XaEEJtbZWKc cXvDJhJvGGejWxPn3+GIAq9gUN74Yfn573r35V//4pfXvOa1f9q1Xaz6Skmc TwJ30TzOUi7gXd0oVvNae8K0SsL9Y/VMRA33JoW4LYQ4NY8uga85qgizE2D4 3Txv//rLXwrvE8ILWftG7HwgyBzgNb/baScT4FUvefEx+PXTRZC/GgmyqWSN gpwIYk5ZzGeCrTsS78ihL6NDCQXbLysTQ10RZ7GNO1KEzd1CLuH56TKanwYx RiEfRBurf0fJF2N8A5Y3k3R32smNLyYL7uzV1zn5mjXgz8eDq8rLmZQqEo4u VrLTcI+biS6GklNFzapWrmQpAWd2I5wU2EwILMU0wZBC4mbhUlYwAb0eM8Qz Fq+66sXHeMHUbZ/6Bh2z6Sv8YCYYSbfl40VX1SiWivKBDeU6/Dt00oWEYC+j aZAWgmpWLtrUbhOOBjPhexIs44hiB7EBMwLGc7R7MfwviLQnnsvfetKaPzvs UBNL3TSobxahnEXw36K4cQ5CeYscSskOFA2CIuqNE4BY2WDqBwYbWUr4J/3V sEKWSWx3fXlgE9xDBt/mRFdpqY5010EOOBI82tdAria0v4XXO/bf10pU9wXq 23RMZ5D3/XRMXX1mblD9das6ceVHd+LWdP0yEn0c/thHAommNrDlGyID3qNd 2B8JgU2FwGY2r6b6xlwbaZ0KveBSDi5qFYN6EWv2RtbqO4uAateqvqPjSTpV uvLDL72M9Im5k8OpgkXA8vKfskidYGqRJixSJL54SNKj9RNoI6X+EfsBDJ6J YB6LYEpzjY4NIYYONfkuCJkTNu2a1Pd02Ogr/wVKzaUQsGTQsCVO2NZy2FIb tkS8qKI3WInQQ5VXm6cF4SVC2Ijo1IaNiM70UGI9eYCLOXbm9TfghVYZE8Qx y6bNZzlubtiuefV087DBH/G3XFQwamvxTa3Td5fBCSGYIpZaIqAb5MTm1eUp e8Fxs2jlRAa+aYzF+wC/ldbOqO/7oVqz7M1/FobKMzVSqIIenbIcfK8TKvje tfju1hlXQ2lO7x6JhCua6eqCuTW4OQu/orFLLKBe7Ezc/lbREszMCute1BlF 7Nbsvt3C5Re97y3dSwaLXRKLnSu0Rwuhpf2ltHJKN5vIOfc3qRe51GX0wxy5 93MTvlqvymi/on7AdtoJnhGfbKej0SvqqyJK6Zc+Ce/5SXxDTuyeBCU8rJQH aY2+Jamur0VnuEloWfLqqurWBGyu8E/4Ox5g3KmJxdh9S8fuTDp2MHarXnng PpdfdNp7Vi1955vC2Lk7UG/TL1UZQCd4PQFkaOsFMOmv8bMPnGLxPd0bQCnf uQE8igN4Kk+CeNf97ApjQtQP6djCAC7/6GuPxwAaenX2q3B4iXV4iV8megOY uQFEcsMANioTNeh1n9j1NAeQlviy0oKRUABHvAD+PY8muTu266rfdaOYmtqB kVQJxlK11iwNUOZQSiQHcVSkxO77IAN+CPT2BL5JE0dTQQzJg1aQ8kiuc6Ro IpkKLAdJEDo445BNID+g9KLE/Yw0FxJdfNVZfhwpghxHq8q+4ujEUI6j0WMs jsOpJ2s5jk87ikxqdBojYgwfZKpZkFxI1I+KIGI9ofCldMy9ulLml4sImjVM J4KoJymGDyk15BhKfdsTJoaOFhOf6iCGCWtxWRBDd4EMwJ69U1tnXVPU2TqM s0IYqcQYLZaV5sRdiz907nj3AngLj+tRlhvBhLPiE/BpJ4o1glheW6QgkhAf N0GEX8RidIIYAK1vHDlGVxi7Mfwg529Xi1BhZu6wJKsfC0HMODEaLeJyulNf okrkivI4emb9ikTxEXh/w4xi1Fg/qmczT/cwHU2LJVEM1Xi31aA6p4iiKdIc xZzc4iUQyR6ild7Sf7t+qcTdsIO/9zEdQwxFTyQVlWkrR29P6TaJ5MNeJCHN FPXaRDLviWQYxUcDPXKNmb7LCtFE0ivULY32qmXsG+0qd9Qwwrv67gG7dY+A 341RfAzfVzSIj8Ff4wZRZe5Ua1sE80E3mE9xmnzKC2avLC+JBPNhH/AZDOa5 OpjnCsFsa3GSJK8owNaKbLuKxEB2T4Gq8kEI0Bq9PdINZGZNN/ftBuuH3BJT 3vb1GcD79PS6N4CpX2L0gx0m6N5JbvyWKH//pHOZ1uy9LMjzdAzPE4q1jmFK jucyd4MktJJGkCaIHMAEI5gKSvyfCeA9ngLh13EQQwXqBZXx0uAFWxynQYQX 6NidLxSXDldohNnZp8W75W4jqA+BQoyie1RvqmoeuHSb5cE7rfISbXh6gRXC Fe7XdfQ2A+G6SIfrgmi4UltFCqnpq2/xNzyCEcBhS1m4dMZL3VCFNSPoj5NB Y7Xaikw//R0+A3F5SqMqBW7CBu4IpR9FW7LReZa1pi7W0btQqMEjXIOXAqg4 RjViU/qP12ZER45e2yB2xfi5UexW+DpTtKpv4qcSoRtxonckRy+8F9PDvdJT y7zoeaViTPvAVT9782socvi5ByFKD8HrYZq9685MBy4oEVkAqo7eg0ONXtQ9 39ajPCd61bG7UIhd4AApdpfq2F0UjV2OM6/uqZDKHoDfy7FrojyT5B4uYher DnXDF93xW4TvZl98CX4WvwbexFPWqfibGSZ7AvhEuQANvpfpGF4slNlRbVUw hqv+/OUvWf67L38K45hgICEmLMPe9Jc0DGR5tUiaBDLQ4Y02kKkUSL1vzChR TdG+mzpxNGLEOD7AaXBWB3KpUER0GuyYQF5+3Tlfw9eqFf98qivMMl0mUjiz MJxRrKVwFhPrGpdBUTiv93WZcji3OOFMysKJF5c9KYTUCSc6GGL7pzqcy+I1 mQZgHEqV0jFfc9eH30LhdPKkKk+URVCTqqCWw95nlf6NrFH4wu5WiJ3VaNow qI8KQb1CB/USoVS3haBm+ojgr7mbA9tMp2FIH3RCGsW+Uf6Uys+1QkgT/Dr8 Qh1T89JRzaWoalTUiBfZIKq2W7nSi6xXiqTItrRcw8jWlWtSxDZ1Y6uSxlmg eVL9ZUl0MRU40TWJINTrWkGzrjd/wLGXP9eRvVSIbM6DCcira/bcbWeK6YiO rxRZjGtCZSqjwD5WvALZKnKc3UfROCjl35uqUSYIFgTLM8FVfmDTIrDwLUVg VcaavbQ3qqzZDkXWTa9mcIYTinvgHOqgXiZU/awIqilW4KYiiaCeUhWVq+7j 8H71Le0epL/JHYfXSAZSfq1hpn4WjSp9S3dLkRDSmoF9PB7YX+nA/kQoW6kQ 2IkgDzhKVRGpUmyTUKqYBGSpNsoBdaX6k1hQE/wOTMoc1S30h1SFdaQsrLNm RHmNju2sEFu9BpbS9oDPnnYKRXWSju3lF0Bsz4TY/sbPBOV+Fe+vr+Xq1i2x cNX1AjW0eklVWE0acMP6Ed480W9Yr9NhvZyOuWsK8EW9+jiGMln1jX8+FWL8 bxDLmVNet+azS05Syaqvf/zd0KLe/vF3k5MN4huE11MthvehP6xqL6oKL3xz dzOEs5/wBs4AlyhoFvwbHV7tZ7OuE178d8dGNsGgQnghrBjU5ed/bgnYhGu+ /SnVjoWXEq5ku+D3OLUrFt4hZlpaeDxPCG/qZNpN/ILc0CS4Zbbrt15wjTkw hkA3BSlmAIwwKldRmEm2EzWCG6lmqN37lapbzYIMUUPC0cXdH+mdfb0x1hIe 1UEGrDbDW4QYSxEubivdiQUYuwUM8A06vj+jY9vEF2OLJWzNe9/0cj8VzKeY 