(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 446367, 8304]
NotebookOptionsPosition[ 430058, 8011]
NotebookOutlinePosition[ 430491, 8028]
CellTagsIndexPosition[ 430448, 8025]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Pentagonal Orthobirotunda", "Title",ExpressionUUID->"64fdfc19-0808-4413-a482-554b01fffd73"],
Cell[CellGroupData[{
Cell["Author", "Subsection",ExpressionUUID->"f177f61b-4143-401a-9abb-efd18faee365"],
Cell["\<\
Eric W. Weisstein
May 14, 2021\
\>", "Text",ExpressionUUID->"a6f87c50-a6c2-4ede-900b-b26fc51d22e4"],
Cell[TextData[{
"This notebook downloaded from ",
ButtonBox["http://mathworld.wolfram.com/notebooks/Polyhedra/\
PentagonalOrthobirotunda.nb",
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://mathworld.wolfram.com/notebooks/Polyhedra/\
PentagonalOrthobirotunda.nb"], None}],
"."
}], "Text",ExpressionUUID->"c40a47a4-b306-4bd1-b545-b62070e4c00b"],
Cell[TextData[{
"For more information, see Eric's ",
StyleBox["MathWorld",
FontSlant->"Italic"],
" entry ",
ButtonBox["http://mathworld.wolfram.com/PentagonalOrthobirotunda.html",
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://mathworld.wolfram.com/PentagonalOrthobirotunda.html"],
None}],
"."
}], "Text",ExpressionUUID->"1232a89e-9fbe-4005-8b1d-7226f0fb178b"],
Cell["\<\
\[Copyright]2021 Wolfram Research, Inc. except for portions noted otherwise\
\>", "Text",ExpressionUUID->"a701863c-fdbc-4d7d-9a0b-f59634844d55"]
}, Open ]],
Cell[CellGroupData[{
Cell["Solid", "Section",ExpressionUUID->"2324fe6f-a33e-48e8-ba9a-8e6071a888cb"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->
"In[780]:=",ExpressionUUID->"6ba4a078-b9d5-43cf-b9dd-f2894aec1713"],
Cell[BoxData[
RowBox[{"{", "\<\"C5\"\>", "}"}]], "Output",
CellLabel->
"Out[780]=",ExpressionUUID->"0dbb4017-4e5c-4b29-a868-a8f53a32028a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[", "\"\\"",
"]"}]], "Input",
CellLabel->
"In[781]:=",ExpressionUUID->"3c03c16d-c9e0-488a-9ad9-eaa686634792"],
Cell[BoxData[
Graphics3DBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2],
0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[
1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{0, -1.618033988749895, 0}, {
0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`,
0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5,
0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, {
1.5388417685876268`, 0.5, 0}, {
1.3763819204711736`, 0, -0.8506508083520399}, {
1.3763819204711736`, 0, 0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`,
0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, \
-0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475,
0.8506508083520399}, {-1.1135163644116066`,
0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`,
0.8090169943749475,
0.8506508083520399}, {-0.8506508083520399,
0, -1.3763819204711736`}, {-0.8506508083520399, 0,
1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, \
-1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475,
1.3763819204711736`}, {-0.2628655560595668,
0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668,
0.8090169943749475, 1.3763819204711736`}, {
0.6881909602355868, -0.5, -1.3763819204711736`}, {
0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868,
0.5, -1.3763819204711736`}, {0.6881909602355868, 0.5,
1.3763819204711736`}}],
Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28,
24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, {1,
5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14,
24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {
25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25, 15}, {15,
2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4,
2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29,
15, 6, 10}}]]]], "Output",
CellLabel->
"Out[781]=",ExpressionUUID->"cb146711-a997-4b00-a9fd-62138c075890"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Net", "Section",ExpressionUUID->"669fdbaf-0d29-46f6-87a8-097671db0ac2"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->
"In[782]:=",ExpressionUUID->"d0b668e0-dc7b-4a6d-b112-2c95cdee6f6d"],
Cell[BoxData[
GraphicsBox[
{RGBColor[1, 1, 0.85], EdgeForm[GrayLevel[0]],
GraphicsComplexBox[
NCache[{{0,
Rational[1, 8] (13 - 5^
Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (7 - 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (6 + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (7 - 5^Rational[1, 2] - (6 (5 - 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (5 - 5^
Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (8 - 2 5^Rational[1, 2] +
2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (13 +
5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (23 - 7
5^Rational[1, 2] + (750 - 330 5^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (3 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {(
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (11 +
5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (
3 (9 + 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2], Rational[1, 2]}, {
Rational[1, 4] (55 - 17
5^Rational[1, 2] + (4350 - 1830 5^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (8 +
2 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (13 +
5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (7 +
5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] ((6 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
Rational[1, 2] (11 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 8] (7 +
5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] ((6 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
Rational[1, 2] (11 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 8] (15 +
5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (
3 (15 - 5^
Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2]))^
Rational[1, 2], 0}, {
Rational[1, 4] (
3 (15 - 5^
Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2]))^
Rational[1, 2], 1}, {
Rational[1, 4] (
3 (15 - 5^
Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (7 +
5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (53 +
11 5^Rational[1, 2] + (390 - 114 5^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (4 - 5^
Rational[1, 2] + (15 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (52 - 2 5^Rational[1, 2] +
6 (75 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (
3 (5 + 5^Rational[1, 2]) + (150 + 66 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[1, 2] (13 + 2 5^Rational[1, 2] +
2 (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (9 - 5^
Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (13 + 2 5^Rational[1, 2] +
2 (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (13 +
3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
Rational[1, 2] (34 +
11 5^Rational[1, 2] + (195 + 66 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 8] (7 - 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[1, 2] (Rational[31, 2] +
Rational[11, 2] 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (11 +
5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (
3 (21 + 5 5^Rational[1, 2] + (6 (85 + 31 5^Rational[1, 2]))^
Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (8 +
2 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {((6 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
Rational[1, 2] (11 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 8] (17 +
3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (65 +
23 5^Rational[1, 2] + (30 (205 + 89 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (5 + (15 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (65 +
23 5^Rational[1, 2] + (30 (205 + 89 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (6 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (92 + 22 5^Rational[1, 2] +
6 (195 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (11 - 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[1, 4] (83 +
35 5^Rational[1, 2] + (6 (965 + 431 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (5 + 5^Rational[1, 2])}, {
Rational[1, 4] (
5 (17 + 7 5^Rational[1, 2] + (6 (65 + 29 5^Rational[1, 2]))^
Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (7 +
2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (115 +
37 5^Rational[1, 2] + (30 (425 + 181 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (6 - 5^
Rational[1, 2] + (15 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (23 + 10 5^Rational[1, 2] +
2 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (13 +
3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (113 + 41 5^Rational[1, 2] +
11 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (7 + 5^Rational[1, 2])}, {
Rational[1, 2] (
Rational[3, 2] (18 +
7 5^Rational[1, 2] + (555 + 246 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 8] (15 +
7 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (32 + Rational[23, 2] 5^Rational[1, 2] +
Rational[1, 2] (3 (2245 + 982 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[1, 8] (13 + 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^
Rational[1, 2])}, {(Rational[35, 4] +
Rational[13, 4] 5^Rational[1, 2] +
Rational[1, 2] (Rational[975, 2] + Rational[435, 2] 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (17 +
3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[133, 16] + Rational[59, 16] 5^Rational[1, 2] +
Rational[
1, 2] (Rational[17475, 32] + Rational[7815, 32] 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (8 +
3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
Rational[1, 2] (74 +
31 5^Rational[1, 2] + (9915 + 4434 5^Rational[1, 2])^
Rational[1, 2]))^Rational[1, 2],
Rational[1, 8] (-(30 - 6 5^Rational[1, 2])^Rational[1, 2] +
3 (5 + 5^Rational[1, 2]))}, {
Rational[1, 2] (
Rational[1, 2] (74 +
31 5^Rational[1, 2] + (9915 + 4434 5^Rational[1, 2])^
Rational[1, 2]))^Rational[1, 2],
Rational[1, 8] (17 +
5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (155 +
67 5^Rational[1, 2] + (30 (1385 + 619 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (5 + 5^Rational[1, 2])}, {(Rational[43, 4] +
Rational[19, 4] 5^Rational[1, 2] +
Rational[
1, 2] (Rational[1335, 2] + Rational[597, 2] 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (11 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 4] (167 + 71 5^Rational[1, 2] +
3 (6 (965 + 431 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (4 + 5^Rational[1, 2])}, {
Rational[1, 4] (187 +
77 5^Rational[1, 2] + (30 (1945 + 869 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (10 +
3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (197 + 85 5^Rational[1, 2] +
3 (8310 + 3714 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (7 + 5^Rational[1, 2])}, {
Rational[1, 4] (197 + 85 5^Rational[1, 2] +
3 (8310 + 3714 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[3, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 4] (223 +
97 5^Rational[1, 2] + (84270 + 37686 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (6 + 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] +
Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[1, 8] (19 +
7 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (Rational[119, 2] +
Rational[53, 2] 5^Rational[1, 2] + (6 (1165 + 521 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (13 + 3 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 2] (Rational[119, 2] +
Rational[53, 2] 5^Rational[1, 2] + (6 (1165 + 521 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (19 +
5 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (Rational[119, 2] +
Rational[53, 2] 5^Rational[1, 2] + (6 (1165 + 521 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (27 +
5 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (257 + 113 5^Rational[1, 2] +
3 (30 (445 + 199 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (3 + 5^Rational[1, 2])}, {
Rational[1, 4] (257 + 113 5^Rational[1, 2] +
3 (30 (445 + 199 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 5^Rational[1, 2])}, {(Rational[145, 8] +
Rational[59, 8]
5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (13 + 3 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {(
Rational[3, 2] (12 +
5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 8] (11 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {(Rational[149, 8] +
Rational[65, 8]
5^Rational[1, 2] + (Rational[3, 2] (445 + 199 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (23 +
5 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (323 +
131 5^Rational[1, 2] + (30 (6305 + 2819 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (4 + 5^Rational[1, 2])}, {
Rational[1, 2] (80 + Rational[71, 2] 5^Rational[1, 2] +
Rational[1, 2] (15 (3305 + 1478 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[1, 8] (21 + 5 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[1, 4] (347 +
149 5^Rational[1, 2] + (209310 + 93606 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (7 + 2 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^
Rational[1, 2])}, {(Rational[347, 16] +
Rational[155, 16] 5^Rational[1, 2] +
Rational[
1, 2] (Rational[119775, 32] + Rational[53565, 32] 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (11 + 3 5^Rational[1, 2])}, {(23 + 10 5^Rational[1, 2] +
2 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (5 (3 + 5^Rational[1, 2]) - (6 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 4] (403 +
163 5^Rational[1, 2] + (6 (46325 + 20639 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (7 + 3 5^Rational[1, 2])}}, {{0, 2.1691306063588582`}, {
0.20791169081775937`, 3.147278207092664}, {0.41582338163551874`,
1.1691306063588582`}, {0.6146483338935596, 4.060823664735265}, {
0.8225600247113184, 2.0826760640014594`}, {0.9510565162951535,
2.4781476007338057`}, {1.1589682071129128`, 0.5}, {1.4372083586048785`,
4.765312195842559}, {1.6091702292618328`, 3.9562952014676114`}, {
1.8170819200795922`, 1.9781476007338057`}, {1.8170819200795922`,
2.9781476007338057`}, {2.0249936108973516`, 0}, {
2.0249936108973516`, 1}, {2.0249936108973516`, 3.9562952014676114`}, {
2.3614017932989455`, 0.7555851487162573}, {2.431730253973152,
4.869840659110212}, {2.7681384363747457`, 1.6691306063588582`}, {
2.7681384363747457`, 3.287164595108753}, {3.10454661877634,
0.08645454235739913}, {3.355923688667219, 2.4781476007338057`}, {
3.4262521493414253`, 4.765312195842559}, {3.6341638401591845`,
3.787164595108753}, {3.762660331743019, 1.5646021430912047`}, {
3.762660331743019, 3.391693058376407}, {3.9705720225607783`,
0.5864545423573991}, {4.099068514144614, 1.8090169943749475`}, {
4.3504455840354925`, 4.200710052751354}, {4.713716848038173,
1.2555851487162573`}, {4.757182227111293, 3.287164595108753}, {
4.965093917929051, 2.3090169943749475`}, {5.008559297002171,
4.3405964407674436`}, {5.3718305610048525`, 1.3954715367323467`}, {
5.623207630895731, 3.787164595108753}, {5.751704122479566,
5.009727047126302}, {5.959615813297326, 2.204488531107294}, {
5.959615813297326, 4.031579446392496}, {6.088112304881159,
1.8090169943749475`}, {6.296023995698919, 0.8308693936411418}, {
6.366352456373126, 3.118033988749895}, {6.617729526264005,
5.509727047126302}, {6.954137708665598, 2.3090169943749475`}, {
6.954137708665598, 3.9270509831248424`}, {7.290545891067193,
0.7263409303734882}, {7.360874351741399, 4.8405964407674436`}, {
7.697282534142993, 1.6398863880160892`}, {7.697282534142993,
4.596181589483701}, {7.697282534142993, 5.596181589483701}, {
7.905194224960752, 2.618033988749895}, {7.905194224960752,
3.618033988749895}, {8.113105915778512, 1.6398863880160892`}, {
8.285067786435466, 0.8308693936411418}, {8.563307937927432,
5.096181589483701}, {8.771219628745191, 3.118033988749895}, {
8.899716120329025, 3.513505525482241}, {9.107627811146784,
1.5353579247484357`}, {9.306452763404826, 4.427050983124842}, {
9.514364454222585, 2.4489033823910367`}, {9.722276145040345,
3.4270509831248424`}}],
PolygonBox[{{20, 18, 11, 10, 17}, {20, 26, 30, 29, 24}, {20, 24, 18}, {24,
29, 27}, {18, 22, 21, 16, 14}, {18, 14, 11}, {14, 16, 8}, {11, 9, 4, 2,
6}, {11, 6, 10}, {6, 2, 1}, {10, 5, 3, 7, 13}, {10, 13, 17}, {13, 7,
12}, {17, 15, 19, 25, 23}, {17, 23, 20}, {23, 25, 28}, {39, 41, 48, 49,
42}, {39, 33, 29, 30, 35}, {39, 35, 41}, {35, 30, 32}, {41, 37, 38, 43,
45}, {41, 45, 48}, {45, 43, 51}, {48, 50, 55, 57, 53}, {48, 53, 49}, {
53, 57, 58}, {49, 54, 56, 52, 46}, {49, 46, 42}, {46, 52, 47}, {42, 44,
40, 34, 36}, {42, 36, 39}, {36, 34, 31}}]]}]], "Output",
CellLabel->
"Out[782]=",ExpressionUUID->"5b98a496-2149-448f-9a68-47c097317af7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}]], "Input",
CellLabel->
"In[783]:=",ExpressionUUID->"2977a215-ef1c-45e0-8779-4d2e99982ddf"],
Cell[BoxData[
GraphicsBox[
{EdgeForm[GrayLevel[0]],
GraphicsComplexBox[
NCache[{{0,
Rational[1, 8] (13 - 5^
Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (7 - 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (6 + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (7 - 5^Rational[1, 2] - (6 (5 - 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (5 - 5^
Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (8 - 2 5^Rational[1, 2] +
2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (13 +
5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (23 - 7
5^Rational[1, 2] + (750 - 330 5^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (3 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {(
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (11 +
5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (
3 (9 + 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2], Rational[1, 2]}, {
Rational[1, 4] (55 - 17
5^Rational[1, 2] + (4350 - 1830 5^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (8 +
2 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (13 +
5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (7 +
5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] ((6 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
Rational[1, 2] (11 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 8] (7 +
5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] ((6 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
Rational[1, 2] (11 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 8] (15 +
5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (
3 (15 - 5^
Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2]))^
Rational[1, 2], 0}, {
Rational[1, 4] (
3 (15 - 5^
Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2]))^
Rational[1, 2], 1}, {
Rational[1, 4] (
3 (15 - 5^
Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (7 +
5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (53 +
11 5^Rational[1, 2] + (390 - 114 5^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (4 - 5^
Rational[1, 2] + (15 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (52 - 2 5^Rational[1, 2] +
6 (75 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (
3 (5 + 5^Rational[1, 2]) + (150 + 66 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[1, 2] (13 + 2 5^Rational[1, 2] +
2 (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (9 - 5^
Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (13 + 2 5^Rational[1, 2] +
2 (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (13 +
3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
Rational[1, 2] (34 +
11 5^Rational[1, 2] + (195 + 66 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 8] (7 - 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[1, 2] (Rational[31, 2] +
Rational[11, 2] 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (11 +
5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (
3 (21 + 5 5^Rational[1, 2] + (6 (85 + 31 5^Rational[1, 2]))^
Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (8 +
2 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {((6 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
Rational[1, 2] (11 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 8] (17 +
3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (65 +
23 5^Rational[1, 2] + (30 (205 + 89 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (5 + (15 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (65 +
23 5^Rational[1, 2] + (30 (205 + 89 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (6 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (92 + 22 5^Rational[1, 2] +
6 (195 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (11 - 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[1, 4] (83 +
35 5^Rational[1, 2] + (6 (965 + 431 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (5 + 5^Rational[1, 2])}, {
Rational[1, 4] (
5 (17 + 7 5^Rational[1, 2] + (6 (65 + 29 5^Rational[1, 2]))^
Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (7 +
2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (115 +
37 5^Rational[1, 2] + (30 (425 + 181 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (6 - 5^
Rational[1, 2] + (15 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (23 + 10 5^Rational[1, 2] +
2 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (13 +
3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (113 + 41 5^Rational[1, 2] +
11 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (7 + 5^Rational[1, 2])}, {
Rational[1, 2] (
Rational[3, 2] (18 +
7 5^Rational[1, 2] + (555 + 246 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 8] (15 +
7 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (32 + Rational[23, 2] 5^Rational[1, 2] +
Rational[1, 2] (3 (2245 + 982 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[1, 8] (13 + 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^
Rational[1, 2])}, {(Rational[35, 4] +
Rational[13, 4] 5^Rational[1, 2] +
Rational[1, 2] (Rational[975, 2] + Rational[435, 2] 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (17 +
3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[133, 16] + Rational[59, 16] 5^Rational[1, 2] +
Rational[
1, 2] (Rational[17475, 32] + Rational[7815, 32] 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (8 +
3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
Rational[1, 2] (74 +
31 5^Rational[1, 2] + (9915 + 4434 5^Rational[1, 2])^
Rational[1, 2]))^Rational[1, 2],
Rational[1, 8] (-(30 - 6 5^Rational[1, 2])^Rational[1, 2] +
3 (5 + 5^Rational[1, 2]))}, {
Rational[1, 2] (
Rational[1, 2] (74 +
31 5^Rational[1, 2] + (9915 + 4434 5^Rational[1, 2])^
Rational[1, 2]))^Rational[1, 2],
Rational[1, 8] (17 +
5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (155 +
67 5^Rational[1, 2] + (30 (1385 + 619 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (5 + 5^Rational[1, 2])}, {(Rational[43, 4] +
Rational[19, 4] 5^Rational[1, 2] +
Rational[
1, 2] (Rational[1335, 2] + Rational[597, 2] 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (11 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 4] (167 + 71 5^Rational[1, 2] +
3 (6 (965 + 431 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (4 + 5^Rational[1, 2])}, {
Rational[1, 4] (187 +
77 5^Rational[1, 2] + (30 (1945 + 869 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (10 +
3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (197 + 85 5^Rational[1, 2] +
3 (8310 + 3714 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (7 + 5^Rational[1, 2])}, {
Rational[1, 4] (197 + 85 5^Rational[1, 2] +
3 (8310 + 3714 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[3, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 4] (223 +
97 5^Rational[1, 2] + (84270 + 37686 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (6 + 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] +
Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[1, 8] (19 +
7 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (Rational[119, 2] +
Rational[53, 2] 5^Rational[1, 2] + (6 (1165 + 521 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (13 + 3 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 2] (Rational[119, 2] +
Rational[53, 2] 5^Rational[1, 2] + (6 (1165 + 521 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (19 +
5 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (Rational[119, 2] +
Rational[53, 2] 5^Rational[1, 2] + (6 (1165 + 521 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (27 +
5 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (257 + 113 5^Rational[1, 2] +
3 (30 (445 + 199 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (3 + 5^Rational[1, 2])}, {
Rational[1, 4] (257 + 113 5^Rational[1, 2] +
3 (30 (445 + 199 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 5^Rational[1, 2])}, {(Rational[145, 8] +
Rational[59, 8]
5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (13 + 3 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {(
Rational[3, 2] (12 +
5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 8] (11 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {(Rational[149, 8] +
Rational[65, 8]
5^Rational[1, 2] + (Rational[3, 2] (445 + 199 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (23 +
5 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (323 +
131 5^Rational[1, 2] + (30 (6305 + 2819 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (4 + 5^Rational[1, 2])}, {
Rational[1, 2] (80 + Rational[71, 2] 5^Rational[1, 2] +
Rational[1, 2] (15 (3305 + 1478 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[1, 8] (21 + 5 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[1, 4] (347 +
149 5^Rational[1, 2] + (209310 + 93606 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (7 + 2 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^
Rational[1, 2])}, {(Rational[347, 16] +
Rational[155, 16] 5^Rational[1, 2] +
Rational[
1, 2] (Rational[119775, 32] + Rational[53565, 32] 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (11 + 3 5^Rational[1, 2])}, {(23 + 10 5^Rational[1, 2] +
2 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (5 (3 + 5^Rational[1, 2]) - (6 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 4] (403 +
163 5^Rational[1, 2] + (6 (46325 + 20639 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (7 + 3 5^Rational[1, 2])}}, {{0, 2.1691306063588582`}, {
0.20791169081775937`, 3.147278207092664}, {0.41582338163551874`,
1.1691306063588582`}, {0.6146483338935596, 4.060823664735265}, {
0.8225600247113184, 2.0826760640014594`}, {0.9510565162951535,
2.4781476007338057`}, {1.1589682071129128`, 0.5}, {1.4372083586048785`,
4.765312195842559}, {1.6091702292618328`, 3.9562952014676114`}, {
1.8170819200795922`, 1.9781476007338057`}, {1.8170819200795922`,
2.9781476007338057`}, {2.0249936108973516`, 0}, {
2.0249936108973516`, 1}, {2.0249936108973516`, 3.9562952014676114`}, {
2.3614017932989455`, 0.7555851487162573}, {2.431730253973152,
4.869840659110212}, {2.7681384363747457`, 1.6691306063588582`}, {
2.7681384363747457`, 3.287164595108753}, {3.10454661877634,
0.08645454235739913}, {3.355923688667219, 2.4781476007338057`}, {
3.4262521493414253`, 4.765312195842559}, {3.6341638401591845`,
3.787164595108753}, {3.762660331743019, 1.5646021430912047`}, {
3.762660331743019, 3.391693058376407}, {3.9705720225607783`,
0.5864545423573991}, {4.099068514144614, 1.8090169943749475`}, {
4.3504455840354925`, 4.200710052751354}, {4.713716848038173,
1.2555851487162573`}, {4.757182227111293, 3.287164595108753}, {
4.965093917929051, 2.3090169943749475`}, {5.008559297002171,
4.3405964407674436`}, {5.3718305610048525`, 1.3954715367323467`}, {
5.623207630895731, 3.787164595108753}, {5.751704122479566,
5.009727047126302}, {5.959615813297326, 2.204488531107294}, {
5.959615813297326, 4.031579446392496}, {6.088112304881159,
1.8090169943749475`}, {6.296023995698919, 0.8308693936411418}, {
6.366352456373126, 3.118033988749895}, {6.617729526264005,
5.509727047126302}, {6.954137708665598, 2.3090169943749475`}, {
6.954137708665598, 3.9270509831248424`}, {7.290545891067193,
0.7263409303734882}, {7.360874351741399, 4.8405964407674436`}, {
7.697282534142993, 1.6398863880160892`}, {7.697282534142993,
4.596181589483701}, {7.697282534142993, 5.596181589483701}, {
7.905194224960752, 2.618033988749895}, {7.905194224960752,
3.618033988749895}, {8.113105915778512, 1.6398863880160892`}, {
8.285067786435466, 0.8308693936411418}, {8.563307937927432,
5.096181589483701}, {8.771219628745191, 3.118033988749895}, {
8.899716120329025, 3.513505525482241}, {9.107627811146784,
1.5353579247484357`}, {9.306452763404826, 4.427050983124842}, {
9.514364454222585, 2.4489033823910367`}, {9.722276145040345,
3.4270509831248424`}}], {
{RGBColor[1, 0, 0],
PolygonBox[{{6, 2, 1}, {10, 13, 17}, {11, 6, 10}, {13, 7, 12}, {14, 16,
8}, {17, 23, 20}, {18, 14, 11}, {20, 24, 18}, {23, 25, 28}, {24, 29,
27}, {35, 30, 32}, {36, 34, 31}, {39, 35, 41}, {41, 45, 48}, {42, 36,
39}, {45, 43, 51}, {46, 52, 47}, {48, 53, 49}, {49, 46, 42}, {53, 57,
58}}]},
{RGBColor[1, 1, 0],
PolygonBox[{{10, 5, 3, 7, 13}, {11, 9, 4, 2, 6}, {17, 15, 19, 25, 23}, {
18, 22, 21, 16, 14}, {20, 18, 11, 10, 17}, {20, 26, 30, 29, 24}, {39,
33, 29, 30, 35}, {39, 41, 48, 49, 42}, {41, 37, 38, 43, 45}, {42, 44,
40, 34, 36}, {48, 50, 55, 57, 53}, {49, 54, 56, 52,
46}}]}}]}]], "Output",
CellLabel->
"Out[783]=",ExpressionUUID->"9cac922d-3f6d-4e09-a35d-89178ff40d54"]
}, Open ]],
Cell[BoxData[
RowBox[{"NetPrintout", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}], ",", "\"\\""}], "]"}]], "Input",Expr\
essionUUID->"a70995bb-52aa-47e2-b77b-6cc42384b222"]
}, Open ]],
Cell[CellGroupData[{
Cell["Properties", "Section",ExpressionUUID->"fe4f13a0-d69d-4589-a170-e69a0df80daa"],
Cell[BoxData[
RowBox[{"<<", "MathWorld`PolyhedronOperations`"}]], "Input",
CellLabel->
"In[784]:=",ExpressionUUID->"3b87fd94-63e7-4be1-968a-deb12f7f2e51"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"p", "=",
RowBox[{"PolyhedronData", "[",
RowBox[{
RowBox[{"pname", "=", "\"\\""}], ",",
"\"\\""}], "]"}]}]], "Input",
CellLabel->
"In[785]:=",ExpressionUUID->"fa3cb98d-b490-41fc-b9bc-e05b7ef37bda"],
Cell[BoxData[
InterpretationBox[
RowBox[{
TagBox["Polyhedron",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready",
Typeset`spolyhedron$$ = Quiet[
Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2],
0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2],
0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[
1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {
14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3,
18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22,
20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29,
27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29,
11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11,
10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {
13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]]},
TemplateBox[{
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 2],
0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2],
0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2],
0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1,
2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{0, -1.618033988749895, 0}, {
0, 1.618033988749895,
0}, {-0.9510565162951535, -1.3090169943749475`,
0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`,
0.5, 0}, {1.5388417685876268`, -0.5, 0}, {
1.5388417685876268`, 0.5, 0}, {
1.3763819204711736`, 0, -0.8506508083520399}, {
1.3763819204711736`, 0, 0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, \
-0.8506508083520399}, {0.42532540417601994`, -1.3090169943749475`,
0.8506508083520399}, {0.42532540417601994`,
1.3090169943749475`, -0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`,
0.8506508083520399}, {-1.1135163644116066`, \
-0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`, \
-0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`,
0.8090169943749475, -0.8506508083520399}, \
{-1.1135163644116066`, 0.8090169943749475,
0.8506508083520399}, {-0.8506508083520399,
0, -1.3763819204711736`}, {-0.8506508083520399, 0,
1.3763819204711736`}, {-0.2628655560595668, \
-0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668, \
-0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668,
0.8090169943749475, -1.3763819204711736`}, \
{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {
0.6881909602355868, -0.5, -1.3763819204711736`}, {
0.6881909602355868, -0.5, 1.3763819204711736`}, {
0.6881909602355868, 0.5, -1.3763819204711736`}, {
0.6881909602355868, 0.5, 1.3763819204711736`}}],
Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24,
22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {
4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20,
26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12,
28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21,
19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25,
15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11,
10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13,
1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]],
"Polyhedron"]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["30", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["32", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 2],
0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2],
0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2],
0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1,
2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{0, -1.618033988749895, 0}, {
0, 1.618033988749895,
0}, {-0.9510565162951535, -1.3090169943749475`,
0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`,
0.5, 0}, {1.5388417685876268`, -0.5, 0}, {
1.5388417685876268`, 0.5, 0}, {
1.3763819204711736`, 0, -0.8506508083520399}, {
1.3763819204711736`, 0, 0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, \
-0.8506508083520399}, {0.42532540417601994`, -1.3090169943749475`,
0.8506508083520399}, {0.42532540417601994`,
1.3090169943749475`, -0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`,
0.8506508083520399}, {-1.1135163644116066`, \
-0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`, \
-0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`,
0.8090169943749475, -0.8506508083520399}, \
{-1.1135163644116066`, 0.8090169943749475,
0.8506508083520399}, {-0.8506508083520399,
0, -1.3763819204711736`}, {-0.8506508083520399, 0,
1.3763819204711736`}, {-0.2628655560595668, \
-0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668, \
-0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668,
0.8090169943749475, -1.3763819204711736`}, \
{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {
0.6881909602355868, -0.5, -1.3763819204711736`}, {
0.6881909602355868, -0.5, 1.3763819204711736`}, {
0.6881909602355868, 0.5, -1.3763819204711736`}, {
0.6881909602355868, 0.5, 1.3763819204711736`}}],
Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24,
22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {
4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20,
26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12,
28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21,
19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25,
15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11,
10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13,
1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]],
"Polyhedron"]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["30", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["32", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["3", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Type: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Quiet[
Apply[Region`PolyhedronDump`polyhedronType,
Region`PolyhedronDump`computeType[
Typeset`spolyhedron$$]]], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Bounds: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iRegionBounds[
Typeset`spolyhedron$$], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Volume: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$],
StandardForm], SynchronousUpdating -> False,
TrackedSymbols :> {}, CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel"],
DynamicModuleValues:>{}], "]"}],
Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2],
0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[
1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14,
28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3,
18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3,
1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21,
25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25,
15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25,
19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {
11, 29, 15, 6, 10}}],
Editable->False,
SelectWithContents->True,
Selectable->False]], "Output",
CellLabel->
"Out[785]=",ExpressionUUID->"72444f2c-bcf3-4993-9b7b-f98ce0b651bc"]
}, Open ]],
Cell[CellGroupData[{
Cell["Centroid", "Subsection",ExpressionUUID->"f2122309-5862-4666-8010-15342edb603c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{
RowBox[{"AbsolutePointSize", "[", "10", "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Point", "[",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"Blue", ",",
RowBox[{"Point", "[",
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}]}], "}"}],
",",
RowBox[{"Opacity", "[", ".2", "]"}], ",",
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}],
"]"}]], "Input",
CellLabel->
"In[786]:=",ExpressionUUID->"9b7255aa-ddab-4ffd-8388-0949519c5c09"],
Cell[BoxData[
Graphics3DBox[
{AbsolutePointSize[10], Point3DBox[{0, 0, 0}],
{RGBColor[0, 0, 1], Point3DBox[{0, 0, 0}]},
{Opacity[0.2],
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2],
0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2],
0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[
1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{0, -1.618033988749895, 0}, {
0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`,
0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {
1.5388417685876268`, -0.5, 0}, {1.5388417685876268`, 0.5, 0}, {
1.3763819204711736`, 0, -0.8506508083520399}, {
1.3763819204711736`, 0, 0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`,
0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, \
-0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475,
0.8506508083520399}, {-1.1135163644116066`,
0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`,
0.8090169943749475,
0.8506508083520399}, {-0.8506508083520399,
0, -1.3763819204711736`}, {-0.8506508083520399, 0,
1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, \
-1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475,
1.3763819204711736`}, {-0.2628655560595668,
0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668,
0.8090169943749475, 1.3763819204711736`}, {
0.6881909602355868, -0.5, -1.3763819204711736`}, {
0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868,
0.5, -1.3763819204711736`}, {0.6881909602355868, 0.5,
1.3763819204711736`}}],
Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28,
24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, {
1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1,
14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21,
25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25,
15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15,
25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9,
5}, {11, 29, 15, 6, 10}}]]}}]], "Output",
CellLabel->
"Out[786]=",ExpressionUUID->"31e3b3b8-7460-4a5c-9da6-25c284a7f748"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[787]:=",ExpressionUUID->"3dc686c0-ccde-484f-b6be-16c5e5748969"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output",
CellLabel->
"Out[787]=",ExpressionUUID->"e53376e9-53fa-4e91-b429-8f25c2961636"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"RegionCentroid", "[", "p", "]"}], "//", "FullSimplify"}]], "Input",\
CellLabel->
"In[789]:=",ExpressionUUID->"acd54e4b-ff27-40a5-a974-70f96cfb24b5"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output",
CellLabel->
"Out[789]=",ExpressionUUID->"dfbf49e4-899d-43c6-8890-6f3ffc6ef1a8"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"PolyhedronCentroid", "[", "p", "]"}], "//", "FullSimplify"}], "//",
"Quiet"}], "//", "Timing"}]], "Input",ExpressionUUID->"175cc544-4aab-4ed9-\
bb01-881476f35e45"],
Cell[BoxData[
TemplateBox[{
"N", "meprec",
"\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{FractionBox[\\\"1\\\", \\\
\"2\\\"], \\\"+\\\", FractionBox[\\\"1\\\", RowBox[{\\\"2\\\", \\\" \\\", \
SqrtBox[\\\"5\\\"]}]], \\\"-\\\", SqrtBox[RowBox[{RowBox[{\\\"(\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\"+\\\", FractionBox[\\\"1\\\", \
RowBox[{\\\"2\\\", \\\" \\\", SqrtBox[\\\"5\\\"]}]]}], \\\")\\\"}], \\\" \
\\\", RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \
\\\"+\\\", FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}], \\\")\\\"}]}]], \
\\\"-\\\", SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"5\\\"], \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \
FractionBox[\\\"11\\\", RowBox[{\\\"8\\\", \\\" \\\", \
SqrtBox[\\\"5\\\"]}]]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \\\", \
SqrtBox[\\\"5\\\"]}]}], \\\")\\\"}]}]], \\\"+\\\", \
SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"5\\\"], \\\" \\\", RowBox[{\\\"(\\\
\", RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \\\"+\\\", \
FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}], \\\")\\\"}], \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \
\\\", SqrtBox[\\\"5\\\"]}]}], \\\")\\\"}]}]]}]\\).\"", 2, 790, 130,
19518561545030772728, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[790]:=",ExpressionUUID->"cff8db5d-059d-4e9b-8788-c05b2a29e0ce"],
Cell[BoxData[
TemplateBox[{
"N", "meprec",
"\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{FractionBox[\\\"1\\\", \\\
\"2\\\"], \\\"+\\\", FractionBox[\\\"1\\\", RowBox[{\\\"2\\\", \\\" \\\", \
SqrtBox[\\\"5\\\"]}]], \\\"-\\\", SqrtBox[RowBox[{RowBox[{\\\"(\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\"+\\\", FractionBox[\\\"1\\\", \
RowBox[{\\\"2\\\", \\\" \\\", SqrtBox[\\\"5\\\"]}]]}], \\\")\\\"}], \\\" \
\\\", RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \
\\\"+\\\", FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}], \\\")\\\"}]}]], \
\\\"-\\\", SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"5\\\"], \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \
FractionBox[\\\"11\\\", RowBox[{\\\"8\\\", \\\" \\\", \
SqrtBox[\\\"5\\\"]}]]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \\\", \
SqrtBox[\\\"5\\\"]}]}], \\\")\\\"}]}]], \\\"+\\\", \
SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"5\\\"], \\\" \\\", RowBox[{\\\"(\\\
\", RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \\\"+\\\", \
FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}], \\\")\\\"}], \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \
\\\", SqrtBox[\\\"5\\\"]}]}], \\\")\\\"}]}]]}]\\).\"", 2, 790, 131,
19518561545030772728, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[790]:=",ExpressionUUID->"3179a2cb-2698-4191-97d7-18b324d15534"],
Cell[BoxData[
TemplateBox[{
"N", "meprec",
"\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{FractionBox[\\\"1\\\", \\\
\"2\\\"], \\\"+\\\", FractionBox[\\\"1\\\", RowBox[{\\\"2\\\", \\\" \\\", \
SqrtBox[\\\"5\\\"]}]], \\\"-\\\", SqrtBox[RowBox[{RowBox[{\\\"(\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\"+\\\", FractionBox[\\\"1\\\", \
RowBox[{\\\"2\\\", \\\" \\\", SqrtBox[\\\"5\\\"]}]]}], \\\")\\\"}], \\\" \
\\\", RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \
\\\"+\\\", FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}], \\\")\\\"}]}]], \
\\\"-\\\", SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"5\\\"], \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \
FractionBox[\\\"11\\\", RowBox[{\\\"8\\\", \\\" \\\", \
SqrtBox[\\\"5\\\"]}]]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \\\", \
SqrtBox[\\\"5\\\"]}]}], \\\")\\\"}]}]], \\\"+\\\", \
SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"5\\\"], \\\" \\\", RowBox[{\\\"(\\\
\", RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \\\"+\\\", \
FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}], \\\")\\\"}], \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \
\\\", SqrtBox[\\\"5\\\"]}]}], \\\")\\\"}]}]]}]\\).\"", 2, 790, 132,
19518561545030772728, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[790]:=",ExpressionUUID->"447bb8b2-b117-4419-84de-32569af1e288"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"N\\\", \\\"::\\\", \
\\\"meprec\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \
calculation.\"", 2, 790, 133, 19518561545030772728, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[790]:=",ExpressionUUID->"7fb0cbbe-143a-4c71-b75d-80c1cbeecd84"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"Out[790]=",ExpressionUUID->"12d2ab0b-8f11-4141-90a1-65710057624b"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Circumsphere", "Subsection",ExpressionUUID->"feae7157-2c81-4ff6-80ea-92aeca1eb70b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[791]:=",ExpressionUUID->"e82ae479-e9b5-4b3d-9c1d-35af2d16707e"],
Cell[BoxData[
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}]}], "]"}]], "Output",
CellLabel->
"Out[791]=",ExpressionUUID->"5fea1e53-8feb-4a90-a5cf-ecb5a77c2cc1"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Circumsphere", "[", "p", "]"}], "//", "FullSimplify"}]], "Input",
CellLabel->
"In[793]:=",ExpressionUUID->"f3fddb6b-8184-4081-ac51-f8e4d0deee16"],
Cell[BoxData[
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}]}], "]"}]], "Output",
CellLabel->
"Out[793]=",ExpressionUUID->"93adb96b-327a-4ff2-b278-f0de2a2acbd7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"sphere", "=",
RowBox[{"MyCircumsphere", "[", "p", "]"}]}], ")"}], "//",
"Timing"}]], "Input",
CellLabel->
"In[794]:=",ExpressionUUID->"b2a725fb-cf72-42ec-b697-3c21a7978607"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.046886`", ",",