5lJMnVzbq1aTCPpJBtLzuWokgzPrRHIjJoQ6kWyLkWRToH6vw6jbr3yGw0ih fO4uO6x6/UsPV9sVkVtz95KTbOQejUQuKsUo6dE6FWzOrdECfM+SngmJNMHv hQBi8DbpbBoLXvHwklYYPGoAQII369hRG5DM0F9J9d9Ebvln3n+SWqijt/zG zy1ZtQK0VxU9RcLrPqZrkNK3k0vdrj9u9qO1qNFV/d+KJUsnhG0K4UZgQwhh T54MBfhAgbG6VQfxVzaI2j8ZBQK8EMkFFMQMA7jmHpDgw2ER7zN+Er7RYlM3 EX41Fr9Uih8yLMev49UZJ3442MMCvkKH7tfadWIKxPiRCSUlUuh03ktJe6W6 y9y4+Xf46LM618h3LQzTf8fynROwDgVsA3MbMlvygJGHnJq8SgfshlJg5+iA Lf/d55asWXH6W4YWsGipbXQLIVLYf1YrLMGfAuHAiG2UI8Yha/UMPB/QteFO Ha2bdGlw5eXDOcVwrgQ47wM4ud+Ww/UIvA8uCo30VTdc0m7cf/XDlfkJLS3C 1aFwbYCzeTov0QZjzPAWkg/rYkBu+m4drtt8Gmd8GkFXoDEMGAVtVIcOtbZq NQD6vyl0hOanS9Gk0Km5Fk0peheq+BAYa+k9eueeuleHb3Upm2OczH7/6fcZ qak/ULDKb3FJwfrH6mCRzhL8ecAm/Oju/6/u7GKjKqI4ft29H7vsFkQkCtIg GEBpFLV8KFoUVBJI8MGEKjF+1BDEEEoaU2mRNI2R+KAkJvLAAw8+mfggL/Ki L/COkMYH1ADdtprw0coW+kE02uucM2fmnjs7d3arvPjQdrPbnTP/35xz5s7M vTMf0gXXIS+1puPxnfhZyr8mKf3mTPnkVehRV7p2qWmaZKBLfSQxaqSPbCDl 2/Zatp03hqj66qPKsww2bThWr8d3sA9TTjWaXFyMSlpXZxOSAUv/gyL9p13s X+Jr4BKj0aN8EF9Po/jmaXzT1BEYCG0LiKev0+DghuT3u45J27VZSDEpvK06 xIFBz9K5U923zZHN/qLWIJZ5wJ2NWAScuizjAhsxGZtFxAUHa99mfWdvGpds Wg/H1/0UmN64/HPTGaA+jQnOHu+DVBYPdb8ZXxWBOq7u6cxRJoOLi+uiwRrK ZO4LjMzThAILrffko6Ap//ItmSzPMhnQgvPp4Ujyw0SsR2eygDtY/yitoExI WtPOpJ8jWj8c76ue/3h/Fq2A53w1XDdp/WffCvTG8QmtDk3L7VuS1lxNS/mX QawmHMekf01LWH86o1Hmr8q5o93xwOF345973gFetV51h/pH38IpSJ9XhJwK QOc1ualA7XWYjROuT3llhARD8mk6J4uDMiEJCX9ISDNZKd8rAKXq21vWpxgN C5+6JnzK8CZj8scz9lvO1R9+uykZ3lQENjvkPhYz9J7bm/IGpSlR4duieTmp g7WU/pKUEIhvBJ8fr126ON67qTU+8cYOAJQDOiyZV+u7T6NhZoAJLGBCDWaz 3PRuht5L3MfPBDNHg1EuBHBuMzj0MEkOqMSMSiEzgQMa0T6/kNeo7m1WqTrz SiqhEqTdJdRUQtAdaSqtcg/GGfAZRcVI1X6aCs4Ieb72lykZWfLZuUA/8dpN eXpUIckzPOWs+JJ4gvib9hfjEcJDkeTlZgPGtvtG4i5B2l1CEBxpME2Ao1nu SzkDdP4mbG53oXXxSezUJ4mM3L5RooHnlgkPKMYuDHGEDM18I54KOp4UkzG4 gXlWAWSbGzVcJSGCrhJpImVQvxw4NEmnqesgKQ4wdpuS59VJDmrvr6k0DNRa ZBwWZkWQqCDQgCfSrouUy/KsbU/7WfkGkgg1iUiTKIHqlaC/LL1E6fez/ABL hsEkXScTA+kKEboC7dVRPdfboZ6w79fySwzFIkJxkVBsYyjgSRRA8e0dcYoA qh6knSICiQUQOwdkPwwASjoQfO0AvgWAOrp5gg5M0ttqTiMFIDDZubPy65HO yok97eIyZEmaQhOj0Iwvi/DMKDrMAQ83ssRkoyjA08438My82hFCvv6qS3Jr lgEi0iBKIHq1jI4M+b6Wnyf54AAMgZRfBPkoXfwM/HSs78zZrz4f+Oz93bUY 5jEMy/CljxgOJBhU5/uBMAMU7HOKxrFW7g33QhATafm4btRiEe2nRfsW0RPw nIqO++pYbwcKHznS6YNqzzd1J6mQXq+QsjEGKhQH2xPZGz35qPtJ0/0zz0K2 bXWArR5p2bjQs1LmxFqxvm5hLEW0JwzuSG08RXtGchcXcr3IoXcB09tC3n4g PW2KGyMcpDamlfA6ao1G9vW5HYnaEih7EDSGMgOmNPpao5wvKca3RAVA5KRd 5MCFY31e0SF0IRO6Jp3n+5M8H8RdG9dgWH8tekAQO4ZXAXXF4nl2flpsCHJw XL5YSwyllyOKCfpG3pB4S+5DpyRWR4XrKollh8T7mMS1qKmfZW3o0kHcSdGl XxKdGYirQozUHuzsa21+WlsIdS5C7RdrHfheCJ8G+qypHOgAXXIbOAg+MdYT TeXllRLUMdehZhFT81S6wVjHHGHHLHRVhw/vjiu7tsWXE22ecT65bxGHyy+4 7ofnihakzJv0qfgYRmyqVeBnfMNqlUyEJoivvNKDahY4ND3AND2b5YRsig8m ECrnj3aL94bx1qCRI/uqF7esxysQEgkVskksQM3xMN/5IKcsW7KKvqD03JRf V4FEcoStTi1nkUNOM5OzWTtcnRk3UIJqwJrQlNICP/RgUghyCiCnAHLw9LIS TV+Ni3+h+kOCEL9DbJerm1orQ1vbKoPiZ3hPe5ampQ5NS5mml7LcDjWpVbcL ciUENYGdfbn4O5xx/V5QFcYrl7a2iQ8ub20LoWI59MygekXUdZDqKj6rDO1p l9EBbW061WOOGi9jNd5uhH16WuoempY69UUP3GUi7zbp7Rg4JRLLCw4LDzEL LzvbeT7dePGl8FOyIF53ooVNaQunuYUVzMIrzsC4m1YKhAUoXVnYWFv486rA VazwV52AmhJAygAAAgPeOoeFR5iF151OU3Y0weMOCy3MwltOQMbiQMHRIi0O g48yg7ud0Ir2FlnlKHwNK3yvk1fkaJHlDgtPMAv7ndUPHC3S7LDQyix0aQu2 oPAdTXC/w8I6ZqHbSSlvb4J7HYVvYIUfMgAVOCAb+nmOgp9mBffhyxKvtUKD c5rb256E1/TeEigPFpgzy36Glf1RmgjCD2T7irLb4PuyJEd5bay8TzQEX14x QSnwXfgbU+31N59j3/wUX4amytT/b2b/j79+/L+94d31D/lr+d8=\ \>", "ImageResolution" -> \ 144.],ExpressionUUID->"15d7fe44-16b7-489f-8291-3618c6899848"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["SurfaceArea", "Subsection",ExpressionUUID->"cce8eda0-513d-43da-bd9f-128c4c0da6a1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[820]:=",ExpressionUUID->"2f7fc9ab-003e-412d-9d7b-035ccc76fbef"], Cell[BoxData[ SqrtBox[ RowBox[{"30", " ", RowBox[{"(", RowBox[{"10", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"75", "+", RowBox[{"30", " ", SqrtBox["5"]}]}]]}], ")"}]}]]], "Output", CellLabel-> "Out[820]=",ExpressionUUID->"727f8f84-80b5-4ed0-b820-7107a9722475"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RootReduce", "[", "%", "]"}]], "Input", CellLabel-> "In[821]:=",ExpressionUUID->"53806069-00b3-4421-a2ba-07c39fa86f7e"], Cell[BoxData[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"29.