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}]}], "]"}]}], "}"}]], "Output",
CellLabel->
"Out[794]=",ExpressionUUID->"f7e8ee2b-da28-430e-afd6-cfc9afea198e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Opacity", "[", ".2", "]"}], ",", "Yellow", ",", "sphere"}],
"}"}], ",", "p"}], "}"}], ",",
RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input",
CellLabel->
"In[795]:=",ExpressionUUID->"c1ef1593-7803-480e-bba4-5cf66c58d2f9"],
Cell[BoxData[
Graphics3DBox[{
{RGBColor[1, 1, 0], Opacity[0.2],
SphereBox[{0, 0, 0}, NCache[
Rational[1, 2] (1 + 5^Rational[1, 2]), 1.618033988749895]]},
TagBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2],
0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2],
0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[
1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{0, -1.618033988749895, 0}, {
0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`,
0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {
1.5388417685876268`, -0.5, 0}, {1.5388417685876268`, 0.5, 0}, {
1.3763819204711736`, 0, -0.8506508083520399}, {
1.3763819204711736`, 0, 0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`,
0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, \
-0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475,
0.8506508083520399}, {-1.1135163644116066`,
0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`,
0.8090169943749475,
0.8506508083520399}, {-0.8506508083520399,
0, -1.3763819204711736`}, {-0.8506508083520399, 0,
1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, \
-1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475,
1.3763819204711736`}, {-0.2628655560595668,
0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668,
0.8090169943749475, 1.3763819204711736`}, {
0.6881909602355868, -0.5, -1.3763819204711736`}, {
0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868,
0.5, -1.3763819204711736`}, {0.6881909602355868, 0.5,
1.3763819204711736`}}],
Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28,
24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, {
1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1,
14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21,
25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25,
15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15,
25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9,
5}, {11, 29, 15, 6, 10}}]],
"Polyhedron"]},
Boxed->False]], "Output",
CellLabel->"Out[795]=",ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzcvQmQVdeZJnj77m/LfYVkS/ZF7EhoQULCKUACbZAIiRQGpZRJQpJS2tgU
ZWQk7DRyWlRhJKaowmh1VU+VhKtmq1liZrprZhpvaperbNMxe8wSHR0T0REd
0REzETMxc+d8/3/Of8+9774HyO6IiSHi3Ey2zPu+7/u/fznnvtx79NSxV08e
PTUxenThzq8cff3YxOhXFz7+2lfUH3n/wHHcX6p1a6Hjq88Txym+/L3j/P/y
D0boU6/30kFnrV6Oj2tlBJ96Q/ZfxLi6ay/tU3+xdnafI7/oS+23Pn8al3Ct
/hIjzsilQ7ScENeukcuHnBif0XfxRi7i341cHE6/laevswcd3Fv6lR/Nfx7h
X/p8t/RtLvNyWujqjVxRv79ymJb6zupaG7l8WN2I+lu6G/q/Lt8Dff9ZXvw9
HrK+H33urhVg8B9HLqvflfHFXHzZGr5B/8iVo043PgvwZx7+1st9K39IvtU+
WvQdtljf7V761Lepwdegr+bz11XfoRPfS11GnQ581iXf1eV7Uv8j0N91WFNr
viO+Mn2ntdZ33UB64NeI1yZw0rfk74lvhKXwU9dWfHN35MoY7gCfXR1V5KrP
6NZi/IcyPlM3dJRvDWAcTjXhW/c39M6w3J+gssK6vzU2B++OpPfn6a98+Wh6
fwGuLbiXAHc1d+TqmPqt+kz9u6vWv4txjQRE/VXU16OvSa88wK26KX8B7te+
W5Ip3eIi63aX1ZOIu/ZEMHSLJXxrHxCWcYuVkasTfLMl3GyIzyJ8RrfYjf9h
cLx8KMXRk1vE3Snq1B3ad8l3NM+6u0X23R2mJerKUU3fOsIt1nA7HbjF9pFr
E+ruro0BzjFgPKHUoD4L+bbNzeovZfD0DKrpvcuday+oj/s+6/MBrYHDogH9
ld2CG3dx9eXu23B/Pu50Be7eHbk2qSShPqviL2LcuN/oxt0C0N2cLryhdziu
Uz10170MzyCOu2c8Qg6RK4TbmIoddTercV81uUMPSMdymx7+cZf+b4f5q7hi
NXk0xa/pNtqtz7tyt6TsOn2lVpB4AqTHwa5uxMUtlXBzbbhNjz+7PqH+3fVJ
6EPfeoB/Rzou6/BTX0a+cnv2RXjiXJ6FK6WHTJy11L0gn14peQtTRp5DNx6K
SxHRHhQQC77duN0YN96Jz8r4syr+NsaN+zoo6268FVfSiNvwxn07BMVyy9a9
8+sgz+VcyVLTN05WypDjNrA43CK8hIq+yUlnEDfujVyfcubzZ+rP6G/LEqD0
EtrlnlOwdebUKU17iGd7iAo348aRdesVDbu5dYqUoxxzpYIbL8k98w3OPHOf
c6tNfZWYvpyHz29sXUbLiXEt4RW14BVV8dk8/ozi9ZpBAi+L2InzHI06bP++
JCB+1ZI1UraUQqzXa6uNb8161ZGOmBkTMUcc+eL629K3jkRzZbzuALddwst2
IvPCE/01k02LN9HHpx4cdoLk2NPTjpfse3g4efierVgKIHUtJ11VoDTYk6IU
0NW7sXVJ+medgGoAULnQdEl/YyiZPqPIVVC1ZbHxipNKHhtbzP+PBYufzSYc
g0cVUawDImqCFmuX7QJ4ECYVXF3ctFPGq0m6FDzz26rJpjn9BM3ezXuS8cfH
6KOGqr8AKQ/XIHl4LeCqEVy9zo37l9FSolJXCpM5+FY+mxW76yTMwManVftx
XUngFpQxHDV+XkUUOP+XBdM/yMFEX3cUNVJduISASd3JJLsUmSpsasoRgFb0
VJNnVy9N9qxYakDygJKCwcLJmQeg2pJjzxBajwwDHizoau3WCoAqs5BmRrY5
+D70vSjwAkGGU5B9e+QsoxxkjYEKbaDEai4eZHPkZgLRRL/+d/7wf6euuBYB
hfAqS0C5miNElYEnBDBOMDPySArPtoX9gMdxk7EtG9VLt3SkwoxxmtPeD4xI
Sn24rmiEk/qzlfMHABYpy8dVXVoQfsudiAD0Z158REQtecSV3J3DK5DiUv11
TjojsyrY3tbBNrPX+deMzP9pkGHrIWRiycueIOMDmRIL59oU60bdnoLn1mC3
wONrZPprVUEmKkCmC9f7gUycHHt2upw8vI7wWDAAALAURupKru2CAKWlgw+m
agl05TXKjtBQLQF3SheRQGehjhHTDygInH/FGPwfBRhEUkXn3IbQ8IBGCDQi
oFEuRiOw0IAlA4eSRmNBVz8ZDdBox3Ur0FjYFA3Hv3HvEklQWBVdih6VMruu
nGTTZTVQOuaGQ9U2AARwDL39LMPxLxmOf531FIZEl+BBASJU/rBAbKmWgQxl
XOWQ07h5xSXBo20m1PDAlgEHgKloeFbOSeFpwfU+wLMe8KggsZDB8gGYezuE
KDj8hpCEKSRqXYBCOFD+N0blX2UrW1NYESS6zg4MHAaEKYdRCIBCKUXBNttI
o4Df4lXj9dcKUKgICg8QCgFeNCGg0EASnzl4v8MhUc6+5oD79izvF5h3vEDn
X/Ar/Jf5lHuUFr1I3yb/ykSOfMoqnPTwcumFx3Sl5IgXTi++jKs78iHhcP+y
jKvGBTi0FuAQ43ovcHiYcAhJDcBi3/ZhG4scFHfaft0+Xow4nH/OuLFAQsHt
osZO5+I7gI4axxIAqwIhjxHK20m5AKH2AoRCXDcDoccIoYhUAnTU7+ij+n2B
YuK78RHP9lRbTP8Lg/IvUjENvXOE6zcjJk8QcQGILzh4nHkVDgqRaQbDLwaj
UgBGpwUGCjgu59R1E8AYIjA8AgBywe9c/Wc6lAAKzxtKAgj4S3VT0Bf7RQp5
hhXyPzEY/1x3NrOWOgwYpsMYo8Uph2DxJNEEXMwqWHyBJUijiD21W7nJqqXV
Ali6LVhWzhsgWAiRp7KvHtZZ9+qLoqZ42uLnbXRfxkb/B4bif+VgyUIxSoEi
PkphklYdPlX0HjvLNC38TgMREhCB2IkGIhnbvNExaKCmNWj0GjTm9lP9heps
Ha77CtCIZP54t2gEuZpDkux/xzj8z2nNMXKR5VCoByrDfADCgqDkArdNA8bj
FKMAqQCQKAfItgX9AkitAJAeXFWZvzOPympcn9cpd9+jylwXqrTbqmxjG4Ax
NycdaiA4NZwhFcaKdtP/hoH5H/PGwQJhbHwbG0659ch4BdmIilYvh1HOVBb0
ewDJxkh1yMlz9+3hEAoLMKLq/klgpPqh5yygbg32p0DFOqhHZTJXDI8k6RQa
8dV/xvD89waeUS7MbHiIjhCIBAUQBOKrFYkblYtPEQ6PkvdlcGgpwKELOJQK
cFiC6zbgsAA4+MkEgbFfgbFKg/HiNu5ZaHJqphnkr1bVnt1s8Ioiic1VIfIb
RuS/Nek3i4hxFLcOlKtTKSihrlKuTeeqFMrBAcPDJtsj3uI3gocSULUAnkW4
bgA8EeBZo+F5ZP3WpLvVubWY4fFlPkg2GAtGnj1QqRsTWAD5edno7bn/2u5w
RgkflkyKDtQzmbMXF1hRXUKSYVCACeESpujYzkvotBag0wF0WgvQmYfrOqDz
AAHjGWB4cicjR1+U4wkqelZ66XCT6s2zS3sghT1HMWT8+lv+8M8sU9YySk0Z
hjPhGKiQoK5McoJKYcrVu5FG7fqpFLU4h5q256ARalThdRSgNgfX1TppTajK
TkFH8N2La5xM7EOTgD98ZINGc7lDg5cIiEY6FjWY6czOBZieBvPioTsC08Qk
OdU/ZTB/ozO91pvE5GV2bp9rnHoMXUAYcqeggCsXW1QIvNoK8GoDXt0FePXi
uqIAr1W4DhBeXrJq0UDS3UZY8SjPl90G2vZzs/LLIUaAEU4e4LHQER//OaPz
K10S5tBxs9B4nOQz0PhcFTeGJgI07VYhqGBJ26neAmi6cV0CaAiZhQBkDQGi
LPyxYYBiPCpmTLhi1zuJLvY/3TufbNJE5lCxlHy4FwDDAmA/Zbx+adrv0ZyD
5UJTdxQZ7GIuna8TgHB1hR2FoUp/pykWl2f8nQDsKACwBdc5BQB24LoIAPoA
sB8A3l8MYMT7nFcnWFQu775ZAGYrzEt6ZiGIHcoh5gIotrNeY2c3+cMv7MzY
IAIJKpe7DAVVJFDx1Ias6zpUhis5vp+CZtt+nActM8yYVwAaTZDnC2h9AG27
BZoKw3rQIhn8udZ+mYm/gONvln1KV1GQlUZJDB+//iv+8LldUdmReNm0Y0Zc
XERcMSUmFRJXp3RJEXGFaUQWAi+qH4IcXtrwCa/ORngtKMCrhutc4BUKXuuB
V1sysX860AZGZs/IcbAGdbBp7KgM1VtYmei8HYq9Nor/BX/4Wepn9ShmQzQE
hKFglsuZnoSoB/RCRm9mZEfG48pN0VtUgF4F114uwQx6y4DZUqAH4DYq4NqV
869sApzJlUVReZCWVGLax0xgapx+0sj3b4tTJL5PVXvUBJiuAmCquC4pACbG
tTsLzCCAWVcATMSjCOrKjYUFBZvZddkgoy0yfmt4xDgpUf2N7V8UkiPW8gCS
a0fhlak0Cn1ci+r5QIArFft9pSlmywowC3FtB2YlwWweMNtKmCn/2qFMf3AA
uGELh2ALBDZfRFUIm2/DJs2QL1HpZZEjU/tHtqdlzezOkEvbw1hqLwTjaQeg
EXBRsfMTfN2N4FtRAJ+Ha2sWvjmA79EsfLcWz0nhozIx0rt0up32dSGmm0Ye
dXPRahZHZMMG6T9j3P5LU/mnmDFoniTJOwBNl/oaM1tutvNXbbzsSQzhtYrw
8m28sKq8M6TQ6gVafUBrPdBqTSaG8RdFuIUiuxQ3e2hTFKgFs/GLFLyZuHWB
IVcd8us/4Q9/UxS8Y+xwnlXZXplic/NkNBPdRnh5r6sByJ5GQK7JC08V/mVc
Y9FcL1BcA+wGgSLapf2qXdpEfndr8VwF4qMOo5hTnykMRmXdef2bCWMNJE3A
zK//iD/8Iw3kjIrld1IwTaq4PJFpSIshDcX7YsJQFSNnnJmRoQyOqq7NAYlm
Srbj1mogx3eNJSsH+rHH4kQCZCrH5UDvHgLSYxA7VNJYpYdvbhbFsGCA6OpT
CzaEaYNl+vuLB+tzrQ5q0zNoAP9zDmoeI6Y9w+3QSyftvlRyXIyIIKkGdoGl
lU00mgRmb0FnmoJJWEKajGa6FUGI9giii4HofQWIhkwwUc2le0F0m+xSJEqf
9i/5pJYGNKPHTDvxH/CH/1R7JI3u7xJOGk+7PHo1FYwHEAMG0Qbw9iDeAxBD
C8RVCsQJ2upS124J7QXA71GN36rFA4JfIPjFZig4kR4ucBshmbb8efwu5vDL
xPO/Z/tjgLMpaTyPUTsGHGkPnTCclFWEYq4xiwrkGRGoXibGW5siukYQVbmZ
YF1lwUpTgS6R5VzAuptgVSnnS8OA1rilz8FDRaspd3h6Z+DkIX7IB7gpri8e
so866YZDA5npNf4d/vAfszFSXF9MQWyGYaSLw2L4eAzuMX5naKHxEGGaPSW1
mgtzlcAYFcDYKcLsA4KrgGCcHB9WDdzxAxi9HJiuNUHVE1RDjWqdQAMeiV46
yknH0+1J5uxlQYD/FX/4D+0AP0q41gc4zYZpamekGQHWUnMcPeQc0qLCUHX+
DUAsC4gBQKwYEOf1YxuBpnUtIsNeSdwVgLgMIAYAEfgNDSfdnSqHDyj8dpiE
WIffRGajTavSo804X7K2LiU9fQJXn54wReRf2R6pgzurSxamVwBaWbe5p5Gd
61CiiO3XKGmE0jNEKwWlMlDyk2O781CVs3rrB1RtgGozoFL/ePvmrUkPo8Tl
goJo2myRmJ0AvxFiboobj5VM6+ITgFz2aPA0egFHeJqtqXf5EUP47+vWWPKL
FdY59PhGZTfYN3vCp9LADs3YKq0jsUq3A9qe9xHQy7NyjAqADgVo0mQ7gO4C
0A9ngb5x/xrtP66546ncGMkVtIMCeL0UXtbnRbMOZRC+kNs8/IwR/ndNRWll
oAzCARAO9H1Mm6x97ZSxSQUmyZUSjIr2s7eFcttK69wbtdK+QFkpgNLDtVs0
WxUodxVA6fJO3bVp04hpGCdzh2zqoEy3vwyeHmAsFCnD6HxqpyDlkaMiUnZH
tyl+IUe6ws+Xqsdn/CTDYIO+Dj/T0pRkfEP4VYFfSwF+XQJdBdC1A7pnCLog
GVamuHrJAOBDK6U7Vmq8OGnTaGeCdx9DPrtkRTIvna+jzPnSfET/OYP1lwxW
2sFkwAoBlq+L2GkOYoph6lf8LFjBXYO1OAtWuwFrfj9t8mBa2i4hWwZYrQBr
PcCqJcefV2VOBrZbSwZS2FyBLe1rdBWZObkR8r78JSp7aEsxRdLLASmJ5Rln
ZIYbGecfMpA/sjoZUt2EnVUISK8RkIEA6QHI6G6AjAVIallqAqSqEp/Io1nL
otkCNNcAw/VA0yU0/WT4cY3mPOpDdZfKxa0eLerjT/Ux62lN0qdA02jSK6oh
h2VvZMaqdX7IHz5LpSlxzAWk+iZp8Whh6wNbj9vCa6d41EPY8oDf44rnLK0v
gPJgAcphAcolQbkkml0BbB8Eykqu27cog+xyCOAXhxzcq9z2FI/SuCy3tzXc
rFhdHfcXj0p6qYt766wb5Epxr8FlrwxYrsjiE3pNOpZiXZ6gXdXZMEU1FMUW
o1pfSzZElXYCXKDaAlTbgGq5ANVAUI2lSloMVIcIVd+geuP+exz28zR/m2dO
Aj6MRVujV6Q+x2YbH13KgOsCW5zST2ukOmRnn1H/bKZux+VD/vDnJpmPWuUS
vvflSfbXCCCbYm7aMaWdhjvAy3CzcNNEo3Q7kHFgNwPywgKQawSyb4NcAPEi
QLyHIPZsiLk8dsUWHH66J3MGXz+6QVPFvC3wAsjGHKxTDBgZBbZ0h97SJxc0
sv+26S9HM/J1U/3SJPgKHaqqx9jXSFN1eooD0NdhaMbD12kWd50gJ/DvAHd7
whnbm4QYzB3j5dSEgTYj8wX9tBWBCXEXrpEUBgsA/z4N/+qlAwz/Goflbc7M
1cHvWU39Zd3j0LAc/Wd2y0afa7yoCyzexEhHeJkjEiPnmQrnA6bhz/ICZxq8
RjSEd4178MVwn98U93bg7ibHnsyDT9u0IcDvAPjzAP4L2l4oKy5V/T6bdiDl
BRNQ/6xFegSST8wyB/CAdNJ5iZ5av3jUahNSLz+IICMS9qX12wxY2OusPadY
uM4s/KkVDPTlGwdDKCxEgD0GzpEFcSYb1kFsZgCxnBdoy2IaFGBazWJKJdtK
YLo8OX4QHlOErl+HbnpyNDutMmUcUuOYfv1mjTri46ztIK9ts2dOAlewks+c
UdBeY2g/+YICv3oqJ/CIdK1UfiY3d7l74AcKgI8LgC/h6gP4TgDfL8BvA/Aq
n6pPk+Gdw1SKaNytZiMHvJubwl4hL7lifMWADk2TyQMtrWs2ebfwQBEjD1Er
QQ+9sdtx/oSR/7hY1IR8rHu4Yqhx46dTL/HZSxTw8RfDe24B3pUCvGlrypNu
uA94LwfIjxPeKnvey2Xf4vlNcPbsPmXCwlkMREvxIpd/h63tKthFOlowVjFy
7gnW9FW7OPHt/hjo+kDWFCRXptNk6XJBcvWUKUiunTYGff0MT2vuHtQ5BaC2
EKh+su+hPQbUAkiXAtK9WsIEabfUfFTyNVSvfi6Qd4sNoL7kQw2qmzZ+cf6B
s5EZA+sTJNY/YkTfzzXRFzkObLXiW6aYNkLUE0TjgpTX3hTRfp3yju1sWGp0
aNXu27aH9loUpE4K7GIAu5+A9fPAujLBaQgsH1H204paZoNZPzia8YPYPi43
cmHYghhuvNv5txji67mhThbiqBhiMgfdtFw7beYVXxzivjuFWOXBPWPJhF77
FdyrFw84lP96AfUiQP2ihhoWvHrZAOCGBef7FjEFlw87cd9CBW86vKZnOywR
29abPf7ErktbsjNpQQd/eI+RvpamPCmvL44x2KakuDyV5j2fG8Ur02wUPjDX
o427wHxOwWw3ksOwLiBvySLdDqQjAKz+m4aYFF0TmBcA5qNZmOG+Ur+5+skT
a5ie1bNn5g1j9liSjuuwVRScLdPg7iNwIWM0Lu8yuJzcApLxrAZX+6+l5BRN
T9AMgKYnaJa/GJo9TdEsF6BZEjTnAc1VQHNjcvyF6Woxrr7g6ushqw2lm/Nc
eczuIs3L7VZ71iS1IG8LVPteZkCvWmp9O/WG5mql/MaNNpUParEdu1mkgzzS
N+5fKVuN9UibDiSHdM4h2rQJTzwpDuFUCoAPBPi5AH4l4N4G4EtZizbAe3XA
pyWq/VCEp8uoMWMZmgPTluuWvGRIMMpmFjQTZBuqWPs+s/BHVkkxm/MMPa0D
CZdNB5Kzi4aw62nSyIfnHLyrB6BXLtoM9u67gb2Frr4Nu4DeL6DvBOihXcNx
XixEXB/WzuLs2e2I2fwFyHEW4INpBtS+fInx5SQYkcItfKkovjTJUzsX8AaN
5O3pKxVJp2mxQdOOUSiIh0DcBeD8RipSznU0GuIR7F2NYG8F7C5Q7zQaf3gP
bXEMDw073UC6F0iv0M3gC6pZOfHC9D34zC/A3C3APNRn/0hm3CY0Bj63Kzd7
2NFnDy8cFNveJ7b9B4z/FbrGWfwnMvgD/VDQDxvBzQqnNlAtS+q0e+LdNfCd
PJNWwFebAq+Ev9eg39PpEPrtQL8P6C8F0jVgfi/Q78VnMKCD06Yy4UKQt1Xq
sGejDeyixPSEnC31PJUP5GjYIf3U4Q9mvIVGfRcZe86ckTj87Fgd/pb2qQYM
CtAPmqLvAX2f0Z8ZeZzdBmdyOpui3yHok+xbBX1qZchsOoB+VIB+TdBfDKDL
wPxxoN9O6KvEuksl1uWSWN3sgbKQD85cpq0CA7xuwnk3K5TdLLM06g1Ap7T6
DoN+OQX9DgwnBT0GyrHASvvPQQqrVCnNYW3nfUEj6iJY2wFrpQDWksC6CLBG
AHMfYG3RohZYF+rNF3OcIgery/XKpTGeW9MOqy5RZtPMyL7hEY7KN2g4+j3G
8Pt3iqEvGMI8TuVMO9LCvXYmFW7q16xcIEwo+7fD2p6Uplh7t8e6pQDrUOx7
AbAOgPB6YL08OfGigv4EVYki5p4ex6BedIoltRJTdRNSY+ao9yVucixNp7NS
UrV28JQJdDXfZTI4kcZZMuodPGhEhWsIOV1vKXXMlAqYuW0U1DHTlo2CFmGm
BmZ8Yaa9gBlXmJkHZjywsBx8PARmQnxGhoPset9WwwzT4vFBvNuSwem0YjMh
NeOFQ47Yy/nh1NPfZjb+kK4h14v1fp5GRXCHVOhS5toZNp8mBGRK+C4Q0Fdw
qjqSB6HvgICuPAGPDzs9+njCQVXZnCBj17DHWdhvbL3HkVaPiocpLtqLsTcJ
1RwwqmuYLtAm+4yBnmG/wKj/gR6p5rKom4Xc59r8yim2Hxc469r8GipyM0gl
dKOCgqUQVJmh1PislgG1JtO/ahbUboCq6penCNlH9mBySsh2ANk+IOsmJw6y
qp8BvAE+C7XfWPDamp6ycQ1sXEXbDG05u+1ryVqwZY/5DmN7MY/tRA5bT+Tc
HNtIzh3dPbbVLLapYAnbANi2iWDDAmxbgG2vYLsMiL4g2HrZwgT4ai/X2Ope
W9fhjlus3jGG2LVn16RaMoyDguwMI8sVScDdfVHd5zdCVg+gDLKhlNlfEFlf
Cr2aIFvSUyit2k4gWy5Atgxky0C2FcguAZ6jQNbHZw6lzmzFt4N8IVXtVCM3
oIFKrpE37aX08MaPDbx83OZbDPGsPUQZb2oMZMUuT6UMxJ74biAtZFhQS3c3
hbhSYAwEcahHU1q8HYC4VUM8rCDuVRAfeBzVyAkYg0J3MTCdBLqeRvdAFlk6
hZgCy3sfcgaGNkPoeSiT5XzW6uwhKZuzBuucZyC/mwLJVUZjF8gB6YlWCUhf
hk5FdUNPo8PZBGRZgEy12io73i0CJFV0Kqb3KtUefwpzEAtNYNkPLAeB4NeA
pfoHB3YPJ72qVliiYDy4oz7oOSQnC0VqH7GzNrtddCV4Tyqt0AspsmhI3mJg
37aBbW6vdw3srhywRqH2ee5I3lUnzCq0xsBOYMBkgC2zvSpgewlYJdPtCthu
BexOzDyMQtcD1XuSE4dUkQZ8veTRrVuT3l4z6biqA++3RNjjIYfuU1J/dd5k
bLk6CPPYUll8aYq/uZuFl02WKjC12G31LpYB2pN9Qd90JucdG+wM1nWD6liw
TkUcsxtMYLhhDDdkw1VY9wBrPzn+dB7wdgC+AICvBMyPAfA+AjxIAV+nN414
97MYc73flHaEBlyYgl3wanzPMb5cIYRDM0csfCcL8CWD9Rvhy0qmZuPaGceS
dIo0jY9cAI06d1Va59Zhbc58E9YRsI4E6yqwDvhUQUbXPrCuAetuYB0XYF0D
1gPAejUQfhJYdxPWYbJmxUAea3Fgn6syHhfnjsiQpq3jBCnsYaM+4w1GnisI
b+jtI6JqtgyfXJ+fFsaeoW4yvgj6dCCvQnPqkHuN87JMgdGbhz/T50VZqRP8
PtcWGfjbBPlqAfIxkJ8D5NcA7wNAvo2Qj8m2Ffq3luiRh4W+rivYUCZ1ZTWh
91Y5DWaf778oxfGstRrwcJZ5+LZVHFvu4or8f9dU+BwDmQKvLgYyJIQFMeCC
hLKQUOUYOK6ZoKTZXsCEDyb6uWCefJFN58ugo0Z0RIV00Eufcu6GC5+3IBEI
Udp0H7JI4Ld1dL7BLHwrz8JkcxZcnupdwdbMVRwTMzg72SO/pXSTxgjfmFCG
gF67aqkjIAABsSTXqn4WQDEAArCcNB5iUBELFR2goltTccBQsQvvrH8CGwqT
dHlxugcEHAcVlQZUaBr0M3QNqPD0UxKXskca6DzO7FF7uK278ZQP5IXfZzrO
azre+S3oKOk5oN6y8Rh1ZFkpuvtuj3okqJvHfSZ2p6iXJeGGXNwcx8hJod4O
1MtAvSU58TTqxxPPjCUHHt2T9PU4yfO7hrsA/CCA9wD31wF8rCtJnXgBvO7c
psxu5WUGAoLXhbhROiF84bAoXf3ZDL3Nhsm4+PV7/IGLG/2033gG4i8m+etn
U8nH+WybqSIbQh4WCL3Ez2ooxCsCtMvluZF3C4BWED6l6kkFdAicIfQUaacV
UC8G1OqzQ9PTgDrMFZVb70lrmyuWpj3B2c6zR53bgj6cgn6aP5wzoI/WlTq3
Ad24/ZXT9W5/9Uzq9kEjSiIpNW9LiX06nijxs5TEnIEVJVVQUmVKjiMNG0oq
oCQQSsoFlFRAyUJQshCUzAMlK5ITI+j9D2GgUkeOmys8s+S44EYfFp611oXD
xmmCtC0dlhbf+TpT8808NZOF1Pg2NRINd0BMKHOWHDGhNFu3JcYegeeIoacR
Q37ixhATsylliIlATAnE9ICYlgJiIhAzD8RsADEx6NgKYhbiM19XqzozgJyZ
g0NSK6WNQMAt18VRdn0lygt2IVRfDH2NiXjDJmKiCRGXp++MCBc8kFWFXAUp
9ON0BkO1EHUDGvP+Ru/JEsjbDJckFnxuvIw9hZx9M5B7gLwGyLsBeUcB5C4g
nwvI1wHyajI5Mr0DkA8Acs+aLphkfHCIe4LCcZd11E2vWWoVZmFYF7gxsDiw
BjWnmIOzFgcX/w1wQBEQWqNGuxtw5hS9lwvGN+YnlIzjfCEvJ7UlD1SURP00
Ki+Bilahoh0sdIGFHsPCY4oF9X2f3z2sCrBJzBsm0f4aAvqLCMAm3YEdmoCg
6Fw9C98l3APuAMxi4O3ULI9GfYU/fOMLou/zZOfKaTPZMZgHPNn5Qpj7PN41
FuPy42cGZE9AJr1XAbJyiL3qtwbpXiCtEHw2D3c74FZ/dvLF6eTkIVrKV9R1
EBQsBgVDoKA7TwHqIk2BKzvRgCPLgUWBbzKBocAlDmRbmrb2NfpcfgZri9D3
gL6rc7SFPgv/DqCPCybrdX5joDc/uOjY46ncS8IEytBdY1yK7qYyVHuQPsR1
nJeTslPiBGDY6QA7fWDHBzuqGSOKnlcU9avbO7gb+x2KnD5wQmXTWuGkI+Uk
n6OtbTlDyMVsQHg2GzxzS6kYeuNZx5lmKs4wFbxp9NtQEYMKX6igTY5Scyp8
mwo2/mOYHSv4yxwIE+jCLNCPP5GCXhbfCbgcMqC3SznUkkw+o/6iHvQyQF8M
0P3k5Mj0FoC+E6C3AnQ32yDQBt7lST7joiHXps8VUVEAzBxKA2BfivrrdoNQ
j/rFqTtH3ZcA8Hjfw6AeF4zr5+bfTQ6o76MAOIZ9j2NU48DgDeTUc7lAvCpA
OzSqB9BYmLRpyFsBucqwMH0FeVsB5AEgXwTIewA56fxxQF5LIfdkQLd1jZPB
20g8g/eFBngPywaT85rdG9wl3j5v5TXD27dU3hjv5xTe3TbeJHF6759A8I44
oRq8a8BbobIH2OqsWgHKgaDcRSj7NsrAeAEwXgaMlwPjEBgr93kJJc9L+O1L
3AMQ7g41Adms+6jj6IOjpuSvA/yQBbgvB7jO7aPjLicZ868bzMfvFnMfmDPo
VN9fPeNYdu/xRup16n5z6Jct9OmtOt1knChYqVpgBT/Ax3uoPc7lZcBv1WIo
CLm8NBTE7C0nUNgYocegoAQKukFBnxH6DkVBn6LgiWFlcAr/dcBfZdqXph8A
6hFQXwLUq4R6VIS6OUKnG2HPVJW6srzABT5Dz4VlOuw32E8y9l+7I+xdQM+T
TjrdcoVOttyWAJfPCNyWAHqbZ58I8G0CJAI87nQN/AHgjwT+EPBHWfh9wF8D
/F0Cv59MPpfnoAMcrAUHHcJBCRwsSDkIizkYS+Ef0/AfNfAHKfzpKQz1d+fp
PcjOWE/fT/CHr9I1lF1tcDGbcvEFqUidiIOBel212JPowGPZZF48DdfFmXdA
fnhAaJGySnVemhSKCReklIUUj7tcQ0oAUuIsKe3goxN89IKPUgEfNfCxGnzM
Ax8Pgo8y+BhI+VBFzv08kMPDiUFDEuIiEuwYOG5X+ume4m2w923ssUIgH34B
qDdpqOlHxMRNoK4Iyg7BzOUNTZkN3i7wLgve1OKqKvIppFgb9JoG/aAFekzl
vpdMqcJ/aoSW+spTxMGIygGKiIeEiL4CIm7cu8aRLEA978VRPfAxiwY/M/nB
D9f7+yQMpouomBAqfFDBG2KUDHRC8ApYKAH2cjpUsFEn0OknfpWLQac+FlCr
Qp/q+l3obQ0HVQEdZc6eMYCOpTAz8NNQJxL4OwT+APBXk5PCwRzFwQtPoOpR
6M8F6GWAvikLeg9ArxSA7n5B0MmDjjHor/+WoEcAPbwd6PMAOv1UvqqVajXo
ThHiJVyplVLiRmmfljym2gm42sngXAPOCsRnlfUDZ9/GGSgPAuU4mXpJlfMG
5QpQ7gTKZV3tHHginakdeMRMdAqARk3ZAGjtM844A/1abqxpAY0vra3m7qHm
ISUy6sqlAjX9IMhaAdQhZ9SJnWzeJTbv41rXZTaTE9hCPIHB/om9PM5vEZTb
gbJDLSpQxnK6cO0zuv7SnqSGZm1oWBmcAnsOwL4HYG8TSbenYPsGbDrytP+R
O8DZz+OsIZ76rSHGp2dyKTTUvn7tbM7X4fXn0mO7sX1Mh/nAT/fVjkM/v7W1
gBE6/+QLIyHXOIYRmmD6wgj1UkBf9VaKESzsqGhuqJH1kpPPqMrfMKI61334
H889zD9zGbT0gJZVoMUHLarDPTytCtXDyu0VQTEIaksJKuUJ4lN3uuq0rIaO
l2SyLYb7qvQZY3pO2u3VWCbd/pugxwU7cf5IDxOT8uKBl3bNC1ow4oXeNT3D
S8Ddl7GiiMucE9qPSuxHk6h1DBsVsBGCjW5hIy5gow1srAEb1WTqsDIoxUY/
2FgiPUFrPlx0/cPhMkuP0FhhwouJcMGC4xEP5tcof+AuICriI9sG5Ci53ISS
ANfgt6PEIU5ACdGSIWduv84V1JdNYANgYhdvgcUSNAHIiSRoaNAWZcmJQE5Z
yOkFOdUCciogZyXI6QU5FCrzQc48aZMpVEr59LzK0cyUZOCTY2bk/EEKESqB
XmFKTliUXLgbSk5ZlLhghIohnzvha2e5E7bg9+wMrUSlsJ+jsR/fnGLfYWFP
s4mtexx6eDIU7F1gXxLsPWBfEuxDYB9nsfc5UZ/EbMJg31aAfQjslwP7QQmM
QWDfJ9i3ptiHMojbskqaAeCedyYNe++ZgxIJx7847D7vwTeAPeD+txnstK/o
AvVuG+wagx2JAVUEYocwBsRYOE+lXcjn6jMDdjtw7hQD6iKc/WRudz8wNhX/
UqC8WlBeApS7sijH1iDIzN8Iadp2bwzxy3arqyEu7rUE4kvTGbPJQUxlkJeF
2AfEobV1m+mzPFzpVJVfhPN+g3Mpi3NVVOwB2LIAS6MFlWdtdEnFHUBXyZak
DIj3PT6cvPYS3hz0NcBIVacBeSlAbhOPbwHIUdG0Tfn8c9uagKxqzKMMMtf0
fPjYAtmlFBsAYyCcrmk9WIOsT2Xa2iK4fcDt3yHc3Vz0WHDvU3D32HBTUwUx
q5JfYY7lkJGUtcpPPJGqvCwqd4gNLoH24i8mccp+Eid8yNgVLW2gpUNo8UBL
D2hRbe7+PDdzcPWT1w5PPwBuFoKbleCmJgFA3IT20N+QM6jIeWab9hjf5mbo
rYOGFi5PPZsWcEJj61nWPumfthQx08jqH9ywvQc8ZjY+k7Kit3EVK0Fxdg3A
CT2gHYKTngJOyNJpzEmUlMEEjXR8EEHBUNH4T+5J8a8I/iFXPQb/duBfA/7l
ZOq5sX7gHxXg34VrD/CfA/z7kqkvq2bs5JdVW6aYWAUmKg2ZKGWZeLAuw1Lh
c4R5GPv/CA/t3KKNY/o8junzsWIywiwZEdc2howyO9MkuoLJvdyiedwGZCjA
xu5zY6AAS8Gtrn0go1JARiuuy0GGBzKWgYw5IMOTsEg3CGogI7A3hc1hucF5
RAS3a57wgF+HbS6CNOVO5JoBtzgZuGDBzZJAFuXeOQkhSGjlkcQ4JtDjmEAz
Ccfu3ZglIeAC05AQcPVvSIg572ZIaBf8W4C/AvJZuI9GvbUA9RKuq4B6NXnt
yyr9GtRz6q8K4L4+FkqA9zg3Nq1k1Z8/RKrHYUKD9Ksa6ZmmSLsA2i1A2BeZ
u7yNfu0sn9yJgHDdIxMWwi2CMJXwoYXwqt5qirDP/dXxXVxG+tz3GoQjLiMN
wmWW+Ukb5gpgDgFzt8DcWQCzj+sKwNwjMPezuCe/jH2ww6rJMlhXxGnMQStg
jSc1Ny1PcVYVzksMM1fw0dqZghpy1jaWFGkvdRQ6qKPbqdth7jVKvIQ6/SCr
ElCnaUME1F2ArsAA7I+s2gTQHWptPR45GHG7PAQy0AfcPRnoYzb5k6gsDfQR
oC8L9L2AvteC/r61W4G3swzXhUB9MVDvBeohUF+SVXg5p3A+3mae4Xzqfo36
XmfEbmV1xTOWrXjctKgkF7lERzgN7um+iS8ewk5Ofata7Cb6kCAmPWqxr7iN
GIhwpZ9hVwYDLWAgzjOwWjWxwgCdXoiEgYqA7/NcwYAfAvwoC77PGXYKw06j
+z6A7yZTw4aBgd4BYmAhrquEgW4wEIOBwazuS8KAmz16DmOH14AJ6B8FjqHh
5SaFZ3OPIQYC0fvvhoEyz/gVAzRuLjdlQB/fOc7LCcWIqsIF7bCXhYsAXMRZ
LpBlnx0DF1hOi7DSK6xgk2V4LLlPBaBaqo/G1U/mdCyklhdE3bdu6xzwtBk8
DYKnLvBUBU/zsjzF4k8OHVUne8JHLDRn2qZA0yGbJc/OBI0pKjIntylZZFNx
U3ZiXOmn1VbBDu3AVMCOV8CO15QdtAGqaaAegTbDDFn4C9SnvJyUNpebBENb
jUNoCgdRFFmdQlY7yPKS1/arv1UU+WDHT57aMaTE9fSOvUTWH13/KHl5bFSI
27puq3pxr8PKFH0Pgb5FUsi2gz4a6ZWk3YuytZMLytDiHdKkqWrpRWbt6O+O
tUjvkGE7/rp5pwmTu4mobfP7FZQZkmhvstaIJFeTdHxnShLZWcwJ5YT2tIqm
ZvLJImoc2q0ENVgOkdQKksqcZAxJHUISdXLVApLi5PqFWfX1lg8OJu/98XvJ
P/n8prpJXEP6vWENS7GW7H98uAziFHtfZn9UDcmR6YFk6ohixURgNyjsykZg
mHPKkBxy3aalN7ak1Rimey8wkdyFhENvHakrxFAhcLoK7HRlit/GtIYSjLFE
X5ZW2Ysog9aQt5zHN/PufmtKq2/TypnpOEYix3fx2JvCjWoDasWJySoIrGoC
T+4tIjACgeUsgVXuPl7bp0TyGvnivkf2ZH0x5dNLrn9ntqpJ/fqr48mGTRs0
nU1J9UDqHJDaxsWeInUeSMWtHpkGqVhOG649Qi9FaCD0hvogDpg9cnwKH81B
MrBLdfZBpvfLTG9vQZ19O3pp/BLUmevVszlz5aitq7aJ2QDMtoBZOkzTBmZ9
HbCPLOq3AvY4JorHqe5DtW1ojbjkm8SYZXIPj7tcsFoTMmlvqZYlE1lt3xjI
xHI6cSXzdILkxaE9ydB9m2QNdPerf052lixfNAh6yVddHbjfmW3VRINIE72l
HNEQgBC9c3gpOFb/5XVF6mu8nNW4zgXbPshuBce94LhDOPbFhX2dRHv7nOT3
vvOuRLCZ2VM/tdd53u5fmWbzZMTvmGbk1XNpwROY6/kGQe1nqW+3qd+3ZilR
fzxDvc+trKE+5EbLRDSNkH1QXwX1NE8AzU+PgXos1DcYLygRtEAEivDnxoh6
sP4lxfq9m3gp1jesAOsDc9RrSB7aMpiMPDMk640T404NxLdr4iEJE+ERrury
T2+q/1nAvDPA4a2YXwHC+0F4BMKrjQinoPb0ThoRfuFdBDbGR645Bc2c068D
NunByHnEdpZwnD7iQUWWcb+pZQfc3F3FoKIB4y4IN28Dpeon0F0B3S6f0BrH
5qWiu8Ome7+iu7fmpHSXhO5Q6PZ5cmEiPeKa1kR6GXT7YLtNSK6A5BAk10Cy
D24VJxuWq/6i35Gl2FX3oHhVV8UseMVSHquuXVZoK16JYQ/XFmLYsxlW9644
7gK9c4TeXtBbAr3lLL0x6PWEXlfvBxl6sVRM03RQ9oM8al/Mr/384SU9KnnL
tvAMzU0C229ErgtuQ4vSTElcMTNzbLvxciiW6VBqp52gJ+7dKAQPb92T8uvx
eNDw6/J40IRzCH4jCecS+A2y/Ebgtwx+I+HXB6UI2c0qZJ8ekvXG8XGnD4R2
W5UWuAOh3QXROtDH9XEVdC4WOrtBZxV0xkJnO+iMstGqvprN5JETFKyZaJ3R
FbMeMY7oitkqtPQeiG9GMWb5Eqo5+siWgzukr51Yo2gEXzToahfmXBCHN+9N
qRMjdnnKbphD74ICmZeTxqjPAxgToyGXVhkOfXBYA4fqqyAdaw9WsWTY9EFg
lFyfme0Fgb1WVUVRqajrb0JgAALXgMDlILALBLaAwKCAQIrHgAhU5VN/SiCW
IhTbJtbJEc8Uy/RLf+C+1bNzrWxm5YikabGXGq+6nhbj5dNTV87wiZGUWnLd
oBG1ZR2Z45vSyGzlqb2ZJ3hNqHUoKrlJ3Y2m6AT2yetJLkmguiC5IoEagOQ4
b8TM74s7VI7dsgkL/G7BIGGgz7HdmMiuCtn9muzrb89yb/Qn7znzNNnq8+Tl
8dGU7PVbnU3geanw3AaevSzPgfDsE88x8/x2yvPOp3ffGlwop4Qsqqlyxq/n
+MOLmuozB/NUezbVclCoOc9pCPtZnrF1mW13G7KMUfXmNJ47rPH1BC+nWWSX
JKgrEsVVCWCPm1vFbSu4pXGRilqcEQXBgU0wrQ3L+plilV+fQn6FFStusZBf
NcsdYDlM3r8w6yXvv03BPcYt003FdDuuJZCumqdf2My3tDjJqmUDyeMPb3XW
gvkoef2oMuvXjk53gv4O0O8Q/6Afy6GeuE2EQI7tkhDCVAhmcdB7UIKo4GCq
gmf5wwuWCs4fpVrLzDpmpzgFE/fIw6doQy5d9Oaa9YGud61FANkDeiUuqMZT
D7c5by/g3IT80ysynJd4hHtiN29dqFDWxFdo1KGQ2zPGLTLtmZoYd6GDisQ4
TdID6KCBBDxIAEl50yB0IOuNiXH1p9e/DQFoKXiQQjekEGopUFOlCIcUenAt
Jzd/cdMjKYTJtY/fS6a/NpoMzHNoKSkkh54epvprLtSwCGpQhcNRnGQ4gtHW
ETaD1qwZwN9Gpo0E1O9wDZKdz+ymAyPmgPLMUceWgvx6xpaCn52W1AvBzwvB
hRK8rBD8IifICoEmk+QCbVx8Hdu80YT8xJaUft+ivxIK/bF2/BO7UsentE5b
hR7UQAUZjbxIDKkX1MQGItDvgn5VgW2mCnspJvgOL+XvindxAMU5GMdSOjbc
UzdVSt7/zmwfuI81909/aUhsoBPXLnCvstIPNO3zFOVYOxXtI08PJ9NH8PPR
qVhT3C8A9xG4rwr3GNodSe2gC9eWOilYTiBSUE6QnlPPSiFTlj/NH/hP/LXn
UOqlUvCyUmiQD2KowMuqgOzAL1BBxO30+CbTXx3bzO20CxFE2gDm1KrJ01uI
dx5IE+8U/CH3V4bumGu3kxhznqTcTu+yN/XUGHfTT8MLDPseV3GKeB98I8o3
qijfOyTrjWPjypMM0y53Ve+jkFNMVwqivBXXucR0KEzv3L3BZjoC1X4yfXT6
HjA9H0yXwXQJTLeDaRdEU6jXhF+HCE565yh6v/uuighQ63OUrxFqXeI2rdLf
OCgBzvMUv/eMPUipY7VBgLtZagNQ6+WpvbHVap1DHpKNbzKTkmObefzpF1K7
Cw5MrbOhNshSG3FrZSK5BGp9MEvhXKEpiZ98aZPybrM0sT64VFX4t2aJyzbm
8v0ZmLWO2qoVtaOqEgeXVVwXE5dBlsdHFI/P4CCx4nAVOJwLDmvgMLJqN8Uh
zTmrNoeaP+LQ00F6ZHIKYYudPHmkbeZoeoAV5RuO9j2dIZIStnTMtlPj3Xqs
jvnSKbMDa4gsgUg3S2QAIj0mMlOWBzzHHt/Ec+wARLaAyCBP5JyOfiKSTm8E
QiSdZwqEyIBnICZGIy69DZG0QaS+3guP7iEy1VJln7q6ydwe9dlAD+bUI3uG
7EBtAbltIJfq71DIpUBtsSozBCvILeG6DOT6yc2/xTRk+uuK4ScUw+h1wXEH
6F0JeueA3lbQ6wu9PujtFno9TW+fRa+Lq6s5Xrdl6Y0t9zTm+Jzm+Cl7DmZl
48k0WM0+u8UxdqROmV3eepZDsOw2ZZnOxkZgucq7Fcc28yYUsRwXsOzxTPuE
Lr19Hmwalj0ebJpwpWMMEVimIlyJ6oXtiuCNm3gpotcvQcE9l+g9BHrTpSqr
84hdHcAxOC6B49SM2zXH6LRMAAe4LgXHVeI4sDlONq4bAMsqjRqa+0BzO2h2
pdMOheYyaHYtms8oms9wFJtYNpEMhuntHnSyzdRe5/gYC/3awx+G8wl3MmfN
9RHt8hn0BhHt8hn0a+f4DHrRgdEYXNOefQSuq+A6bMS1K1xTRHu8f2G4doVr
imgfXMfg2i/iWq31i/vptARy7oPrB4lvs86Oj6u/+8H52QistwnrAVivZlnv
KOi5PFyXgPXOJqz3gPXlYL1X91xHmfAIhFNpVQLhDgW24VvhoK424SqsZ56h
R/MvjGaS7/nDztBbI46z1x54emnyndSNlhXRd84xxbN+4ANz7Gs0w76Wvq+2
3lkmoksgusw7y8c28/Z/lBLt20Tz7qOhWR8JnuTlpIRXJK49iWsv+dKGTep/
aH6JXdfm+MkhWWfHiOO3FKmK6DhLtAuiW7NEdxHRvhmkgGKsRaB5rqb5B5+8
R1TbNPeB5jbQ3JW8/jLtWh2dBuFYqqE21Ku28CjOv2I2Oolye5IO6xD/fXPT
WM/wf+Tk1K3BRWLp9FQQTc5M0GsZqBpsj60Cn7Y1rMx9V65ehgq4CqOdrKt0
bKepHqTcTvVAB9ZK0AMd1okbBX4sYiiDfT07M+w7RD+X1/Q+4UoCysO7iPN1
9ZyXwLkPzkvCOaVt9YXeV52V4hxLVVbq2gn2e8B+j1WdbUSY/wI91Y/J139x
c7AJ/63gv5xMvzy9BPz7yWsvT3cI6x5YL2dZD23WZ5l1H1dXs64j3mLds1lX
f3YeNr/2nNVX7banrD5vd6T0+4UWcCpnAdxj08NfEEBJny+p493XvL/4eO6x