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 29.3059828449119912363585171988233923912`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"324000000", "-", RowBox[{"27000000", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"324000", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1200", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "8"}], "]"}], Short[#, 7]& ], 29.30598284491199}, "NumericalApproximation"], Root[324000000 - 27000000 #^2 + 324000 #^4 - 1200 #^6 + #^8& , 8, 0]]], "Output", CellLabel-> "Out[821]=",ExpressionUUID->"25d9a428-9922-43ea-aaf2-b2a8378e6304"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"SurfaceArea", "[", "p", "]"}], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel-> "In[822]:=",ExpressionUUID->"1b852ba6-9e50-4d5b-9e17-7532606cf352"], Cell[BoxData["$Aborted"], "Output", CellLabel-> "Out[822]=",ExpressionUUID->"b1b1cfec-8513-46c3-8a1d-7b8e19f5cbe5"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Total", "[", RowBox[{"Area", "/@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "]"}], "//", "RootReduce"}], "//", "Timing"}]], "Input",ExpressionUUID->"e3697dc2-2a45-\ 4e8f-9cb7-2e0949058bb4"] }, Open ]], Cell[CellGroupData[{ Cell["VertexSubsetHulls", "Subsection",ExpressionUUID->"0c1cdb9e-6ba5-4b14-b46b-c5597001feb9"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[823]:=",ExpressionUUID->"81091e04-ca9d-46f7-b6a5-766e83a41bde"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\<\"PentagonalOrthobirotunda\"\>", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27", ",", "28", ",", "29", ",", "30"}], "}"}], "}"}]}], ",", RowBox[{"\<\"PentagonalRotunda\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "13", ",", "15", ",", "17", ",", "19", ",", "21", ",", "23", ",", "25", ",", "27", ",", "29"}], "}"}], ",", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "12", ",", "14", ",", "16", ",", "18", ",", "20", ",", "22", ",", "24", ",", "26", ",", "28", ",", "30"}], "}"}]}], "}"}]}]}], "}"}]], "Output", CellLabel-> "Out[823]=",ExpressionUUID->"24667b62-0e2f-46ec-bdca-9f180e6b0ba6"] }, Open ]], Cell[CellGroupData[{ Cell["Platonic", "Subsubsection",ExpressionUUID->"083c9996-4c12-486b-9757-d87a7381ec9b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"h", "=", RowBox[{"VertexSubsetHulls", "[", RowBox[{"p", ",", "\"\\"", ",", RowBox[{"\"\\"", "\[Rule]", RowBox[{"{", "}"}]}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "In[824]:=",ExpressionUUID->"34ed40a1-f2c4-485a-8c4b-2d9bc206446e"], Cell[CellGroupData[{ Cell[BoxData["\<\"Finding equilateral triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[824]:=",ExpressionUUID->"53376ef8-250e-45df-9932-64aa7ff2a83e"], Cell[BoxData["\<\"Finding potential tetrahedra from equilateral \ triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[824]:=",ExpressionUUID->"3b96933f-c471-4979-a09a-ac49aae73b15"], Cell[BoxData["\<\"Finding tetrahedra from potential candidates...\"\>"], \ "Print", CellLabel-> "During evaluation of \ In[824]:=",ExpressionUUID->"23a2099b-b8ad-4edc-bce9-4fd49365e210"], Cell[BoxData["\<\"Finding cubes from tetrahedra...\"\>"], "Print", CellLabel-> "During evaluation of \ In[824]:=",ExpressionUUID->"5d925221-8412-43c9-b377-7e9ea0e84c62"], Cell[BoxData["\<\"Finding dodecahedron from cubes...