yDJ4j/kY0DEif4u65Hifq3g/YXgvaROY3J0zAZIByH9yjOcs9Dz2SUoCe6GD
HeuV0ZulNaHS+hNDivw3VcusZOBCBhWRQRUy8KGCDpDfkW2zaskH0mtdUfGv
uHfm4lpKfvy3NxeSAkJWwGlWANbO7apQf3Z4DvgfBP8x+G8B/x3Cv97gmjzC
x4aCPP+zaKBZBSjsdj67+9bgIBVlXkHMn0/L9SfseavSw6jk9jrnL4h6vLsa
T9lkYUezcofR31wFdBa+AhXQYcmyrQIMWjIqiAtUEOMac+4/qfOBPpJy8OE9
oF/9Tl1VculU3/fQ7iEX7FfAfhXsc4oH+1gO6aAVOihxhad00C46oKGam3xw
QSlC6UB99l1p1sZHSQx9uM6FGFohhjC5+UtSxA+1IhY4tLQiBqCIBVBEDYoo
iSJ8KCKGIipQRCsU4RcowsXVt2Sh2rqZZ3aQLJqYQqb222VPYtPKQEawqT5c
yEMfzde+wDtoShVV8YGQKc804SnlIZ/OPLaZTyhX7N7t+L0bDe0417eLtzZd
ME6uH3FBfxK9G4gOkoPbFMnrNslatxDFu+LaS17cjVmZYjy5dm42+cG5WXUT
6lqzqb/+VhH1IaivZKmvsAUo6vtAvaepPz3OrRyo78F1Bah3kx//EjkhQ/3O
JzfY1M8D9fNBfRuoD6XmL6LeLaDes6nf9ezuG1vWsZs3p54mMebXTpv64nyA
VIAtmGnHeAPbgmfbApcFDTMDK8K3a38+Lz2+iR8Vq0EP9JxAFXoIoQcXctA+
AIifuRePjxlReCKKUKIfenhI6WFtVg8qoXSgEHjgnsHkxV1Dsr7xyjim3+dQ
/Gld6LpAyaImanChhhZJCO1Qg8u1oDGCUKthBZo+bQQduC6HGtqghojUEBQp
wVkAKQxACh2Qgi9dfgAp0LmWGqRQo3GrBy0YJagXoK4eqSBAd2AUwItKg5m0
IdBZgTSwy566p9xfyNcCHPSeHfTICaclBVw5W58Crp5LU4DXhH2fT8sfo3EO
TptOUKOPDdYG7Ifc4xv29cnS5xXvj63FhEaxr5BYt6A/mdPuyHpgDcbninV1
/cboeHLtm7NYKnLUNYAIQhFBzA1BRgTt4gZt4F99lQ++Mwv+sZxUCVGBL7Th
ugxK6IcSAlKCZysBc57tWxdCBnMggx7IgBQQQgGhKKCqFdA3kPoAKcDVEwD4
wL3rjHkrDeD9kLShGzM4r8uDc4ectSoH7LRH7nrLfcyy/7t1gapdENo6cIt1
UBYdtEIH9DxWS70OVuZ0EPBodnI3j2b95N6lIB7/pho7SX87r/uZ+J1E/MuK
+DdmsZwyiPdBfCzEhyA+EuIrIF71Azb7VbAfgvwuyQUlK/pNTVjDdSk4HwTn
XkH0b1w/ANadQdDeJ7Rjl+DlaXCPhV0CWwUtUEHJVsH3WAWRrQL4gD6eiOJw
jE1AD/os+qkEeJz5f8pO/3fAvwf+78oHmP/8UQtDfhvI90B+K8in7Ta/Efme
mICX3LsENZ5i3xwEVtEER0v2PjzkJX/yhmJUEU58u+C7DL6r4DsA3zH4bgHf
JfAdgO824Zv200rCN8V4xYpxdIHgu4LrEvC9Gnw7VPclX6mnm9juFbaJbNp0
icFxIBxHeY6/964qicC0n6y/dykFOVE8puPcI9Z0nCPZk+ErkqXWG7KJtgyf
E36QHnYzNOc5dkGxHutdPWfi2S7tpa33+em/u6DUTbYs2eSCTToCDv62DYFD
s6LkT84qBhWhsRCqvpAu7qjAS0PZB7UlCeWYy7pMKAegtpqltqaptdu7GNfF
oHYTUasyg6rovvJ7oymtj+KIlOJV1XSjqlZ7fXS6O8twSRjWx5IncXaqnmEX
10jTfHRqyo5klx5bjimxW1Tb8QyqNcs87vNslm8fzr6u4i6fyVVxuej2chrI
tncU0x4/YHtsMz/l3AYB0AmKICeALUvuV7/bQkGMdi8fxNtUq/4n31B0K/Yd
imfx8DSwK0K8C+IrQnwA4uMs8S6IbxXie0B8q9XKmZiOcF0E4jeAeNXh/x2x
/6fM/vyFiv0NzP4giI9AfBuI725KvFdAvJcS7yXr75P4RvPVOLiZdarmvsS0
83wvsLO4qeg4wqnDT+M6R3YsYe7zftxV08ILw8+tXJpGOBHsUIjzYYktGx2i
mk/LUEN3nGa7fDWkYy2bP+gle7YhMX/10Hjyx78/m/zxN3CgwbBdBr0lHeY/
+GZRmPPwltu4t5DUjZd74L0sXk5zPBRtM7NcuNHZ5A9wbMqEfrtWQE8PVW2k
AB/XCAoIk5/87c1O8fce0kKY0QKW0kIy8tzwQsihCjlUIIcuyCGAHOKsHMjp
3QI5BLgGqQ/cWrxYd2UTjRXhQgwq5M9YDd6j/OFJLQurtze+39j4cT1d3+J9
Qb2QIXRCL51NBLJlLjvA/k2r8TGALMpQREnH/7WzufgvcWJX+kgTOzr7N1NZ
pHbg8oTPyKLKeeADdHUZMbRBDG7yISniEZW0v/q10eQnv0DZrq4LIAY/+ckv
kRZ+eXNhAzHsUmJ4SYuhDWKIIIZOEQOdqilDDK54Q04HYaoDsoWZ54YcczZy
jN78qzgZaCn02lLYnpECJYa8QxTlhot2bnDBfrmI9LSsU1w7pWwKANmbU4do
55kPGA9p2Luqvzv587EDtMC8sgYXzMPvlS0o+rFU3KtrXCAEKggiCIGMgrJB
GUIgHdSE/powT7u2cZZ5SgQ+mG8j5v3kzanxZME8B5xjzQfvfeC9Fbwvz/G+
a88Gm3c3+cro9HyQ3wnyPSE/BPlhlvyaIX9eSn6Eq9/MBEoZ/s9r/nVaGDmr
C3ztATwG5p+qIMRPFKaGO418qgq8vAhWahHE+TpgQsd+mOvtFeXqFSry1Z9B
Cij8FO8OBX4Ivoluygch922G5ZiLPcNylYP8fU11K6imQxiVLNWt3Kt/+LYi
PQ3y9z9+Dww7A7guA88q3P/u5hqd+As4Vv9RkTwAkntBckcBv57M9Q2/77yL
hXL+e+96Orj75joS3K6Uey6Y0pP9HL3I+ppZ3tUJJenPTNSPcjzt6xdPpVMc
Fyx7Etelu6FU1/YTIJft/PiWvJ17Yufn9mxnht3kL4hm/OFXR8YprCOh2Rea
A57LGJpDbs8NzWVO8YrmFqHZA8010NwBmttBc8hermju1TS/+dp4svuJDURz
P65LQXM7aF5GNHs2zaoIVUQH4HiOcOwmr41i74ayOaZ1U7Rjq4mmDTz1Wi2i
sYhrV3O967ndJpYRyPSTU2b1yG6Glwu61R9bsYxZzXaLcNaG16zEw6j+dGbv
JjXwlGi3gOgo25f7IJps2wXPgRXA2r+ZXl/T++be7cmyBYNEb4hrAHoDoZfG
bqEk7YDHbobemCv3TBS3ZwO4W0hVWXoWzC6Y7yTvf8IB3IPrEjA7F8wuLgjg
TapyV9yqu1Pk9oPcHpAbgNxKltyqkBsURLGHa2zTq0LZTNA1vaUsvcVebcjd
lUvQVjTn+W0ewEjPqhA7mBZiafi28ch1YrPpzHKsZoLWA6vqMk4GPUcb9DeQ
IdXVB7WhUOuB2kio9XisrqhtAbUhqI2E2gpH7gc2v63g10s+tEn2NMlf3j8k
4duF62KQvAQkLzIkn1Ek77VIfmyrUvNXELwmgonkciOSvQKSfYlhDt8b966X
isk0aYbfNHY1v2dh1iPOI0wvj1tD2YbN1WCmBJudtkqwU43CmXJyzMfdr5zl
Rw8t2rvztLfyPsvEZjORsWg3hRho9ySYA027bdgurh5oj0B7SWiPhXYXtJcl
ogMewhjDLoH2ALS3Ce20txaB9i6hPbRiW5FNtLcL7WtAextoV+XY31Nr/mfv
Ef/zFynuNzL3KsBfUYxPv6KKr0yUlyCAMgTgQgA1qcXcAgGEEuV2gE9oAdgT
uPMc3SjBaafVVGH4tY0/PG7l6/NjdVEe6K0X2mq18rVEvCvUl3LUezbtbOIp
71GWd+nJUxNP/vxVlaH/nFgfOxAS9T6ZOejXZbgrxFO8uyC+JMQ7FPDcfr1J
jydoCfg8YjWRH3Nplon8CBIoZyUQWZH/1a+PkgRacR2EBDZDAmjK/v4mJEAy
mHs7MZQhhhaIoRtiCCGGuJEYcjqIcI2MEezLGYGX18FR0QEcQH49lNEB/dPm
ddvtdJC3AB7INdOB3mHJ6UDbflYHsbaAYXRmSOpnqePS/DsU+Tyf+SbNZqQT
N9S7vJtiqA9BfZyNfh/U17LUx5p61GzaAZwWXBeC+nWgvhXMM+FhhnAsRXjy
0r7hAJy3gPOScB6B86iAc/Xt+i26Y1xDTffR16bQnJNBByndIcUwOBTDP0wh
r6OdB7I8b7ei3QXNvp69WG6PyD9lDtzVkxyAZM7vpmCzqvIWPkozsZl3UsOU
38D2d/BL/VYIfkua3784diBZrbL7qZfGnTS+KyC0pEP7+rmi0HboXDT4xVJt
m/F5n1vtDNOYwl2YBdNYKpbVtVM6sYrm/JH7ByXcK8L5KnA+AM7774DzDnAe
SAMeC+cVcI59tqPT4Jx4Lxn2ldB+X7Gvlnohiv1As79+69IbCkcr65cye+0U
83khHBLP/5KV9gviPfV8V9J9wxjX9C/W9EdZ+kugv6pHLFsyG+mmVnchAE7y
EAAV7b5IwU0+PUZF/FPs+9BDIIkeBv9GLt5LnPKVOioQRVWL4v23UlGk4U8n
LCsiihaIQtV3aNkyUqha4f+ErvkCXIPkp397c37yU9pF/+nf3YQoKA8s5TZO
yaMvJw8qCFN5+JBHD+SBffjRacgDSxUXr1NhQCXCy3jk7WVu4hU8pIyL7/J6
510Sh0/i8G1r0CemKMB1ZeBCGHZBeFg1c4dNFthhjezPZz3iTkyCRjXcBNCA
Ri3uBiLLLoxWqLcLC/RS4ZN3Ob2YLoD0EkMgkfaKT8cPQCWkFFsvy1V+uGbm
czHXBz/AJs0Pvskb7Z6ohIb1JJKaaMPh47cf8HJIJa1QSQUqCQtUQvVBlHxE
UtmuXOMD1QMqfaioMCrphkioxV8PbfTq+qBAFw4JoxfCcJPXX+GpbRly8EUO
cZEcLqrmz2jCSw1j5rnHrXOWblYVjRPHg7YwwnziMJZRJAua7+gn59Aq6JWa
SJQ3EZNDQmn4a3w4f2IzH8ot2aKwe4RUFKF2jXH1GaTgUxrBti0Nac/yDrwn
QoggBB9CoA6hxOVhXggffCsnBLKLGEKIIYQOCKEDQuiAEPzko+8qrbAQjqhq
EZ7xUzqOq64DEMIyCAGeoSrFn/BytuDaQ5LwbElg9PPY1lQPPvRQK9BDaCcO
1oL6nb6mAyAuJdy0lLi1eIl5fxkoJKJt3gv2SpMKikja8Tt72JFC8gH+8Bhd
Pds+MBrSBYY+uzk7bSWXO7ANjxWCn3EtVWTONkghdFy/DIXYp/VCz0n2b1wt
aeYvXk3TTChNJZlIrL1D5xlKMD4PAI1aQp4QGbVEPEYwaqlALS7E0iJmEUAj
VTEL0kgMjbRAI+1aIwsVYcYsfFznQiNLoZFWSGQjlNFVYBammfBEHCHEUYY4
qhCHK+JQ/+bky2mR4RZoxRf3KNkKsd3DS0dJ1l4+W4gpO8hCjoqFZMTh5/NK
w7TC/uHZ/sFliH68WitFdEK7QLwNZGsllUqNH+ma2MxP+lRsqTy6qD/pqznJ
zNPbG0vFh1R8SKWUK0sgFZe3BIxUAp4VG6kEPEw0UilxSaqkUhOpuDxxykiF
9v06IZVOy05OqWoUUnFFKksglX5IhfJK551LpVQkFd+WCiQSN3IRbj3ZQEQe
QZGB6CGxn2aZo2QgWh68f+BJUSregdZGNaEXptii3Lt2kbCJOoKskZA66IG/
aqoOP1nTW00eWtzNrQra0b/Q2SZVRFkr4tMJblxU8YH3NdBi8CGGSMTgZ8UQ
cydqxNACMagv9eHMLMSApXpNI4s2lsVHb892QxZdJAs/eUtVpnARJQisORDF
YohiEKJYDFFUk5/8ShWsP/7VzVqTsYQn9WgEecRZeVS4RT1JdrJ23UDy8vQU
SSNqIhBVjWb9wyfbiOxNhpFzWhVnj1JB6tzPstiuK1KcFjhXVJHq50Fn6f1Y
9IRSlgwqAxECl6F5HThFQqCnfGsQgkODyWR4zVJyiSP3r049IpaJdCDWQDpQ
f/2ZVsPXDqNtMWrwRA1UfLq8jWTUQEfDIskitFtIYmgXDVShgRAa6IIGeqyS
89TpUepG+kQAqyCANghgAAJogQCCJgJwswKgk0QtEIDJIju2b012H9hNhMeS
McQN9u+2e1NNtsS+zfThLMne0Bua4DuMfc4QQb7C1O/Ck0Y+TaEyW0p+tsKs
gW16C4ZWYtu38wGYbki0C6KJZ/XS33qas8EPTGdKbLu8N2zYdvhJj/d5qV7f
8O7zNNq4QJmrhw9xytvwXgLvJeG9V/P+1uuqK31yA/Heg+sgeN8E3vU8UvGO
5SzHtQMKUH+BISUJ4PdHFemoMz3TfEACeAic0gMlCq2BstbAlywNlAtCPzSh
P08aUckNxKiVGziUWR+WCwydOeJsZX08outKywTydeWdOQC95Sm/HY/dceSC
Py8Hz04AGE5oLbjQQmjXA3D/z3ipf8fXA5tXUytKkwqtCYcsgEdY57DrnI4r
3sfJgffP82HvisghghyirBxCyKGalYPKDN8jL3hAtZ8/fI800YXrQmhiHTRR
S376q5sroIROUoL67v+QVJDMH9STqx1KBftZBZ1QQRkqCEQFsS4SoIInoII/
eBerLGYQ2mawyeotNGFs/2ggC+wfNDv32cxHtjPwf5t0jDPk+4qGdSMpwL9z
BXi2IQyvzlh/KgKHHIGHEOMHnNQaStoV4P9PPTKUTqjgAN9MyY+lLMDE4c0i
a3BIDNyFfgtDTZMc6LxYKasKF6pozarC06o4MjwkTtEhqlgNVfRDFctSVYSi
il1PbSBlaFUUCQIDzNFpfljAPDagXQL6+MYf4DixUkilwCr8vFVktOIWaOW8
tgFtEkYrD1sV5LnbVZDsF57tF1xL+reTSi53tEAq9M5MbcYsetgs0EsETXVi
Os7PjqW2EWvZfHb8ACUTlA4h55Hr2M1QYilx1aC0UhG7wJDifCqR1Dh8SKQs
EmmjSbfSw4VZSATLacO1U8QSaLEsXOCIhbRZI86f8VLOoK4l/NFyCGgpBLQE
AuoiAQVF4sGM89XpVkioAgl5IiEXCvJyxqKEg+Vl3cUoZv39egxuSEXjYYzB
rAlJFVb3MSpGc6+tnUhKzIY+Q7rxm1qMl+pGSsyH5/f7WYsh3Tj8vm7Heakq
PzUboyJlNqmIYqgm4sJDiaYMrbiQiq4+KM+YM8qeCIaOs3gimDLnlw8w3zIy
cSGTqsikCpn4UElHVhyhFsdR5SRPaidxca0lP/vlzXmQRGvyM0y9lSTWQhKL
IInuBpLYuYMeV3hVqUFJologCTYTowj1O6MH9pLQ9hJaR1+fgpd45vBCVhB6
5glXCOw98pGzrAkjiG1WSfpbmgmEks4qePbp2hrZIW1IkUbata1QBqryiCIU
RZRk1JkqwteK2Krk8+A9rAhfxBBxB/r+m9xzlLj2NGJo4Q70wxmeRJSggxg6
aM/qIE4+Jh0sUiahiMdyqiKBRZBAAAncCwksbCSBTZsGSAIhJFCCBGqQgJtP
LF96lNkPwL7bjH3lCeg1vSZ24BWzT13nFntTPNt1np+wuk50NVOSr+qM4eLp
ImNoQLqXJb1VG8PxzXlj0KllsDvVQKRTy6djaWqJcA24DTWSCLUkBjqc5I3R
cYjBSRNKyBMqIwk6HBOIJKo09lYt6LdneSYxM+tURSF0TKYsTtEho2+lkFml
H5bJo6oc/ZpqTSGTCq4DkMlSyET99lc3N0Mm8xvJZKOWSZCViUNWAZmQVKpa
MCSW57nqCArSh+MZn7i1eJk+aO7zFFILY9TJpwlnsy2MyLaF4jzhixwaegB3
I3k1OHcgh5plCVoSqm5QcgjvUA4B5OAmN46jQfnu/u2kCypKtSICUQRljBCK
iEQRZSiCBJE6BZ2SaxGnIB3QXlgbdFDWOjivWlVtGaqM/RkORSodLIEOuqGD
jdABzSl6tA7s3iSjg5iPzrz+yrQhfkgR/ySI/0M4QzZP+OIU2iFS2hv4AZWW
mnbeBQuL/EAnlamC8qDOBXIqcLMquLF1OU8onqM3qchUma1cZR7fLC2ppIOn
tjP3AY8nPtVVgg/G/WxOCIhxL3nl4dXJQyoxoP0o4Uqn1kOh2+eppKG7xK2G
oZtmkQ7xzWXkBcwnMwaAAnN2FsRjqUpRXauWFXyoykpIIMZ1DiSwGBJYAAlQ
HVlOfvprPOj0a6WDAjHMy4shhBhaeeujXgwurkFOEdyFZFwAw4mpbMKYmdQJ
w6OTdB6UQYaAXxttdUQ81L4zU8Ck4nR2anWJtHDZvJPNLRXTtBta5AcZJcAB
tqmk8J07UwK1FrFWwvaV3ckbr4ynUwiP97WMEjzerDBKiHgUoZRQgxJqUIKb
fITO0wR+G/h3k48xllSs16zAR70I1iNc+8H6IFhfAdY7wfocsN4G1qsp66r5
UaxPa9axFOvJyP5hH8QH4gLqm7z2SpoN6CidCnujg7N/+C5WKgXflkL/PGdm
/+OZKSOFNKd6EDmjw10OxHvgeignhQdMD3q4edmYmVnNnsrOrC6edgqzhqvV
caWxOlp4dHV8s55bcy9xj1bIX7xygATi896FEYgHgYQQSEkaChKIyhAnoJLv
DqsM0elAKQ5tablQSSwqoadcyqISOk0bi1+UoRJfVEIuUYVKAlFJq1VNGm8I
RCVUTa6HSnyoZDlU0gOVBKlKvOTmr24apaiAVzpRf6aVAqFw5+mLXFyoJciZ
xVkyCyOTMFs8qH+3e3j3rSXLLApJJq4+D5+RyYQhX7QitrGBP/DwO+akYqxj
os46/Fxe8fPO4UIkXiNtuFnnyGjj0YX9Sb/KIco57lAbejBxg5eKZHX1LZU8
tJazCp2ocPjRx/d5OamrOGQrPLA4jxRklONDOSVRDp2tCLP+UoJySlBON5TT
ppVj+lEox8e1T5SzDsopJT/79c2VUM5cKIeqTBeasfxlpyo3LX8pEoxXIBgP
Vy+bYoxg+ufbPzUiIxgXJOvRxHk6qis156j4CWskHHrjSGFqyRUe0ErWS1yI
xc2rBPUmqeRhej/M26jEcg9RicdHJ4xK6NhVJCopQxahlgVSzMjuIRKEy7NO
o4OKEO/xVpchnk5XxSC+TYgPQXxViO8g4n27ARXDWAjaV4P2btC+XGj3kx//
Gif0sQN2kyqKPO/De/SMyhXiKa84xLzhXf3HDOeUS3iPPIBJ3Ni6SR9kEL/P
0G4NNM20SZO/FiahDWLr3RpEg1ziCf9uyn+233CzGSQA/1VdXxxQGQQucXQr
jtHUK6DEo0xFvpld3phILYISSay1oJNI8v45OpqL81aUPj6wteCQGLjd/Db+
nVFFwBOJjB24UEUbVNEFVXQW9JskiQVSaSyEJJZCEnMgiRiSqEASIUnCI0ls
f3xDEsX0I8A2bnWzenC1HoYeU1o4yB5AevChB79OD+QB0wV60HthM/aiSiG1
g7M6Zay3FfG7sAOqLHiXtG4W4WbbjhBiKGszOKFa0MfStJHqweXTdxk9RFxO
3NCOYFTwoxMHklmVLOZ1OqyCmEtNo4KqVsGH30pVkHoDnc+tiDfQ8Fr944/f
noUKsJxUD135vvPvsDWurh700JH8/O+RGTC8VspYDWUMilmQMspQRqTNYnRi
NNmwRf88qv4BaMNxTXGhas/XeTlVXY8+/MDWZOgZpZBLaEjrFRI1cQyfQ3tm
MqMH4xBaD7zzEWJ0VeQQ3l2mh7vQQ4nPx5wgh7AyhJNTRARF0AgCpcP4Ad7r
OIYTVfUCiSAQH/pACK/qTratG0xLh4hbU6MS2gVzIZIW0YbLs2ujjRq04UMa
HVAEtaE9xiEeVA7xe6OkiCrvZPz8727OhyLakp//yowjlCIWiVeUoIgSFBHr
0qFAEdADj6d8+u3Du0gAWDkNBNBAoAeZOEhT4BQ+U4icEZqiMpMzlENkxYCR
FW+nNjUHF1pwi0zBu3GvNYjIKaCFz88ZBWhHsFKEB/5LPJ9uRn3IvegNu1og
6pU/TBr+v/nqOPFPkyg6aBkI/zEXjBn+W0B9K6gvg/qoiHqlh3dmk/PT48me
PRtAfBeInwfiF4N49a0V8yAey7kf1wVZCUSQQFlL4L333yMZ2BJ4/VXeIcUQ
PpUAWotLKujrjSDQRrDhgaWpEbAIWAFwgqlMqvC1KxhHwK+1/OFenSXOHPnd
uIJHtaLexrIEURVLIEHEtiVYOQInJrQlkCRCrhg/wz65EkKQFUIAIQQQgq+F
MHtApYouh4RA+xYBjyQ/eIt7zph7TiMEGk1jADUzCzVgOaklRNBFGbpoF120
QxdB8sn3VG755B3838eUOXz0p+9BGE4HrgOQxxLIo5b8/Nc3t0AU80QUZYgi
hCgqOlMUiAI/mj2jiDcuYSxZbwukCF83EMoWbi1ZLg9aTJsfH3khXS6k4WqL
OJ+zCJiAsoh1rAze3ojoR5s1sAlTqtb7BA00VeWqh1VY4hRKGOnYMhVHCx/M
NuKw3EKnjADSiCANTK1fPcCTazpwW68UnweZRinUd4ZQSqiV8ur21ZIyaH+c
TvJHopSQZ1gfYs/zQ+o3UE58ZPtGwNOJjG/QXlcN+vC1Pl4+METuAX204zpX
7KMX+lgHfag29Deqx/zpb3iu1cdzrR//ms9gVgvsAwvq2P/ksF8gFhdXr1Ei
8XQiUR4ys39X6iE4U01kcsWZsZEJMgapMGwvucdWjJ/3ErfASIoyCuZYPL0y
/uE1Ukhk24dJKLCPu9KIx9sbRiMeNBJBI7GVVl56Yog04vFul5GHz8NuI48S
9xwZecBXUGjyclqyRuJCKF0QSqCFMrjQESNpxXWOCGUhhDIXQumGUFohlBqE
0guh1CAUnw/rQiilRkKholOrRMWXUgh5CjUkARTiiULcZp7CKqn3FJfp1gJh
N6FJlhYI75AERZZSqBJc01SjTSUUU7ms51e6/kz9pNIk2dxjTcBJLSHXn5/q
jBPwGPwz3ZbkNEJTzhgaKWuNINt8c2ycRlWxFBweb30ZedBhvEjkUYM8lADQ
kRj3aKfdD5VUZmchCiyH5BFaPvJ1VYRCHi0ij0HIYwXkUeWORMmjB/IIsvLw
II9Wy0dezlWjShLBHSjCz3uGa4jSgpih6RWuMfnG+Qlr6SSjh+EZVfj5xsTl
yqVpggn4DK/qQw7syO2HpUK4bWIJby8DlzfGjQwc8gpqTtGAkGlUTAny/Pbk
4fWDkIITiSBcEQQVHnRYtySCqEAQHgTRLi7RAkEE0EM3ZBBpGXxLFaNwCsig
hms/ZLAIMtgAGah/8vPf3IQMsJyVuM6FINRf/ET9oRIEltOJawuk4UIaLZCG
m/yTX/G/+/tky30PJwuW4PGpN0gPpIw6UTiUSXjWvdwxj1kwU1NciPJWua0D
FyLIbY+tzmgh4w7NtIC9MZ5cyeIdVMyufOMM/LNyizXRMJXkVFGCKjzeH8+o
IoIqSk1V4SZ/eRJ/+9jqbpFG2pw4/Mzgh7yckojEz4qkzDVHxjXKXHMYkZSs
mtR4RUVEshAiWcteoTSyAtIYYK9QyqC9tFYIwiGzoE0S+AVXHz60Qa4Bx1Bu
kQojdQsXwghJGPSk6e/IKNawODZZRnE2ZxS66cmUuo1cQ54JM3Pt1DDKd5g5
SBwB74EYy8iJw+FHOm7wckKRSdlOH385eQDiIIEYmcxXd3VOpZQPaPcjnXQZ
XbjQRUV0QUeuwqx5RLyL/skslxhlyzxMLVrGtU90sRq66IUulolllKCLCnTR
Bl20aCGgsnj2yCESwuGTU0VC8KQ5Uf9+94HddqfqWUKYyQhB9amThU5h74it
yojhzp0iLnIKyR3KKXIqaGIRWgnYQX+Fj3enKtDPE5saMwbtZgf9R8dTd6Ai
oqTdYVLphrn/nsoe4B/cu1JtYsB5PrWItLBw+NGvj3g5qShCiCLOisLj7VMj
impBAxuLKBZAFCshikUQxZKsKMoiCuym/jo1i7IejEMbv3/pbf2WyG98/92G
ecTXeaR/Qfo8p693KC6kEjHNCBoQev+icxOpR7wxahII74XxD2m1PMITWeie
eHZaFhWZTikjD3m/Km0SOok4dyQPk0FIHh6fsqiXhzGJG8dyJhFxofkj7RTU
jJBRRFojY4+uljRS4uLiQ+0PVS2Kj76diqIqovB52mUyiG5GPsFWyCfUtdY1
rJHoYT70sBx6WAU9LIYe5kAPZeih1EgPsfYM6OGTf/zX5BuqrCiSRCgZxNOS
IOPYwpIIGkjifLEkIIBVGUnIRojtFLdNG/yIiNFF+lCxNc+od43muaNIFg6/
NcVnvBwSSNRIICF3q0YgkQikbNUZ58bHyTlCbkeMQCqcQD7CEPQjnMr5CMfx
PsJzgkYWLewVn3xXlRhGG60FPWqAaxe04SefQyCfY1/sc0xAlUo2QSULxTUq
UEnUSCWhHoUZlWCtXH8PsovlHiGk4hVLxbjHrLiHivZpx5aLC624xe6hpbLh
du7RWB3WwT2TUHKOUWvuGNgyLUEaLp/ObCaNkKvPGzq/5ARBIy4fgqiYrHJQ
ZZUeB6JwfB5fGEGUuNLMCMLhZz4+5qWyipFGBdIIIY3OOmnYtuHjGvP+iJLG
PEhjLqRRgjQehDQWiIFUIY1ApEHKCLQsbEHodAJReNBE0EgTrtbEhgeXkn2I
JlxIgocMkk5IFXoYes6sMb17dthZmRFGsYd4tofw3kmjLFN00NNPM8zmjbdT
iz0rL9MmGr/5wKe8HN/WzWdjzXUT8GjU6CaAbgLRjapLpvAFIZ6HNwyaIziB
SIcO94WQTs2WzsffSaWTukoM6ZSyrtJO0glMPyvrc9p5/RxPIX+O54Q+xwbr
579h4cyDcPp5AqaE42eF42nhYLQBwdjiUXnHbyoch2qR5OWvTLGfnNJZJ7US
rRyPRBOkohmTE+A5xdg2wv5zm6xDOuETfX6aYvLCaJxhIIkiYVCuiRoJI+BZ
1w0cyrlBg3NbGLS7EoowfBKG0uKa7uTLe4agB4dUUYEqQh54GVVUOMMoUbRA
C63QQggtVLJaoOojSH74DjZudqiS9LTqXz9nMZAW5kILi6GFTmhhA7QQJj+/
hdn5LRzh+g0eJMJwVKnCy6pCH/kbPU6NC6Zs//iv1RUp5hEMzL8P6tWVZqJR
Vhn8XAAJQxnKzP4nHIrkQkM5f3tDWcHy4H1YvRufGgo1QHzWy4zhi50k4FST
Tjg244cSmXcjaJ5lKo3kEXKF+hlOatWLwuMtNyMK2nuNRRQeROEmf0XKWKBy
zZuqAPnQtC6kDB/KiCXV0OmcIKsMOgzcKsrokAFojZThJd9WHexiZRdiESSL
QchiALKgZqUTsmiHLCqQRa/Iwq2ThZaEFgRfdZJJZVFkGA41L/CKW0tWOFwO
6AC2NDFpacKDFMxg/CjLYLmthpxZ3FV6scuRovTy8IJ+4yIl671tmm3FVnkv
pV4XPm/FmiyS04ULXZSyWcTXunhHpRJoA7pwRRce76AYXUTcv36MbZSP8ZzI
x3Ro55O3Z6ELLKcl6x1dWhywjY9Vdapk4fTgOkfEsQTi6OL8ocQxB+LwZFje
BnE4ZBoQB1WoNBtV/KNOFZX8zV8bkeiEknzz+9hIM95RLBLtG3Ui4W7m/GS6
zpFYUp1o0zA64a3ZoMg1GoulbgZGqpjZj4l5d7WBKvR7MNbnFmMen76SM4+A
Z2ANROLymR0lkpI+s/MjTL54ObFdrCq9QC4kmUALZ4dKNY+oGuRDekvGD+kw
D973wmiGDv5G4iW0KUuSaReltPKm/Q+/N9ttvOQr48nevRtILt0il0WQyz2Q
S8hTUiWXAZbLT2/h2YPf4E35fqNHpb6tDVsfyC31+qDc4tr60AZC4atJouPb
rI+Zyeb6MD6yzNZHKI+cnZtolFWCvIHoG0gfQku6Kyq1rOLUUrLeOq1Zaqne
Xh0lqMNrqo6KyKFs8f/msfF0QO7wM4Yf8XJKUm8EUEJJlEDHNwJRQjuUUOX9
FEsJP7w4myxe5CQf/9l7TheU0C9KWA8lBMnnt26uESVEUEINSujQxvHj36TG
UdYN7pUP3iMVKFHAvv7mr12Shm86W0gDKyhQR2C5hypFU/ew1OHbKYZry3OT
ud4WTqG1wQd+0jdGOcdPHNxlEyMG4t3YslwMxNJH89lHlRvcT1/hBpeeHfBF
FS4f9jKqcCiz8NT0OArVHx3nvVeYxInUPUr27OOvTqbuUTJp5wWVdnod0k3M
YzIjF4+334xcYi5PM8YR8wTdyMWFWlA5PD8k7tEhmlko7tEGzayCZuZCMyVo
piLu4UIyFa0UFBw/ZPtgpXApkrx19e2kpR2x+E0agXxfpZZCmTzx/O6sibDp
c9vC1ci0nCbXPpIuLRd4SUYrzX3El9zC76IS2q0tZRcYiOlaytnMUjRNr/Jc
7FNddHi8DWvyyR1oI+Ly4y+1gZS4/FCCqEAH6rPX8N/Gd6xOHtk4SGIItJV8
9K3USsqiDYfEwf3sd2gMolUSckObMRU6E9YClVA14muVwFWUNkglNAvpE5Ws
hkrmQCUrsiopi0rIWOKcStRSN84qOTJ9KNnyMGcZ93YqmbOAFJKqJNA+Yp/z
KfYRnOlZytrgXfvI9pG8Pm7TvuSeaTzDb5eyb9VS53ZSyZSmqVRcPtxjpOLw
u6Tc4OUEtmh+NNFcNDH3MkY0vhbNjntUq7t3iOTicv3xkW0jLaINOkJchjba
xEEQzt+bhTawnFZRSaBVsuMh1e+eGSWVtIpKFkAlK6GSJVDJMilc/1/e7vzP
j7LMF369aq/v0kuSJvvWWchCB6KsDktcomIQETGDJqJMJGEJDQ0NoSEaiLaJ
UZTReHTmnFFRoqCGkJ1N5zmz5IyjbALBXedfeMbzcz3357rutb53fbs74DOv
V9XIFpZ69+e67qXuakJJ7ipJZTtiKcGloFz+gaHygx+70kDJAIV2ieUaSmTi
5ODFFwYqSEbdgmOKTlSBIhf0l9pQzBk7uuDw9AmLU5tWO19aGwuowqwaaBkV
6cTFJdbF5c2oSHmEW6MilSpQU9CVPEoqHsXs+qPYVPoodpd/DzNiSgW9c9DS
KvqgQhQSjHCFhemwkEoL6EplaogxiLKQ8CTYC6+JRy7+1wqoOAcqlmoVLahI
tYoEKiJPdkS4x9LF/CVBufWe4YoLEyABDWbgwrwdjShZVIkS/LSPmoITyoJj
Vvc9BUfmisMlpcNVPJliag5vJMg7jm+jNZoxUXrWU+mpqOledhKdJQGfiPAT
voJY+ykAJuVu9Uks5T95q9p7fAjr+WqBLtZMMmISlw+L9mOdqDhUZSSSBpDE
LpKA30z5Pl+i3igubS4wDpfcig7RthKXFu594CKk4IyMF7Bo/wJmQASXC8Fl
EFxmg0sbXBKXS0BeaEhz7ac2iZ+Rx2hAQ1Ie+oe95QVXcKmJfFJSWwpdMkci
blz3jHIfElksfH3IGKfIEmbBez+yNZMrN1GdjTFTaK5YOLuYwIZTZ87QRsxT
6spGChuJGyFReZhy5D2iuhAQennpUZokw0jG0dGjOTS4K/VysMe0TdwTcJgO
DvPBYTE4xOBwGTgsBodZ4NADDrHmEEsOkoJsOiwOKCjE4WuYJHMKio/DlruH
KTRosy/NguwZ5ZSIJkgJebyGwyEyKaGLSmwXFQ1iMmEhSowBkUxcYlJdYnwg
Mu5WD2KF/+DNvHc0qlNB2z5SrSKBilSpWDNQPnTLNjO+TXmm43uy3aC1FTGm
tGlkoNFwaTSsVlQlRYp7VL6A6vICTlF5Ae85voDV/BdOn7oENBZpGr2gEel5
ssimcSPTSG0aVFPuHa6nkTk03nbpMuo2Hh4NTCUJqx2Hs4Zr2o6dpu0YZCGr
1RxZZ2Cov1xVksD7cQp+DVbgKM9qcluauzq6l5JM68jBIZ0KhxgcMrf7zCSH
w3duLB/++Lpy0ayAOcTgkGsODe4+FQeaRKfto23NYRo4NCWHT4vx69UiKYQB
8S/oSFgCCTMgYTUkiBx5A3Onb2Df4GlRTISJPpgICAVvK32dvm+lJ0Nuu5tw
iIbhsX85QTpC0hFTHYEQoQOXDwh3GTFC4/TylfKHlbpQCYM3lmbd8sLlIE9h
2jpR/eAKpVQEkdWQPmzKRzcPvhl0kxY/ucmkBY1tE54NUzxiXpZ9EnvGnqQ1
fSznKx4ReOSaRwQeOXiQDvHL3/ye1eW6t3MhoYXZiBdalBHaEJbASK82EvCe
88f4Ei2nEx40js3LA0RmqUiQ74sEeYESRJGZq8nMB5l5IDMTZBaATAgyAyAz
DWTUTPvdO2V4/As1pP9yIjFGxLD2rk26uIS4R12UiPwY33gVK9knlcjn6G4v
FF6GO2uMTBDlhXeC5O7wtqYdjSYIEVVd6FvSWRc09gR7i9+A+/GneXvQlNBQ
poS8KejQbbwKQ7tKC3capACaRKKx6wxtBAmBpqG7jwxoMh0sPRLNY180aPrc
iGlLL4iY+8SwVnuZqb0MwssyeOnjPkR4WQgvcfmfb/DaHXlRmdI7LYAS4yWV
YxlMu6MXEQUHbamkktPiHTWn6oVafn/OakvsdNmHY/f2jPorzjAt53aSQYlZ
bKtJfCljFR07YrxF55EdpuhUvKRdp9yLrl5iXpA5KBvVkPcMKS8Bv2V/iK8g
1XICyhueUb0dizTKUEDJA0NUmyiCUqlJliiICmgfYsCvV36Pr6DQrlKecFWu
WnBFrPq1pl6OoAOG1LjobxFDL9CZ9IrUHE1qDUjFPPWqSGUg1QapfpAKy/84
zZuOMIRfGpQHpKtE55Ac7shGBk3M174ealeh3rdoaRLNrUmhHTKFYjuFvJpc
Ua4mX/50aOr45KplifaPiPzpaqmjYBlLISilb0JQU5NpwkhORmIyIssUT5go
EjEv2SgSDe5hHBJNkMhAoleSeI8YAauUiVwSNNo5FySy8oU3MGEiq1IBEk2X
RKNCQlzoaw2J3WoEzH1tVxKYkbfCRQ95VGEasQpTl4hBGVrEKHhfUW5Pp3Uv
TJHcN2vtUKRpeREwXUF0FKMKiAwgQt5OpkpQwAe5PMlXYIpR4VpQ63mHh018
UDFqWMXoxqvXU1Q0tYuQF3WVixwuUriYBhf9cJFzb2u5QFSoBte4mA0Xi+Bi
CC764WKV66KhXURwkZGL2HaBKwONWNK4AtOrH7/S0DBVKJXTaFZIYFS6Q53A
s0ddzILHw76c2Mks1ldJRDYHXh2W+03Gh81CXm1I6Mn31GOi88wGEtGEiHgq
IlLd06Kq3GrCghqVjBuVp7CM9xR1K2hUDsvYIBtheYSALJ4dlLtv3VapJT3a
Bu1Ozd3MiGGjBzb6yUZMmSE7WY+MVZAxFzJWQMZ8yGhCRqZlxJCRyMS48pq1
5ef+cS8lRthhwx4OJ25sKBsb1IT7DmlDjoHHR9TP825as/ckhLLA+8rSunjo
bEIqTWtHzejCwSoZFQ6RrhgVDgWef8bt6SEZC5WnnvOYRj31Ak89kk/9yMjG
8iub1uHpB7l+6mj/vrAPjx4XJkzlwCbmaTIHAdrGL+8DAlxisKo5uGNhY2Eh
LKyAhWWwsExbaMFCqi0ksBBaA5u/u3sTWYhwz2EhtEqIHPyK/8DKQlbbrcqZ
9h0WDTmRqmh0SQr0pwstHSFg8CtVsVM2FI3QzJilZsbMLR1eFu40SNtjgiIi
4LNdDvIVxF11pDzifUpWjpQnRA7brUQMHYRD/Mq3rF9dvvP8QQoGmjql9VoS
0tbpQK81tDSMPgnjwJcMjH7cp1VHvK9ii5CCsQAwzgaMIcBYChjzAKMNGIkL
AyY+Y0wkOh+UiRvFYPdC2VZ0NxGpuLjexEUk7ygh47KEUHAEBW9JtS/XB2ba
FRDeYBZXh72VaiK3NcoVXX7d1+0w1BSJ+PesdeKMXNpwEvJmkG5OMu47n8Si
3ZPUfGJ6ZHJYMmBJgCWRWNafO6CrSIQ77RhKXCwBaeGB7hexl12xaYFNAjXT
gGW6Pdy9fwthmYH7TGAJyxch5kUssbyIaVXB5kKwGQSbOWDTCzaxnlaLPWzS
DjZX8KCX2GR0p54DbIhO0gWQHSoRD37HR2SVMVGyU1IZ20p96AJHitkb4pdS
2FK8YYIiU6OkY8rdKEl0hclcFpQhicsi4UlVxSLhlRfFgiZAUrBIJQtZYgyL
TLOgDqMtWTy217Bo404TIA3uQ6ssxu8WQ9bBwLBogkUbLOaDxTywyMHiMrBY
rFn0gUXoDlIUi1HB4l9PiAevKowsLgtEcdn1NXxsrUZEIgm8/bJlBy++uJIh
I1POEDrU2JYxYZERwGwZ++ymlDceyhkQmjWLXCBJXbnxAUELutXESIJ76vES
ay8xr8mojiTmVVzlJYaXDF5y8hLbNQdXwtNlSgut94fA0quN0LbDhjYyQxo5
8JV95XsuG0R8BLRYF8HIgDayBEay8sU3Tl2qjcyGkX4YEb+AQAIjNCvfI+fm
BZfy2z/aX667agh/i389kdpaVNnpqkV1IZ8eHS7nLna17LMqTmTyI/HlhyLC
+8viNbVlhn8Ra+LW+l7XqD1iQY2J63E4Mxq9wBHwgUA/4SuIujKh3SGRZhLz
Yr9iEvGCrmISgUmumdBkfA4mDava3Pih9bJlpXl4ZaTB7apjJIaRtpsjIYhU
wqSFuygqr56apaEMAko/oFBrIqLm19hA8msxshVkZoHMNJBR6zcLlwWQQWES
dhi5YsNQebUY1mojZo9ZbHJkfOPVVn8qZch+hGWIHNk90pkjFhA6S2q+g4TX
eH1IQk+FkVuY1Yf89ExHjZGOCuMzQh1J0tVIrDuS7kbozZhCGwlhpICRljSy
eI4Y1962jYwUmkfOQ9rHMO2ueITg0ad5UKsaSx7IkO//kPvVmGuN4jFP85gD
HgvB4yzwWAQe4q/9xa9PgQcu0eta2fLzN0y2tKSbRZabGPfEdrNgaVBuE70J
3BSebKH3N0XxsnoTukTMnD57Fa21dWDiyTMa9uwekcMeN2vGZNZIRrxfkTc8
S0pcmCYHSX6wS0+PRO6ekcj6toZTibpDCuGIhsUxLwcrPhFvO1N8Qt5PpPgE
lDE8bTZMM+4SUsALw0f4CnKb1JG7xKB587ryXRcMWqRSnkFTpHppAUeUh337
eBhEGxSd7FG4viCy50NXr4Uo8ae8iP5WuVoMV0vgahpcLdKuUrDq07ETAlPT
MvQDaSjR2ZOqbuYf95YXruP6FOJOAWRlT2Jnj5pkdWZOdrs1qdLPBvNsJ9zQ
7pygJu3Rn49Lq4mjJk66OJllF6V+Xhd2YFBLG2kYVHtC3qWqYAR8ZsxTfAWU
MHJ1T5loGgQJITgqr/eeN0AYTItCb0YUGgNtFSAL/W6+iL/rDx7eV/7gK3Th
t+i+TFSix0TcQETbI2IVRNDU+0qIWMiFSIhouyKKiogfcGsrUyW1qhGJ+HqH
CGtk7AaI4RB1iY31Y9uqHOqrD/5yw8EaDOs38MaveycXnxoL+tNcjoUMFuKu
FgI+Q+YQX4GJiwIMcpkUh283SUElpyGT4sgdJilM8UlgQ/xR6PicqEDChggs
JYTeompqIU0ISbSQfj3hHgNIKl3cdP16nRQtXYHmwsUiuFgDF3H54q+xXidd
NOCiqetODBcpuYjLUTHk2SKGPNKGn8a2HcP1NGK0rxQW2ApoLdChg91tLs6L
uFpTpA3eqhqt6VJSgobzbreuKiYoVEUhHIXGEVaC4lMXr+aC4sORUxvCZ4M8
yVdgaskZMim4MzkiE6Qpy8jREZ0g4j8jW/mqKCuDomP5vpqEJSshr+MqKwWs
pG6aNGElh5XMyhAhhKw0dYbM0VbOgZVeWFkNKwtgpQUrhWsllhliWUFOSS0x
tNACr/h3QGlBiyK04CIwvimUmJf22I8VLbhou0BczZSdhs2aUYFjruUmBBmj
hXfP89BYn/KfMphRDebghctNVenEgq+yqC97mSQJy5/I0kJiIh0nUxKTy3Lz
1G2m3FBHkvGg5zCW8zrZ0KAnhJpckrn1vatRdniuXq/VKCUZlOSukgxKmlCS
SyXrRWM7dv8WUtLwKKFKMxNKVkHJfChpQ0mmKw0pCT1KYp8SMUC+e5Ndbr4O
Hbt405pZy+kmBgNmqcVJnNEJE2fHViVnSaWJ3elJnLR6moRKHB4zx/aEip+R
KkhPqCVfw4iCJ+Q9AJNhdOgWw4i6lmySjORGNsWoACMKn0a1PqmlHkzE7dnH
k3F7aX5WjqITno1zilQCUj02KbSzMnxE/jmkFoLUSpBaBFIrQGoeSPWCVKKD
JwEpaPqs0ZTgnkNTZGuiofSmK7trSiuBc/CSiyWhHWr34/io28k4bGTqzHHs
rO9WrRJftVKTLWqihWbiQk2HBtIBjaTtakV6qGL11enJecp2Qi4htFCxSnge
TiHJeB5OIaF5uBhImnZhmhuUn9u+DWMe1KTHZNoQjYjn7x0aGP2gueVLDG3E
vWHljupwc41ktkZyNpCsBJJlGkkfkMQaSWQheecHhwhJqpFQ5ETWmIfGzjuw
mW0ySHTG7JhsxozJlvfebcrJoJUxYx0ZY9UpvQLE5+KoGkXtLmbzIy8Rq0YZ
IjRKjlwiiQ4YIpLx6OcQdpIcupW3wUZ1MFKe0BcwWnpCPwGMloRx9O6N5Vc/
IQbDFw6K//rfx1ZpB0ZAMngYvA9hcmAfT7L0gUhY/gAjIQuGPRjOXBgLAGM5
YKwFjKWAMQcwpgFGpKf2FYxFosT/4N9OTARD1aLuMHjh2ITHDncc1D09aFg8
21GxZsoq5CsWeiNjNThoFKS/RRvCRIVErmZoMeXGV2CamBw40q44Yl7tUTgS
3qCocNAiYKpxkA3Ul7UD5d99eD1VlpAHx4/ZjQpi4otGSFsLaUNIDCHTIaTp
GRynuJ8FITN4JfAlMHkJm85eegMDozdOXQwrS2BlNqxMh5WAsMAKTcX1WhNy
Eo34JxV3UlPomhN5ak6Me2aYmDn9h62Z2z07nMm2UXeybddwoCNE1RpXy+ax
G319SuWNz1B90Uqt/4yaOX3KkNzWYg+IJqsl1tNs6Gy3VXqVlCfcFJ6Yl34c
PCnw0Kgo5hVkhScGnkzjSSQeWXMgJjBu2h43PdpNg1tdlSwtz+A50W4acNML
N/PhZgHcpHBzBdwMajczeMLtP91kUVAytzmJ7PlaOXwmKKnsbT/zteqkrRhO
i9/G6qGIF14LUjtSnGzpaGglFN7iykfYWE2t2bsmU8l6kUudSMEvZIxUplcc
K0gVNR6KYIW62R7ewKiKzZSsJDy371hJtJVIW6GgCXlrirJCW1MK3Z4oK8dE
KXpElKIlosc3VprcnhzAlKwSkkNIQwtpe5Il1kJmaRxLgCMvX/r1qXcAR1S+
+JtTA+ULvxEjIrUcNEPGy3/+2sRLU6pZbKmJ3Xih3W1hpVuBmkSr0fFyD8/l
d2xS4YuLUUe87FTxspXjZZatJqJPi3iLUdd4GTGz+KEmE6t4WWU+jB5PmUwI
MdSuxC6UiLelKCh0DkWmoQT06idPyNEOetXRhiDTcGtTDDHir7jtfavLd184
SBlj2tqCRzyOm4S3zFfdIFnUIDrCvRdusvIlNC4vYSfCS3hD+CU0rgIPtbX9
wLMYeGbpshSCjdKy4dq15fj/2ktaUtwTvxZ7ON2pBVP5111laYl1nmBHCgqP
W3zQv0oci6y9S6g/Eojlw303lD+vOSI3QR68YLnVvWZVGipNfDRy3rF0kFrX
t95CwPsej/IVFFpFCBWZVPE+0bZ8XlYeAkGbX1MXRMjztApEj2cIHOJeAETb
A2IOQMwFiLkaRFL+8jc4jkCmCYVJLlXcIwY7n75nU/nDf8NMfr0Ke+I29jS2
tJk66RYpOyYTKTs4UmYOi9yYaauRhehGXyHqeKPYUjN+7RVWDXLUnDNgZvcr
amKoKTxqqKcNeWPbIWyU7lQT8NlGh/kKMt2gNDWYVnXAc4yvQFmRVYemS9q4
0yb6XFuhhT/Mmn5pH6zgCoyaXlIT23NxuCKYmQ4zVIHmajNLYKaP21phZhHM
5DDT45pJPWZC3AkOzc411CIhv6rjDJQT3dkqJ3MHAx0mdmc7vsNyUs2WnW5j
6yrZvOPG+nZld7Vd4dWgEfU1PLWXiWpPCiqRXXuYi/jXUFTabsCE5UHpJeYl
IZUyxgulTMCnYj3FV2DkFKCSy6g5MmyipvDIaali835RbC4aJCq0/BODSkNT
aYFKDCn9HUAQK9eIDvYlAeQlfB7TsbEYNlbDRgIb52gbBWy0dJVJYCPy2Ig8
NkK54dpfZSqdbCidXPWxK3WeqL3VsvKE1cpjggSVR+pYKLczjYoM2VGpPEGj
+moOA5HHclmVJ/K6mNXkwvNXcZHLRDm8vZIotUwa3J0cxbqQNd927C6TMg3c
w/LYKJWltw2UW65dT35ogTni5UPlp8F9iuOHypJ4ulSb3itS5oBocoWdYIYr
aBEEnQtBcfnSb8T/EoIWQlATghpaUAxBoUdQjHuuBRW2IHvQbAQlcm5lHqLF
bDmgXLGHPrtoMkRlyejWwKWSrb/3U06T0vlunzyJb3zEDpKOOXyqOKFdcRYP
TJZLxLuXFJeAzz86xFdg2paiqxTaF0lQGvBR8IBH+Whwn3JMBkosVSyZF5Sf
v30bqcjozi8SH+ArMD5oH23m+qC5t0z62CqaWQoZx8cc7eMc+OiBD0qYBfDR
Ax+ZmzABRQwNekAjcWlw4aHBsi44qVYRSxUiSA5ecomrAjliehNfplgVB43J
WQyFd0qm9JE8lSkWFj7sJK/LFCo4VyycbTIloL7ElJrFA6km0tJEqCmJNJGw
K5FE9yhEJOOm9rCsNBUYOc+aHJVFJudhjYKRSBiP3LBOlxu5301JyHgk7Eig
jQYtKWH5kqA88DgnxTRXwkJda2ZCwipImA8JvZCQukmBoe/ZpKCbhM9ZU7Gd
EkQ+qPU+Tz6ojlQVE7Qa4mk6Tz6yqwkvGuMvUyf9usdWqLMdqR3Vgxj7ub9z
4WwuJR9cN6XnnvMUvHrQ6D5vNUUkwz3Vz72B557wbNkR2ZGmPNWqnnuG5x7r
555ZZUI9d9oqLWLYfvgJT5Sph9+Phx/j4feqGPjY+vL+B7aYhz/Tffgr8fAX
4eGvwMOfh4ffh4efWDPy1sP/d374Ke4FHn5kP/x1Vw257QXWf79uhit0AoEY
wlndBl06IMYmDIhKDUG34QLJNu9w2w16l8etIamTC+JS9SPUxcOqG09sQVvQ
DUeu5uAxPcaX8PWkXqk5dAtvUQuhpNA4Ih0KFRwJL9IoHClwpBpHbuFAtThA
OBwX9M5WCy76dCgEtC0NLshGnxSyZ3QbRQSE9Ot4mK2FnM1zHULIcgiZCyH9
EBJpITThIf6FtRC+Mp0QHUjUmNbqQbMOFTosxuiogB3OlLtUMKxrhFLA21tT
jokbOrqJUL/uyW/1KAEH327PcyQyIlSn+amLVoNBRQGNVxu8kURFRK2CHApS
V0HCE+pKQcxLdao0VBTQRrSsQ8Hx0Y3l34vysHReUFUQ8Kt7P+ArMB5oDVd0
kg8LGUKBGE1+lXrKywd1WPTpsJitJ9SJwnmgsFRTmAYKoaZg58S/0zhVOqCw
CHU7iUrxP838qKkUOA3ccnD+5csoGYQDIhA0q6lAi7i7RgKndIxxzxAMOCbW
37u5S9OQqs1GisX4NTyJYYkQek3BwHLLlo3JlE1QAUll43Do5krjkPDkxuSI
0CueWR0RqiIxhIi/0XYxYn2PKCUH6KWsA/iCKhP5wb4KESolLRBJQGS6TQRp
cc2HuK3s1URmgEhSvgwnL2NL68vYiSawXKSxzAGW6cASUHDwfvpf08d6ic29
D4oByL2biE2Me+png3e7OhuMUDYYN90zbOeGiQ0cb2RBUVjGZI8hofBGxnzm
sOguRz1lZLf6sJG1OYSxqKkMnsZQWlaLEvI3soRUtLT1Cp3RkvMq7pPbeFNr
CB2ZRhFrFBEv8avWIuS9HwpFxBuE1FiDNiXmbkuZSxTvf/tA+emPrDeDC1q2
DWGiR1MoeFuQohBZaaH6yh5NIQeFPk1hLigUoHAZKNBM12xQGOCZLvPsb5LP
Puny7FE6nMGnt7/IqgnCu+CFiD1jQX1zsYtO1NMwttO2Z8eFKSoVF9UA2TPs
1BQKkEiSuE6UlJkiQD550WrMf27ZGNeRSHSAVEhQKYk9JFKdExUSIW89VCQi
kCjc4WdBJERa3CPqySdFPZkvQm54G01pNbmn+AGmQFUNyXgxX9WQ2BMQba1i
FkDMB4ilABGXL//m1BUAEXI2vPhbvL6HRRRBYwaXlF9gwsL18fi/Y7pc+KDB
R0P7yKUPvK7ltBZeH7H2IdLi9IpVmETgFgNEduiLcyPtKDBjnBsuDR0XO/z9
htoFoopK4KBAVQGKz39w3aRRYNS5tVJV6H2rSMcGveqbaCMh7yt0jOTaSEC5
ASO4RJeuqkpAXHgu6y78AeUmgpsG3ERgI/48wHnPxVxkaN684FGKIyfmySwl
J5Fy7HFqC3dazhe1BC3Iyzg572VMmr+MaQvBZwh8RO78FqHyW+Hlhd/yKu4M
bk5/gdn0X1BfavHB5ROUWU3JRXZ1mUCQTBcS5EuW3TJZQsjBBpDt5lO9021A
bafeKEC7re9e7Tbz52oag4tNJJtVVWwe37IRV6TrTfOv5qjByyyKUFObaWok
NOPZBJJEIrGLDi3E0fbm1EUS8oy5KjoKCcazKl6auBdA0gMkszSSQSCZCSQ0
sp0FJINAkgDJNN2JxECSyox59Cf7y3dfPUQZE+KeayZFBxMUog9tvrLau0Zq
NIt5c6yEjVlTHB0VZjhYI2JkBiuYq2Y3TOch/gpQiezOQ0fJuIwSPWTB+9bn
v80uLyEUmDQ5QwWxVhDyVjKlIKCSwzOf2/FXOB4KGSlH7zCRYnoSTI2PmEgx
pSigTKFBDcoRhUsm3ciKRG5i3FOeCVVuaCkOyx9f3gc3uIJeHTOZFTPCDQlq
4B5B0HSPoIUQNAOCFkPQYgjKIahHxwwJSqSgQTHwkREjfqszaIJIvc9n3umr
FK0OS3JC3Q6YyA4YbDQc0SPhYdGz3Ba4pApv07LLDRb5qmdenUcnUnParfKC
BQMoThVSZthjSKUglfJs2ZOydYm6QiogJ6epc1GCbt/Iqyv0HueRYd4v5INE
20BCOGqBTxN82vCSW8UIZg6oTWYxr6woLy0uRj/EvFlViT0UzukelS8LNUIJ
rmAA95nay2J4WQEvBbyshJdF8NKAl5brJfJ4iXXixHVeYqtEwUz3EsVLeld9
nKOopsMJVYczKjucEavD2e46yjePbvJ2OOxoWBLKTi8e0Lvi6br67GVE6Ly5
2EGkCtMZ+qHWN+Az0p7iK4gnKSnjwdFRWacK149cnjt+t/jN49TW3INfevuV
q1VHg4ve/mxqQrT5LAGhaR2E7Im1GPcEgs7SQTMXcBYBznmAcx7MLISZFsw0
3CoVeswkkzeDQfPEbQ2bwfB535gdOaEaQNtMRvQ4iRqa6baVZvdmhhuZ8atl
+QrlUSaAIv7i8rMfWMdQKrWrO5QcUELek6iCZhJQQjgpPDxyHigpHgU3vIpH
y+plqCbRlmfFIucBkpMshWTxPjlsFhbEWKZGxBBENMqXf3tqDVgsAIsesMj1
nFsCFhURKe4FREQTiaBZ2PuGJxCRIEHM1LwzhM5Vg6td7BxxOhtJYk6XzmaX
09nQ8TdOCUJurJo9ABKTEJFBRMJruCo6uougnjbjnvawZEH7VSk+GmCRuiwy
nlJRLHIePysWbav0LFsQlF+4Yxvm1CSLlGdTOguOKKtkY6+IjA+L7ta1MVPb
WAgb58DGdNhYrW30wkaqbcTSxlXXrS2/8O29ctzcaSOtlBQBQvx5ugWJVRao
S49w3Acf4sljcCP7D/zfNPvh99gP39uDiEd/cImo1cumtXTBEA8+1Q89mvJD
T/VDzyZ+yglPuB+9g2dJUl52OSYHMhlPnDk//GF5gh71iXs3lrd/YHW5/pLB
wBSGBI+64T5qmiJJ5aM+W1SGH8gYSHEf0DEwRz/qVXjU8/CoqaOYj0fdj0cd
W1Pv/KhpjLtDjHFPnRDVrvujvuidE1WCBMe1+n/uIx7T7hyx1l86n3i7o1uo
fJB1fP0lAaW9Sv3PiNRP3Z/xhjurXriPO9aPO6D+gKfSb6YtGnpt9qlbeTt6
pB98wuttKvUrDz7hxdiaB9/Eg4/w4Om5i7/vlecPlDddtx7PPTAjkYhn0J2n
H9C8KZ4+Ccikg21iQKt+5I2Dma4D6iyXwsEKOJgLB9PhINKrcQHNeCgGGH+c
OmEchB0OOkawFQeh1IAz9OYtqXYEhADr7ir1R0wn4DhoGQdbKg54mf50T5Md
IOaFgbeaAEapt1QC34hoQETsioh5eV4FfqxFUOAnEJFqEQVEJBCRSBEy9kmE
mdMIiAQPTb+MdRZlo49XVx7/iugqTTLQUIP6RlUEztIiFmgRqyFiuRYxAyIC
IgERpKJX2thhxUOMe6UcFLYNWQomsJHgtO+OjAitSbDdpkxYJQKtAf1fP/8/
fvOl6V1zsQLjIDZHAcpH1uJFpx9iNdahUnio5KASayo5r8Yeoo4A49CnZHEg
EbHOCCOCikPkioh4o44SEfNS23E5+qTZihQiUinia59ah+pAIhK9tII8+JIR
0dYi2lwrHscOnsd1y/iAGIxqESYjZmsRZ0PEWi2C5tQHIMJHINEEGjoecl9H
sGv/17kjiE0enF5xjpUHEz3wEdMTOA+80bUnEMlAD/uhD7536s860bFQedZU
DyJeVlXPOuJNWeqnP+RNWaoe0EkNhX7W9HZSoX/6UzzrDM86t+qBeta0YNLi
evBDTE+JJ9yHJ9zkxs96wmj85M+99YTpZ74XT7hRvoLH/ApW2V+h7u83py7G
s17mPuse+ayXrAjwhOlZp7inXZ41SkG3liCU6/Lix338umucH3c5OsRtN71Z
vWvUKgjDqhbwEy/W33V911qAJ84/2pk7T1B4ltepCkT8ppF63Dked8wz1upH
e0qPO+DzXI7xFZgf8hAPvqEfPC2TFXjwDXrwMT14Gfu4mnjssfvYczz2Bh57
2/ODHbo/2Ake+3T92BfjsUe8bCYe+1I89tk69MPyl7/l3b3y2T8hnr240GVM
/OzdqE/tZ0+X/JGn6Wz7VQHaFi77APexUx/gxrvTB+jDo25xnj2iHU+/2gfm
nsdPP+3yJKgnyQA1AYe2mSYgcTXQD3/Im6+UhlBroKAP+BCoo3wFaZ2LQjeI
Ab+veJyvwEQDrYg1IKRplQE0B4iGgoeDDo8EPNo2D3s4aHjMAI+wfAXh/wqO
XH8Fb5C8gp27r/z21GXggcnK350qX+IrWIB7BDKzdFIQGXqlQOC1yODKoSbx
qEnqqoNHzfwlAdKCZx4TCotxI4fchHCDUQTUjIjGYFir4XfXMm4KqnJ4P18g
v8xOcq4TcoQZFLYpykl4wHhIFouY19ZVelS8BHwu1BG+ApMjDVApJJVjd/qo
tLSNEDaasNGWNmgA+Y5B6gtS3DPXRggbfbDRQzZiig45fsQ1AzLakNGAjFla
xiBk9EMGdYu9gDHIHl78HY7QtT1knggJXRFN2qRBPaN+Cza1bdBUI6rJfpko
IWio4YQYVrrtA61mqCloeUkP64UHl0O3lqGeQ6WONCfmEGkO0V+DQ0Mmx/G7
THKY2hJQdEAHzTBQhvRIJyd2bCyvvEAMOT+6PqD30ArXST+I9Eoi1tBSE8m4
pegkMhtEFoDIbBBZDCIZiPTrKhOBSOIhEuFegEisieRy7vHAv5m5x6g69txf
X3Sc+Iid+Ni9QyfHLpayuSM5Iuo1iIreJp7a3aWuOYKKLzQqSgpXSVynhIpM
wMc5HeYrMM1HASA59x1HsUZ6lJoPtJnHsDKqbISg0ZxYRAgQKC03itKyUIw7
79wm/qgS0YaIqHxcsujzzDyRCVSL06dgAlcwXeuYpzuPQeiYBh2LtY4GdPTo
qYgYOiJrrLFVjDWeoOGm0mFKSt59uJk4HGgq6h2B18I45iKcKkK9R58TG5sp
NnxvFW33x0b0JkBQDxrypj0VGz4QuQyQI9tNgOS4Z9oHpUjm+ih4GHJc1pOm
9HFi1Ocjkj5Oitj4ujDy3nfgqFvlo8ldR9UHYoOa0texC/hlfNH2FYxFOlWs
hIqcpyeFikVQ0YKKplaRQEVALBQK7KU/JRiouCgmqih6ylJ3G7HjQ0TF5GhQ
gyFp8HtnudNgeHgoHc3EpyNyi4qZlG5AR8CnYj/JV5BoJ7EODuOEgiMHjGyS
MFKenVIwMp6LUDAa3GicwGy1ExcxNIhf/gOijGz96HpoCEwnWsBE1mFCj09f
x94sqiPKxExtYhFMnAcT4q94RfSeL/MVDOG+EDp6oKNwMwNx8ZCJi8wtJhPq
0KPX/VNPj92GiOw36P96bSLRGouIrCSR/e6qNjJTzmQ+Tpt9axLkDI2kOkuM
kRBEqKSkPG+pSkpFRsrzlkpGwcMTRwYy4t6NlBPQkUgjy0VN2XPnNjJiBrMZ
D2Yfx8S2MNJvD2Z3cm7kuDdgZEDnxlxtZAhGmiBCMmh40gcZGWRM072GknEf
y8gnlpF06Tp0mdFQJhUjrpHNfiOebiOrvt988IKlQXnezJac5ZjQR5N3hD+5
ld9dTjSIgM8FfIqvILbLzOFbK2Um5UmPGikJr3koKQmkpFpKzlMdSkqbM0RA
yaUP1BQY+aGaziQfKXwUHT5oNHvNWvIR83DFyRDj4xz4mA4fq+FjPnz0w0ei
fdBwRfwy33tyf/mea4bKJ/7PCVy5Li2RJuLrREO5Fq4Gsg/u/zpcqPEKDVVo
dvsdaqjC618SBC4zeh01cx6OitbmEanC8yaao+IDS2aVNSgaHhS+0DhDIzSW
SbSRBowk2gjVmZgXRI9hx5UykukGNeOdnSew9q0mOyhMGmQkLoc3rEbfwZPd
UkjMs6BKyDSVIFeIMe0T+2Xn4YTHHI1jFXDMA44VGsc04Ij16qjCsWRloGB0
xVE7dLVKCdbB5i+ZpAbZakgN/GJaSq3GyPWVlwducV4e2GOBSKPgLfGQ81rY
U7fwlrtaALEOiZj3PaiQqACIed+DApDyRLgCUABAAgAtq9GgIvJlnMDzQ2zt
pVUO1WOop//4I/vKmz++vrz2mrVBv376M/XTX6hbziX66c/F05+Bpx/h6ffJ
FTDx+NXDx/Dj/5zIJnr06CJulsUh8XQRmPveeA1Nf2LOYvcOPdnNF9Y43Me9
xttZqsed0BjUftyiwwy6P+uWLgghv0GmftjNww3xbKlDiLs+0oi3sqjcD3mH
k8r9mHdRqtyntY0Uj7Rt5/4i0RuMbOOFq163YwzLJ+j2CJ7rCvEv+EPxUy2e
aNDrPtfZ+rmuwHNdhee6XD/XATzXgB4snis92x75hJeaH23rCTfxhEP9hLNJ
JL/sCJJKQ6DnvPeM6cUtee2ixa1RuZqp/69tP/1ovXr65i313ES/nIKwH79o
HitPv3CXt2qffo6nn9Q9fUr0SD99SvSQ97epH+iAzyk5zleQawcRr3ArBxkc
ZHDQIx2cvG9jOXyVyPe/wd6XH9Lu68e/vA8YcAXmh5ymtBObhfxRJxY9nh/3
BWBxNlicp1nMAYuzeN7BOPiRdJDinroO8kk2iTYLlADZEMQ1UXDdNaoKCBtj
xgZNTWkb+k0Px0Za1xaoQlClsUFcn8J2/m482ryTX/HIwCOVncBTN5tOINFa
Iq0l4n0xKitC3natsiKgsOBZzDvpsKyJ3IS8gVa5oXXwXLshNqgLF4oB6Mb1
xCbFneyYJGmATA4ykZUkAgqRabtk+kCmKH8FN7/Ci2O/wqYIgedC4Fmm8ahM
eeF3JlMa0tLVH10r4mATPGEUalcNY6m+m3TnNRPTSiZ61nuPXDUdp/bBwrJz
mDsGC8tAtWtwwTCWTB904gHDb5yaOYrcI4YCJeCDPQ/xFSR1dmgQGr8ldpoe
LNQ/xMBSaCyJxCKrjcwYaiEdLLSdqmljeb9oJneK4ajGMkNjSYFlusYyD1gK
YLlUY5ldh4VeABFBcZ8YmEosuHKdPT4v9qseqsvgaMmrQ1BaYZdGNu/G9opK
r8H7KXocJNxr2K2l+ioPvXw4TkdeKCEbjBA3UXJ3hrMlW8snb6q0lrVcQmjJ
NJJYIwn4gKQjfAWmMAV8lNZRvgJTohqQUsiUOT5iUqbQjWfAZx+c4CsoNCHa
m9fQhFJJ6Ot/tw6FSuaNoyeGnh5bzxfv2abixtIzAD1h+St8KlDpWQo94vf9
7tQ66FkKPbO0nhB4chkwlhnxs9mpJqDmVB+ekE22h7GLVbfI0ZZ2aEubdwxX
LK23+9adXksJWbrQtRRUSlPUFVJaBynm9ZTJQTK504CcXEbOsTtM5FCbk3OT
e1zmjuJz4m7Dx5SrEHya4NNr83la9DobRMl6n+h1EpcPbd/uBZ/ECh/V8zZ1
pWqDTwE+s8FnvubTBJ+LwCcpX/k9XgH4/alIQ5LjGwEp9UCKcC8AKTlDSGbg
+6DOJc/UGLqd3Ol2du2w1mu53XGKV7wZlnZsqp45O2lI+VsCiRrkiLf5HcZG
8LcMUoML2Ams0yk+AW8JP8lX0NCQqJTFcCT+FEjaK+qZcIRpH6mJVvixnPqV
fdCEK3BcIZZU09zUsZTDVa+OJXK1BK5mwNUKuOqHq0G4Er/KS783e0MGXGGx
R1iio6pWWCrb7B/8+2TabHe4HduTbnK2Xm4lRWilhtoOTW3N6HCVmtMjbZWH
TKY81jJLvgpcCG3iby0/zKIun7r2JOsgjcgi3kOi4suoy3nN7wheO+LCd/R2
U/gy3DMemR/DzoFjd/Ke46irtR63qc4IV1zuF5XubNEw0VBM0uoBLZLVD1Cp
Z3De0KBCgJqhg2oeQA0C1HyAmgtQc3VQpfA0TTOKwSiqDM+mwog77Mx2Q5f9
kopvXIbZuQnYrL/3NsWG320sZurO6Qanc9Jj9XG9syTZvM8Kq89euhaHX/Mn
F0zVC7uySXkTsuOE0ing8+MO8xWYnCIxGXfWR7G5xHFCXVLKk3LKSc4jd+Wk
ySXtJKbvFZYQWBoyie4Q43dR02i83oN7izuiJzAzZ0mxx+skpR9SovJXp8WI
XEWPkbIMUvogZQmkLISUAlJ6IWW6lhJ6pKS6pMVaygQTOu7krTdSxpWNECR4
UYeWdEQL5KqI3X5ahQmv+o1XUQx3Q2GyxIy5QpjIXAqJjoxaCuiVbzMlK8U9
1TKobqVdZdAe9UTLKLhXdmTIOZ2n+RIlRlariwbKbX+7noy0cKddrKk2knkG
6AXubRhJPUYWw8gQjKQwskobacJIW0/qJzBS4ZG5PIoz6Xjs11+izrk/hElU
zRHTMaPTaXnEbKqIyWwxqvxADI4Qw77qS9eKvzvO0Ef9EVzw79YFTa7RhBpN
zrsHDt/K+9JqlUQ6PxJe+VN1JuFVHaUk5Ul9pSTnQblSomaAn95hlLRk2Xl6
bGO5f4soPYuDcu9d2wgK7XLPO6DYg3OCUgBKw4UyV0NZCygian5/ag2gLACU
NqA0dJhECsoqAeU/GEo+MZSpNi72XqXIpEyDVgsv5pRRQ/eqGjQtrhreEL+p
0rRMXs2PpJrUHXXRgcY9nqghNamOGqMmBBqqNTGvFnRaoUSJeT/BcexT67SS
8XtQykqLa42g0gshIYCIf3AQed+lXHAauCc821c1Yg/Bc9wzHkMpIzNdI+fC
SBNGhmBkPoz0wEihwySURq7euLbc+929cCL0CSMNGImmbiT1NimiClUHUXI5
QbcmYx2DJ7QmLg7T0W51cOyu4NincLS64Mi74sBq8dbK+KliBQOmWyplqZYO
FaPYpRPxJiUVMzEvHjt0UtBpgU6Te1pFJ5Z07DpEG1AifolG0ck98UI7lSLQ
6QedATdeFuk6NAN0Vmk6faCT6Z0Hchbwvt1iWDSG1yuFndxDZ8I2xT4iN6xZ
Xbj2GtXFJkxFzv2pZqXixGpUvE621zuZbTlJ6pxQD5t6nNCIJ+AzLJ/iK6Ca
lHrEpLgnPGWsxES83UCFTcT7HVVhqoiJePOSEpPwkpQKm5yH2EpMKsXIWkRi
UtxDXo1S46DCM7AmMdM9ObNQY5mjscwFlmnAkthYxhgKRcybw2J9t9tUG/UW
XrXaWErQozQZCh/EEJmxDq9J+qnsqaFy1dJZ5Y1itOyhkrlUaiOllkoIKdlU
gFCk0OEtua5GFSAxr10rIBlP5ikgmVWNgARAaC9sr7bR8EzmRZwmv5JATJrM
0UBWA8gggKwEkDkAMh1AYgDp9QBJNJDCBZJPsfIsWCqb2VbHsoLIFC1ltysF
B6C6UtZUVq+34oV+66yOTiwjhIUGQLvEJbF4M6XdFUptpiQaCrUtMS9zH8Fe
SAUl1VBCF0rAx40d5yswmRKQGZ4IvhtzfApPxHtZFJ4UeHLg6QGegvDE5R0f
XK1aGc6WJ3x+7JFz6tKZ6dJZxfN1gs4KTWcG6IR686ykc7Okk7p0wqn0MHGX
5LlxtPJ1b06eQq8r2JasgTTaGB8mOb0iMcVVTCEk4Q3DYW0Jf9uO4InciZY3
XaNM8BhPFDyh6yng88eO8RWYGlWRZcKoVlbIb40qWbTVttCymlLWVaLT+aKo
WwKUH9WPHtlXrhTd8eNP7K9HtQCoVgLVGqA620WFmWDR07zIlxjs4x6Xjx3a
X773w0Plj8UoSlwZhGUeYRNUr6S8wpzWS9dnv67eJc51JClCu00njI8IuYL0
e8NjpnDtdgrXHjNImthPbeFKefvEITlaylwmFDsRb5dTsWOYNHjN23Jx/E6f
i5aGEFDGAAKuoNDNL+3Qb2gSDZAIy2eoXH1DlKsVolwJG4FBQX0vmRB/yi0i
bj4jml9hQjwEJWOGltGCjJ7yVfB4FW8EvorlbmHkfBhZDiOzYWTAY6QhjSwT
o2zpY2IjaZecUYfA48MxoW/Wbre1blnpbhoOErO1cquJGX3k2NRiJqxjEoNJ
4jLJdXWKdJoYJpQmAZ9Gd5SvwDQ0kwADJneZICmsFQCVISHANN3qlEgwd4oS
9f7LBkElMG0vrSelEsw+0fsiSn5FG7M7oyQEmJkazDyAoRXLvwGYpS6YpixS
lhDxn/PHVKT+40TqMeJrcmKzayIpd/9P/UkZX46YDOlsaypEZEtTS2SPJMJf
lUpoeLRLtjQ3nbesvIy+yO3MtWS6pYnrIsTYoAgJJ7aRy5pzbNjUnBz33EOl
wJ02X4WQ0gSQpgyYk6MmYEzNCfiNsKf5CkzUUFOcSznP3L+xvOrigfLm69cH
LS2Htu81pJwrRWesoqbSFPdDTlK+ikr0Kr4q9CoOJnkVuyQcNKoSvfh7kzKZ
x1DkMRRQp6wPusjrNEVdAugx8dvym2Z2AOUUQJjQ88hCkyNl8QEXmT68RurS
y0i7Sdpu+gjvHlWohgOvMFyzKZE606fNZx7VpE/sEZZqYTlIZdwWH5OZk/EA
+zi2Y3XyaXCjctIOmbZWQmPrAkoICeb9B0VFunsbhQxN5PWBSsvKl4+I/tdV
QgWpyQXpVXyd21FSlK/+/tSloIIhl7Dxyh/oCmbjnmk+07k7fvH3p3xoYtwL
oEnq0GRumYpl5oDFY+ajZupUFPq6gJ05O92+pcLCbn1rWKQ2C/U9ZjCIZF1S
UzQ/ptWBbiio8c1kv/vUtkq/G/N2GmUkoBLFawW30ZasyWvJeAJPaSl4wKS0
NGXEPH2viZimHndHwNMEnlji+can1+kKVeDewznzo6/ua0tBFwwNotElQaEr
KIGgaRA0SwtaBkHTIGgIgkTD8we8sPoHZellvoKzrPHVi5jAccdXP6ah+RQE
1S8cJM5nWatFjNYOLjF7auQbRQCFPqewTcVr7H1+eqWpcIbmNaQmY6rFp6o+
eROfmFVrimaGo66mTJuM4dN2U+OoYU41sQaIpby8oIilLrGcJ3QUMdpUQ8Ja
7vJCC7BSCQvFS8HKcG9y62PB+uj715fnX7DWB+ssN5WWwtQcmFoIUzO1qah8
+Q84mMXOotgjKdMFzGyE6N4ERb5Asr/gqvyod5McP6YJcv3QYGqs6ieu+uGv
xPMnwC9eHqA9dvj8WPJJ6/hU6pQvkiLei674ZF29JLymoCIp4aXLGi8ZzxAr
LwUPq562q1gPqOQWFVXAEtwLXon6EbaFgkpMb/b+03cpgzSUXk6gV6UWk0BL
oGUQWmhZYRG0LIKWFFqm6Tlj6ntCj5Zc506stUy23QnrYqj6VXGTQRmvO1zt
9VMBRAMtfa6zC2jcjMcVoIc9gOZUAYV1gLrnT+gCygEo5XH5UVnJ4jo2TbCJ
eRVTsUm7smnL3RDP3LcRdqhNbtuKUMnQCj1Bn3l+ArvSaYnBUoTAueXWLUrR
NChqQVEORTO1onla0UooavD0jVC0EIoKKOrVimIoAqDPGUDFxIAqhauaNPZH
xJUSte5QUbJ5dHuHEj3WOmMlb5/VKvdcvY6UJG7MNOXbLh1VKgQS6okDPvjz
MF9BrMfmGHDdWqlStWioNsW8mUZlTQVNwuuXCk3Gs3oKTYtrkzDTCyoNSeXO
q82wPMQ95ck9i8qD27dR6NhUCm6ancAxVM4DlYD2SYAKruAc3BcATRNo2kDT
r6Ongqah0URdu50zSp3d8suw1SMFr7naWQiHJUmJT/RJZjpdNHPSW7IsT/yB
pQomNb3zoBhcfXDprPLvaFWiG6YYmNIzw0SDroQXJBSmiPdRqATyYcqAqQFM
Me+5UZhSXrlSjU6DF8MVppbE9K5zB8obPrRe5Q6NvLAhnXucVUsHVeQEhCgB
ol4X0VwgGtSIRBr9Ac3zH3BCFKn5A46jr9BZtlrE+M9PTJ2ON29wmZE45w1W
G86u5s12rkq5g8QZau2sIBm3kHDi0L49GwoxCcEEk48MhZInnnLyZNCRTlkH
RU3Iu8yVjpB3dNboSHjhW0VNDh2J1tEjdSBDdt22jTaT99gwrIBhGPRmyzQN
Y6ZOl8WAsQYwegHjHA2jBzAKDUPO40gXmPf7+QkfDLVC9cNTZoUqmUqmRJQp
DapPW9HJWCudV1/d0cH4qNw4AZXtU6cSvSW5kvIUzhHZz8QeL6lOk1ovVJpC
3uepvMTwUmgvGU/mKC+90suXNq+jzBBSRHsj7n1WkFAHfBrHM+Aela+ePgUv
uAKSM+BGCskZgpyzIGc15MyDnF7IyWw5Ok1q5NS2MJVIUTaseqMOAsK3cNy+
pWrDGR25NmLbBmSEgNHRu9SwCF0WOVhELovITZDE4yDWDsI6B9TXBny44Am+
AlNfAj4q7CRfgbERuTZS2Mhho8dkSVI+e//G8tkH+FqzcKD86PswN2wZQabQ
gPo03psT9xhEprvFZo6WsRoy5kPGKsiYCxn9kJHoPVjiF11uyYhxLyYpI6vL
lMRAKajoiEZEQ8FHLyoNiauED7MdU+/HbXHm9apKJs0kdNOj4TJJPOlhmESa
SeRhkmkmAZ9GeZwvbISQwdGwlg4UiZB34qnmI+G1JUWCmo8IImJwkIXmQVFo
EBw06OmXKPTQ+TR2+4p75qKYqeNiEVCsAoqlQLHCRREDRa9Ecc3fri33PbqX
UCQuirBrB5LxF5NqKktMKHJCgXkVdYTYhRc7IBwP+UQe9Cu4w3qJ2ubAGuJy
63nLyssHB9TQuGKhqIuMTFaSwzebSkKD4thDI9E0AiolvMY0jL9CIWloFU2o
KGRunLzblxsBnxz2NF9YS5JcYl67Vlya4BKDSyK5oM5ABrjkNhc9KXea9stg
X7jiMuBmyCI9QF4FLmdrLtPAJdLbxMUver8Y5txy/6byJz+nqbifn8g9XHx9
SVyXIdy/pk7/qsbNeGFSvoiLNFElR8Chz5JnrIePIozM4pE+YC52Bcn3JSlJ
eOUoIjuIjwfV8KYyr0J6Uk/BoSRJPAUn5n0wikvYlQuVnlxmyvE7TKZQESpk
EToxYopQXoepgXuTF5pU/Ql5M4zSU0BPBj2p1POJy1brLiXFfZoVNsKM7E9o
esXRQ2EzAD1J+Rq+uPYaTb4JSHBEI+jluJ8HUcshag5ETYeoEKJaJCq2ReEy
qHJPszu50PnUXZt0Jfrgx648eMGF2g3aWJeNHvHsrLDZfaZsfkJVqFsBkm/W
dgudyKMo1Yryrmxy7mFPyHpUcA97Uhalpsybp++p5A2JCfgV7Wf4Chq6r81g
J4edXNpB56IKVWzboaHybVvITq+HTQ420zQb8b+or/39qQuAZZmLJaD84Zdt
f4/C1xlEYR2c2o4mrQyfIzt+Ap5qycrLPzCEooXvW5dzF0tDcjJ3QkSRjQgj
ooqgSzoExbYgT9EK+YR+J3a6+0ngJ/P4KeAn4473OLbOKDWRVkMvFURaTYNb
madlurR4JlfhoLWiAjiKSlkSQMRvWTgevJ2Hy6924jgLOMSf8tpvTgEHrmCm
ZjIfTBpg8jdgstRl0vC4iLULs2pU29SkdUVrgrjJyu//7xOoVOVNos85/7Jl
FDc7/EzUoqPNZJfFRJ6BajocvcehHsxPfGBqA0dO+B+WxSrUTChmAj4v9yhf
AZWtTJatY7dXylYKPxQ/1OpkXf0UPDpSfpoya57ZYbKmqTnRmnYTnJoWJ1Wn
QjNSEsOYR/aVP/77feVq8Qe//d39RtQMiOrluHkNjc5rOJj9NRyBJRy9E4SW
gNDsuqRJpagDT+0v33ftEIlKuooqPNFiI3noH/aWF1y+DHlyeunKOiSbR1QX
PHUkBAJztHZdmmuQBLWREk9ckkJ+WUlFymSt0LApca2kPGfrWIm1lZxnWZ7G
Rs6n7+U9nESlrTsZ2jLTgpC2VY3EOFrNtzyyj2xg1kDoQOhccMHaoMKjAI8e
8JitY2YZeBTla384dSmMFDDSKH/1RzGMdrTk1qha9i6T4VE7P5cYLSlpQfU5
X2h5+2XLxj/wftotNSGU1N0Rvl3vX1CjZ7WNQTgR/7Ts4/xZrXLv1evIRzpJ
H7UJkoNBymPmY7JRSXjCXj18ekk20Q8/4dUf9fAznpLt9vBDPPw2Hn6vPWbe
vo0yocA9xcMP8ezlHxXZQCWn7QqIIWC6FkABsRQCpkHAeSzg1T/ibes/YsZf
lpxpMi9e+oPJi9gDIsU9B4jEHSf5OpO0Lj5CeODPiJZXfezK0/MWUC/raGja
GsyXgSwNu40G3rvLkykqMnRcPCTi42pRZ7ZcvLoaFwF/3f4QX0HiwjClJafQ
4BNSj/AVxDo4KkSoF4knJpKCCA1yUl7TUbUk53GyQ0T8zZ8d28gTbffj3Wpx
71O15BOyljxCY55H9uU2FgybRVQYLNM0FrQmvz7F7clv8NWHTjazwWYJ2MwA
m0VgM1uLCQHG5yRznXTvVBJPpxJNPEWnFD30rb3lvMVBOXdRMH7ZRUoRn7qa
mVeWOiXpHZjjU5V0yerJBIvcC6WCpdYPhtC3mcJDXW3Ck/oqcWLepKBa24T3
tihOEe9tUYmTuJwynqVTnNqcOM9iZl8ljvjNnarmKEn03kABSZEndlpaUi8k
pYB0lvYzX/tZBD+z4Gc+/CyEn6h85Y844FtO3xGiyIMo74oo96SL4+J7/8+J
8pN3bipnzApON5tv1oWerh02BYdchGAh/qeEARaomxPFDH0UJPHETAYX6cQu
KGYi7YJiJuJtmDUu6LiGXFeilBd7lIsmtyGOi9hygXKEBqRhk6B9K2Jk7JJo
gkRDk5ilSSwBiRUg0cNDHkUiBYlpmgQVooBPpJIDIPH37abBjIJr5+Qi2Ys8
JnoR9CPfFz5g5MJ1Q6Dt+JAHd9ygfYTAYX0qqKYdsXXQUmCkdCwzOuIpF6Hu
IZLygPiorEQxb1VR0RHxNkoVHT4iua5EEe9vUkQSXj9WRBo8lvESeW7nxvLL
n6AxskvEHh8bIjmItDypMQgi54JIzGvKgsgCEMlBpNctPRgff96Mjw2ReOLu
JNFiagfEkdW9Ki0PfnMv/nUeFFfqitHHRdliEt/pzryCHEJLENuVpk5MpMU0
Js6TRIsxeZLUEaEUCTURSpGQt/4rIgGfiHiSr8DkSaixUJ2JXSw5z6N01pkE
VjBVe/lqGuUiVDLcYylmtZxug5imFhNDTJ8rZp4Ws5bFvPZH7Ef4Iw4k+yM+
JfJHHDUkQ0W2twTmgU3CYieWIFKnRhOYzE2WLnXm0X8+Ud73VZLhqGjyO4pG
he5irYPEJsVClZmHLltbblu7rLxiycBkgqTCIraD5MgtlSBJeDlIKYl4f60K
kpC3/Ksg6a7EREpAmcKzs/Q+owqXiLcuKS8pb5l8FqvKqrnNJZVzMRYWpQZU
EpuKHAdXqGDeHn0tX0G/W4nmuTHTBJohjaYFNE0bjQRT/uQ/T1TR1BYh86Ja
aKgkROV7gsqjPztRrjh36EHaW+B4Mae7wMrkvbgNK2EhK+LBzm0HcKIuEyM5
gIR8TK+TGz4gNCKO64BQjAR8MuZxvgLTljS0ksbELOhkoKZmkfA6j2LRwzHy
3APiV2EbaqgsJ0ce2ZdYMaLaVVoq7IONsHwNo59OEYshYg1ETIOI1VpEGyIK
iOiTIg4c3l++/yNDJCLEvannSSq9ia/wxJ5AMUpCIBF/BYiIf7V1HUTaNDCe
JBE1pzZlJfQduyafxjDVGIl5X4pSEvJrHSpGKkpMZ0JKCpklJ++qyZKnRyto
5PS98hLzdlpVdlrwEsFLU3pBk6LKTmh7sQfK5KUNL4n2MuDxMsTDG+FllZ5V
6YWXzPZy9jkBlPi8+BqVrOu8mvHi6WXPvXjon6s1KOGZFBcM2hNaB7yFdjC5
WibAEtlYgto8ibtKoTyJPFIyLSWfmEaBe9GVRhs0WqAR8YYDRaMBGglotD1l
JvUMegvcaZt1VqdiEVSshoqFULHSVZHqLW5SxUGpIsa94VHh60gq82r8IbO8
PKA2G1gmHvzW3rKnLzi4cmWdiZ3KxFbHhDX43e4f/BKIuAICZ5tWoqMCIgGI
lCdaj8juNOQNsIpBwIfgHuMrMB1IARC0Ioxu486NvI+AXos/McL7G0PwaGgV
IVA0YYE2LGGB5t6NvEhDrx+q1AhdGrTol4JGb7XK/D0t0nQMfokGvazR8NCY
q2msAo1loLHCQ6NdoSEuzCV00KgUGN9Eq9V3ROXlVw5hioxOCZMOeqx5kI58
0F/S3s3x4B7rM3UNatRy6KZKe+pLi5SXe4/cwmsz3XFQXclkXTk+XKkrGTeq
J2SCVITkPOJVQhrclD5jV5OAMoOnXscARvUhmWxPHxCNqqkrUMI2Ose+JIRe
Cmu7QmhFeAaE5OXreJnwdbxzqqysgpWzYWUuL9q8gnl7YaVFVmLbCq4UXPK6
NjXr2o/E6pCFf3XOkOJik+glv3mDgVoT9mkatTVtmaSmGJr0LhRhKZGWMAz+
tBgGw1I+5WQJ+NjTo3wFptTkdW5ogJPyTIlyQy/1xNpNNrGbHg2FNiY1bCjP
fWajGvtqKPaQN8c94qlVAWW67lUJSgooA4CyEFDa5evYOU1rOwLKchdKrF/w
EX+PD1+/tvzS9/ZSqES4Jy6VqK7opHVFx4aBDQMCxvhVV71pGPv8MK6uh5Fp
GL6QCah75dcE6cy5p2iziS2mNm4KOEl5+HtctiTddaQ8Ba905Dw18oxsRJpc
bZ7FPLyqNrRRtqmJkBDxT4luBAGi1nvxH5JCJCAcsIErqCiZASVR+Tqqzuv4
iqpQMgtK+qDkQihZ5iqJoKQhlTwgRru3itHuQepKHCXdW5OkLlpUJ2t/ayus
GErLG+/aBEO0FX9sVBjCJ7uH1dCHGaUOI2s2JZpY0CWdgj40GUFxnSCTOYkW
VJs5mSxdx7ZXSlfKU7SKFr2CGoNW4dJqglbioZXo4Glwj+vQCkGrrWnFktaX
b5CbmQQrOUwW/ziv4lWf1zCHokBRfeoBqMIFNQhQKUD9DUDRRP4cgOoHqFC/
jFoBlegKldU1NL4ON6x0uAtE1rx7w/KDF16ireAQ5YqVUXWIcncrsgzJdT/j
hEbFDGX3ZWsVljcVNXL3tYqayUKhEVFSB4UyKOFVZZVBCa8qKygpL/coKAWP
k5+1yxTWlx/YCCi4gpYmkxKZiMisGFxdXnDR5QG9vBF7qOSg0utSWQ4qIo/+
eOpyUFnioZJ5qKR12WOopF0Tp0MOtu7fes8GOhLBenGwQ448YdnICats9kyd
TXpmbFJPvmRdAyXh5WLlJOblYhUodBRCqgMl4g0qyknCy8WqVuU8/6YCpYen
8RWMXMJAjggUVJhSj4kQJgZgYo5rogkTFB+LPSZSj4lMm8gm7loSN0i4t23o
3hYnzL3nquUQQYes7BqrF5HylJudJbwPJVILxbc4Y2U9RHJY0ORJCBWV2pN0
tZEDQ+hiiF0MKU+eHJNtbawJ0IA50gQoKiLeoKaiwkcg11GR8cy8ItCWUfHc
/SYq2hURMUXF5Re+na7vfHd/4qKYBhQiD9DPKhTzgWIZUMwAivOBIipf+xM2
Nv0Ja8XYdPIrWiH+I53W84dT4CFHQJ1j5ilBiT0xEnnOSo3MWT4FEcIxzH//
TyN425RPWlaERvmrjW/SkAgbesNUNS/LZlGwRFLQPDHIPigH2VGdoJTfQ3bi
JJ6koESHSMRbHFWI+ATlWhCdv1NoQfQiaaYF0cYlAmSSJCM3afm8GBih6R27
5dry+Ld3UrIIP5Hrh7Y3ZvBzlhsqS+FnLvzQ/Eof/MyGnwx+ZsHPdB49d4LJ
XTC11Sbt2tAKF/jczPoPLi9vu2fD6RVDfB6u5WL92F0dLka7uAj12YP8naGq
iKA7Cd+8S+oJlZjfGLQak6O3msaERkMJL/goIZEWQhkTaiGUMXRkXK6FBHzi
4NN8BZnHChUcOsKg0FYKfi3MsZLASgwq4h8LQP7fVw/QJcEElQ62AS1NV8t8
rWUQWmZDy2xomQ8tkdYyjYfQnVoKj5bu8VKtQwV9MeRr3x4BlvFrr+2Agjqk
oPBHiORhgn4sZsuSOuaLjzSodUPFKPa4CSeOEvk9TydK5Nj5KHaj1GhJdZ6E
vL1e5UnAR5me5CvI6tyYjAn4GLln+ApM2lQE5TwD4wii4TWFjfhVbrh8NcWN
ECT+zXGP6LexDoSxdb+GlPFQyIE0T0NaAUh93MsISAsASfxSv/rTKUDCFQyY
AiZM/VEXMMhqaVDpxPUqmkq9wnfYTUyVW+7ZVG6/dwPJWyjK1vjOSchL1nTI
owWk2pB6WGE7uwNbbGPrSk38vqe2VnriKSVWzDtdahIr4NNST/AVJF01NnkF
ckJ+Ee+SUvwynil2+IXgl0t+CDAEF8Pj+6UXrCwvuHBtZWqHXiLq113TbJ1j
S8BvDfhlvKqg+MXQN93umhQ6AY7FpR5xedcIS9RntKSnz/+vveUiESnP/Mc3
y9vu3XDwHZfS6xw76Ugn19RkSU2UZFVcIXAlU8RVybHI1UQ5Rn1RpA3RRGDo
5ljFkOmQGjrCmkDTkGieuaeChqpewEeHPctXYPgkvBT1HHY9KD4NKedh0WND
CszEys9rB+j3fefR/UGPljPDRTNPo3k70KzRXhJ46dddEoZe42bo1XS9VBqk
N5VQdMBq+c4PDpXbd2wgSaI2bt6zy4W048wgqRXuPe6wXW6yUohoV5Vm5BbE
KQVUwF9GP8xXkLhRJde8VZGMeEOvCiiDS65zOppopTssn5Y55CPV0DlUSyrm
hW+VSG0uiM8bV+i/nUQKwQrQvyMbcoGrBVx9HEuvS2FneYSthbC8fP1Pp87R
7VUOZr16rC9+5Z1gtpOZmVhKph5LaTn+T3vL9169nBAJTKdXrfFC2jk1SPjc
kv1xLV8obeeTGzyh5I71fR159iYSKeDTwI/zFZgxWwE+uSxoJ0dMQaO2PNea
KKCKiTQ9u8OnKeI3GpWmFk8xC01Nq77JBp3bq7iiCUWOFszb0JTWaaLp5vOg
qQeaVmtNBTS19UqGIAFNt0HTL07gqgWVvYmZgJDurXKxeNpf/84IcRPsxjde
R9w279nJnZXjbbTijXaGTt1bbIrgSICVdqKWVqg9WUNtSsEV8bFTTnCRwdAN
rlqDaKXuqNTHjMeHJ2WsVSDmPCp8BnsBn7mXd4eG0NfW6AJSx1NQ9+PfUvFr
8vjQ4tfR3aeS39it1+oeq8CdXlbIPfzman7UYw2A3yqXX0vv4ZBhBn5P/gJM
FEBfa+8DWF84+22AdH363k3l+z60vHxW4ANC0YZt3rerK8CKQJrn9guMqwKp
x+cPs1cBdgq8SQos6sLOJzAHudAlF+taacgVvB3o+DDvRa4Yo1FlyrNUyljG
s1TKWDZlY03dgxU8XyWMtchY7MxBiCuXwuwunjaLZRDWrBO2GMKGIGwuhK2E
sHkQ1oQwel23RwbcD4/sL6+8bgjCcBEyX3c29ZRTA0bE2rM//ybJElX04KWX
+WXtOgNZscbEc5zRmUuqzbK8a3gFfIj0Mb4CM0A0pkKQyj2S6JXN2JUUQ1IT
kgqegXgW2w3NoomKp4ynyC06iCfZw+NqWHREl0V0aPdpAjptl84sl845oLMY
dFa4dAqbzoqhQLHBFYFOYyoFsj6fYp1P77p6qLz9vg0hCIk/SLG0my48913Q
QYB2dgGUdQCyXv7FL4BDBqin32c+S6gU0WJLJhFdYyHK35I4qkWUyVp4/HZT
C6mdT7UpasoSXohTphJesFWNfcqrMCqdcm2K0ok2oIXlc1iKUbASOS7cKX4f
w7KaeBuW3cLHgBUCVp8HVhOw+srT+Kbyabxr9TrOaHwdG9EEsbNBbC6ItUAs
15vkxd/DIiZ+midElnZt68V/vi+Ijl7nkbiELORRCE9eTkyqjtPYJnf7kZfT
8BQ4FbwR7amtvBHNqMmgRr5Vo4rYZNVkuCe88qLUxHVqKIkSXuZXSURvdSZa
TYObdUdNDDUtO44elptCpJqWp1WnlyemaTADGoz4807/7hTA4Apm474QdFrl
abziKeicAzrLdDoZOk0PnaiOTvfSVp9PaflukUv7vzuiJQlV49dvdCXtqZfE
H9fN16iPpfo0jW/VmPZ1wUQFLiw/R6Lmi98pHJGo9E0ElKEm9wcc284vXYSg
lXtyKOaNIyexs16JSnUOVUSlvBqsalvBkwnPyQJHvRG9A9o2OeT23z2V1vt1
OhnWkdQHSTkgzYWfRfBzFvxMh5+3wc9SHT1t+Mngp+HxE2s/RV1r5Isen59Q
nrJ1045N5fuvWa79CEunzzlPPFkqbChvme6SnA7pTThKOx0Nk6OsjlBSR8hk
lPijh7dVhnq+yDKOEu2o8CRTpB1RMsXaESUTHXuTaUeJdkTJlPM8p5NMAb9M
/DxfAWVUT3VCQViigIrK/yZWl8l+W4AK+lxWDbDq0awolhaCVQFWF4PVErCa
w3sNBKsUrArJ6tqPrS2//P29xCrxsDIVLdSsaME4UZtnDSa6BlcE5TceHVEN
khjDHbzsirfc0W7bEX9kzDpbCZtTKI+wR4mnzndjHfmMQFESBfxZ7yN8BUlX
S5HOpIQ3Kal+O+JdjyqTIt6mrzIp4l2PylLMm5SUpQyWUm2pR1p6/gFjqW1b
0u23AEQtUiot/ffrB8jTd7+3P+h1LcWwNAOW5mhLZ8NSQDvcYAlX8A5XVVur
yj3zBGmdqsmEVdPxhZAaHttQPvef3yyfM4Vu88Pjfy1gsT07YCfVPk4qrnY+
WfGZRVUFGhW/iI9BsPqsY7eZPoumDWLe16LcxdodZRgdLplpd6F2RxlGxwQW
2l3EmyhVLUx5qU/VQto6GYJdn62NenLRSkFbhnsObSGwYQrju9xkgVwPyE0H
uRkgh9bqt6e4vfodPk7WiS8rT//pFJEb1JteKMgSkMs85LKu5MKurbmsj1/4
9l5EmaiPAhsyW1AbFt25yDIsr4xja+RuOt0YznaZLVJy1FdhNvommM376zNL
PO18CGWZxhW5uBIdaj5chQ61Cq6Qt3KrUIt5I4wKtSY3WlVcunUXuBLcm8AV
VXChNrY0rj7gSmBrliZFo73lINULUheB1GJNqhekYn1ci49UDFL51FOMSb37
Q0NIL2ASpOJyEC369TK9KqCsjQsyvCYBCof87N5iQFlf39y3XZ/9RMt/qjDS
3qrY4yqqc0W9evLXja9IC6P4CvhI5ZN8BaaABnyk8tN8YeeVXpJWMwwBH1r5
LF+BybUKvQbPNTyPdyIFvV67xxc9PXf34t4CvcSip9qyhqbXAr0C9GZ66J0F
eheA3iLQm+XSSzz08q70atNM0dvznb3llaKzBzqVZqJBOz10HrHjNAsKFFA1
leU32Fk8FUJ7y5aFMLJmQ/c4L1Yqg9yYKX/29EPo8ZdPnGu5BpcBXOIGWeRh
luogmywz07E1da7VMqMjpxq6fNI7lalm1mc3/q9x498DYZkUZjf+uRaWQ1jb
I2wZhM2DsDUQlpSv/xnHEP0Zr039Cac5/wnnYmIXoGXNHlnmdZUz9QwBVL1c
sjIo/8ejI44wMZYc//j1kxO2u05Y1k0Y1r238g6IDmPjG68Iygtmt6ZurJJx
IYilEydbwovXClrI7yooaKGGVvC2ByWroSkB0OhGXqK+B8YsWc/eW5FFtTPg
MxOf4yto6CjLeD5eVVEdZVdwlP23MlZYxkRnRsZSbSyGsX7X2HxtbBDGFsLY
NBibAWNNnWdkLISx2GOs0MYozzIYi315ltl5RtfW+zaVV354efk892R0F13a
5kf2iOv/D2mVvTZ73HchsKajq2pC4hJbHF2HaPF6wkpaAFg4cZLRnEXAx8qf
4CswzVlhh9jTd1VCrPDIo16t4ZHX0JlWK4/OFMg75P1U7nw/8Z2dLK8p5ckx
AcmLtbyAXu/kYcFvMY2mDM52Da6AQVqyngODs2EwdXMu1Acy+gz6aqov50LK
uYJy7vlffBP66MIwVDR0B69Y9xYIjNeMfsQRGNJBwTEVU+sLO5R1kdosYe17
/hDeoJiMu9CTbj5ttXHm02aCLe+qLQS2hjYWgljTlvXcfRVZVDdjPhNJ1U2a