\"\>"], "Print", CellLabel-> "During evaluation of \ In[824]:=",ExpressionUUID->"1849d3a9-9dc5-4fa9-a2fa-8a352cca47c6"], Cell[BoxData["\<\"Finding octahedra by building up from equilateral \ triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[824]:=",ExpressionUUID->"d2fd3f89-ac4e-435a-b0c9-0ebb112183ef"], Cell[BoxData["\<\"Finding dodecahedra from octahedra...\"\>"], "Print", CellLabel-> "During evaluation of \ In[824]:=",ExpressionUUID->"af154259-2da5-4ad1-8e76-1d7d58a2b6d3"], Cell[BoxData["\<\"Finding icosahedra by building up from equilateral \ triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[824]:=",ExpressionUUID->"94192344-cbea-4c69-966f-1c0a40fcd176"] }, Open ]], Cell[BoxData[ RowBox[{"{", RowBox[{"0.131011`", ",", RowBox[{"{", "}"}]}], "}"}]], "Output", CellLabel-> "Out[824]=",ExpressionUUID->"1d50d8cf-f5d7-40d6-b141-b836d48f5f46"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Volume", "Subsection",ExpressionUUID->"dff3e693-364b-4fed-a756-1eb815f54e51"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[825]:=",ExpressionUUID->"69fcbdcc-b72e-4391-b89f-4f0c78e500ac"], Cell[BoxData[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}]}], ")"}]}]], "Output", CellLabel-> "Out[825]=",ExpressionUUID->"aa2a8b7b-f566-41e8-a182-4a3586e198ca"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Volume", "[", "p", "]"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[826]:=",ExpressionUUID->"76c23ccb-b495-40ad-b1c6-8b5f7404afaf"], Cell[BoxData[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}]}], ")"}]}]], "Output", CellLabel-> "Out[826]=",ExpressionUUID->"bbe629b1-a842-4fd9-bd16-eff2eabdd2d0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronVolume", "[", RowBox[{"p", ",", RowBox[{"Method", "\[Rule]", "\"\\""}]}], "]"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[827]:=",ExpressionUUID->"e33470e7-fc3d-4c83-ad6d-cb457f56f1f0"], Cell[BoxData[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}]}], ")"}]}]], "Output", CellLabel-> "Out[827]=",ExpressionUUID->"f8164dab-aee3-4004-bc1e-828a869e8a71"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Perspective projections", "Section",ExpressionUUID->"d6f231ee-6ea4-48e1-96b8-4bf0bf98457d"], Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"a", ",", "b", ",", "c"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"a", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"b", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"c", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}]], "Input", CellLabel->"In[45]:=",ExpressionUUID->"48257389-0958-4dd3-85ce-0b9998f7f41b"], Cell[CellGroupData[{ Cell["XXX", "Subsection",ExpressionUUID->"e694356a-c500-4d1b-9bcb-742dd9e45156"], Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ","}], "]"}]], "Input",ExpressionUUID->"b4eaa69d-2d6f-4e98-ad4e-72a418d31c3d"] }, Open ]] }, Open ]] }, Open ]] }, InitializationCellEvaluation->Automatic, WindowSize->{915, 617}, WindowMargins->{{236, Automatic}, {95, Automatic}}, FrontEndVersion->"12.4 for Mac OS X x86 (64-bit) (May 3, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"2d54c42f-bdde-454d-a82c-3b1a8d51d4fa" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 97, 0, 98, "Title",ExpressionUUID->"64fdfc19-0808-4413-a482-554b01fffd73"], Cell[CellGroupData[{ Cell[702, 26, 83, 0, 54, "Subsection",ExpressionUUID->"f177f61b-4143-401a-9abb-efd18faee365"], Cell[788, 28, 109, 3, 58, "Text",ExpressionUUID->"a6f87c50-a6c2-4ede-900b-b26fc51d22e4"], Cell[900, 33, 356, 9, 35, "Text",ExpressionUUID->"c40a47a4-b306-4bd1-b545-b62070e4c00b"], Cell[1259, 44, 383, 11, 35, "Text",ExpressionUUID->"1232a89e-9fbe-4005-8b1d-7226f0fb178b"], Cell[1645, 57, 154, 2, 35, "Text",ExpressionUUID->"a701863c-fdbc-4d7d-9a0b-f59634844d55"] }, Open ]], Cell[CellGroupData[{ Cell[1836, 64, 79, 0, 67, "Section",ExpressionUUID->"2324fe6f-a33e-48e8-ba9a-8e6071a888cb"], Cell[CellGroupData[{ Cell[1940, 68, 226, 5, 30, "Input",ExpressionUUID->"6ba4a078-b9d5-43cf-b9dd-f2894aec1713"], Cell[2169, 75, 142, 3, 34, "Output",ExpressionUUID->"0dbb4017-4e5c-4b29-a868-a8f53a32028a"] }, Open ]], Cell[CellGroupData[{ Cell[2348, 83, 184, 4, 30, "Input",ExpressionUUID->"3c03c16d-c9e0-488a-9ad9-eaa686634792"], Cell[2535, 89, 7199, 127, 393, "Output",ExpressionUUID->"cb146711-a997-4b00-a9fd-62138c075890"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[9783, 222, 77, 0, 67, "Section",ExpressionUUID->"669fdbaf-0d29-46f6-87a8-097671db0ac2"], Cell[CellGroupData[{ Cell[9885, 226, 217, 5, 30, "Input",ExpressionUUID->"d0b668e0-dc7b-4a6d-b112-2c95cdee6f6d"], Cell[10105, 233, 16520, 309, 230, "Output",ExpressionUUID->"5b98a496-2149-448f-9a68-47c097317af7"] }, Open ]], Cell[CellGroupData[{ Cell[26662, 547, 245, 6, 30, "Input",ExpressionUUID->"2977a215-ef1c-45e0-8779-4d2e99982ddf"], Cell[26910, 555, 16592, 313, 230, "Output",ExpressionUUID->"9cac922d-3f6d-4e09-a35d-89178ff40d54"] }, Open ]], Cell[43517, 871, 299, 6, 30, "Input",ExpressionUUID->"a70995bb-52aa-47e2-b77b-6cc42384b222"] }, Open ]], Cell[CellGroupData[{ Cell[43853, 882, 84, 0, 67, "Section",ExpressionUUID->"fe4f13a0-d69d-4589-a170-e69a0df80daa"], Cell[43940, 884, 158, 3, 30, "Input",ExpressionUUID->"3b87fd94-63e7-4be1-968a-deb12f7f2e51"], Cell[CellGroupData[{ Cell[44123, 891, 279, 7, 30, "Input",ExpressionUUID->"fa3cb98d-b490-41fc-b9bc-e05b7ef37bda"], Cell[44405, 900, 36809, 673, 64, "Output",ExpressionUUID->"72444f2c-bcf3-4993-9b7b-f98ce0b651bc"] }, Open ]], Cell[CellGroupData[{ Cell[81251, 1578, 85, 0, 54, "Subsection",ExpressionUUID->"f2122309-5862-4666-8010-15342edb603c"], Cell[CellGroupData[{ Cell[81361, 1582, 714, 19, 73, "Input",ExpressionUUID->"9b7255aa-ddab-4ffd-8388-0949519c5c09"], Cell[82078, 1603, 7660, 139, 393, "Output",ExpressionUUID->"31e3b3b8-7460-4a5c-9da6-25c284a7f748"] }, Open ]], Cell[CellGroupData[{ Cell[89775, 1747, 192, 4, 30, "Input",ExpressionUUID->"3dc686c0-ccde-484f-b6be-16c5e5748969"], Cell[89970, 1753, 166, 4, 34, "Output",ExpressionUUID->"e53376e9-53fa-4e91-b429-8f25c2961636"] }, Open ]], Cell[CellGroupData[{ Cell[90173, 1762, 187, 5, 30, "Input",ExpressionUUID->"acd54e4b-ff27-40a5-a974-70f96cfb24b5"], Cell[90363, 1769, 166, 4, 34, "Output",ExpressionUUID->"dfbf49e4-899d-43c6-8890-6f3ffc6ef1a8"] }, Open ]], Cell[CellGroupData[{ Cell[90566, 1778, 227, 6, 30, "Input",ExpressionUUID->"175cc544-4aab-4ed9-bb01-881476f35e45"], Cell[90796, 1786, 1578, 26, 80, "Message",ExpressionUUID->"cff8db5d-059d-4e9b-8788-c05b2a29e0ce"], Cell[92377, 1814, 1578, 26, 80, "Message",ExpressionUUID->"3179a2cb-2698-4191-97d7-18b324d15534"], Cell[93958, 1842, 1578, 26, 80, "Message",ExpressionUUID->"447bb8b2-b117-4419-84de-32569af1e288"], Cell[95539, 1870, 409, 9, 28, "Message",ExpressionUUID->"7fb0cbbe-143a-4c71-b75d-80c1cbeecd84"], Cell[95951, 1881, 118, 2, 34, "Output",ExpressionUUID->"12d2ab0b-8f11-4141-90a1-65710057624b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[96118, 1889, 89, 0, 54, "Subsection",ExpressionUUID->"feae7157-2c81-4ff6-80ea-92aeca1eb70b"], Cell[CellGroupData[{ Cell[96232, 1893, 196, 4, 30, "Input",ExpressionUUID->"e82ae479-e9b5-4b3d-9c1d-35af2d16707e"], Cell[96431, 1899, 339, 11, 50, "Output",ExpressionUUID->"5fea1e53-8feb-4a90-a5cf-ecb5a77c2cc1"] }, Open ]], Cell[CellGroupData[{ Cell[96807, 1915, 183, 4, 30, "Input",ExpressionUUID->"f3fddb6b-8184-4081-ac51-f8e4d0deee16"], Cell[96993, 1921, 339, 11, 50, "Output",ExpressionUUID->"93adb96b-327a-4ff2-b278-f0de2a2acbd7"] }, Open ]], Cell[CellGroupData[{ Cell[97369, 1937, 236, 7, 30, "Input",ExpressionUUID->"b2a725fb-cf72-42ec-b697-3c21a7978607"], Cell[97608, 1946, 410, 13, 50, "Output",ExpressionUUID->"f7e8ee2b-da28-430e-afd6-cfc9afea198e"] }, Open ]], Cell[CellGroupData[{ Cell[98055, 1964, 376, 11, 