giVY4q/4ihgeIMMQbG3cW56RAW3loh2mYXka0x2dqJYC1RBQtXiwKVDNBarI
gyr0oGrUoUoqY4RYB9t7rhkq77h/QwhXmM2RqmjkCVNBBlVqiKBV7WFVcutX
ZL+f46pqVFXpE1G6stpexyp2WB3COxg19bIiKuY9y8fwMo4SlWpRud2EnbzT
NGE0rsx4XPm0rJcZT5Y9I/uvnCctujlq6oSSZyUpR7Q4FEtHP/2sfEHn1ms5
ptrkKLbbfFy0TT7xKJqnFb0dimJesBaK5kNRQIygiLbPz8C9X3uSlNRUbNND
Kfbkk+z594oeX6QTBGlHd4xtOD30NuWo5Toadxy5+x7GOicwmjOHPeXRw4im
MGI/I6qKqWR0y9pl5TuXDHQyijvariM3V9ounyrKqYCPsj/OVxC/CV+xzinj
qwVftD8wBK+2VhXy/kBV92i3aQJVIVDJQidAUUTRCLK32t//Bif8vY5XvxxX
s3Q6LYGr89nV6T9jvfrPOMiaXL36Z+NqmnYVUJdffoaHkiIaFamsLp0Si9R6
kUz/43sj4j8iSCUYQo5//OOy0MliF1GxyymWJqbEq9X5RIwoiboRyqzpCtm6
B0XXGAr4i6RH+QrSSdLJZLE7MWyKHXXxGc97nZQVL+XJfOUn1X4onzKezFf5
VPDkg/DT0tUtoFjiufwHEFcqn+hNisyWZHfxJKnfknTr9i0kKcW9oSWd5SbU
Ep1QDUhapROKIDl+PvOFLeV2OQ3RmjiSlJ9tY5vKD6BN5zCiu7BULuFWXbjB
vdlR2uoMdeygiTSinTcEslNKnCzas7VrFtGLyrkNaWsV0tSDKNHlraKJWqfU
oynDPZ1YU6LTKOVlRpVGudbUtpaGFJ8MfIpqEIk2nPjQLOo0yee/Tx/gdvz7
+4OIZ7Fq+AyCz1rw6QeflZpPDD79ej5L8fnMpvLQL05Y8VPhk3TwWboqKL/5
/ZHypxYf0SQdXPeuYPPXps5njbiqfHaoD0BpPnGVTzIJOQssOTmfbD05Ob5E
irShjLfOdIuglNcTFZqE16YVmkSjoQhKeI+DiiB6XznRaFoygp6/30RQSxui
dwkbtiG73zaGQhBCdVVrPd/HWs9pLPN0GloMQ+fB0EwYoiZpHgwlMNSnV3hs
Q788IX69zhIWuyUskg02IujOBzbAEC7FSDRJm7+2z2YUO4w8u2V286itU1Fi
K1KVDPtAt6hPtFMI8cd/tusdofuMpaA7JhNDND8gtzIcuZm3MlQIZXWEanMn
4W0yilDM22SevotXb2LeAqpyxxCi3El5aVARanBv/Ty+86K6oAhwWoATSTiy
uTZwuHalFD5/sa6T3HC3PXz6wadRvoEDn97Ay3+n8ZbXaexYF5CWa0gpIPXq
1Wns4Dy6v/zAR4cACVd3S5RHobS097t7KZN++stv4gopmKgvQiydXvN2MhUC
VTixqXHjymvqo/L428mYitiUM/mkOH3+srXlgp7gLcymVNe3HLASnto8Idvr
Wk6USJHmRIkU8e5PlUgJ73BQnAoe8j9v17IQnHpsTnZT3cC9T9ayv7yuKYnH
9JfTqj1657q1EBU0XFfUY4dwNQeuFsMVkRoEqWV6GiADqR6b1Mo1geKEi0pc
4pKK3HgKKJ/K9R8eQjqJn/+Kpys/vHx88+aqp2bVU+eG9TpQDR8oXnre4oza
JuXpojmt8kvXrLM8RTqeaj0VABS6gDCFtL3SICW8JqM8xbybWHmKeIe6iqeI
36dR8eTzlOsm2+cpoHyiuUkM/9u2LLvJJlk9kEWwcunpkx9ZWT704BbylLue
+uEpK9/4vWCjPLXKN7DWfBrbiztRtfWWUfErW6iED8XKdE6JJ6nEX/ZFEVIf
uHY5QNmsqPFWEQVT+xBPX9vjDOR40jKyZZmppS6yrp+ULFqYibvJunxt+eHl
s8qt71jN6y9x18JXeALJ5ymepCfKp1B7onwK+Y0H5SniXaEqnzKe7FaeeqSn
n+6seIo9XXehZyhTeCqkp6EVQfmTg/vJU+p6asBTj/a0CJ4G4GkmPA3B01J4
mgNPOTy19AsSPk/i9z35S/2ahDXVlHXhtUz15L+EKXkXgSWGeejLBRTIimxZ
CC+eC6+E1viuiUPLpnXD1Gh9jna08zQTQsvilZ1ZbmVwlnicpR5nEb9Zo5yF
/I6Wyq2QX0hVudXdWcrLecpZm+vgT7GyYumy+3HS1YCuHLoaUte//GinEhYk
rq4Yuma4uuZDVw90rYWuJVpXAV1N6Gp4dEUeXQ23JiZuTQyoKJY3i2Z9w7XL
xT+agbWUO3UJq8eNLI6tzfsmhlWZe+rqaoteTdaoTp89MyhvXrusGyr5jV8H
lS+yKpRCSMpcQAUAhfwi6Um84KwA5RpQwCfBP8NXYFqqplYUECOeAb8PUxqq
Dqa8BUG16S1u03+KfQiWp3esHHDTijYjNOCpZXn62+u4m4q0pwHawheVb/zu
FDzhCs7CfY6WtQyyEt59JWQN6oW7BmQ19FunlYFfXCfLlMXYzS0ZWT/jll38
Aizrzvs3HHzXu4LN31CyrC6rcUameBQ45pqSn0eKYcq85bydN/cFZguWVhUC
lPgDkpT9qSzlKp7YVcxLw8pVxLv1aoIp4G8NPM1XkNYJM01Wd2GUWDGEFTqx
6L2tRCdWIoWds9x07rRRNIWwJoT1yK4d/ZUUpn31wVcKXjPdvFoJVWH5xp9P
XeJRVeiDGSqqkq6qKnkVk6q4fO+1Q+XIAxtIlrgULDE+HP/EZoYVU2QV1S7L
R8tus6gO0lJwZ2aN1dfC0N4Db7b6aWefk85SuS6s0svuupKJI0z8akdvqYwK
axMt4s3vSp5JNLkfQVFraFsQdc9G3nBA58eY9TyVXhVbBc9OVW2NXru6/Opn
rjW2Ythqw1afp3efDlgtbrMcWAsBawVgNQDrQsBa7IGVeWClbtueufkUynz6
4qN7y2WrKaNEYybukYwq0WedPvd8soTrLeUU03hwbJPmFFJeJSTKSSu1F3kS
jG5927LyXUsH+DTpFIzCrokV8Kcfj/EVpF2zi2piwF/EOMlXkHgsiT/lmbsr
sVXU0WrIFHtuh0mxhk6xkDcjqzqZ81y6qpO1KRbwyxV/4Svowb3f7u+f3E87
WmhXFb0J1qPNzXHN9cHc+drcLN5f9Sr19/Suhd9cbfOV+gkizL712Ej5sxeQ
YT+jQSPFmRhJHnzXuznOQtwjD0J7R8KbQLjrDBHGsmbKSS6qmaEbZCQw5hfm
j9y8MfUEWVYHMuKNyQpk6EZaBWSq2zVUzxFTVqnzz7v6DMGTaitt7guB0qRe
wOfRPs+XeKQq/1KoLLz5d8OHVxqV/WA4TTVuPxYDgZVEMegDw4RnLDoZng2G
Z4Hh28FwERjOBMMWGGb6TK0Kw2zimmoYisC4+X7R+n9kOQTichCKmrr5Gw/T
9SYRjk4VYWWcqRHOtxAm1sSYTMKA+7jYNqkzsVJaa0Wmk4zIkN96VSILEMx4
xPC0DMaMh5zPyEqb8VRZDTe5gqhSL+GtDMpXKn1dc+lA+b8f59FBwi/5/MVG
Jn7zDSXtbz+6lgKvh+78EvUbfInC65hboM3Ngzkady50zeX63L/KuLO7ubTD
HIquTD1tjic1MCmL3AO3hwWeb+zjKbPQLBhVXjZLnUGCHCgAXDIpa77tM2+F
tbAu/UJQyyGs8IRcwF+LOcFXEE8ZV6xx0VuwMXA17Sx7fsxkWVNnWcTnGlWt
/cPN61SVFf8s9M6PYy2W1j553UptrYG7GAtgeqNT2HIIG4Swc7Wws9xUqxUW
AljTU1JDchXRh3rv2rlBVVMlK7aDzOcqZVd7Ovb3hZRkkc1qUq5Snyu8bB3X
0Uo8tTSdShmtDa2IX4vtJiyTBfXkHaag0mgh5YlaBS7liX8FLq0DR2nW5Ebu
eTvSQt47WmVmDxlCfr/nL1hNUsxSi9lDD20hZikXzzcw6+Ewm6+ZnQ1mS8Gs
KE//F45/+y+ciWRHWspHMneCyycZaQFlWrlPDCXwbfl/fkEMSAW8UEbat8RI
4rzzuYJGuIdvHb01Y9czvZ02vXjz7huZ3m5nY6k8DWl7oOx5Iy2qYxjyxzkP
UwHFoZNH8K2AqeZZUqct9cSbT1uitaW8zKTijXYqR662gFKNVwXoTX/lLqsM
IAQ28U/gJFtG5GLVq6nN8LkLbrbONZpXOwfgaEPFAMD1AFyfB1zoAVdMDC6y
wL1PDBwQdQJcYkYPmMQd/+QnoEBZ45Yt1S1bZRczL4zH9izbmupZgkLaR/5q
0uSKZkVabeXMXGkm13LQSicZZAlvsFC0kjpaFGSFS0uuOFUt3SMy7JOi7fdY
ymV8/avoyNYITwdF7++DNF9DWgtIbUBaAEj9gNTWpbINSIl1BvhHPr62fPix
vaKedxoqfIaict/39pZXibZf+BGRq2KLEwsTt5u/9XCnoshWhEVLetlf7/py
J2vXdGwalI6u7+poz9YJHKWVmdqnaKbWiSgDxxdRIZ9dc1zv8FJwQrihRivh
DRSKS8xbup65mxeOEt4HqLjEvKVLJVEOLonm0pJJ9NMHTBJ1VsCffXZj+WHR
2P/L4zureqj4xeX/1YSuF43WG1QBawgtBaELQSjhtW5BaAYIFX5C9vCx4TZa
BCex4bzvI0PlPxwY6YQzIjr3d7+b4SRuqZPx8/CZxs+oZDM2MRvrDEl5cC70
eBMotiBt80Py1To1X3HsVtNoZdqV02iduL1S+hJeBjiJvfDdmFEqRbx5uZMZ
pVLmMmtyF/9TO5poPYlsiX+WfxSt/JCodzqf+twuPpfCPiV6LCUsrhO2BMIu
gTDR6P/XqZUQdhaEpa6wWAr7rCXMF1IN/UZiKr8MiO9Z3/LApvKq60RGvSiQ
/TN18y98k4ePUKau2IttMrVujD6kM3Vs9Go1b27WpzMztCk5C6i35zcP1TuI
3Wueia7UQyzVxEySxbw5VRGLeEezSrKI369QxCLe0aySLOWtFopYw0OMNuwk
khhK4COijf8LzUyoEFMTsMIYiBGzpoVtt2jogS30YJunsVGcNYBtBbDNBLbY
xRZ5sLW6VsTEwrb8nADQNLZQxdrODafPu4BjLezCrfMFsalx85XELXXcxjde
FpQXzm4Rt8zjK34TORbwZ9+O8xUkddx8iVbLjRItrONGiZa43Apwi8GtV3ML
+CWxn/EVKHgy1wherOH18WzY/z19oFdyk80XcTPSZrmxdj6k9UHackibDWkR
pA1oaaEl7XZbmimcke3r/aJm3vWZDV5fGz4iOvZPsq8I96jD1yNn7iuyfQHX
DTTBClwusKqwg+8Q/02vwauHnYGW1IGrBFo8FXqpJ99CeKP+LOYNZIpZxO9p
KGb/H3N34m5XWd6Nf11rPWvYwxkzkgQIQwIhJCQMgiOxNFaJKAQSIomRGIkG
EY3igAaQ6OFg2tgQiQlN0/K+NL6mGhVnGQKxFevQ/t5WiEx17L9QCbzV9Xu+
9/2Maz9r732Sgy3XtXYrqLSsz/7e9zPumE+N6VQjZg3DLOZTPzrVBG9I1Mxy
nsr3Uq2oC7Rhs0Iu4GrY6cp0Yz/Vd5XA1azyadw78vQveRviBRA2zRcW+8Ii
qpzlwW/cW65Ytaj8GlYztS9bLIX6sWX87PJZnF/yX2lhaOb/bgtXy514tQFc
qY9rzFykq3klmhbvtehlK7Ou/MMc8cR5vff8eeVlZ06r5ZUYXil4Cb4Q4hub
V2cTSbbUQCsMtMSUz5iPJ2poEQUaLyN9CGY1uYh/3OAhfiLbtUX84wYP8xPZ
tEu6MhxUaXf4Npt2uVKpxgk27YbNzqAMKke1yi/LscLqpXayn7YCjUBlXj6N
4vo07pF4mqLs6V89AZV4osX4nAOfNHSYBZ8OTaqz5TmLI7CMBusqLAlNlFAk
4F/JUcPjvlCBOYxDly0noXiCCSjW7dxukW4fUzP/qT/yVEyzANFVLlFRJRqb
Q481PgsFckwCPXUw0hT7yrtakFkAZBYAmXRNvhBItafjIbNfSCdfwidFHsGJ
o0c+zrfgFIacOily2MYfhgx6SsOW1SZPj0loUxS0/3z6QHnPnSuBLRo10BqA
NuRDa8LZfPCaC15nGl7yv+XJXz8BY3SidtTVpqTVarNX5sSq3iIPr5ADB6kN
jwdu/kKDDQ+lorvYtHO72jYr7P4Ot94GA5F/a5HPjmy182SQ5p0dGVPF1mjb
7GlLAmmYTQRfXJeGMewVXTMwMcU24dMkmlwlAxsm9KyxtjEWETJeZboVez10
wAneMqS1tXiAehjHI22s6WJrY422+zeMNsKGgcMqOXDYtpGybciQS0BumiF3
GshNATla0pwPcmfUkRsxU7Ty737OeYZcXe2NKNqo7Mpgk6OXx8nYv+yJVe1F
si3nZMPAoYMaau92u5lIbSjqJ9u0tlvrtCWELNOLTv0wo6IbQ5n8C8oZKYsn
bK3foBO89Vari/lUpVYX8c8KfZefKA34Q229xRZdGlg0VdF9+CO26DbqdNos
FLxZUuts8IaOwzh42TnESIzODDrbpuimjs5DX72XdA7gk7Z3x+XTaAqfxq/I
ap2zoXMKdC40OlU/KHGOml1HiEFrEi9FqazNQvkX8ONqKgblv9JBqH3KIBzb
8A72mZjaG5vay3O+2ugJhGItU7091wZjDKo89auxRokpwbU8M7/wCr5M8xv4
WQUv+xqGXWLqa+yHXYUdVdpCVdrvfdBWWhptFBNR2HSW4nUo0j2uLcOu4AUF
JxTdEYhde0/AbtCwyxQ7NHyLz4lATw5HJbshsMsD7E4Duzavwkt2pzsD3Sex
3KA3WGKMOy7HuLevtexqS3BE7so/f4AGI/Ibq8Wh4/vnPeV9f7fl6PkX4d3v
2+mIo24PsyrbIxfcf5u3uK4IM7/U5aevzY+yPqsvCUy6Bl8D5HIe1n5PxV3O
w9qHVM1t8LD2YdXc0b5JSQlr7p2yaPYkU8NaP9D0KMIGWgxZQ6bc5hVZCDTa
ptuCrJYvay5knQ1ZgjdPalkzebLuSSyG6jMsrqx/Bh2vzDYcT2+8ZlH5odtX
yH/ExpPA0hUVVykppCm3mpz9ujsmscR2WkrIUqod6e0dcBTRFF2i/Ky00yZ1
fhI/waig5r6f1PiJ+CeqvsNPRFmWG0m14ZXzBLA2lfMagzbVMKbazqK6Diq6
W6fpBpU7VrCcRoykhpKkxgkkqcAnndMcCkhaCEmyZv4ac7+/xtnNDkmFatcc
SXiSuuqYK1a45OmKVbIw/n97XFZUEzWpakypwkgbN9QVKg6pxB4y75ZNtACq
PeHZtr6HJ0Gn6hxPhaUkqpSsoiygKDaK5P+n33qv7cZyP5SKACrRNZ6y3pQS
P54sJbr8q+UmkzsQoL2NQ7SbW7b+Tx2AJzzRsKl+Lafp0rLojIqArFFf1qlG
VgFZFxpZtKCQQtaQORVcyai4q61M2cJvp/3VF7ZYW7Gy9cHb5HjgDWwrCdiS
aaMuxrDba819holbB/uGtiYELa1CU7/+2Knt0/1qq615pK0JXrHJrIL3AOmQ
wgzGB2zDRePMLMBLGF50CUZqeBWGFyVVi6vfo66xxBhrBdp5MjbAfdV/qswi
WQOBdj7F5zSDapaJq3OAahCozgequT6qwTpUCT5r2/lUocJN1G9RgRXjM7Mz
aVi5QiMvE8RDxaVw3a4d5uT5eHC+1xREYQqicuXXQppK22pXquzFGLE6ubmJ
doNsMmPOKiYug6KLpoiaeD4J/B6kzkRrYQFXGc9afBcHArSmxGhKu2rKeSVK
h1VIUwxNA25iuV06aaKTdKnRNMXV5Hbponw6rGkBjwulpqXQdKrRlEHTgKuJ
xoVc+HpElFCacM/hPhlRR6qa7jsgO/RXyIjaBSlSU9yPph39aPqorykPadIT
s39cUN3LYsw3+Hi+UuOLimHKeze0L8FbhLSvlHeUaV+Z8UVp1eDJB8/XoA0q
4bbpeJo86+DBGlSwfvf0gfIfJa7zzsEO405Yp5r+fBZgnWdgTfdhZQFYiYEV
WlFPFC/UvltuXwFYeDxbV1wzf2zDhp62xvu3ReuetwZszaA1qd62MtfW0bOn
G1tFHasHN/F6eqVTT4FJ+OkUwhTx7/B9m59IuC38d26utPCVFAspy6CsUacs
MylWUUbbz7C4tHU1LzDdhs2xTnV0m3nKs4KnYr3qSH1XBnXyP7FLtvVvk82X
VBeF2J0FdqeC3WKwO8XPs7a5eazCTlSqY+ayowetvMyzBN4SeKNpB/kfPOtc
sqYf0UFORVknufEacu4l0obckB4odnJDg+ZTU/OxtJ8R1D6tNm9klYmtB+lH
+CZQD7MJx1diYAneEKthJQYWxZfgnf0aVmpgUXzlvI6kYbUDsAbcNHOWLvFk
vJ7ksSrAqqVYbZCd19uuXQpQ0ZQAq/lgdSZYLQKrk31WrTpWqWHVrmGFJJMl
UpgYEyrGPiS7+De8gWMsxqfNstjNsuOApW4m92AlLizeHESqosJesjlZsOIT
iDLqwLJAlNG8ljDiqGAmvLu/Rhzd9FsYcYI3O2pxmS+uxe39YVU124H2PgWy
lo+MZkwHFbLfPXOg3LB6QfmVr90bjfrITjHZdTaQLaxDJhSya9YuLT974G6L
zCmZwiBDZsluPu3Ahczav4ueKi5ePTKHmHZt583Y+kic3ZI9dryuMAOxQZ3+
5SeBLZ6H0LKioiurvM6R2t0jGRUBPRRQKc+FfkcNDvtIqdyUv4qZhPdhazMp
b7B4FHv3H/0EH9kVMDPkZpPTxOOhy8YGfDa0+jhCbASx+cdDst1aGIHOCOTM
gJyT/HhaBDnnGDnUbOWQ0zRX/lbGhFklnqwc1blnRk6sqp2MpaMXvMLoSfyS
5+LZPil41LRoH3jGFZ4bl87jdj2vw5MF8Iiu1a02hCwjwbsSNaNK9MSGEUVP
zIdyNaOYT39oRnR/XWGip8ETod2iJ+btYp6hqeBDoSP/zdoP6ttQANA8ADof
gBYA0JwAoDgAKK8AshMIR2hWytfDvfnGDTp35Gfs+4krSzSquum7Nnf4jXqA
0PI7P1IhRIfXqoS2dSd0lcyfDkIPbnLWpPsoayQqNXFEkwiFnz/UJSW8QV/D
iQNwCgMn4l9qeZifKPcJNU0jXiFU8NKMT0i4R4l4+lMDov2Gcfk7pShVinZt
W2m6pAFf0SlG0SuMotm+okZXRVTAmkrRjr+TzfbiiBTlRhGvLdP2Lqz7iQAg
1RWp+1Si0C2IEhHfZp+ZqU4HEI4/nhCgQ688M8KpxhMClPiR1L2eCd5K43kS
vqfceIr4N4Ae4ieyla0iy9a4iH9h4xF+IlvtYt6rr41lvLBcjSl04v8gO/H/
fJLm0hWwAQATBliugKE70sBaAWBnAtirAazNwH7+G7pt4DdPgBqeaGYAXcQ/
nKDMRQ2TWtobbgv+8B00nyD/H3S86S4cgZUYb9QtIaZ2Ri63mAse3zC2o3NS
YSLWNlSsWW+CrR16lXSGjdFmU02hrGEe4T2vWmit2XqX+bhSPt6ocTV8TXkg
nSL+tZ/v8RPZnGqYiGrWyWmYdOpPDiYHFssi58tpc1st5UyBnIYjRzZHJKfh
yxGQM6t8Bjc4PYMb7KWh18FQwlsDpaEUhKaF5Rz85r16TOfIKZykeuvq+eX3
/+8e+VcdOW6LXUkqhJSVozbBpP4qMgfV8SaV0ZNW9awbpz2Ctt/GAewwoVcH
CdUWOJ1P374plE/CiIr5mKwWVRhCTTeLHv5wKItaJnwivsX+UX7kP3qNSQBT
02DSTfdjt68uPyLL3T2y8f5PLBr/J85tSE9NngvQSdSoNEwYqxXG0wg8FeUz
uDjzGVzL+gx2j2pPafn0b3Cs9je4BuA3uLFcHYe0TVRlfqAwlS9XDTiS6K//
zxZ4Ko/83z1ECjl0u2y7L2FNqdGUKE3YYkqiaDNVZcufo0mQpjQkqWfRiyGJ
5jQxx7TRmRLgqU1AylxDVwcNRTSrxBdKbMZf6BlIieFTGD7dA6lQhe6hD9lC
Ry1UEcBFXXiDW6hHlLAWb9erIUWLMQlEyf8qFVDgFNn+KQeqpkHVCnThmUFV
ANWIQXUaUCWm0LUMqiZQDfuoGgFUNqT0TWE4pKZDKsanZnXFKtuPZ+qT5jF3
2kfhEifmatiZDdBreokllXeQQiuFHS6yxPnZNPmuQrHUqIOUG0gxHDXr+Mj/
2KO32oCy1S7mPfBaE+2BF0oTEup62ZCj5FlNKa/q6ZI3EOjGU3xOh6YYmmYY
TWdAU1Y+8+snLoCmEWiikteGpkFfU6E0LXQ0NY0mfYkmLpNQEcWaCqVp3xe2
HL0QIbUbL7SLph1KU+Jq4lHeiVDCjOWGzirnSqIjso2ApER9fv3dtilPusJK
fVh5XflL+PSidhbxz5J9l5+IkixXSfa9LaEki+GP+qucp6A0u4KnoDS75kTY
0RmfTLFbiR794FYbYlQZBa/5aXZDgR49weco2InyGbRbz+BHiTW7QbBbAHYz
DLsBsGv77HKH3YMuO6qMSaVHBzuBz1yxe8uq+Yfe+EaHHdVGbrXMCQyzGd7f
bJzUmvtovbm1vc1t5ytaaSDY3dyJpFcfqijHcsOIeqysN6MYitrOQp6exKST
sLlys0936F7xk38Bx69/x080aMrgMAkSbq+OZ5CLYKefqfBzGvzMgZ8z4GcI
fpq+n0z5+aQc363ZxHMKLRNbsdOpI7rgJ3X9nL0oWnf/bvZTqJGeji11pkLf
NKFHetoQToxpP6LqJ++kozsqYZftuPDRerGis6lChwpfXN5FfuYOReZ0RNzV
T9xnSOX4jA2ngjdM1aQSTSRkPDGuUynj5TvNKefFFM2JDuZQKLWc3Qc6hohT
4VQ/6s/pSlU7makTaCTQmzeBp+3jOR14ZgPPScBzmo+HruiaAjwF8KQKz40f
YDwPajwUPhGlj+7KZShLN5lyc8vtKyh3pB1MZu5WNY/x7K3Bs6uKJ7EzmQnr
4WXfCp/lHXwSqGE0gtHYOhebyOnuJvehCL57shuUiH9e6jv8RLZ/KkAm4xmn
76lhXcYbCDSUlDcQaCiZgdIGlJznLXXutLhoHVbhQ1oEtDTdzvupA1YLnVOI
y9+5ZKa4ZM6NgAV7ofCbUp1k5oIM7YWaBzKng8wwyBSGTG7JCJcMHhs58m/4
WWdeIMcnLcLJ4JFpM3bDRk4cnTodcPQVEM50pvlRF6tGlazt+teBgnAWh3Jn
fEM1d3oSSl1C9HydtpPTBSJeT2QVZbwz4Ntq4jvmC5C6iUmNGKpUIiAmNdGS
85qbjhYrxuZLDDGtunwZ4DZHihkxYqYpMZ/71MryujVLwSQa9bHQCO0sYGnx
kpvEchqwjABL7mMRfWBxO2rCIiodNUcMPhOAMRNLaQ84u/qFQ7c39wFnrApH
befVFUsfZNHtjpRT3nXpUtiZWIs9OaGE2YH327aIhnepEdfwxYUyKuVNTlpc
ZsRRRjV4dkCLox0oEd+x9Rg/UctJK91ik70Wj+y0PWqQRmEvLl+gj2eh8J3X
LjAKR/A501e4EApT3mUnFc6FwlEozHyFiapyf/vFe8tzL1hEVS42DuVfwO0i
V6q8KuhT1jreXWce1WgLQNSRtbdvefj1YHdjSidAz59w/WFXeVJHkM8vJIYf
5Hk9kwJoa9+JILSZ1qijl/F8wndVH5XyerAXcakBJ3hvsAYnAuAyA67wwVHE
DTjN+PUrF1hhTQjL/HpIg7gUwoQj7KsP3kvChoyw2aYongdh8t/3zG+egDA8
0RJjbcRYGzUdlbYmX6JOO7bWUNawcQVn7f9BKmvCWlLpxDnoOuMuceNul3OV
TQhdaHYhroz0atNP3Xm6pqIvdfXpKSsNUFfO4wSYGXFZV3G5IRZKN8F7WDQ2
YbBRPU0C2HKDLQ1gSw22tkq3x26z6dZ2JhDuud2prHRtQ8OvrG3YK2AvU/aW
yI5M2xvw7Z1m7GWgtxTiTjXplhpxeR/iRLli9aLyI59cAXF4GkAXB9p4UYdO
Ld5MmJqoUis8ZTO6KdswIWUpKbv6LDO9UOnPrKyEf8alsz8rICs14VUEPCV8
TEaHV8KnsLSnxHiijp6uMi2Mp4zX+rQnOiZDnAZ1jTzLdvS0ISrjBRpPUROK
mlCUK0U/+MpWkgRF7YCixdypSUXnGUVToEj4iuKAogSfuZNbV147v/yHf8XE
p3Yk/4IulDK/ZGGUhNLqNMLxBZU/pWD1jFRmQHHmSk+m48PMROk95/r8MdXI
MVUjaXNd0heeiLp7vm3hRlS5/gLK1kDLiJqumM+Fakb0uxiFYRTzaSsdSwnv
LNdtPjHKDaNmByNq81UYEaOU1409RhkYDYJR4TDSrVbTZzTXMBoGo8VgdIrP
aMSUv4jSSCvCjrN//namBCGH9n9xCwlKXEFuo5/hU3RMZNp7KGOeQZ8AnW0V
OsJMZG5jPrHRQ9MKYvK51KYOpi7fZzuo1IRQYvQkfC6hM4SoqEX8qz8P8xNl
vqOGcRQbRxRHqe+owdNRlTjSLTs5SnjniueItmcOw1Ez0LIXAUeL4GgaHC3y
HSXGUe44uugS+Y//r+5mR6nu1m9f6ybRv+7x4uitq+brKQbGhDyyFY0eta3c
PReamlY9QGhxNX2EmZHqINQlgKh6rVTVq6eoVHVH33iPbcyTumKW8ik9r5gJ
46gIOKqkUMWRLWsR/3rUI/xEuS+qaZJJ8G5NLaroEOW26CSKLo0cNC36KETF
EDUKUe1Ai57jc4Yv6lyImgVR50LUyV1EubOcJEooUVhA1slkRRVKFCYnFnBz
Lodx8tNu3ozV3jt1I0Jq90DlnXdJWksVTItDmGisx4G0bvvGSF+hEXZEXVAM
RjJvNKSvM6S0LpnSOkJ5IJmygKiYz31qURH/8tND/ERZb1tNgynin0x5lJ/I
9k10E27TzITmvHznsFr52ml+wRs2GTWqjh688PQBiMITjeBzMNCCpwFbNMFw
KmydU2crq7OVOFWPum+uev+6h0pfrmx9+I4Vh970pqotVD1/6XiSjK3pYcx2
2ut2bI5o4ybfpqGzShu76YJ55Z/Om9bTmOgaU6HqJ3g/eWf1awSM2cFdozcq
W/1ig4qyKuWtCBLVUKAZp0Mt8s/9Tv5rKQtPNGiMDfNGc0lsqitLt+VSVyRM
HaR9eKcaWWcYWXN8WcN1sjLVl2N/Ak0knCeLnAksjWrB4mjdA3vlo1HxME4f
0rM7p+xRF7X5PHGXaZwtnbomVpw1vI58hkMMvtZDqNmBp57+qdHMgVq8+bpb
EzO+3HaisBI+76Jh9RteTcBqqEr4yEdsJSycLS8aVsS/QHCYn8jmVsq3uLiN
+tW2UW9yg/U7N7wGeO+5hjUcaNTjAKxzAOtswDrbhxWbyEpdWO/uhKX6dIZF
aZWqfQcyrY5e9EqDq8PWTmtrn2MrMS17H5hGVY++1e/R6eQLtv9aP3hiS+jQ
a7gq9iAkAm2VMKJiiMr6LIeJiSoqhxH/JOL3+Ilsq9UApkJVwodvsZWQRn0F
d+uPqORqquR69GOh5Gqb0Ep4N14ltHTLTqeIhS+KjnsWEDUFokYDLXsF0wJg
Otdgoh3nU4EpopgCJrrjcchlRWO/f/m2rYTyz/2lM3nQyeqtq+ePvfuGvljt
7cGqspZMfxQ+rMrgL+VxX40lOp4ugpbe078lwTfidbMUm3Tqw1LO8wYPq7JX
EdTg7vxRbBa2Ow90EiW8MdhtzDfbxjznKQPPTYNnnrSbqY6bT49thJhoesDN
EriZb9zYEBrupWWh047nproJpYXacV3h9sq39sBunneqI7OzTzKqb+oks7w7
mRhiokSXMCpjcYeb03q4SSbSPaltK99R802V0lbBQ0UuV0XuoQ9WilzOU5na
Us5TmdpSwXNQj6oi11JF7vDHK0WOIinim7Qf4yfywgltug6nlCfJPWQ5bxXW
5W6a7tAXyR7q6/cSsqkG2cnlszRZKalBGi3S0JL0hcbcrIA5UTX3L5geZ3Mb
P7i2XHrh/PIf/xVLgDqhkkqbLr0B3F54eWC3Xa+pTp3zCZlu/qLEPZflTTqo
hUFg9GoiXzd1h+3h142tV0dCaQODvumYH3DsTK++FHZPL8uuj8wKscv9CGsG
2NFJdGHYNblpP6zq30AAW0eiqRY+iC0FtkGTaIxNlC88d6D8wVe3anRT4G0Q
3trls7984hSgGyqfxcYqSe0SUJvnUwuVxaQLOvw5Ca4GnRNyQXSJGi/a5HPv
1KMTgemJe6OGfm3QW+p6MyUzMe2XUOheNbtdfvaqZd5yc/8lMzPoigC6oquy
rGu4WWVUKAuebzjsVsvBupadLjFr+KwSXmT2WCVQhb5durrubUspyOi4QwZY
Uw2smYA1DFivBqwzu8IatLCECwtPrGxho8M737OCbMX4pEoqaN2ZhOlQky9T
l1HhidrZQ1Th3qDX+QPVW6Omp8kOD6ua9AwEt/QoqptUURValS6swnV1zVkz
y82Y6OrpKqIiykfb30vXsXcRFvEvG36Xn0i4dfV7H6jU1YznUh/CdnUNThhw
GS80a3AZLzTrWCt43lTHWlvF2mNbbay1XX+P3bHaxFrMmxw8fxHfTvUCP9GQ
X02FkvjONQuMxEH6TMpnf/EEJOKRYwBtci5M5jB5qTF5UleTdJ+2/OqZoaV2
KYeVY391Nyqs/OcpMdq0Uxhl2GEM4GDsiLf9HVeGEsao7Z+Y3x716XKKMyBw
TNaSTAJ9nldcxy9dqk32GBpUPIqAx8R4zLsCTHlRSANMDUCqqynv49IAUwOQ
Ei/npSANsAWAMfx1xJ4eH7SNuGFeBfLCLnOI6aFBjs8cwk4ysOYD1mUwdUZX
UwPWVOKawv6Gf9Eh97n9Wyjkkg5XcqSgpyskFe2KYXGrtjsyE65O3E2qL77d
mEYPTu4ldcgwL7LJa+I6hxK9nOmhxDc3V4YSteU1MT3dxMPP2hO8h1CHX8he
ZsKvYo9OGArYG6hGHoYO/3hwq2NvkKvtC5ji9wAWCqA7bGgH7GXls795YhkA
FgCYl0//FnufXYrDzq9XKHqGHRjqwUJqaqtmd+Xq+WawUMtO7+bab4+Gsbng
vKyoEuRLQbKQQPRxvsDlJLBSeWMt0NtRyJVXl9/ELb81WfeahVx7YxBM6+SF
CnDCP4rSWYD7DbxGAJ3grdIaneCt0hpdxnsoNLqGQTdYHT6cJ+vs77zAawOd
MOimmrmQHOji8hjJe0L2eUulvq99/V45JvHkzYO8Ach7JeSJ8pnf4mzYb/F7
PZ3yso4iikZPhl3WAe4cZ6BgwVHpFH9EZsHhAjNLqxu61Pz/Dg48NXq4ZFa7
Pusmw1kaKKwZLwZ8Tw0lBG8c7Iw0KqcJn/HRuhKji8ppanTRAKLgif9qpD0u
I+2jsqTuun2lo6sFXVkg0mgAkTu61sreTbqKGgFdo9B1HnS1oWsWdOXQNdPs
HgyVWIntbw+qvdESGtC9c7McOvybdKaxRTR0KD8iBw0rZLh9Ya9k4Y9J9++2
e/L329OHL783XVxrvW10vFVn6+7SW/Vdce+7YF65fP60qrjuvVstsZQXMmuI
JXyMzCOW+cQKE2BELDcBloNYZgJM74Z+/PbVxEyGmHzBktgQiDV5nq2TWFvp
2ijbNq2r0rGdCV0zoWs+dI1C18nQJXxdumoiq9Dw40XFQUgytMY23+BBun+v
ndyYFEiJCwnV7Y6o5fX+M269wiMU2+ZMC/I29Ozgh2uks3J50/nzuDzS+jgZ
kv/6tOFI73IOOMoD2STcPuy7N9s+LA04SnhDfaejRiCqYj6OqB0J3uOsHWW8
t0JHFe1sjsHIyasNKxc4eZXzysAL7hhghPPq2LOyQbOixuRAAKIyI+pkI+pk
iKINFjMg6hSIin1RQ44omtPYvAKt/r/tyVxR+7+45egrXkmagqLc40LHI0pf
w5aaWNqh+/07Io1qKq+Dr9tq262gKLXL0BByps50DjGhtEoIgqJQ8UvrRCXu
tEaHKBFIJisq5mP3WlTM56U9UYUpfjGfCeoURclE5xaFI+pqt6mneMp4jdKL
p0EeVUpRw0qU6q1IlDCi5pgKeBpEzYSokyHqVIiaaQ5rVIpf27FF/fy/7WFb
lFaZ2rNz5bXzdVLJ1yk/1RzF/fSxa4Kw8iosdySJYKHFKC0LfzR9XbqZv6Oq
a6OjS/5tttu80kNKgvbKWe0OaIkLLaptsayymH892FM28dyiBj7iX/Z6mJ/I
NlsR/7LXI/xElGWNQJaRvKaRl/L2Q51lHfL+mrt7J8voKra2L68FeU1XntvZ
J748yrKzIG8E8k4z8uS/8ee/fQL86LK2aXUQmwrije9/v27zMU9WgXjOeSbg
GGICiImBKKob7/lO0jBEvnir0Ws+Y/H2ar5lNJys9F0QmCp+27sUyrtobXTS
8IneRVPwDnyNL+aj2TURFyJHYRdRH8abMugeQI1P/gVcN3KYn8gGYML78zVD
OuafVUqqGQJQACZgOOgzLFR/9qz8c2Ao3CFAAOFCIGzxKqgtqNLgNFNQ2VpK
w0tYe92lSyj8fvBve9hcAXNCmfvIJ2W/v4LNJcYchZ+a0ZDwqL7ao0L9ZuFx
ExS29V9j+zbjT82pVf3NVY2a3SwrJuIvNL4UdT2c2tPxXTUC6I6wkoBZb45N
Z3dHJziquHRNSe6A0zMaLZN7EYkDODxypODRS0FvCPSmBsYHM31358FdCncL
zdCAsm9qXeQJ+izK++XAE9v8QfETt19fvvBfR4jkvfu3gGRqUlC4KbiPRQrl
ErMf9/PDR8UpDxN/n/aJRuEM7A4JOVzV26Ga6jj0WlmAcQvOXTzy9IYL48uW
lq+a0y4/u3JZ74mO7kFo5SV8CFfLi/gn6h7iJ7K9XmHKbtPUWWTbR0Oh1zbo
Yj7MplOO7lQquqbciFFG2/wTKBuFsmla2dvkmOGujbQWNd0oOwPKLoCyiI/j
SmV4onNNzpG3KdZb4Xqjp2ItBjb8E3n0HpOAMT5t6U1sDB59xasInny/3dDF
5mZwi87u3o6a3do/V1vbq7k8UHWmcce47qZ8D8p2upiw0vERNtntxRVpCUm7
5mw9qfaN96xWB76/uZnPldTiUtsePVyhWGsYUo2upKiJa6o6evhWW0dtOxfx
D108xo/8T+iAS2GtUQk4DCko4GiHtnzBWKjyYm0qrE1X1o49f6Bcih8+/8a9
bG22sXY+J9qzv8XZNzPZIYWNWmGppwqpJSlhIwmxclLMYUXVNXaHFu92WFFh
pbqacEd3Qo4WW0fT1GKUNoRHGeqKaN3OTVQ5+aRSTieVxt2nH0oRlUi+uoJ+
Df3btI8Nt4F7tbIAqrjPxGqAV6HK5CMftmWShqgFDxQeVbWyyQOFw27BHDCx
RTcQNitjBDPf0ebm7AWVXSOgNML3VBxzPcXghIHC17YaVFN9VEuBqglU5xpU
KVANm+t2JJ/3brGdmQSVOjGFP82NmhdTEeUUbZrEkYAEoBL29MBe3tZx4p7u
6PSUsadVnifMc9BG7SRASnFCIxb3IHWjJGWLYHdSwuRUH6QKGMpV5/Xwh2zn
RQOBnOc6HlGxVYHUMJCoCLZURD32CRtRthzSPamtyqwHymHLuBJ+RA1y5+W5
ShxXa69bSoVx1BTG0+FqCVwNGldzfFcDAVcPHb4nd3IK0/31rtQggF3FxlVl
P5qtgZXzJnGtuqxOnTMPYv5oefKW3+bI0xWxh7xDrz2T2q/jkJeq7v9bN1a6
/z7KZMx3PfXkl5lEs/xyXgTQ/OhgXGL4Nbvyi8GvDX4x9Ml/nxoD0DiANg/R
/QKpn21tvl/AM5gqg2jOtMFhY/A0Y3AUBhcagxkMDpn7ex2DW2WrLw3KzPw9
DB6TXf8L/Mh/1Zl3qV8/3WHAPpoM6eWS88+5lLyOpDPxO25/Il15XH73nXUe
q0MB9riePQrymBqP0uLYda/mubiJYawZlHaw7KPkhoDmquQ+tMWWXOroMp4t
eVi1dXmd0haU5rzEoKttk0cKj7klN6Js5JUquimqc8xAIdngxQYvJBsA2vCB
5g5QPXoY9IHSGHUGgC4IAM0UUHeMIJFmAaB63IDhqg7ODJ+JG5wflUOGS9SQ
IdGfe70tvbvNxvFJsLm4Nitzz2alUuvViA6gulR3Bfq+C+eVb5g/jYFWWr+J
s1QHQDXLiH+0+Hv8RMJP0IwXvbTIjBe9tMiMd3/o3LQiKTcbPGHyGDZd2sXT
SlDKsYQNyhwOCz8oC54o1g5pANtwHMoGkBy2fYeL4XC2cTjbOByEQxF22IBD
PbJQqWjhCbMgJv/qVXJQ8d53O/BUE6j3VFJxDiFzJkMSV5nDbNBzxVt6q3XY
dZWSq9w1dfTcGdT+6evxeMk9Bif5v54+HPFetveYa8gm4KnSBqYm5oo6T30E
Hg00Ut5cpHmlvKNN88p4bV4HnuVFgddWgff4bTbw2oHRRstAa/iBR3eWDfiB
1wiMNtpmtEHQFvHqqoR2dgBaRL/7UX752/eWb76KR6/Smfw/AoGXuoGng04O
vnXIpcra33xxC4XcwX00GUfiHthnjx8nvBOJz8hUruEQ5lcckhDBtH6BTCmc
HhiDOJ2gB3C7Bai7wJcNYKjOFrynrZu41ASaFUeB1oI4wRvItbiUt7NpcQXE
CSOuxe3f49h1VDP6SHlLiBdoAs6G4GyKcdYKjD6a+JwBZ6J8Dj8C8hxupH4W
Z0WfxZ5eKe4sX1ybxIly22c2lmvevrS8/l00BBkEtjiQakWHNJlqh968gqXp
VNuH7W4dWyuFmYGrx5XXDXOpinq+Un+kwdUTu0L8qxO4fNKoo9LhaWd9MAuN
MtLezGzdtMwynpF7SFXL1K+WtXFG/ZswuKhaZrygr6tlBVft2CLhXZNekqG5
f+YAhOGJhvziOaCs3Tu20lgr8NmAtVFYmwtrWH/99ROwRhPC5/C+JKluvq+u
4ahbvDQqN0h1T/z4nmGnp8M4BKcSmh3gFp5H2AhcbMCpeV+ML0y+TaY/WmTw
/fGxP2Vwm9lX0tOfmWtx/anZ37vlIwlW+7ZafznAxfzLjzXgUl7b1+AEb5/U
4ATvCNfgKmkmeEe4BpcacJRmDZ6jq6SZN0yw1myajfq4hgJD2Iw+E+gCLjzR
THyeBmaN8jlchP0sLunQuE7iLZU/J2EhXEn54u+PaGGIND0FbIUlgUiL8ZlM
ojARnFIZcmUV1L9VZGHMqncq5RrURjMqsN1bF1AJ34l9XKB05/+999tOLTW+
Yt9XWucr4fN9nb5axldufBW8nPB4YAzgBVpEyoAMT2SjbRjc4vKYMmeL53Bl
NPDcL9F2PYdfZNPIRoDsJCBbDGTzfGSxQnZIdmka2uf2XJ8D2aBCpiKMkLUM
sth2aIgyjAgklIMqxuyQgIegmpbZMx7ShfGn8zMQ/KN/ahCKFc5t0fK/UPMj
KsFmuKsO2ph8xnWCBYTZ9sxug9PCVvF8CFXNPpBlpkwSMuGnVgiZqAsxaskS
PtOnkcV8Ql4jS/wQE7wHXFdNi2ywrvUfMvk1wN3YsY4QawNUWr5Iqn4oW7Lz
Zev/4DdwyZCnaiZU0W7wpVB1plFFdVGBQiOmQDVcULRw9TdbakDJ1DItf2zb
Md32u7Q6TlqpwWcfuHZ14jITHD6uxXdUyuOYhyuGLd5taRuyyZFVG18xYGWB
opiY0CJPse/JhhZ1YTGfEdWeEuOJQivn9fZqaKl9lRRXDRVaLzxlQ2vAhFab
R5bHsC6qQ4uMFTDWqhhDcsW+sVNgrAVjF8HYGcZYoo19RxpbL42dL43tvb4N
Y20yJtD8l0svml8+8bM95RP/tqcNZrFlJnRm6RZMLWnRfjc9pBQnCMr84YHq
rIpjTlXcvoHbrMSysn2Wv5fDYSWMKHUO71s38jm8ShkUfP9ntzIoeKNup6ii
d0KRqIYpgwmfgdIJlfG2oUBCYbskYYphadgQokth8kBM0ZLViCK0W3bz62TD
BUKzTA9/JvTQObyLfT0OnA03yJbqJ2ip/nCk5erRCdWhJ6LeSs+96oL3hX1q
q5CefPVPvCcn4MhUPMfRTHzE4BPDD7p03VNtiBw+anMatVQ4cQI68R8bUMzH
1jWgmO9J0IAiyiTes0G3f2pKEf/U2mF+osKgivk0p0aV8ubHmt694N79BVX7
CFWDp1a9XNI70F587gBQEaypite7ZG+1bu1S6t1Pwuep4LUAvORffe63T4AX
nugSfJ4OaNMVtE9t31ieJ9NJQUsBjWKqGYqpn0ljvraOmLIrUUlvY3ShQtLb
mDez7xpzip/urPgMFI8Nt2+wY0Pa3iEotBKzOejqs2ZG3RLLjgkr4CJqqvgW
q/fR/XouvczUQBoYJnxq8yHc06ETy4KL+BdJH+EnstnVdDZv6BoYUWTxcucn
oE5XQwFmja4tfMqzXp61DNZafuM+AmsC1GZqYdctKB/85r0kbIYvLAWwV8IV
bfqeQq5S4+qd0tUPf3JP+dIfjsjvjsbVULjetGJJuXHzik5cETVc5Ufv5BSL
nQJYs8aZGGP27uwJGZuhr77qMFZYY6uMMbceigqtsTWvjXDnSx2tSnvVB63E
T7UKrVCWNepoNXxaAPWxUIxVpNkqaaVVAw19fBZAlvKiulclB7jRkshmEDLp
7d8PlD98UDZb+B3Ib9473XfWhLNXGGfDlfy6d+/1cCYALTfVslD9/A9+fE85
fWYEY5jI5U+eaLUzE8rcwiU8VIxNmgljLjM3cthfYRbqrqu9zi3t5ucmA1P4
2/R1odFJavbek2U7rRi0aB9HamnR/VWhMqmmHyZESwRSK6mjFfEP4T7MT2R7
+CIQWC1no5l2E8NNKzQljz2Lgpd+PDcJbwjywqkFN03jJgEbdOkKDhJqqpFz
NuQMQc5FRk5LyfmKbLHeJlsspaeAnMwkVK7k7NpzvU4olkMZ1VJbhT6GfHq1
X/vS49biVTx86j+GPC80G+96Gevi5eiik6i16u1FXbX3rRtX6/n2b7+3sk49
IT6xKXq1fGrLX0N1Xo9+xHZe1MQ3ekXWYx+vRBYVx4h/t+ZxfuTXXZfJSosf
QhgD4ZAfXnQafdAgFArh7rtWmkZs1Ec4BQgvMAiLMMKmH18a4aKlkS6RHQiT
8lwE1mZnmj6rbs+m08QnYHH7rXUW6yojtV5xxSJ1XNfIjqs/iza7KhZF1yqZ
9bZYGHwNaCt4oPioCrCCB4qHVdvVDMiy3X1IVqjPj3krjycr4ovZj/ETVYIu
5elTbSxTxtCKaWMjxthZMDYDxs6HsbkwllaMoRWTxgZ8Y6kTdLdu46AT+KQK
2VDGEHSvRNDtV5Ndk2uML0iLZoUK4nq/IFZRjV2neq24Mp+lUNF8Vjx5stSR
Oi0r4h/IfYifSHQ1Fkq0gidOtbYGjyAfcwvnQI+JeY1qiBd+vKSiW1lGjaLC
UaQb+iGjaD4UzYGiJUZR7DRaWpFstIb9cikCSZWapGqoHYxIqvdtJkXrvrCf
9+d0QNobBQsnX2abepD22jNMXq+1i3stmpnwaS2/M1w7Ka/UiaUd/KgJrsRM
cMnO638QstxHhmmKW2wVpfmL3M+13Eij7qzgCbDHsIXbSbPHt9o0a9k6Kdwm
n/fNanaDXCWPufboPBOmK549wFMWzx2IpnQodLp9mX6ewrlQeB4UnkKHnET5
aX9EOerHWBKIscwALBRAJ8Y0wiifEEBRBVjt85U9mrHw7VGt3Kb8GXvru9gz
C9lHF9kJMtiLAU/+MzF7KPjesxPBF9fVzgq+1MeX85TZIyrmMp7F7yTX9MlR
uLV4VPA49ocFRgU/oJNMWlmbBwTHsI3iGI6fHMNPAhzDdRsvYs5V22oGBgRt
39YZsEVrjbMdW0ukrd08ipzmh1vshNv9f7/F2qISmQfC7aAbbkngchcxQWB0
d21Et7mYP0Y8XXQ+btvVHboET9h7nHQjVuVkloCCnFLe7P9ttfaTH19kod3/
oB0HZL0RZbx+rRHlvLSoETUNooFQV/9OOsP0Ao7DvXCUL9dI/agaAKLMIJoO
RO1AQ9/C5ykG0VlAdC4QzVCIvir7LAdSUv6/PxyZbiRRSkUUUxRSV79tvmwA
NKJM7WStBtRB3t+fmks3ouolQd1+sbIfUTvu6BA1W7VhniYlarvKq4ooWljE
Lcd9iEp6DzQn0VbGi0KPqHmKjPfePIrTmNpWGrDVMraSDltHpK2PyUr4Odp7
owOqydOp2hYFVJsHi15ADQQa+YaxNQ+2FhpbUxxb18nuS9nKYGuaXwErAZVX
bCVuQPGy0IRUCfWL45WfZbInym1LD1uyAuqsGvVUmSo4tqZTFTxusFUw9pHp
LmwykcXqjrIOZDlUZTyn+rAqdpmfU6mxRDmVGkvUX2W8z0ZbavDUqS52xtLt
q8nTErqPRecUXSuV+znVgKUmLE01loYC7XzuW1oMSwthaThsqWEsUU41laUn
fnwPMoosUU4JWBKB8aCAJZojTSdkqeMnvkKT9L4pM0fvmcpnjOnat8arfXDF
o8besGyLNdmwBN8A1AmrElc5PlMTV92JNX1iVAoLQ4ziqq0ad01MRZZNrJwX
G73EyqGs7VfD4UC7nvnKlkLZDE6sZ//jiQGnrwK1jbJn/6ef3NP2qTUUNewb
1LHVMLElqrG1T1FL6m/Mmxg14epyOyulaw59pqE6CFXr9QrjDn6qTbvfaU2i
qkpNLIyq1MRVI2BJ8D5nbUnwsQ1tKeV9ztpSzkvX2lKLZx+OmPon86rSoGe+
JsqslK/C8zJrJNCgp/g82Wi6EJqGoGkWNInymf/ArwV4rboiNQRSUw2pwkmv
a2R6/fBnWNzRpJJqelGLfrDjYNqEckwYT4nadrp73AwFMQUx1dVU2Pq3tiOr
eH5rx4aQJNth9StJmH49D/ippBKm5z9QGeWlfvVLeZdpDaeED5lpTnSpf26q
X87ba3T1o5sGhOK0n9t0QGJOVAJTcGr54STAacgPpymBVj0x4UR7bC4GpwY4
nQpOGTjh1y5/+0RVUzRiEip1OSGhPr5theVExTB2E+rdDqfiBPyovtzb8eDn
kal2TgeFHQ/0YxJKkc6kQKGzXdSypQlBUmcxzN3p36R9DwTIVZSpqYPv3FQ7
ddAHKsE7IGpQJXxyUbfnFhW1VIlBRRmV8q5SjarhokJGXfPaaZUePeGtpcew
YVlnVET3dfJM1bMHomGTVsRrGvESbrfu43oVcAneYipxJYRLxtSfS1gXyAbr
vuvL/1fKhPJiKnNiCvtP4SrGZ8PgiiisdFRFubvPVMXUhGpghVmo7PGVsNHJ
9CnWbbvSIbZWCUtcYRxWnFaaGCb0aU+X7qcgLJ4UZxGNCPmCO/pNS09cxgs9
D6laWHEm+MyPHgYmfGa7xlnMB8o8Z7mphXS7U1qphSa8yFlsnNnwmuLn1vRA
636yUfUaqEKO/ccTUIUnIl/o378r+/d3LNW8UviaYnylri83t8K+VHZxbtHq
4YTCK1HnZ31Vy3feWadq+Z1XSU22/NHOQNxTsd5klu3U8YsjhMm0Ub0xJYGp
qn4xJXwdeiemhLfCa0wJH7f2MGWmEsZ8TYWuhImPSZjQIkx0P12mMKkOvVIJ
I0otYMITWVZ0diwuX1S2bGjNqDbs37oXqzy4e/95/Ajc8zS/rrIrA7LTla2v
SVtrpa2l0tbn78PYsDwy6ttKlS2VWzW2bnVarNTs3mrAFv1UYW706FHf3u2h
Ud/inXfUUEoW33GForSG7oHVEdULk+mk/giYUmcJuhum1FTA2CQTYYr4d1AP
8xPZBivmY9a6wRJ8TEzXQo9VuF8fMo4Gubd6Ecs2XkbNVI7+6evS0ZIIeKJZ
+JwGQkMg9EoQaoLQKRVC79q0BISS8r/KI004GvYdCeXoc3uuNxkljKNEOVq0
xJ5B1BMN3RxlviPdiY+pA1/RKbq4Xe0VN46hdN2Oqhz6eQawSalnuttf93PW
/Gq9FAEgIlC6qFfKTOmyQGKTNiEgTSMi4l+lfIyfqDA2EmODIieFjaKu+R5Q
kXPsqI2cQUOF7nrIApFDbXhWvkReXvrFATLz9nVL2cvJ8JLCyyU8tJNeZikv
Y7JTQtzAy49+ek8W8CJcL27uWC+xzZ1Db3mz4yUNXDySBvaPUonL/E6pRtPO
bb6mdPnYVZ4mfborTGqjIUWbs26+cF5PUuqW1Z6kuhewtI5UxL/r/Sg/ke2/
Q+nT4k0xup7Rr2U1DS66Z7qhcKkG3OJqc3N0DBtgdBPeBKnCpI8lRRPlbZAi
UfK/74a1C2CKcmgGPk+Hq7h8Hvv7nsPFhNLVjLCrBly14IqmDKaYHIoDOZR2
uEIOfWmfPnyvXdE+97xPTYm6V0Qxovlx39HiMVvROhxRUVsfcpRTe4TJgLur
Z7k6q5mllAaqWcYXqE6AUsQ/6P0IP5EtZA2jyEZUy7CJ+Ff+HucnspXLA9TR
XbcASACQLV8Fz453ZlIOQCMAlDqAvv6tewnQNAOoACCaJ58OQFMqgGQRA6B2
AJBwAbnBlOGzcHYaq1ySb/NL+3hrcdYnIL2It29HYN+B0qRmxpWmU7k/Wjdm
axwUrQ1HkuyNdtKOA6JE26lePafdN6XaxihEKTWFjijFfM3Mw7gMTqdS7gMq
VAwd/qiNocL31Ap4ahpP9FswzboGu2k82UCii99agUCivcbT4SlTni6QTZH2
NAWfZ8DTADzR+vBJ8DTkNEaOqWF4asPTgO8pogP0lEfX0CJxhZKKIqbEYWTu
gesjlSL/rq2k1tj2KPYTC4VPHRG0xq40wznfmBdXyhjHVUbNdsDXcfKK1QUM
vXhVksqO35pdoTVUb/XYrba3ajjbpnTlo1+LaSloKrQstIKnyL3gSnmJ2Asu
OtMVly+h+ZbQcgUN3dQFqgOfYoJrFNBOA7STAa0VHsRNCUBLHGjIrf/191t8
aLqPmjxosVpArvzMJMypY4bBbgtl0jMnFlOu2SpJ7HCFr55Et+owGbVRRVt2
dLHTbU0Su8xv3yfEzuZbDHUNgy2GNYq2poq2xz9RiTYSF/HvXB3hJ9JFc/97
Ki19wYt9nr0E9gb9kKPjqqmx13Ds6a5rxNibAXu0V/RU2CvCo7/pvr1R197n
9l5v1mga+MzV5mPda6mHqmX+x/Emre28VXubW1dHq9jWd2I7dOlZtiV785kG
mwA2vrSSz9Tzk/gNfh/o1ElWjS7i3/5+mJ/Ijh4b8JarLv/RD9sun4aQueFH
TVrBE1aPqQa/yQ3+4yrm2gF0TafV/8HBrRZdbtDZykrXRQ/5gTcAdA2Drhlo
9YcMujlANx3ozgA64XRqGp3s1E4y6Nom8GKFDudcZdhZdJlCd+s2E3h4khNB
F/ot3R20ednxpuYl1BlDjY2HkmpSKwE2mnHn04XwpR+eZs/G1jn92qYldBel
dZa4ziLaxRd3laZns777vsps1sThFSbo+oVnc69h4A0YeG0n3vSYgHbMpLxj
xou3iPIN0vBElaBr8h4/ba7tmBu/eyOZG8TnaTxTKs2NwNx8mJP/ODAhXxld
RnN8cxR0ESUdjlWX11w3X34tDDfaqqWp8TzFJFnb0WlNrURjTt63NsMZblas
bQhZW7drc+T1biNF1Ke1lA/pf0ctQxcnQCrnSbBHVQHNeP1GQ8pNghGkgue/
qgl25LbOBPvYysrYIOVdfdqVWjH0IOW8CUtDGggMC9oG0pmANGAhifIuieh8
i+hUM8K0uaUj60scWWRI6B4NkfUWNpQaQ972GNeQ8H8WpltpjKFHXbar6iIm
4hWf0yp1cdzjI6jVz2mpWYKhrksXQvkfU78Df4JiBF8to8Xkbrf1yIcq3VZ3
MRlvV6gR0+LW/ojNn47WXhgnVOkGudK9iGU/Xeno6IMAllGDZbDS2ksw8r9P
YzkbWAqLJTFY9tx3vfxXvy+PzPW5jCguOG2P+2Z++OQeic/hQpGz31mS6YPL
hHuqcI07yYVjG/hxxsM9lVi3fa3XwCc+JK+jOkFIEU1J8M0g9DNpEyWV8bqf
JpXyhirdxWe8oUqTynmBRpNqdpBC9OiOnUpazCcedPQMgJQwpGz+oMI8fwCk
8EQW13Cgd28YXOcClwCuM1USPSjb9nWyg1LAMvg61S9pdOJL/ltx/uYTn1oB
X3gokZJKImFbaPZHIMa8qLT5xLi02XzSbXuF2LqdtH1hJ+2R2bUpom5KVzhl
bHKICVPnKsQynvl6RFW3fmE1DazUwGrwfJcD65rXVLpygjVgYLV9WJRVowrW
S89ZWFMNrJFAf17gcy5gnQdYNaaaMHWKMdWCqSEns3C265+epLXkJ/dQcMVO
cKkDEbwPJjOqUnMf1vENATss0ay8snS6Xt1ZZRzxQ+NASamyG8aB5LVKkw+p
klWYYthiG6Y04CoNuEqNq5R3E2tXWcCVgKuW24PPd3rwiH4diBcNj8KaFkZX
y2R+dA1zNZTAphlXUwI9eGYCazEH1vP/wZMNDq4bZOv045/eM2Bw2YI4qHDh
ahAElo8roszSiYVJhv31uCqtUwxRMV8us48nEnjC1GhShW+WB8ks73RC8jfu
7dzAcwmwtNHvok4fbpfjb132P8mSMJaonxLGEhW/FJYyY6ngFWjHktt3qxMQ
Gk+Dl3c8PAPcd3t4pgb6buHjyYFndqXvVniGfTwtF49KpTAeFUyTiofhYKpd
4TmD8VA1G++SQjvMnjxHzibbNv3p3JnldRcunJCcLDAdkJ0ApJQ3vGhIgvcR
Hxek3EAyjfn8SmOOSYCnbCjZfqoIuGrBVcN3NS3QogtT7BbBVQuuZoRdTYGr
k/1QagdDCZ8Jd1RqAbGpmH3c6agSfGYTZhYV1XWd6rjOl7a4XlrL21q1U80S
KGmmeVLS+mnO1TXu3ajRyk7CF7rrHTIxaOW9RSV8xk+LSviMnxYleGe6FkVX
iWbVaNJ9eZPbp2PYPXUMh96P/Zwvfmz6juhKq7bvaHqgG499R0NwNFpxJLsm
OJruO2q5jvx8qne02OmhrKPUXG9V66jP9mmXnT33OdlZpnHapkfNuC15O9y9
6jTVtAt79P4bHeXGUVrnKObD7NpRwoevtKOUN+A5jtw2nO6AoWCydS7jrVXS
0bBpwzOeHPcczQw033ZANwpCA+Hme5Yh1DRR1AxEkcBny8met77FHPLrYiYJ
ZA+vKeed2WMrnDq/F51ZU+K2r9HBk7qHGnTwaCzUHGEuclKwpHUTBLV2BG8w
r7ET80UIutVOjJ1mnZ0Cdpruat5VC6wd4duhO7LbfgbR3Y3Dxs4M2JnlNtif
2Qg10anGzjTYaYTtnAI7c4ydlmsH8fO/v7Sl085iPdmk8yafiJ1ge1QpWr4d
LlqrQnaaHfuBnaJ16IK5xk53OgJ0khOlk/IWqho6CR9Rr6ET8wVBmk7Mx4o1
HWHoeJ31bdxZF4bOkKET8+Zfj07MC8Fe7MzW7fVS2QJ9+16ic7KhMxN00sCw
TNI5DXRm+7FTOLGz6rr5RCcNVK5c7fDUKQRN8pksTCqFdm2TNWtMY5qnZ7Yt
JCCi+W09dbRDnybGpS+q83nzRRGN8hfNmtYjgE5EUewHUL+KIv7F6cP8RJnx
FPEvTj/GT2Qbo4qshE9XObKo1X6SW+2c10q8UIr5eIIuaCQr4suLX+InGvHj
iY2J8qVfHij/6RtbtbU5YLYQzGaDWew0SM7o/0yfWctl5iZUN2Y6sCbITP3Y
uc8sDRa7Oa6xYrk3EcCBZY2tV8QSzqpN9EhGiDq+laUGlDqQ9121X2BCjBI+
kKcZxXyH1KO4vEyHUdEbT8Q/xvo4P5GtbTGf/HRqmwmoJxWjzGeEAdzTB8AI
TzRgomqYo+olrKx0RlUMRWi3paO3v30p5dUsA2kOIOHyQWnoAjtYO8sYapio
ypzpSR1VOT6LSof0JZoE6GSTmvt/hLmzP+nBpjqx7bERMypzSG46qe126lRe
Sm2SonNo/ixKqInpKXpzEWboFXdNHVvFmkZKCzRahkbLpYGE+cEXuWXOeD+J
pjGoaLz4c0vDVrFBboA8GjZhhKJxw7oFhsZJ+DzHZIxDY5Ok8ZOf3hOXfyiP
nA0fs/yM0T6wJKIzxvPhhErVhzC3KHb3ETX0mMs8lWChI1JKyXxnaba2gK3X
BUyYLkjxSPni4G/xT37gBgJ+ongiTtQ53xonEf9W/aP8RGnXOtWsExPxj0ke
4SdqBFvmJ3HnOW2A033PQMCOrVMDsJPCztSAndSxozvoGcbOScrO12UHpP3s
ve/6HHbOMnZstohAthT4zAPZknS1Y0uStVPtfMIl6WRPjTvxAy9rzNSiFyzC
rUkvm5rYFKPuahpuRXrsY7Yi2TEWrHw8VJG6IcKYXdcmAUQNE0BtICJDwyZ2
WqCT18VOrui4HfQ0Q2emQ+ftsqtRdJqGzklhOnol1tBBzfuZbW1EIIUEPmm+
ujCnMkOSujY3geVXX5I355NUS9T6SonaaCRhaYMb6OPkFNFIi28doJ/7eLlg
NQKwGs4+o0opo2b5SfVTRE0jqcUjeE9SA5IaAUk0gi+c3kZpYkkLIGlGWNIg
JM3zQ4gKWBJYf20EJCWBTEp7SzqBeqY8ncWeTLO83dQz4XrCE/sNM0oaN8zy
/245uActGplNoizBt6TUyCpM64xe+SOVXqjgEf1jqrwVPO56vFLjjmy18USt
cyPQOid8MkqjavCUokZFla0AqmZdPDUCDfMUg2p6BZXqikZ8VIWJpzgQT91Q
ufGUqnKn7z7EXqV8QrwKj1eg6J3iyXL3Ipmk2lFNKl5TK+Dq6FAzKi+aO1re
eOk8+p+IresuWlje/dZlyctGK6ImivchfQjrbZOBrBlA1nKRmSZcIosNMmqk
Ch8ZJRddotmuS65WoPUeMcimhVvvaUB2pqmBncjc9Q9CFsNYKK+y46PFE0m0
BgJecQiZArab55OQXwrZ2e580io3vrJqfPkL/4mh9rfvuFj+s3/yjsulixuX
VchduSyyw7g4gEwv1n7vZjsJkE2KuZznBA6rQpnz3PZjH+MJyoLntrW0Bg/y
jqjKyL5St1E300ltk2MFL7F5xARvAdAd+lQ/x9qBDn3YEJsSJjYzQIyKY0TV
US+PyG9GVZcbXLW66E6V3PwmiPuzkNiqdD9tU6pxllDDJaoJdqqHy8x8d+Ba
W4MrpeZ992ZuuSQw4pWUT33SRdZIo/J9ly4sd61aFiW+L8HXs74MvnLVkj16
i23JsgC3zHCjYMt5OVdzK3jW0ucm3JYez4CRlvOmAK9i0rXSQ3VhNqikDbSj
8sBBbugHjTRaiZN/1RkHRieD2RlgNtNPskqINQ2zOBBi+QkzS11memk3JA0x
5kuzXf0qf1ZBSUOtXI9w3OkfHwA1M0UuuaUkLSufuvPy8pbl88qrFo+W86ZE
5ZsWTIM4cibgLJkUZ3lXWBmv7/aE1TQ51gnL6fDLYy4sumq6CVhDJsJi3gKn
YVUiTMN6+P9spX9cElc0YGANh/v7ub6t3I0wXGm+VXVhrQ5bboT1a8v9+dF6
UXFFlCqOc1nUArXiu81ml54AhyIcJaA5cBVXFUNPSj4CiGIYisujdyK4brtc
UjpPUpoqKZ0zrbx52cIoOQFGCV/UelyMUt7ApBllvIFJMyp4vU4zKhQjp6cH
o0HDSBhGthKO1EXTsCPo4ku4z2qbIwVDYUFnQNDppghmrqAlTjqRIGrjK8FU
9MYT+T/rHvfRZ+XBPkvPOXiWbCe/XacTNfKhTFIzDjB16Kw51M5bToI4ZeXR
bZeXt62YV66UpOZLUpczKXF8vVUIU8bT5o+qjirlPXDdCNkSl/NugSohnUTH
qkkkeDOuJkSHMNHgPHMAjvBEw76o6SaTRpSo296/0ohqGlGDgeGhFHUWRJ1m
MolENZ1MWn3d/PJHdETFEeXGEYlq9ibUbzOlZ6/2+TstsfqrJZ2j96Gsqkkl
xiSqBU7tQ4Gno0Mt8sT5hKZKFrmj/ESUVDFkxeXPtwHZ7QC2RAKbJoEtlMBe
v7C3r8IHlalm6pEP2mYq7e1L8MZv7Ss1EUW+Mt4Rd2QrL8sUgan12BeW8IEC
LWyAm6iXsPrbWesoqaYoV6+7ZEF58xZu1wvjaiDcrp/ju0pdV0iqB760xbqK
latVb5tvkqphXPHIj26G+gLdCnVcTXqg0C3/3Jg6iKJJ0bHecQ4nQ4ryiSvd
up3r9ZYmOkOuPN0UHR2WnmRLrtrzgKcEnhLl6eefurz80rsvLm9/8zwytUKa
ev/rF042JcFnCGooCT5D4FGqRpXaFPfFrUBUpRTzoSfdNg3wyO+lLkVvqkNJ
9+M5Ps8CpXaY0iJDaYahRLfhYyvTT+7REYWn7cxf/e+/31KetxSbYbtBqkRV
UkdK1Az0kEu+Ibf9ZkchQ2YHeG7KnCp16/bexO3TwXdhSqEnJwFN8vV/WXr6
pPR01nTp6Vzp6U/QV50gqJQ3qnigKJuaAJXwYacaUKnJJgKVVw6lHKMpUQ/U
oImlFk9UdVqabixNC7TgmbHUqliSpQ6WlsDSXD+WChVLuFxax1KMz5beLyc1
IZquktH0FViaKKjUCNIpRNXNphCfPIkW8uaBagoJwpO6eHR/pDIoQwaNveXi
qJw9QHDAxnRJFStx+bQEk5dPf/ry8svvkWiusGg+8CcLgSUqXjYkCZ+I00gE
HxKoIrlV9tj3yh7bR6JOxGkkTYOktnZNryBB4KQGSRFeDL7QILGBkyskTuDI
f+UgUXEDIJOFxClViBkfiYkZhSQlJKIKxPiQwQIj73h9VJ45GmkfqWl1Kj4E
eCBVFJCzJZA3L5JALlvoJEiszkdu4ZvmYtjIAyQSU4iOn8RSzoxKISIS2Clw
9ADvFqCrd7WQghdVtJDRQIzMDHTNiRGSh8dhFxsh0zuEuDFCQppOUVIxIl+x
NoJNA/sqg7FCbWPrUoq8IGEnCBLezB+dGwqStSpIHCPshIzEIAJ0N0WH/mRB
VF65aLQrkBRA4vIZUnJos1TyFqlkhlWS9FYieB92p5KGUZKbueqEj/3rwbng
Y2paSeYEx0bZ+frB0eZ25UWVHkPGRsMvMZX0OMlpV7SNGJ/zYSML23gVbJxq
0kPARuakB7rfH1FkODawLUmlB9to8LLtl3CJ7sRE7LWlBadkfRGUGuNXd5SW
nWsdERuc0sIsErA4umS2ZLF4NOrDRFI+MxaCsUXCmEQTMd9Co00kfAxWm9CX
v3//9tXlKtnGPvFF/H65NtHi0dCLbttBV+Y26yrKSTAxO9DCEofU6Tic9dfX
Gg7TOzggKjDp9yPa9Co/9frrqutMtxHkEBpl2yLCK6zZuv168X67t/jFW/Gj
RSxinVmXkM+ONcGM2LWBMSQuhjkRpvIiYTAIYEiAITEVhDBkhCEjDHdKDAtm
RuUViyWGP11Yfv66ZWIiHmK+GkR7iPlWIs9DYSpJzPc46NGx6+FvZBcqK4r8
x649NHn+xfOQ8p6hbvVjdrUN/ft72UMSHs0sg4dTTDwk8JAG4iHDZxGIh6TO
Q+YDCFSIxR1vn1elAnngv33Kg9gSEOgl1u29OaIFgb+/4eKkt4KcFIjy2bHL
y2fvurz8yo1Sw1vnxeAg/19UGGgqzmIQvDNRY0j4XHN/GCL+MfDH+Ylyn0U4
JlTf6bBoGBa28Ux4F2JN6aCYOLnaeP4WvwzxPH6oOcjiMsNiegcLvTbQwcKN
ie4seAlAfjrT//t3KCOJWzPUDuZosRMP26828ZDoeFgbuUhiWzG41dwcmY4C
beeGywyVuF8qiaEiH2kCn5lmQyGCZ8ty6WbtsolriaiW8JYxujS7p5uIf3b5
CD+RbT7o12xiAKr0qbbaFLzO5HUgCW+E7mRk00UzeulXB8rbPiA71Fcujc4g
THTNQnnzBzeWJ51EfcefGUHTOgSpULGCcjdYzmdBwhdU6Eu091YGL7oNeWBX
57Sb46sugHxfXgDV+0qUr90dvhLEkPYVHSeu1MV1pcQl/5GeI58PSlx71i4T
vXFF/Jvxh/mJ0t7Mmr1dJa4rt7OtuMp8V7FxVVu1yFUMVrq9feVSYnWqwiXL
GP05ZNcdn7z+cuA62cRTDFwiEE8FPrNAPBGugvdH1+ASqqn5wu7O+bgOa3G1
x9F9DqcYb3CNzlMhNn6lCrE1hEwtEuykKTmtbBdNydXFWIqmB9QOXXZOREvh
aipugtIyfMosG8cMzFffe3G5TXI7x+cGbdFxcmsGfLUMKPppwESBUi1xBVTO
Oy28NmjYtxQqdcKxBDtQNCds6QpjaVqHJTeoyFIaCKr0BCxxIWxUC6HXJ+/l
oKogWuwOnUJJtV43yhtR9DZjLE9dErs5ev4c4wZqoomzwZ8bv7x8jh/5r/CZ
kqDVF46yoDdIQeuw3czTE/OdVT31NNwi+PittgjacTc2In7ChpVtoyIaglMX
pR802TKyMoMr4w1jGhelFarb0wd4iZPuAO1ZD7W1h79oW+5ZFWuXXrqkvOOO
66+EtTm+tSSwvNlwrVFuvTVoTa2VH9xr5vH6Siu3Mu4IVkZM8ClvS7qEVo23
UGWMIQ/zAcoe9l0cV1pV2GWa3VWS3UWS3ayo/JBkt5fY1YgrJkKs3c2U6tCt
qZQ3U2tTgwFTQ3WmKL9Ogam0YgqaZihTWPTEn4Opw4dxzuwPR67yYUW0cA5Y
5lGrnE3IEtUUux+1q1PWpFZEm2bL94ypjdQKF99frNp6yDL7qZUuVEf6fYBd
+uQH9vbg0SvoxCuGLvn/F7X2my6m1c1kUoDJcLsbyj4llV0rlS3Uyt6+DFc7
hoEVquF67KOVhqvgyYHHVVVsBIKs6XTznY28HQ8Kw40arjY38i/1VSRzhUx1
8sRrahhZAmRXA9lst6XvCK4WPpNAcBEv2ismJs4rdXnxYzb7BIUhvjxhGc80
+hFm2i7WJdbtWu/pisGLwiux4cW9/dSo/NKmiym8Yt9WYqeYJmIrKZ+3wF4h
gc2WwP6MgdEFMxG1XLyFjH4x57ioFTzhcESlWssF5i5y2Tyj3/RqGmB034ww
wLpXxiLQ0Y9UgMmqCGApgF1jgE11gblLGAQsDuRX7gPL/MoYQ5U6LfvALrV3
TLhVEIRiGMLLRkbdzX4Uo6UqqO5GUF3pBlXmBhWXQS6FMS94mYjS7ZcqhWqk
uDzCPrFoEikJUIrL5z+DP/mplR2e+HJjj0/O81WPqXqY8wJHP2iQSrprt2hi
Pqami2CLJy+7obGp1Ay07gNOO+XAyYFmlY8mDqyMtl00JpUmiibur1efsW9M
731WanIvfHasMuFDQz5T2taruc0NJoA8PXurerZEYxulnpXnjXKRIz0CepIT
1ZOSntTqkQ3bLW9cWN63fhknT6769sMftn17js+sq6Scl0W0pKZqqr5/W7BR
L+CpbTy1jacmL454nirTCp2e3Pa8FRoK3nF9AU/XGk/0Ezjy3/VfqoVSOTSg
1lKxu1UlEFZF7u+hKVjZilBlC0bSdhtJCtf5OpKuqEaSqMZRQtMJiW6ZSBVV
N2EL27p9W2RnfjKBiifZU67S6Pntl5efvnpeuebi0fJcaerK86fBVTwRUhnv
7akh1eB5he/fZuYV3iT/Hp1lLeLfqnyRn8hmFV3wmMPWiG+rUuDmwFY70KYX
4aFfE7bWwNYsayshWyqq5FjzR/pCLDelCrCik0IpWKnfxT24lxumUEjF1B8l
riO3tlFCdUDilNpeSamda9yUEl5K7d6AmYVNuCtrrw0oPcOwbp9jCjtWJ41U
ClIZkWoQqX93ng5eb1rIe+1DtFJexK2hlfHCvqZV8ByoQwuvXLfkmbN3TFvK
eWG/phuv5NRAoBtPnWZJW5LNUguWrjOWRh1Lag3XWHJapDpLPQqe3yXt9yIJ
mugP3k0fXTBpkZR2EJL9djTZfnKQkf+UCc0lEo38+1x5AaNJJhmNnjjfcOnC
cuuNnEe5s3FId9h07XWjz2ZpMNBhx+Eh3EAYzY9k+CxVi7wazWobPgE0wg+g
xEcj/426jNV31zSf2eEmW1yTQMEWiQNIJVAaSiD8HeWn0E027XHWgKr7AQKA
GhATQ0xmxBQQE5f//uf493z6Gp/Nh9+0EFwaASUp75bXSlLekXpEzYYXqqW2
SvDiHvrbrVZJW1WtF5+qVC1Ck/IGxM6OKFS1hglNZjrsCpRBQFlnoIwoKO+S
yXKbWlcZUFAe8NOl0RuKuivkAZ6EtP0ORvM79I9Jqm4aDQ9vL4wupM9i3bgN
FgtkbWeobLDTQ2oUv1dPQeY2WThdmMe0iDYuC3/0lU7Ehvz3/ftnTCWSsSI/
U6KSEpUx+SySVK66UFK5fCGnieCt8P05yXmDwPdv0xsE7lm/rHzdRQtkHZRE
Wtwqv6jSZNDAaHWFYdOk4bQzKEPykWmCz5SwAIl+JBY5lpdS3g4pJ0HKsFOH
ECk/ro8UkkLXNmQBKROsQ05Hc47LReWJItORJx3NTGwmfRLDJaEISYyTlUtG
g0ZiEMknIiODjLj8BfH4+gcuLsdWSR6nWB4iwEPwoS7NQ/BJiVoeS06dhlrD
PJo8nePxoF/xaPfmMUfvH+mQkbgyzNUpyy45vfzklsvwyD+HT1kmD95Qlr8Z
pwf/O/4zMm6Gw4g+v/d6ipsfm7hJKG6WqPmeOMAo4WuuDlLWdAuc+wOBs48D
h3cmRhdVAmfH1f0FzsbIEcTzhjprVDlKuKORL/rqJRi5T66lpPzFXyCiAqAm
zCnjnayWk+p3mVODp589TkmAk+1dphlOU5ztSNjpLB9wen//nBKXkyyE+Exc
VhGVsXcYV0NqMK+CST9tJ59W2nxqGli2kvUDy1QyJ5zMHwtdWgkv4F5BzQ6a
5FW0+r/G0FK2UteWKWpC87o5wOuW6OgFLq/kBHhl+BTglYBXFuJ1keS1YiGf
PtWyEj4Hr2UlfPo0KMttiElWYWTZoVTMR7o6ZU3xg6rBq2efvxuUcNXV/HkR
7lvwKX3gMjyg9AFD6dfjeOSfk59TA54GfE+DOqfuszkV47NVCasHdViRKVEX
VgKmYmuqVxttWmhH1it4IN8RWmoQ76jqSKyNllQ1sWIEViTIFE51SVGTp0pA
VUGqZBXcIlWtlqpOlYVWqvrIioVR0ieplA9nMCl3YF5LKqK04pXZp3GFTLcq
qC/R//z4SuAiYDE+UyhLy/s+A0g//ZaF1MLn9AAkGr1vAKSZLiT8LujfSTMV
SKmJJgmJHlS/iVkKFL5QPp3rKipsPlUlcT7FdZDw3yoH9DQgo9X/vbTvct9N
TtdtVNEU9lnTjKx+VdEMdQxURcCSzKodAPUNCeouCWqxAypkKeb7FbQl4VpS
LTZZauIz52V+z9JQVzyDfBGotJPiF2Hkf+l9d18GMsQmxudMaJkR0NI0Wih2
2k7sXLt2PmlJ8NkMxo78bIEKXQWad+2RePQuqrHjajFtdqeWGVrLuKtllcmd
2thB7lgt3Hfvu8lLnnX71VIHOXnPxWREwIg4USNJ+csdiCMDZa6E8goJ5c0L
y33vXEank2O+mqofK+i39ai9YaxkfpOE3SA/t7kzUEeH2iXh/AgMZc/4Sk4h
kpQCUlqWvxo/GX5mOn4wmJdyIlrT2GjSpu2mzZe3dPpx0iboJ+Zrqg/SKG0i
UWOWL/AH7/ePLuaC5bZCXtTsWtulYOFefl8O1y49aEuhB3aMH9URhfFgA9td
lelCspTDkoAlKmI0Z5jAUmosxbCUkSUp6rOXl9/4oPR07Tz53ZaiZHupPOm1
+QqpiGoZ7//4BGYZNa6kGkS6A6cgyniDpMY1EMA1GMBFHdMwcMHVg9LVXSvx
oJ7dBV03XLeAfriKo0ozGwKzOWA2K8CMlmLfBWYzwKylZxd/eo+JqRSfRSCm
kgkzqy5w7LcLHF5GKWaX0FgCwnAutTOc6mtZDGKJn0rSnQMLD7fbS0dj3xZN
G2WTZ0uAlvwnrXBRWOEhXBuXqWtmJ4Zqw+ts8x1C1ebm+yVsvX0JN8B0Nt9Z
L0rnRXjkn8NnUm5ae3p53/hleFD7xqlx+sYN4IUnmmGgzVbQMPTT0LIwNPwY
ts4zD5rMs7EPvdfJM3Dbbw5G8xRCXOcuhTs+YkArtfpR29xUeYREnkFYDINL
HHVOZaz2UbvWOn1U5zBvLxncq+YuE/DjYNP68HfF51H8GI3UR0ekhd861eqL
aCUE+mjjUTYRhzk5zKzD06LyPPl89IqF5V9vXGbnE5rGXMx3eHR252Qu5aMD
2lyLpxJeCrdVw/Tbsln5T1+T3MZW2kfSk9xEL2W/HMcjvyjyc6YpnXMUNQwP
NTWBz02GWiOQaRk+c5tpR1/7WifTjoOaqFJLXGX7nCU3peyV9JnRkpvpva42
8RbbQZ8Wxotu1KRztHFrTltLLLL9AWQ4fY8T1snLiywHsoKQyWr6l5eX3/zQ
xeX4GlRTyUz+OQUNzqK4TpubcLp/b+FT8Dk6ra3J86A12jJoSwFMNlyL5T/o
ctN1EtZdl9lHIpOwpsDTSSa6Tgl4SsKe3OjyPLnRNSFP3NrTdpMv7FYbTyYQ
YlRCeetS9CrmVRdgmldoNqGel62c+FuD19jGN0R064ck9jLyiqjpBy/V91eg
/YofiQqfKdCVa18z6qZbVLEWUTnlLUx6M5MeCfzN1lp1DV6c6VQ3CHWi/Pyn
qc+XuSbVkbwEnynIIcm+LpPsF+N45N9Sfk7z+Z0a4Ecbxd8NfvTTkIUTZxgN
/Pgp/AzJj3FeqibOYuhrqeOddOHaPnp4DoJHlrSj9yDt5q2BKEKpZgYHPjuz
cW7HlcFU6xwTpKibPC7Qj5590MF2sytPDi5viYy+QxhcekODPwa+wtX2Wqnt
dKntLVLbu7C5nFu5Ix+3rVzhrBtXhgY/o6uQn+SfimwabQVvLOjURr+nnUKb
jLdFsuLdNwZeyDXNaxif031ecwO83tMhC8F226d5atST1RFsJywrVr6ciDNr
hzuh4v4daqTgRBzve4pe7VRQHXE7r65EXLg/45STA02bcnqeC75uZmQxjMmM
u0Equ0b2aSih8YkyE4ZZRM7AjBYTRW9wTQKXlb/aeXk5/rYOdElf5mjksHml
NRfzNRbaXM47oDxz9FsCGCp8RfZun1qJBylHnxecG4EgHgwVFiHrxi5rlOW/
j08xBGcagqdXCUpy7za1NXemOWSwWYJpINyET7ChNm/2G1/7t9OJFvrDJ2X3
/TrxtWuNja/1oaoZg1PC8xj7abhJxfIW8xy9cC5Biv2RZspnOSWh/OWVIwBH
/skAHZih2thUtfH7Wztro0qqipymmVHNeB+mJ6eCJlZobrh2AcM5N2JCEs2n
L5tSh+YMF80yBw3lVuYu6ajcKlw0HbmVGDTFhEsgJ5OwyYTlnXG1dSF6DQsy
O6JQADtCSVRDKTV+uNdKbcXzK98t9He2lHrPWaSTYOqXf1ExRSNJ2Wx99vIG
YOUEKyVY6ySsJRLWx966sNx/wzIOoJAq3u8gbJ/Pstr6ziXsl+InahhiKYg1
DLFMEzskiW1biQfEthGx1ZLYwggPcmkhDS7XnA5neDC4/DS1ZF+TLdnz43gw
uHx+fBQKpwaaM62w/O14+eblp+POjYBCN7pIoaiLLlLYNNEVUpjWRpdZR+Q9
eNFr6bNhDro4saVnLDi3NjjLPbbl0jNm+2gtUa/57KeFaT/M7ueHBMq+679f
XwF9cflrInj3dZLg6yTBMyxB2ofV4AHm97eqAaawrb4Dr22kCT6w8NLPeRcW
Ji6+LJHdudI+EpxEJrSta6WtT12GB7bkpyh/+lVp67lx/Yz05hVDF/7b3nE6
XTaJpKOh5zQYS6tJ9xTOHDvGuiRdQ53fU6gStWz0wE67bHT/Di3Mm/T3hBV2
u7kbbUrZbsyL7TYbhBUwnrSoxaWarftNs4VbAg9tpgHl/4RkS2BLftyD/8TW
q+aVl5w5qra5XP/ahbGvK6suP/6M7hns4iviU8aKFd7unejqz6FJi9US1bbL
7COBSVQDXTXNhqYzoSlxNP1Ejheh6YYOTW5ikaakd2LJ//Ur+2y/n5veq5JY
TqHcx/v9eBtN9DrWtHj7FV3zytPkRpVwNO3v0ISRwxbKKQ9U/HKAopFiPmFQ
GYFKyw+80YCiSLr+ddhhSvP9DifaEai6duLUUnXyxSdtnbStWGKm/+Ug8ZMr
ZYu1AEXwHPRZ26jqfUUm07PjeDAR8ez4kE8q1IURKREg9S5TBJPqMvdT+I0T
h5QbUN1JZX3k1U6bV87qkWrFLqXP3FTEQFbxVESoEhpetgfzRob30xSr9nXN
+aM9bNGgsACmBJgygynvqieDniSgp9FFj+jQ43bu3fU0OJt234Eg2v3JleX5
CyI8ERGSeu68TIbKM+PDfZqhopYqMz/9zg10WZl048RQEljaJjNxXQwJmFGz
qF/Zxz18rnYh04zpF3b5M6YP7IzM2qMTR2odW0lJZ3hNO2cROna6L0P1TvTs
3cAjPi+DbqoiSSySoxeeVkVSGfXV0sh4el3KKAIgaC5AAEQTIGQXtAtyPvCm
DhXGRBqYB0jw2eQh3YtP8pBO/skfHtxa7r59pdZwhyxL558tEez9JCLkD8+M
QwIe+b7k5xBMDAdMhBqdLGDiXcZEHMiRlmuiI0fIROGbwKTU3uq4Ll13cLcZ
1/FD+x8QL3k1XvTcE3XbSssynStXOLniVK7ddOxO5coG2wR1li1+VIdNCzZc
tWisd/8WM9ZjPHV0Gubc+InQSUEnhhyZH9oNjDhk8KdVx8xkGjxn+SJlycP3
b6UlaWxcj+kzoQ4oqmwKbjejcu8dlylF8rNZ/uHp8RMGlQdAbewAZRZtNKiI
KpPOGKlDWkp9S2qV5kt7ucOZSMjsHdPrydHr6VPQuQYTMKtUviRQo/MFUtQW
BkiRZYnmKWlPHk0x7b+pGjOqeyYquB9VKonil81KrmLmN7suLw++7+Jyi4wb
h0wcaIEFPmNVdbDVqh8pl77i9PKO916GR/45fCbl4f8lK8fPx/Fgoffn4wMB
Pa2AnpGunXJRp2cq9OAweXnEriA/taft2FFZ5NjJeVOMtjPhHErcHMLL5fUW
58DMxS6qpq1cVxMqN4tM5dq7wYEVyqFYwdqC3NGmBF26/BU2dXyiGhCV+qJS
iEqNqAyiUoCS/0wP3mxIydcuUcn/I8AD1QqP/N+FFnLR6eXtUsjtJOR2FnK/
FHJ0HA/Wzo6Otw2TQd/FcNcRFKVKM+DindYF9S46VKIBhaKjYcl8FJkfKDUU
1DrIAzv9VFGz1rx/IPoTThUqRnWpomZ9qMtVm3y9QAkx4KKkS5IbMmLs3bLj
XWBRWBCF6WQsiEyNmH6x3Y6YMnymvg/aJJUaH6LOR1L+5nMaCfLi9hvpzd+o
3/zvnxrHExXl74/KwYp+/W2VEuXTNiXavTVUGtlWQMMGV8OPnUVZreHaaqtC
GjI/IkhDerzBoH7YCn+oanMZfWZcbXQorDKhENPoR9j+hB9aEUud9++1I4ma
osH7XyX7kWfH1JWnoZef4+WnfOr2FyoSjvOVC/XK8br16xX4zPGO00l+x+3A
O77efcfu8qguA39X/cbn/jtWu/17vOPabzy1n69y3yzf+uB846vt53rzfe9o
IFLTQCDo7Vt2vuPrHrglOvSm88x7FnjNiT9aqX3Ngrdp17zmBK858/vOrPrN
Rq7jNaeB19zCa47xlmvjvHYkOlD3ckcn8gWml5vyUQ4vzlNd3/2XG+Pt2per
jsTi3coHac7rjtGf8pd2+V9Uv7Rrun1pa4YU9jvMD3+H6f3GeL2yW7xIdour
Lhil6QoRGI92f8PCdIsTfcMo7jKx7RvO8IYz84ZpQJAc3xsedN4wLkXH/NQ7
3De8Rw4pbw98fS9VX9808IZT8/UVvO/v4G7eulB5s+7XVndr3rsVM8b+RL5b
+35jmmQQtlCvt41a7XcXn/bF6q8w57P7bnEPtbpQY/LfbQvvNsG7zV+Odxsa
4g0F3u16992ej6+0msluO9/eW8Lf3nQi79b51iKR5avltd5oOX0mi7e/0cxi
q9darNu9xnmt/Grpa7sPj1oSsXGc0Pc00VPXXG75fdIl9fp9xh07Bp4fr0xZ
RzSXxIf36Eqwni+aDkBk/ovOzZe480VfMm9UN1z8olO86Ny86AZetPBfdGjC
MPSih9WLvu/PLzMvmo6aj1S+xD8JfIm/qV90EfgSC7zopN8XTd/jMbXyFb2B
X7SJZ/uiE/f7iy+vmVSmL/CmcKNdE9IeAbx89ZUee/cbI83gxAkU5tS5MJU6
niABtyELEShAIJ0IATsgH3HWGTSBdS4B+q7L0fdPAt91n4Aw33VhCIS+6+pW
N3TY+jHfeA5zD0KLs7wyA7h7jR11O994zvK4o792X3vCTfYDPMh6o6nNvV+1
DXPBGxj1d7z7C47xggt/9rjo+oIFXnBxoi+YvuNT6l7wkJpxcb7jeHi2Trhf
czy0yt3Aa074FhvvNU/km45GjFcloz/jBYHFevSkl45204LAbloQMC+XXzC9
Xw703l9wXhrI1z2whb7h/HxUdtxLbENG3XZ2fG88NalObzw3bzyi7zTeOO2X
yALvPg604Zn/7gfw7jO8++z43v3UwLtfa989f7kPfHnLxL/cKd56zMdk/S+3
qH65nWk184f6gr+R3z8lfeXLrd5/4r5/tOCb+k531Yc/QKvU6s3jOXrR6fT2
o9px1iS+6oaaa5PvWrdsmDJ5Sg6s5FtuHN9brrTi0wJvmS4yG3S+4WvWzp/M
b3hC7zr33rXTtlFHfqn3ku1A+mp31U99ydfaL/m+DRP7kqs5k/B73vZWHIuZ
aPmeHAARVXKavQeCok8KKSjkx0dheoDC21wK9IX/0pYqBec7j4cOAjZ9Ckng
a89bBmiFRj9m9kwNz+7fHi3fd7dezYve5CS+hoCnLvH32cTfvzk8dxqs7Vsw
KedgKM+RDd1XZV//slJoTMq7L/DuByb87mcE3j1dqDrgzLmoGJDfiZ/gTHtn
Rx/77z/mO3v1+xfm/dPkC6/Rue8/cRN/v5P4KgwuV/PoXuKvUq8+5RxYb3IA
rx/NnA0DfvoJA+7mBV7+2OY3GgDH+fKpjY/x8jO8/Nw5y/4rfqJsYgxUz8cM
5J/7PS+l0HJKw3R+AiAadSBGus6wzgyAuNYFcYP8kyoMfBBuC0AguDjQ6boH
6WTdg/o37GgvkXy4N5hASNQM9l/vOkm92VdlxXYGtmgAyUaWQkFRmw/kQ8CH
GvAbG8/dZY+U9MJBKy4JX5qhk8HiKPg4QKeG1oRff4LX3zy+139SYAfZany2
3Ty4jvMgwWcjkAdJ4PUXfjLE/kvvlgyVosCratEK+mzSzI4TCno+tpoK9K7V
pJ0OhNjGgn7pPM3T8cLXfeGW6NAKOQBYfeGovmlAvu/8RF9z02wX++O+5lmB
17zKfc033LCkvP1TKzpfs/stp9fcCnytM/8Ncx9IE+8H6VxZjy+4KQXb7Zq6
+oq/2ZmFd77edhZ+L50rU12Afeh6N/u27+9424l52zFedpQcfcVp9Lrp2y3M
K6euv+j9jht4x4Vq9X79l7bVyzte+W1Xzyv33HaZfeVt845jvOPW8b3j2eod
q6UU+46bzlf5/PNpokb+P/gTXO9Q/1X+5v7uSU6vnKOc9lPwa+98+ZTuQg31
Kcsf2OFlOS+hRVfwfJ67imbm481Xe71u/LE62vl2K8VdeG8Xff6V8+zb7be8
T9pr/8y6yX7tZ7pfbXcVzXvt7lfbe+2hAu6+9qbaeXUcX+0v7NS128/yP3Vf
tpixs9rg7VrDg/mkR3rff1N9uU74jdNv5+HXGO3v6k34jVNDF1E7z9uB6YY9
p7X71Y5Ka5fzVN6vVUUveIz/m3tk8vdUEFHC84r507Tr7ng8zA54oN8EaigP
v//DERMDKT7zicRA47i/98qBTnlF4S3OPH71e4/pW/O9tyj2V1Ek8BAHol1R
4PaNOfRNgep6zNdP6y//5FJYeqad0M15nPeHp7CiPqke5gQ80I+QFY6HPXuv
R0bI/8MdD0vPj/x8iMGhZRRkatOUnujJ8LXniR434rerRbnorTri///uzgS6
juu87zdzZ+Y9PHAFF3ARSRFcJFESuFmmVlMKAlWiFlMUSVEmxJiGQIUVRYUx
rSWmxJgpDJkSVYg2JCgsXcaIEUMImCBB0KOTxj7d0mhJYosWnLRpLanLaU/b
c9qetqexJb3e7/vu8s3MnXnvgbTaU50zQ4hHpN73/33b/e6deT7UnhQPOd6h
Nkt7ok2V3B6JyeT7rmGzolssCHmqmv9/QHaZh+yONFkT6Ug21mSf+fW7kmt5
DPSKLvPjZ4rLfKhPV+j4hoEaY44h3mf2ZQx0SvXbOXRpN2QHcZ/ONO0Y4GyU
c87DfMgw52EOzMfu2kRNe1C7g/tkmc9MQs7dZk9BXu6BjF9UWfKEb8lBDnn4
WsSp4I30KmzkdKJ852RsTXS7ydh3UvE+7dl5zSd6roBokCQaAFDdupnGPJdo
mZ4k/PEL9HqtAAjiuiu24HDxVbLgzNR98okt1Ye3tzlw0gMOp6yzGgG3wgMO
v7o2piPwH+HLjHR4uhCNpheisSnEA6kS7E3NxBQ6MtpcE/fhvUSp+X59fi25
gQo5GXfSYX2FeRl30rNkA1uNXYSGjmfIW3EPTZeTc2lKG4Yl2gtXNM3U7Gt7
VX91rMNHs5la7SocTpwW0ss9SO/NIIVgNBOTuCAgQwDaRFOS8TM0JYFF1mC2
scpQVX8uFbPeHHwHpyv55gpFrJ2o7tOTVDZRDRGtSgIOLWuzhg6no1USXdt2
/zXRzR2ZBA3Dxoc0w9qwsaOuXCzslSnYsJzGrzmP6Dk5F79mOsriN+Txm4Qt
G4Ed1Jmg6USExr2Db59Ayb0/vWEapomHPI4PsjiGZ3dVhh7i1xGRxW5b7N8j
9LmN1rQ4P7S1pfrmd3qqH/3Qbn8bzk00GpsW5zVpzmYAfjfcQ875zbfcGLTE
8zRvkqPpRbTeMB05rTfH/cn6m8/pfTFxf2p75LR5IQ7bHvEFswS0VHjZQGzo
sG6lzOEHStbE1S2dFFORghoD1Fh3Uj9+3nVSOB6JLGOckYR0qjyfMfZPP+xz
jCObuH2MXadcB+M2D+O74C6BcagZw6DExDIyDv2xjJjLNpb18PP8oNn4Gh3Q
4+1Uku73J+ltnKrezGBkXdRGyV0vdZ0162EadlLo0oV5OvTQxagNiS52yw+o
1grolhqmK20EO7rYZEWfKN1Vni2sbXAPOF0ewWVHNxnBMaAt0VGW8TO0XYVo
o7ri1oMX8rImvJPiNpmXzbam5BsYpnc+200dVmgi16VhVoNp4QtYzRXpzvn6
No3XzDguId4I8OJJchUh0EMzxCnCZdqkrGYWQcWEl9lavNpD+E68YwDjGogo
ZyMZWUtPV51i7QtjWU9mBsK0OSV2mcx8pyM8sEckDrDsYwdYzibmWedwnkWx
e4gys9R8h4/k8oUvO6evPadG618952u0EHdEA+wfwzsOciBHNkNnIdtuiyDr
A+XTh7w4GcY+yHfohstGsBlnNHGqNoLPFkRwKjkjVRpgcKgBUE29AH0bh1ty
CXq7TdBmA1LvR0mbpM/i0QSH+RzHrEvx0CEW0FK3Vwy4od018qSYun6VarEO
bWksmkMLGkux/L8Meo0H9O06mj/+2B/NZgPDH81nYe06cZYe5ouAe0gHDc4P
UsclfdEcEXiXr6HH0nsTYrdJ1nckynEmlPfpN1CctfPKc7wQ44xjCL8eWvfO
5gqAceCKcQh8ex9V7dbVS5Bx1DDi0MZyCnFIz/BZxJIjFgHcQwsZ2+qYDhpV
M+OP1HAyF/JaD+RfoKKsGId1hfRBFtIOrS+k89EOMbS01yAewHtMWfoenaV3
2SCWLIbPdvMYVmuhPL56AD18hGgGAFN1z49uI5yQmsMkz5InI+dSrNi3XiUo
8q7KUSzZUI3p1Gh2cVQHxbV5FH/eUozYxMMEKFIM8gI0oicxcwI0oIHVCFXa
dMtMEGmeLPYQw66T2xKVNskwMusfw1HPrM7hWtcMNoYSDDH1UpMMIDE0gzTS
B65rMWMNf80VOMqi56zx+wXrYx3biJX0aocPXrIP4k+btVsIz817WA9ZX+Fh
fSstkhhrPrBMsOYRi6zDQtbSV4SHWRHengDdar6FlFddBRonGXDkOwlaehgH
cA/YimiYLpaJOeiukaep3CrY0wWNww5pQWP1DRoGLQF02YKOAHSpsP769o2W
2dR8pQf0Z2jiwVJzcVDfnAZdAtCSjoOfx6yM+XmArZJoFm1AAwo89XOOnfrR
0f0ggw7F93QSOka3214wdZdfVHE1b5OXj1ITxdiq5pnYpvJySMd4TaxKemmG
idVchKGnusrpIcxdEK1NIzRnfW6mXpkhzI/VjQ3FqsvLAZDzgdPR+jkCZ7sm
ADeQCy7EKKUR89Ahe+mVj2IWUVCO4O1pBdr0v2bnHgJSlAprai47rKlBIbsQ
7sHFskvV1Ks87G6gHT3FTnp2ESr6WB583eozJzD6RBNgk4WRp19sADMoc9GL
DYbxXI4uqoiQRsZiL82gsDM6xarqIG7uKXaYaOG7m9LxBgQPUoqVNJgYPkyJ
NeQMVfBFtikyHIFh2ZNMYxuJLpkGHpolG4lIsww0ZW2a2OeGF0HzCk6Tn7rb
QpvwjCbfJmjSJ7Hwy3MvvGKCsXxJgA7pVpemiaKLAe3PBYozpoAH48FkMCLN
1KpU1sW1VMg1N8MKbIfoQB1+rUM+YSiXZm/AEW6y8Srp+eecHjiX8LJMvPJd
v09nCHvj9UIqXgM6UTeO6xdcyZgtARwsjg7oEaN+awWDzBNv57fY+4B15D5k
QOsWaeB+m3SFOSR7xrPLZzZwWRDD/+agTcIZ7oHlTsU05B0xMP9kkJsOqXHk
ucueZZmg5sg/RWfoGHI+ZeTIdUBTRPuQs4gO0xFtgnmY1q7ImiZPYh8xtuMI
VliJcZicGvNgtvkZu6HDnpmidEil6Xt95TWk1xUYikEhRdckCeySgCJcIs7j
GZmm6d0+4AmXKHnIunRdxyIHyV6ZR3YTnZZVZAPPXkFuMFOyxqMY4/jW5XHa