30, "Input",ExpressionUUID->"c1ef1593-7803-480e-bba4-5cf66c58d2f9"], Cell[98434, 1977, 133201, 2199, 380, 7644, 140, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"f463328d-edfe-46da-a4e5-4f68c6e69a83"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[231684, 4182, 83, 0, 54, "Subsection",ExpressionUUID->"640eae56-a47f-4ccd-b545-da03172e8675"], Cell[CellGroupData[{ Cell[231792, 4186, 153, 3, 30, "Input",ExpressionUUID->"80789be0-096e-4a8a-8ed0-b66b366c6d4f"], Cell[231948, 4191, 114, 2, 34, "Output",ExpressionUUID->"e0e65b6e-af4d-4de1-810c-797792eff330"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[232111, 4199, 91, 0, 54, "Subsection",ExpressionUUID->"98fd4c3e-0340-4163-81b2-8017e8f005f1"], Cell[CellGroupData[{ Cell[232227, 4203, 230, 6, 30, "Input",ExpressionUUID->"ac242428-4dbf-4c42-a8c4-5a890f22a4a7"], Cell[232460, 4211, 784, 27, 51, "Output",ExpressionUUID->"4413785f-15d2-48b7-9000-4f9ccb8c0fe4"] }, Open ]], Cell[CellGroupData[{ Cell[233281, 4243, 217, 6, 30, "Input",ExpressionUUID->"97636360-891e-420f-a00b-87adc26557cb"], Cell[233501, 4251, 118, 2, 34, "Output",ExpressionUUID->"604b1883-0a54-4ca2-b257-59c57d7840e9"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[233668, 4259, 88, 0, 54, "Subsection",ExpressionUUID->"dc94e98b-b86b-4b8e-bcc5-800b4323bb37"], Cell[CellGroupData[{ Cell[233781, 4263, 195, 4, 30, "Input",ExpressionUUID->"51cef676-2313-4b29-8c2f-22e387b89416"], Cell[233979, 4269, 133, 3, 34, "Output",ExpressionUUID->"51aebf7a-69d9-46b9-ac15-7d862a689328"] }, Open ]], Cell[CellGroupData[{ Cell[234149, 4277, 437, 12, 52, "Input",ExpressionUUID->"c36ac8c6-309f-4665-a7f4-ce08d73893a7"], Cell[234589, 4291, 133, 3, 34, "Output",ExpressionUUID->"06fd8d12-99f6-4e0e-a350-f9de0b02624e"] }, Open ]] }, Open ]], Cell[234749, 4298, 82, 0, 54, "Subsection",ExpressionUUID->"a5111090-4170-4d68-bca8-168cb9f80d2f"], Cell[CellGroupData[{ Cell[234856, 4302, 96, 0, 38, "Subsection",ExpressionUUID->"584f5b57-27ca-4d34-a9b1-f8e0869f4237"], Cell[CellGroupData[{ Cell[234977, 4306, 203, 4, 30, "Input",ExpressionUUID->"787f18eb-9632-488a-a890-d27752eb4298"], Cell[235183, 4312, 145, 4, 35, "Output",ExpressionUUID->"21937a0f-8bca-4b25-aa71-b943ff3ae569"] }, Open ]], Cell[CellGroupData[{ Cell[235365, 4321, 222, 6, 30, "Input",ExpressionUUID->"5bdf9f41-b159-4be7-8121-0d37c804c4ef"], Cell[235590, 4329, 145, 4, 35, "Output",ExpressionUUID->"5bcf8f83-8b91-4d9a-afac-ee0e795d78a9"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[235784, 4339, 90, 0, 54, "Subsection",ExpressionUUID->"503bcd25-314b-462d-80c9-c30e2e948e4d"], Cell[CellGroupData[{ Cell[235899, 4343, 197, 4, 30, "Input",ExpressionUUID->"c9da5367-6759-40f1-96d8-9a33bc50b16b"], Cell[236099, 4349, 655, 22, 58, "Output",ExpressionUUID->"46865d48-9dae-474c-8bda-635c7f2243fc"] }, Open ]], Cell[CellGroupData[{ Cell[236791, 4376, 366, 11, 51, "Input",ExpressionUUID->"6479e2ee-6afd-4f5b-aa99-fa727f34129d"], Cell[237160, 4389, 118, 2, 34, "Output",ExpressionUUID->"be5269ec-6400-4552-a234-b85fa3da51e5"] }, Open ]], Cell[237293, 4394, 163, 3, 30, "Input",ExpressionUUID->"5835ff12-6b37-4018-a144-5ee0851a4130"] }, Open ]], Cell[CellGroupData[{ Cell[237493, 4402, 85, 0, 54, "Subsection",ExpressionUUID->"f9bd7034-d5ba-46f5-86b4-c783d7874853"], Cell[CellGroupData[{ Cell[237603, 4406, 192, 4, 30, "Input",ExpressionUUID->"65a78189-dbd2-4c7b-b68e-0a14aec09681"], Cell[237798, 4412, 164, 3, 34, "Output",ExpressionUUID->"be0e304e-d41a-4c61-bca5-171050ab2191"] }, Open ]], Cell[CellGroupData[{ Cell[237999, 4420, 144, 3, 30, "Input",ExpressionUUID->"edf52556-5d09-467e-bb59-0a8795eea2bb"], Cell[238146, 4425, 5328, 75, 239, "Message",ExpressionUUID->"48a57630-bfbf-4568-8da4-4cb3bdce816a"], Cell[243477, 4502, 37634, 687, 64, "Output",ExpressionUUID->"24533a32-b979-4b72-b6f1-fe3865646cb6"] }, Open ]], Cell[CellGroupData[{ Cell[281148, 5194, 174, 4, 30, "Input",ExpressionUUID->"3df5a779-2116-44ba-a63e-aaaa08d359e5"], Cell[281325, 5200, 118, 2, 34, "Output",ExpressionUUID->"57f2bebe-ac22-4fd8-8408-3aecd8f54bd0"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[281492, 5208, 98, 0, 54, "Subsection",ExpressionUUID->"74f51c38-b35c-4828-8ec7-4d2ddfa84f1b"], Cell[CellGroupData[{ Cell[281615, 5212, 509, 16, 61, "Input",ExpressionUUID->"50d11bea-9019-4499-a610-ecb22f0d4353"], Cell[282127, 5230, 445, 10, 46, "Message",ExpressionUUID->"86b6fa2b-98e0-47d3-bd5d-4977433f44d8"], Cell[282575, 5242, 182, 4, 34, "Output",ExpressionUUID->"d5612617-f6ad-404e-9409-04335a85ffe1"] }, Open ]], Cell[282772, 5249, 558, 17, 71, "Input",ExpressionUUID->"f066607a-0956-48e4-bf4f-c8adb54f28ad"], Cell[283333, 5268, 109, 1, 30, "Input",ExpressionUUID->"0153a3ee-89cf-4621-814b-abb8c15da0e3"] }, Open ]], Cell[CellGroupData[{ Cell[283479, 5274, 104, 0, 54, "Subsection",ExpressionUUID->"e587a634-98fb-4844-8fb9-555217132c1b"], Cell[CellGroupData[{ Cell[283608, 5278, 491, 15, 55, "Input",ExpressionUUID->"e85d2134-d47c-424b-a10a-2530ea173762"], Cell[284102, 5295, 181, 4, 34, "Output",ExpressionUUID->"06c2d390-5b47-4d81-9a36-5a7ca6e26dfa"] }, Open ]], Cell[CellGroupData[{ Cell[284320, 5304, 618, 19, 57, "Input",ExpressionUUID->"47ac974f-ad6a-43b8-b063-9f5a675c5ac2"], Cell[284941, 5325, 260, 8, 58, "Output",ExpressionUUID->"258302c0-fbd0-4829-9f7e-d5e4e439901d"] }, Open ]], Cell[CellGroupData[{ Cell[285238, 5338, 137, 3, 30, "Input",ExpressionUUID->"09ab9015-d6ea-4f65-a989-82cddad5b443"], Cell[285378, 5343, 129, 2, 34, "Output",ExpressionUUID->"b27ed880-a2a6-4eaf-b714-d85278dedc27"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[285556, 5351, 96, 0, 54, "Subsection",ExpressionUUID->"1a341244-0765-4406-a02c-66e6c1c3d7d0"], Cell[CellGroupData[{ Cell[285677, 5355, 548, 17, 61, "Input",ExpressionUUID->"5ed94d0c-1309-4d27-bb8d-0940ab689a3d"], Cell[286228, 5374, 182, 4, 34, "Output",ExpressionUUID->"cccf5094-d4b7-4fa9-a2c2-803cf27f377f"] }, Open ]], Cell[286425, 5381, 599, 18, 71, "Input",ExpressionUUID->"695f295c-d860-4640-99a7-6c7686d5d353"], Cell[287027, 5401, 109, 1, 30, "Input",ExpressionUUID->"02ca7c28-6500-4185-87ac-193eb3193476"] }, Open ]], Cell[CellGroupData[{ Cell[287173, 5407, 102, 0, 54, "Subsection",ExpressionUUID->"bae003bf-862f-40b4-87fe-7e2d75b98102"], Cell[CellGroupData[{ Cell[287300, 5411, 529, 16, 55, "Input",ExpressionUUID->"8b65ec49-3b11-424e-8f9a-66f24cab9362"], Cell[287832, 5429, 181, 4, 34, "Output",ExpressionUUID->"c111c764-1498-49a7-8b76-744b1206f981"] }, Open ]], Cell[CellGroupData[{ Cell[288050, 5438, 659, 20, 57, "Input",ExpressionUUID->"45eca3e5-0952-4004-82e1-bbc3b3c7d8d5"], Cell[288712, 5460, 317, 10, 62, "Output",ExpressionUUID->"34d14718-2f2e-4542-8fa2-f8dde22b7daf"] }, Open ]], Cell[CellGroupData[{ Cell[289066, 5475, 137, 3, 30, "Input",ExpressionUUID->"cf0efa9a-f1c2-438a-870b-218f055f0887"], Cell[289206, 5480, 128, 2, 34, "Output",ExpressionUUID->"cd5d79d1-8607-4498-a5dd-540458a0f678"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[289383, 5488, 86, 0, 54, "Subsection",ExpressionUUID->"12f4ad40-7e4b-4a16-a3eb-b163ee02b3d3"], Cell[CellGroupData[{ Cell[289494, 5492, 222, 5, 30, "Input",ExpressionUUID->"cc169e74-abe1-49dd-a4dd-6707415a6bdb"], Cell[289719, 5499, 327, 11, 62, "Output",ExpressionUUID->"5beca25b-b77f-4dfe-b39f-836074c652a7"] }, Open ]], Cell[CellGroupData[{ Cell[290083, 5515, 230, 7, 30, "Input",ExpressionUUID->"cb091267-61bd-444d-b244-8bb76f8e0430"], Cell[290316, 5524, 398, 13, 62, "Output",ExpressionUUID->"f5e9bd4e-ea5e-404e-85d0-ceffd57d7f1f"] }, Open ]], Cell[CellGroupData[{ Cell[290751, 5542, 409, 12, 30, "Input",ExpressionUUID->"218fbe15-e60e-4e67-a198-51b48f4c948c"], Cell[291163, 5556, 129494, 2137, 380, 7825, 142, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"15d7fe44-16b7-489f-8291-3618c6899848"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[420706, 7699, 88, 0, 54, "Subsection",ExpressionUUID->"cce8eda0-513d-43da-bd9f-128c4c0da6a1"], Cell[CellGroupData[{ Cell[420819, 7703, 195, 4, 30, "Input",ExpressionUUID->"2f7fc9ab-003e-412d-9d7b-035ccc76fbef"], Cell[421017, 7709, 338, 12, 46, "Output",ExpressionUUID->"727f8f84-80b5-4ed0-b820-7107a9722475"] }, Open ]], Cell[CellGroupData[{ Cell[421392, 7726, 146, 3, 30, "Input",ExpressionUUID->"53806069-00b3-4421-a2ba-07c39fa86f7e"], Cell[421541, 7731, 1076, 29, 41, "Output",ExpressionUUID->"25d9a428-9922-43ea-aaf2-b2a8378e6304"] }, Open ]], Cell[CellGroupData[{ Cell[422654, 7765, 213, 6, 30, "Input",ExpressionUUID->"1b852ba6-9e50-4d5b-9e17-7532606cf352"], Cell[422870, 7773, 118, 2, 34, "Output",ExpressionUUID->"b1b1cfec-8513-46c3-8a1d-7b8e19f5cbe5"] }, Open ]], Cell[423003, 7778, 301, 8, 30, "Input",ExpressionUUID->"e3697dc2-2a45-4e8f-9cb7-2e0949058bb4"] }, Open ]], Cell[CellGroupData[{ Cell[423341, 7791, 94, 0, 54, "Subsection",ExpressionUUID->"0c1cdb9e-6ba5-4b14-b46b-c5597001feb9"], Cell[CellGroupData[{ Cell[423460, 7795, 201, 4, 30, "Input",ExpressionUUID->"81091e04-ca9d-46f7-b6a5-766e83a41bde"], Cell[423664, 7801, 1300, 28, 98, "Output",ExpressionUUID->"24667b62-0e2f-46ec-bdca-9f180e6b0ba6"] }, Open ]], Cell[CellGroupData[{ Cell[425001, 7834, 88, 0, 45, "Subsubsection",ExpressionUUID->"083c9996-4c12-486b-9757-d87a7381ec9b"], Cell[CellGroupData[{ Cell[425114, 7838, 349, 9, 30, "Input",ExpressionUUID->"34ed40a1-f2c4-485a-8c4b-2d9bc206446e"], Cell[CellGroupData[{ Cell[425488, 7851, 172, 3, 24, "Print",ExpressionUUID->"53376ef8-250e-45df-9932-64aa7ff2a83e"], Cell[425663, 7856, 200, 4, 24, "Print",ExpressionUUID->"3b96933f-c471-4979-a09a-ac49aae73b15"], Cell[425866, 7862, 189, 4, 24, "Print",ExpressionUUID->"23a2099b-b8ad-4edc-bce9-4fd49365e210"], Cell[426058, 7868, 172, 3, 24, "Print",ExpressionUUID->"5d925221-8412-43c9-b377-7e9ea0e84c62"], Cell[426233, 7873, 174, 3, 24, "Print",ExpressionUUID->"1849d3a9-9dc5-4fa9-a2fa-8a352cca47c6"], Cell[426410, 7878, 204, 4, 24, "Print",ExpressionUUID->"d2fd3f89-ac4e-435a-b0c9-0ebb112183ef"], Cell[426617, 7884, 177, 3, 24, "Print",ExpressionUUID->"af154259-2da5-4ad1-8e76-1d7d58a2b6d3"], Cell[426797, 7889, 205, 4, 24, "Print",ExpressionUUID->"94192344-cbea-4c69-966f-1c0a40fcd176"] }, Open ]], Cell[427017, 7896, 183, 5, 34, "Output",ExpressionUUID->"1d50d8cf-f5d7-40d6-b141-b836d48f5f46"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[427261, 7908, 83, 0, 54, "Subsection",ExpressionUUID->"dff3e693-364b-4fed-a756-1eb815f54e51"], Cell[CellGroupData[{ Cell[427369, 7912, 190, 4, 30, "Input",ExpressionUUID->"69fcbdcc-b72e-4391-b89f-4f0c78e500ac"], Cell[427562, 7918, 243, 8, 51, "Output",ExpressionUUID->"aa2a8b7b-f566-41e8-a182-4a3586e198ca"] }, Open ]], Cell[CellGroupData[{ Cell[427842, 7931, 177, 4, 30, "Input",ExpressionUUID->"76c23ccb-b495-40ad-b1c6-8b5f7404afaf"], Cell[428022, 7937, 243, 8, 51, "Output",ExpressionUUID->"bbe629b1-a842-4fd9-bd16-eff2eabdd2d0"] }, Open ]], Cell[CellGroupData[{ Cell[428302, 7950, 265, 7, 30, "Input",ExpressionUUID->"e33470e7-fc3d-4c83-ad6d-cb457f56f1f0"], Cell[428570, 7959, 243, 8, 51, "Output",ExpressionUUID->"f8164dab-aee3-4004-bc1e-828a869e8a71"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[428874, 7974, 97, 0, 67, "Section",ExpressionUUID->"d6f231ee-6ea4-48e1-96b8-4bf0bf98457d"], Cell[428974, 7976, 680, 19, 52, "Input",ExpressionUUID->"48257389-0958-4dd3-85ce-0b9998f7f41b"], Cell[CellGroupData[{ Cell[429679, 7999, 80, 0, 54, "Subsection",ExpressionUUID->"e694356a-c500-4d1b-9bcb-742dd9e45156"], Cell[429762, 8001, 256, 5, 30, "Input",ExpressionUUID->"b4eaa69d-2d6f-4e98-ad4e-72a418d31c3d"] }, Open ]] }, Open ]] }, Open ]] } ] *)