7YNjGYN4Uf5OBXjg5y6TSZxNHDX3Mh6h4uwH97inHuh4JH4HXmq9i8ckQwxs
aWaN6AGY1CVb+4wcpSGU5r+H8/fFs7wknoDNl0BXMEdxYC+/QSeodwGETrDO
4wTr6WkI5gQ8vE3NfutComb7/CCu0w/MKlij17m9dZgNnmnDSPyiHjzjETo2
r2L8KfT9GwqmL8O4D4n3COwhONTjqmLnLWl9qTug11LWTN0FqHVjlo8a27Og
Nurc4p2L+lp6vO1jM2I24U6hHgBkWOaecMvccp2cI71V6KZYI/1usqFTOiCm
EaT4PA2Z3eFIIhtgSvcXbOndTXC9N2OMcyxFGkAjbD7CukY1auOPbaHoLnsS
u8D6TAchT8H0smZgN+XhbbahKzB2gSdcYppt2VV5ZK+2ZAPP3kGJBsyElxfq
Jn1uA49s+BN2Ic9+PaUS+4mn7cJwZmF4hmmetGkQJjYNDEiVkg9RhnY0WdMl
ex9jDHPDdpoZmoPUR29snH78Qxen5UKuqQpdL9erPVyvpNdRJCNWranMRj4h
fTYdsYi0rHcKsOiOns4ruu3nTvKBo/iCRsnOLXcNapTeSsuny3oX13CksEzO
GyUQlW75RET3fLrFPYdSL1GXiMsWYUUjTJ27uAQI5+Y1WctzEcKaeC3c5zCE
OjLNaSpCmBlMKYkmzmST7vhgKunWADwMnfQLfLgouhlgM18c3MMAU3jGydmi
mydLJBtyspZrBFwhjTwppm5YjVjzx8X15t0mgFvWZfWD/mxZrYv1DDoJ20Dz
5OJzXRqumR6vondBsbzLR48RJ8yD1Ee4xNPw+QFvGo7SaRjZ0vBKPEzdEj9h
YzulM3uxU6YRpOR7tknG5gSGlzDm4thDuN6gbZxwrAlPfskes/EmZLcEnmEr
a7090/JCwivpzX4ufBNPDMWe8I1p9Ttxhla/qaANp0O4ixOOE10ToxwgYmnO
X7D925KPNdsDNCVXL45H3EUBrdKL6qYMclV5I9s8OcRleozkvVP0yg9ogV9M
FdkixF/7nBtYlmi2oQhXPGDrbZkQ7NUcLN/4WU5v03VgE48Gxp6oLQYbmbsD
SxcOKmkXiLEFwWnd0+/WPbSLIHo8nAfSnCPO2VZh2lmIOF+8bEDDpzis8SJZ
LMSjR21rtZRaqzAva0t6h3JRTPv446y6RGOtD/q3lTj1L9egXkdDtbBO6kur
+F0M2XDWDwjbcMYHQIF6ROPpiTOUoQOAHl8C1jprH2CsT+ezPpvH2nVcwPeQ
oKRNVwCoqTDTcuioXhjBUo0COsscozr4BCDj4qiiO7DqlOvAKskUXtyBOebX
5DFfVMUvdk1G+rdHVcvCmatIH9t570UwDwA5QNArpGFaIdEQSzxCnDv773N5
W29IQHUmzmGS8wGGmCZZbrdQz6gRcWBbagfWwoUCHSbTtQPbeLqOTM+1SlXj
C30+pk00wKhOuxi382UuJ7kA7os1Sb7xENCbO7LRG9Im78QZ6qAdyQBABrTJ
O3raPGoCQasD1xeztNkgfgnvkY8llF/Y6T27X08sTOWlrQYTrQf1Lr19tsSg
DO16N4nS9lqyzrycSzYVo3Ga5wXNU9pE7ONZRw1eUptnC9yXeCIzwZNHZoon
luBo2jx1bB7UPL9+HzsTp3mawMRia65uFpiygGaEs6iYg+QwZV6+LQO8mPZ5
39er28aRYVZtbriArgBk69Mb9gbZLLgvQ2Qh3y6gF2RlA1DS6beJM3SGMRcY
S6Ey0fvSaEn87VqMpIk51+WymYRM7QMMmX0A3g/hiIKmh8oHDTX4fLDNa3pf
cw4Kv1KklBd6ufQogYauKBJBBxBzaNkCnFG7Gs73xNyGPIDNcF+emkdAzDV7
wi1FLwR6YSP0vsDp0U4OZswkQbM+lSxvJhjqE21DfKM2YMeLbdNzhDIofJ2J
IehpdILagefLmjEdevqgnx7x4Z3NBTyydqEvpgOKJg5zMRaXwiU2DjemDz2Z
r+MtwX2lxmjj8MIrFiMPwiAPI65DaXCPEyRzjVBTk8FJsyPxKN4lx6n+84E9
5mkeN25gPLu9MSndEtRQFOYoKgSlxgghiW+kfuwOi9HT1MS6W33vBdetRp5w
bIgkBmSJDs1MP6N+Kn2s2ByakXBflQ7I1/wBGdCR8Ikz9JRHiiSrf3G6/hmG
NEQQh1IIB+pF2O1HiPPesAY4PeX1RN/0wUEVfPO3e+oA13gmRXDXpR/dQHCK
1hoTfW++VN20UbDoC3n0JYlFQEzWJjbiiNE4QDxWB7GzhphEUO54Cz11Y2DR
gC9OD/jMQjEkcGP3bnKDeccrtrwwW0Z0iNsAiuixiw/66e0EqTZFwj2iZ2tM
jswFlJsjXWRdDoC2uKeZQ/ix+vZkT3UzTHPeemm1ZvTxRyquHt4AseSNqzIA
khaQfsqiTkC0hheHqUVpTTxaYVuUQXzWUQEyLWQNRhhQ0p4mzCzjEZHpJH29
SOMhlUssFVIxHQc1ubBeYi6kbrJv4IzhJxi5OmSijTH7SF0qtsSMdFXDiblh
FgMziipcn58f0CNW2h7hpU2aqkbHTfDYgeb3ON7DND9JcxgIrZinQVPRgFuY
yYOus9TEAjZpo1by8BZcvZWSkRV5sMV5gYbYAjYkf/izbYgtLMTWeCbEQLvN
fvvcLA+2FXRETFGDxfkrn4f4QmqVdLyd0fEWXAJ2NFcRRyg5dn59l+Vmd5/1
MSGKve5M2PGTf5pflDcpVVZg86HRxcmIi2hn8j29BMjNjAIDzbQcsGV1qZKi
Y/U5D6FlnJCOrGTPuAHpuOi6FIRoWiJ+JY+Q2bYwqVF3GJbR0AEvo9A3/pK2
P/z9w1vqjqyQngI2oMI6QV10LlyZB2opPcxQEEpfUaF09yUGRWMQ8cU8UFKD
Orc/1QoClQNudeZajMyOg1lhB4zWg1taXDClaOUGU4bRQ59pgTYQBiEX+kJ6
Ft8EU4pR8eb+fE8w7fUwWkQPh2WDyTB6851XTEBRuqNahZtG4zhKplHIAO3e
w5go2VoYMLR4FkdTXAaTAUQjqnPm6jZd+tCBzOw4E0GROzM1du9mRJIOntDi
KNuQQRxNGRy8fYgLcTSU25YW4lgIOGIWMnsepPWwmSK+pXA8Q2FTAwfEjIsU
O+DIxAutgsWXzGRqV/Z0It+qY2hc0BTHiuYydeNqFyZRYZgUpbIMlyjJJaKn
KROpLHfOO9+Tynxc5gGXUipMYHWL+y4BYPHFSqkRGnhWnBa04glq4pI09ujc
FdkxbgYEdd4mPtIBUmIgfl8X/6jOAPGAaEsMbjMB4kD4GrU5nvMqLkAyIA70
bMB+Gk+plD0BUoK71CCeSReW+kEMaxC0ThVPFoAwQ4UMhYCNaYf5tjVSiM1w
9qioXnsZ1fiGwkHanhkmPg+qqv6rNPEpJylgZcevbS41UtlbbTi05VGYBfcm
Fg6wKIVwSFDg4VDSmx1Y2ccH0pXdAwXmeayKGC60PBVPFXCh+WtoVzZDdJnh
+fBBYeZ0Remq9/E7UnwE9sj08obn8YWjmXiRnsQVpEm9Ayd9FCl8tLRk4yVF
qt76vjRD6tWTHZZUM9ybNSkY8Zh4wQNdISNlqkpMjdjEoJkhjA/QDKEBSLQG
FU/jvYS7Hbym6KmcfiGlgzXUnYQVAKtM+rJgAEnYcOA0jqPe+t5qcaziLfGB
fW0WBz5zNsMTOIgj8gROdAlw/DLh+FXTet3HW68ze/V2r6kqOq/h+UmORK9c
hg/mndFgic32X45PyYaLtHxkLp+Qyss7febyIZL0PptGSz0iWp2HCB/BnsUi
Zs0aYZqvC3CiKhMxuYgCICQ5mFNJMLTeF19uCIzkYFigsANw3oQGXEwPViNu
kEuU5KJPUGgsMKT2Q2k8jbXWhoLvK5nN4mbPng3VnoN3MSgBMEmt/gMaWE8M
0hZDA2RonS+OaTL9jIw0ZNxeugj0swCJLKajJSQuNkBCs6mAMHrvXyM9LIpj
xMeiAizwhRPlwgDJzWEuQC7LZ6EAcAzf/e5LVVQog4G3YD4MWPcxhekWbBSP
HTEOsDqhVbx4xoOBAoSeyjjrUOSQwAiJ9Gn+EZW8dIBQcOiBpin3WFkCT2Ms
8yIk0FR4UZE2Qoqp1BshSGUNUHkAqATwE6B5SKF5mNBQ2goRzbPPfh4iBMCU
HZiQx0eDWE5aLLSIF8+msew1WKI0FrdVEFAtYYFxiC/fcdeG917S03qFteMk
l4gvTgJLpI5a7+JkmSWyE4hEHiJY6wMAIugrgOERRCghpbxgiSwQbJSDuoDQ
6l0crwVknwcInQLCQBmGi4PBQiJZiCSar9wQwV44SIaIwMxleMCDwv7oCOil
ovVtUaei4wogsB1YlD0sKpyFDQ/DQqbrBx5zn0AMCKQWi87h55AFrd3FrxEL
3IdJ5iw/CxwWmxcfaRDYbMl01jIFPmBcTMPluDQeMppQ1y0t1TeHe4hQxWyf
wWMKdInSRcSNY3UlELoLWM1grAbVkh5YNWXi5p2iuCliBadooEnudxcjpleS
4iu5uKTDtU9X+sA7mRw2lw6eGFFF/AyP7b9ys1pILxcziLJBtMH1xZcoiBYk
E9pVgONvAZjZDMxbqhMGMCVWYj760JaZMsfyWyNHqhvXXxwWWjuKE3lYcKfF
ByOw5b4Qguq7WP6K8qIDpS8x6T/U0sdW+lR0uNGLwEJPh8KnIGwajRPEsQ4g
/Lz+lnfE8eB9bdh4AYhI3w0OuCBcBs8eyYQKMOk92qNLTNAQk3Z16QWk+Dts
9pI89rbPLBvZ5rIjwwcwI3Dh6Q1MZKOZiVhuDssNkFhT+sMvbql239MGpGAu
6afkcliKUh19mY/S1cDmFv31zEjpeyM9SEKRErgJJgGOrjybP7UWsxktJ0Oz
nARCYzvvghmMBhTpJUsRGxzj0xpS9NZgs78BNhGGjvrfHtbnoI4kGjNTavwN
ckDfDPD+i/QGTGXjc3vWVF9+ugMjSF2No/EFkA/NgiSaa+3pmiUeNAEGkAra
D10AsSAy6/1nAc4GhAOzTBpjwp7LAF4USKFeVWJXMHoqAYhWkuKrPj46m9Es
zG5KSs+mZCq5hdSeQfREvDOj63l8uWwmr7mIyZD5wTTJNBQ0iyyZ9fZsKB72
VZ/Ekvnjl4CICRn4VxMyISOySRMpT4cILSoFfX912A6vXGJEAl1f9qfrS2gR
UGdGfdkhYXplhIGHznQ7loSRSl8Cqwwd0n0RWLz/Ir2pXf3YdXNL9Y1v9xgs
5dpYKrV3W1IRshw4bLSPfq/SHNRvVr/3HcvCcNi6dQMEBRIIUhx23Y1vYhiE
vZaE8NII3/naC2aJIugVWGFr/54c1WFVsp+dTuLq8yG+2eXS8TCa2WkszlCR
EzyqblgpSGxzmQqCXXDTxXq/U30FCLwZtF6hX936fh+KrnyEyY6JSPt+oJ2f
yd01OcgUNwX8fH+ySFjxnzNrEvG1Syg+X53oQqHreWj6LBMA9fq/NO2Ww6Eo
qruLgEojLj8vmXpQ/FtA8iYQH5NQCcVXXZvy++8yAODwsEpMqH4GlbdJZ2LA
JZ3IkQiTJOC1uCP4+rfX2OvfdDScNEDuEZ2vpIDAcT2+7+641M/ksGXiivfz
PiZxsnQHeSTU733oZvOsGXZB0txIVDgwvwI4yvCTBBrqrzY84GIMAoDgYxAa
EqpbOs8vfIQ1WQpG6H0+tMoQ9IaJmCPgS/UAxDfn7lJHhfwM9MEu0F/2Pn57
orutlZQEfSGxrs0qO00rAHJ1flwHwHswsH8PgB7/5Q7QeGzDVaCTUbhEragS
OG5c118nXU81omu3r9uJ6BixXsodFlbMRmur+j3W7ajfa8CZ68gyTuTLQdpH
QeSKc2aPyNInsuQiw/qs3xysAoGtyNTH0HJMvGhEVp3lmT1+kXUrM4RDP+bB
SZ2xq4RnHW7XVbRGqjDu+twDTtgoT9iy9d4mXUqr77pS2lS4VzE3mc0XW51/
CXRuhp8Cj87S6hzTMKJQ5yitM7Yt1LeLv0sit6LANUUO+GEQnhxCJrNrVvJl
Tnmy1PcNl7u0HHvyQ1Nt103lB5R0JQjZDZLOxLIYYk+y9fo2oygKGiYFjWiS
MH6a9tZytXzOdNyCnmCNfFqKzNEaHJAOdSdOOWlFudNK13PkrH5SUgZcyu8z
KXN9F5q/C6nmu9iVsf7N8Hx17Lyk7m2g9i9y3d+e6KnemtI9Bt31rs3EAFU7
9GM430Tp2F6jlJrxdd86W7A1j3hJtx1nTB+4R+hzTW5YsJ8NC4a6KW3ke7M+
W/b4lvykHHP98dLal0H2pto5onjePNcj7CqQc29a2ANdbdWZM1DYsFjYMCGs
ElWSppAZrKa6q/s63iXVOvJqLWiUFhTzcOQRVKazMLYNJKo3PUQJTTEPP9UB
nZpWtTw9760jayy0Iq8GaXeDyLNSIm9WTVvHjSRyCUSWdFZiYoC2uMIaIrN+
mVYu4hvTFfmAyxpMZGlFBq8t+RQOrcJaXXmx4vqqXCo1OHHXgKQ78sTdfTeJ
W65fXF9WeJ5+GSBx289MV9yDHnEfvL6lVp9m3FYmk0HJoyxudJRpo6Pqb4F9
GQH1XGL1vAf0nI16Rmk9u14/oxuHJhAVT/fEICrukmMTLEFL6dFRv6juZdIR
smun1rJQx9Cjox71pfJrDTG7bmqpvvFbPSCjuGg3bUjWK0DMO5ysGTcNnK4g
K66jUwLr86HQmI2fFt4MfD7hvzZBUAcsBqlH4/7rnsrR7ZlZaNC+t97Fy7iw
G/HpbdegNgTTr603DcX3cZXxfeXH1FV89IN6uwrn4M2FCcNH4krQ/zYg0eIn
IYHEDASAGQOX0BO4wJsOBNwfch2yeNU1yp0/Qwg5nUZkIKwQ1Z9qCJGFUG9a
yVU95f+toPpSUH0daH0DqD6/QHW4Dzr/r+RBiEF1HCPplfXoSbvoo9ZNnKEe
2km810rM1iEyV9mym2CTuul2I0oKG2phJ45sqX7hrrbqT/8C2+WfeYpxEl8L
wm4AiVsLJA5A4Rl6aT0AA1Kdr6FJNssRSh2Ytk+TnH+PNcRwaTlxWUcTCvJY
MwHyaRriZkCmb0sJKXVX0bd7TXXgyQ4QEq56tcx10lmeRs0peBkouN6elFlS
oCD6aLN2zckBn2vCCwT7kwuO885LYRef+jTxTT2asJK6RFDbR62enTbnevQM
dB+c0hOinxw0N/2W6PjEx3rc03jSdcpeB3ou1mP93PIX5Skb6sw7cTqVeQPQ
WaYTQR+6LnVr4u/zxXRS4vxkGzF9eU3z6CvQYat7b2wBedW/QeRLk1zrqHK+
fOvSQnEb5xN8GQj+GZA50l/1kit4DIJXqMuYHCAHDkBlbOPgNdMFXmwyBHVz
4pzTmdy5QZ0LewdTsch3SeRSoapxnc6b+lbulqSWy0HLnqSCU7fdJHqfeoQU
LIGCTbS6SCgYFrlnp9KNmjHxLUqs7dw9i9qAjGLZQi+NYsudYqEnh9Yb37kS
LbIS7U+uFYxEWNPLhRJJkChIFSAtUzu4F/VLYsgVIOteNXWSLEN6JwUBl+rP
mVS+CE4p11CLlKo+qOF862YrQMOHCjRsAg3LNIaZHKB8KAs0JP26RnopRH+D
NPw27/+Vr53b59ZafIKVXmbVlFFJ0bdLlZcnOkBF5YqXIgfWu5T1CXo5CPqg
P26bQcuYZrQJLWVd/kidkBh2a9gu7Y+2G6rVu2dETQ+5JYoaclHhalxXXxaU
Vk3f29JTai6yau7yqzkD1Iyon5wcoIl3CGoG1KMrNfXWO4jJnLPzNe2cZ0nQ
77DJFbRCum7g9xEwQc1pbJitHtQTbnPQxJ4hdScXpXbPryolv6HdM7h0WqZC
vQ4t20DL7Wktb1Ra9oiZoGWY1DJKaRn7tATHpD5HjHC/3FvDL+vTMNAatqsk
+RPyRBBOa3jRZbhYtMVWtLuNaH+gRNtrRZsFogV04iPPAbOijfZhA/ObJNpo
qg03xwmG9gvbgedpZTetI3MS84VtVip1hR6lpll+nTQLrD+tBmk6aYNP/VSk
TwX0CaxT6T0+aPHG8TAS9So4t2BttO5QxO94+mitEdvTS6nkSoZSyb1KXn1K
plBtlRovtT690JXW2O449Os1G/SiTVFcg6gLKu+A2YXOKhdY5QIQTsj2UfZd
V1q+86zPM9Lh5r5dMqcGEJHVr21B6lQpfmsoJLWda6r772wD/dS/TUvFUl5F
cA3L3KSKS0DFK+yirlSs4usDTkWMT30kBVZyE7gzN+GqxPgpF6Q6UO0qg3oX
8bt8ldHlWpghk+AiLSGIt2eLqHZc1cJOs9NBaRTuG1/qqP7kz5RkRbq59FVp
RK15SbXWgUZXg1qVBtUqF8lz/iRKhPL8NskzXuxlmSaEhJqa2yyqW9pSQn35
HivSJyDUUhBqo30GZlZBMkOdKtqZJk+nnAkcrD8VnDCVyQoHvkXlUvwB6UYu
5ZI/6VbiupldsqRm+jj+llUt1T/6jR71uY1gvjrZuGAum6FgC61gD2iZXu3r
qG5eL3JkCkClUg1X6hzTkfYaSTLBJn5pVwpAEXbSF8UYfsQ9m6D+ZPVvlN+o
62cjhktKrSDGZSDGDr8YM6lDfX2A0ri0YoC/OE+hC6sfZvLzlMlPukyuhZk0
MbYv6ysoDLx4k5wEdVC64GEsaMtAkJ+dHs45loEe9/r1wI69BHqUaP2j9KCy
Fqb1CECQgOlhncR1BOIfsJX5Nz+fdBRMOSLq3X0dafF455rqZza3Vf/m7b5P
RAx0juUgxp1+MSo0nMiKEYAWQVIESSIkvspyjH55ndru9nPOKXT2aHLPjx4Q
VggQ4bnHOqp/cq4HxQjyxMhdotShzQxPT+S0WQTarABtfsGvTZm2Cl6HfnES
Wp/J02Y5YrSRGDGRzar6wrChWiT+SK/rmGskYmUMvuxP6FOsd97YVj12oAMk
cYpEoEgdi7bGFZnjUeRyUGSrXxGcl85KKhJSXp3AgYHOIfaibjobOlqbf2gW
a902dLTXhNxrcKt77JrLlJfgf0/ec1h5z2/2QON3cRL5RixuTeYkmm8DahVI
dINfItwdaQGJcNpXSkkkuUQUWj59qB6L7+ZFFeUV9lAWNDSgkJBTy+erJccy
AZ2xEkx1MCSRWWmo32tAq4YGU7mqoWOtAdU2+1VbYAUrg2A4Ho0LfEqn467z
au1vFht/SL98r36fClG30Cw0xj67SUzdtFoJ1L4MlHuiI6idi2LPyj+6WOVa
rHKLQbm1oNy1XLl2pdwNSrlusRCU09tF0AtO4qMeSQ09TucTkAqZ+Ed5Ako3
dzJOB5ek9zSMHlLrRJBw7LObBS5v4dq/rQ3nTn/6rZ7aHle6CN3mWo9bYHVb
B7qtAt0C+AnE+2pWvApqRptrUP/J62rrZgOWap/4JyndhszJ1KzjSaubBN3w
OYAAdFPhe9MVAsfxX9gG4TvwZEfuPP5iNJuV9DWn2V0FSkFyO51yM3C9ficc
OlyYpxTVQvHPmFLf4koVeRgqFeonJo7cIcbuuw4vJdL6FaSUUuBPh3pQqJ8m
znWUGj5+gEdJZyarpXOxhSDXEpDrdr9c8ymfKbWa6hUJRnIo0h+TSP8c7xEX
yb7aKahLJ/WX4+2I8i0lFOqkzITTGQNPdcBBsOTEl59qriOF5R7YSAVli1Vs
KSh2W1Kxsd13omIt1FUoxXQFUIKVqM+aOGX7rHHTY5FemLoo4Ys39LLETkS6
RV1JK7JShSAVONc2dKypm68E59pwubq9/FRHcElCLqXIMlDkJlREckXEHFqv
vX6aokzWJQdsKej0Ld7yyXGgtudEFGGgB8iBkoTmflSgODs+jRdqoz63Egef
7njj2z30dIcLtzqOaqe0mWe1WQHaXOfRZiZo02y1CUEbTNgStNFpWkkDfXlS
HIyvf0wC/RnFV1og1CdIJumgUJgAdFFEjqowU6qoFH7LVQIfjOu+B1K4ksb3
ZFx4ETkpV7OVoNl6j2YV0GwWaKaXMXVp1jWqNfunpNlf4D32aWYVC+tULALF
VLR98W7lTNcLEA08aiV6lPKml/WrmXzPBjXnec98q8RqUOJKjxK48p8LSkS0
2J3sp948TCoRgAgBKJAaaGstflCHFvV6D2qhCsKT4ELXC/3AMbzE7eF72/Al
VfDaHVlnWLmyNTspTCsIsxaEWekRJgRh5oMwIY2IJvtplhjVKcyf0C8XCgKr
IQ8JQZUSqCKisR03iLGdN4ipreusMMpdlDSp5/EqniBpSSrQAQqA8b3K+GuV
8XcIsQjsxtFYGezGFX4MdlOdxkyrL7QfkmUv5hSU4E0y/V1uerfH9DocQqZN
7xp/WrUNT4veo/daCZTpG9H+L3fEeaExy2P/YrD/ljz7m8F0PT9WpqP5CD/k
dp8nmzEvvE12/8jY3T19u9PIpbEbLvhQ6l4C+8d23ijwXd9wwfeBwNdawavx
ZaEnzE4qsRSU2OJRYiEoAb2bEmGSLlgi9MNehF8J/OfP6Ze/ylMCdxxG7NEl
kMI+gY3dWuyD7xFBueYxyJtHt6MSU1uvQW9YRd7gewGESRSZNxOk3GSeFWcZ
iLPRI848Sg9KG+Mrk6dSvhIxhTrHet1M4/v0y790fW173QrJwmiRVrAA9IpA
pjApE1xGpsFjINNb3+mxMrkvtBOeF8ukfAhlWgAyrQCZ1nlkmkPNiZKpQtlE
qUTZRCF0mQQ+uG3/jTP9kGT616Z/g/bfSVSsUL0+VEZxSiTMzaK6aTVdPdvb
QB3QhjRpSr4yLFeJNlBilUeJmbQGMkqgv+h6ooTAaIJ7n6B1ImkwRRK8RxK0
DhtPaUwCn1c0oeHKN46L3id2iLFdN4upW69VPrFptXUMdIp38RLlpP0uYJz9
rWD/aru8SdnfBPbPBPubkvbLHPshXP6S7P83Lpd0Dj/idt/s0Koh+0NrfwDm
q09yXHUbSgA0Xn1shP+Mgj8C3zKSeBvpTI/di8DuG8Bu2Kb8vZ7qgT1t1c3X
KLNvh3FePzUQMRgcUuZUBktKDuOZ9Pkv6Jd/p5MDIOcbjo2YHIPJ0mNyZE1W
Pfqt7crl1yiXvw/qqLI7KjR5Ppi8BEze5Dd5PpiMbXUTmCyTJksyOZEP/5p+
+Q860IcZ5SIHj8DaMM9ajGwJ1pbAWpUAn9ip3PwWAQYD6jVkrcyzdo61dilY
e02BtbhGnwHWBpT4J05ShyiTgFuHVd75MVn7n/Au2zNg46RtgXXeXNuUB58A
nLeQWeDB9zkPzrVtAdi2DGxb47etBWyDBkBVtUm60lYSVAxbstTSbR/VL255
n375L2Rvq6Fr7TV90OgRV9FknvnSOrIzP7Lmc2/egd78bEdgv2JjljV/Lpi/
EMxfDuYv95s/C8wPwfrZaLqk8n4SL3LpiPEd13z/Ldn7Xx3fzuFH7euvpm1v
aAO3DPY6fx7btRX9eS3Zq3i//VqPrdvSWj47aflKu0DMWl6hrMUsnzzpLJfm
3ufAYyZTt940/X9Pv/x3R7894e1hbTUwsMM8NSqkRtdkLyrh1IAw2NFWffXZ
DhAkLUQLCNEKQmwEIUCD31UaPKA0uFpp0AmdyynydrQ+rmF0Iof/R/rlf3KX
5y6Qa3QERlM6A6OxawmT5mPsR9b8ZnR+sF5EvU/sRvunbl0vQIHq5rWgxavo
FOgQP8JLYPWeY2VYDDKs88swG2RoorZt8qRJbUqFMGU8ZnT4t/9Mxv/vdH4r
Mj4oNB4XfoFlHyXZh2i8NMZrB9iMDgDwXz2uHGC0R8y07OeB0UvA6NV+o2eC
0ViwK9ZoRI/EJRgdgM2pZT+lOPETj6/rM974COGou/CNU0g+BuNLFrWzNgZr
Q2ttiVCjpbsV6tvWI+bqgfsh3ylbmy3b+WDmUpvks2bOADOxJZ8FZobUiBkz
Qw/b/0YWfsRz2yPMwtCs4hxba1wuWfJrsJWacbiXbGeGVjdpxk/t1lZvQMZX
kMlNYPJca/JaMHmm3+QmMBlKmsplk3Qx4yMwnooYGK8F0DKcUDJ8hRLb/yAZ
cA/+5/DHmNdx83ZQ/bLDDGZMaLHH9DhpOsZ2hUzvel3lt9234kWmK/dW0K17
l6wIC0CEa0EEsP+8sn+3sn+d+qMdYP9JldomTRrHfAZGxx7TA+3oJ9DRj5ML
wD//i9kvPd4eOI8wHq+39kCIgLvE+SedS8hCXZpAl8C6xAzUJe56vc/qAm4B
yoAu6Bix1aTVOobTZOq2T6EmJdBkttZkss9pUtZ5rhdnTycE9wHU4idMhzip
A8SF1iGkl8wdSkZ9rgqhVQFTfQXMJn8As7HaNVkBAvjAEBh7Ut6B9kdgfwvY
vwTsX5a1v/epLoqGGVTk1N9W8Vid8P6PmdUVuAXtZswrPC/UK8ZdsoY2g6HN
ScuwsAUQ8j6Xl2DePDBvlT1MmjLviS5ol07C39sHHgR/5USv8ezxE8a9u84f
R+PQQLQsYFbOcjFu8p2NcbNrzSvaUUEGB2BvaM0Ei485r4443okTKbwxmB7D
T5EpcHt0dU8kPxRhAYhwBYig2t2/AhHeGuup9uxqm7p1sxLhcxDyfcafjf0S
7IeqC3yPCyNBK3xSNDtiEszFH0Pu3iBB4I48SPsSZFvRw9oihBY9atAEfj7T
Y7Xp68DqweMdYOFoj2lo4GoFCRaCBBW/BLNAAqziTSkJYi5B59gzVga0vMxU
WGDdPbDWQ7lzPm+3TyPbv5Kj4+wJ7NfdzPgxSnIzbTtbBttnWfYBmIwWQyer
3F6ZDUbDPOpHsLn6l7SYieGn+X6bK5Qe4K8Dm+FS0aXuIRgegr3Qrz/j+nU0
s5n9vNhT6x31wLMQTy1Wm20XU0oamHFpAzcGA1eBWVHarE0C/gw2QXOsHTJp
R/uoceA5zI7L0g78qMhDOJpBWLLNCjKr2HqEbejs2szKYNIKMAms+R1lzU5r
DeKZCdZEEAKYlkC/49YnIYaO6SKM1lmr5rOfV1pQlIxNeiJIoU3DzqLYtppo
0QxPqZltYxFtgxW2KrLKQDCPcM0A2xakbNuqbDu6h7LNTDDLZBtr1jG6Ro9B
RIFREpfP5h80qZX9vJaSsAGIEF971DZamSR8BB83zPSdEc9EvMnAIjTLZiKs
RNR4kxjHhZ21uNVGynMXghRR9aMfgRRvqgT18P1Kig1Kit2g7gny1wBEoOhz
Mjydr8Jl7OdrLGQThJnSU7JLiSYws5K0C9vLCo3EwJZkcvWlGvV7YIoyCg2b
6TevTH/5OPxvzmNiV9Z0jj2NDgsXfvxVzJSN+GNTEuhhwbtGW05KtpLE1jAs
JCWbXXC1NA9dOO49ulOM7bxFTG1Vy6ONann08I626iswDFI/KHvMb735Wo+o
VD+agmM+6mf4Pfgj8MfxL6poUuPHHKnzKq9Ze65k9myxxQH+g8POO03LhyFI
Phlyn4RrLlgUg0MuADvKFIrGDrjUR9yIi1plB37YD6fw+Bve31D/3q0+/C3q
w39xJ4UZ3JOfG3BAFvG72bXs562U9S0b7Obata8lNuyMSZhVmsGUOWDKIvh/
B2M7blYfbsMahaT68jMd1Q/f7cNf1e9M3dKuPuoO8BYoitxT2keP0ijNyap/
vtMVo/bRxMcK+VcwwIcqezrOGXBfRpVJfTxyo94j28XYfTeKqfY2UV3UIr63
fJF44LNb9Kc4nBCEfr6ff4rD9Ckq8J8L+7118D+Hq9m6LDov6KVSDnwmvI6K
cvs4Rv5R+qvvYf8bvL3z//hviJ/7P9iV7s4=\
\>", "ImageResolution" -> \
144.],ExpressionUUID->"f463328d-edfe-46da-a4e5-4f68c6e69a83"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Convex", "Subsection",ExpressionUUID->"640eae56-a47f-4ccd-b545-da03172e8675"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ConvexPolyhedronQ", "[", "p", "]"}]], "Input",
CellLabel->
"In[796]:=",ExpressionUUID->"80789be0-096e-4a8a-8ed0-b66b366c6d4f"],
Cell[BoxData["True"], "Output",
CellLabel->
"Out[796]=",ExpressionUUID->"e0e65b6e-af4d-4de1-810c-797792eff330"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["DihedralAngles", "Subsection",ExpressionUUID->"98fd4c3e-0340-4163-81b2-8017e8f005f1"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "//",
"Tally"}]], "Input",
CellLabel->
"In[797]:=",ExpressionUUID->"ac242428-4dbf-4c42-a8c4-5a890f22a4a7"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Pi]", "-",
RowBox[{"ArcSec", "[",
SqrtBox[
RowBox[{"15", "-",
RowBox[{"6", " ",
SqrtBox["5"]}]}]], "]"}]}], ",", "50"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"ArcCos", "[",
RowBox[{
FractionBox["1", "15"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "-",
RowBox[{"4", " ",
SqrtBox["5"]}]}], ")"}]}], "]"}], ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"ArcCos", "[",
RowBox[{"-",
FractionBox["3", "5"]}], "]"}], ",", "5"}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[797]=",ExpressionUUID->"4413785f-15d2-48b7-9000-4f9ccb8c0fe4"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"DihedralAngles", "[", "p", "]"}], "//", "FullSimplify"}], "//",
"Tally"}]], "Input",
CellLabel->
"In[798]:=",ExpressionUUID->"97636360-891e-420f-a00b-87adc26557cb"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"Out[798]=",ExpressionUUID->"604b1883-0a54-4ca2-b257-59c57d7840e9"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["EdgeLengths", "Subsection",ExpressionUUID->"dc94e98b-b86b-4b8e-bcc5-800b4323bb37"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[799]:=",ExpressionUUID->"51cef676-2313-4b29-8c2f-22e387b89416"],
Cell[BoxData[
RowBox[{"{", "1", "}"}]], "Output",
CellLabel->
"Out[799]=",ExpressionUUID->"51aebf7a-69d9-46b9-ac15-7d862a689328"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "/.",
RowBox[{
RowBox[{"Line", "[", "l_", "]"}], "\[RuleDelayed]",
RowBox[{"EuclideanDistance", "@@", "l"}]}]}], "//", "FullSimplify"}], "//",
"Union"}], "//", "Quiet"}]], "Input",
CellLabel->
"In[800]:=",ExpressionUUID->"c36ac8c6-309f-4665-a7f4-ce08d73893a7"],
Cell[BoxData[
RowBox[{"{", "1", "}"}]], "Output",
CellLabel->
"Out[800]=",ExpressionUUID->"06fd8d12-99f6-4e0e-a350-f9de0b02624e"]
}, Open ]]
}, Open ]],
Cell["Faces", "Subsection",ExpressionUUID->"a5111090-4170-4d68-bca8-168cb9f80d2f"],
Cell[CellGroupData[{
Cell["GeneralizedDiameter", "Subsection",ExpressionUUID->"584f5b57-27ca-4d34-a9b1-f8e0869f4237"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[801]:=",ExpressionUUID->"787f18eb-9632-488a-a890-d27752eb4298"],
Cell[BoxData[
RowBox[{"1", "+",
SqrtBox["5"]}]], "Output",
CellLabel->
"Out[801]=",ExpressionUUID->"21937a0f-8bca-4b25-aa71-b943ff3ae569"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"GeneralizedDiameter", "[", "p", "]"}], "//", "FullSimplify"}], "//",
"Quiet"}]], "Input",
CellLabel->
"In[802]:=",ExpressionUUID->"5bdf9f41-b159-4be7-8121-0d37c804c4ef"],
Cell[BoxData[
RowBox[{"1", "+",
SqrtBox["5"]}]], "Output",
CellLabel->
"Out[802]=",ExpressionUUID->"5bcf8f83-8b91-4d9a-afac-ee0e795d78a9"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["InertiaTensor", "Subsection",ExpressionUUID->"503bcd25-314b-462d-80c9-c30e2e948e4d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[803]:=",ExpressionUUID->"c9da5367-6759-40f1-96d8-9a33bc50b16b"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"690", "+",
RowBox[{"271", " ",
SqrtBox["5"]}]}], "1450"], ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox[
RowBox[{"690", "+",
RowBox[{"271", " ",
SqrtBox["5"]}]}], "1450"], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
FractionBox[
RowBox[{"690", "+",
RowBox[{"271", " ",
SqrtBox["5"]}]}], "1450"]}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[803]=",ExpressionUUID->"46865d48-9dae-474c-8bda-635c7f2243fc"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
FractionBox[
RowBox[{"MomentOfInertia", "[",
RowBox[{"p", ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], "]"}],
RowBox[{"Volume", "[", "p", "]"}]], "//", "RootReduce"}], "//",
"Timing"}]], "Input",
CellLabel->
"In[804]:=",ExpressionUUID->"6479e2ee-6afd-4f5b-aa99-fa727f34129d"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"Out[804]=",ExpressionUUID->"be5269ec-6400-4552-a234-b85fa3da51e5"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"PolyhedronInertiaTensor", "[", "p", "]"}], "//",
"Timing"}]], "Input",ExpressionUUID->"5835ff12-6b37-4018-a144-5ee0851a4130"]
}, Open ]],
Cell[CellGroupData[{
Cell["Insphere", "Subsection",ExpressionUUID->"f9bd7034-d5ba-46f5-86b4-c783d7874853"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[805]:=",ExpressionUUID->"65a78189-dbd2-4c7b-b68e-0a14aec09681"],
Cell[BoxData[
RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output",
CellLabel->
"Out[805]=",ExpressionUUID->"be0e304e-d41a-4c61-bca5-171050ab2191"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Insphere", "[", "p", "]"}]], "Input",
CellLabel->
"In[806]:=",ExpressionUUID->"edf52556-5d09-467e-bb59-0a8795eea2bb"],
Cell[BoxData[
TemplateBox[{
"Insphere", "indep",
"\"Insphere does not exist for \\!\\(\\*RowBox[{\\\"Polyhedron\\\", \
\\\"[\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", \
RowBox[{\\\"0\\\", \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \
\\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"-\\\", \
SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \
\\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{\\\"1\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \
\\\"0\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\
\\\", SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \
\\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
\\\"3\\\"}], \\\"-\\\", SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \\\"0\
\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\\\", \
SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \
\\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \\\"+\\\", \
SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \
\\\",\\\", RowBox[{\\\"{\\\", RowBox[{SqrtBox[RowBox[{FractionBox[\\\"5\\\", \
\\\"8\\\"], \\\"+\\\", FractionBox[SqrtBox[\\\"5\\\"], \\\"8\\\"]}]], \\\",\\\
\", RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{RowBox[{\\\"-\\\", \\\"3\\\"}], \\\"-\\\", SqrtBox[\\\"5\\\"]}], \
\\\")\\\"}]}], \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \
\\\"+\\\", FractionBox[SqrtBox[\\\"5\\\"], \\\"8\\\"]}]], \\\",\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{\\\"3\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \
\\\"0\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\
\\\", SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \\\"+\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", RowBox[{\\\"-\\\", \
FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \
\\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\\\", \
SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \\\"+\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"1\\\", \\\"2\\\"], \\\",\
\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \
RowBox[{SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"4\\\"], \\\"+\\\", \
FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}]], \\\",\\\", RowBox[{\\\"-\\\", \
FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \
\\\",\\\", RowBox[{\\\"{\\\", RowBox[{SqrtBox[RowBox[{FractionBox[\\\"5\\\", \
\\\"4\\\"], \\\"+\\\", FractionBox[SqrtBox[\\\"5\\\"], \\\"2\\\"]}]], \\\",\\\
\", FractionBox[\\\"1\\\", \\\"2\\\"], \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \
\\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"20\\\", \
\\\"\[RightSkeleton]\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \
RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"26\\\", \\\",\\\", \\\"22\\\", \\\",\\\
\", \\\"24\\\", \\\",\\\", \\\"28\\\", \\\",\\\", \\\"30\\\"}], \\\"}\\\"}], \
\\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"20\\\", \\\",\\\", \\\"22\\\", \
\\\",\\\", \\\"26\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \
RowBox[{\\\"18\\\", \\\",\\\", \\\"24\\\", \\\",\\\", \\\"22\\\"}], \
\\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"14\\\", \\\",\\\", \
\\\"28\\\", \\\",\\\", \\\"24\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"12\\\", \\\",\\\", \\\"30\\\", \\\",\\\", \
\\\"28\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"16\\\", \
\\\",\\\", \\\"26\\\", \\\",\\\", \\\"30\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"6\\\", \\\",\\\", \\\"2\\\", \\\",\\\", \\\"16\
\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"4\\\", \\\",\\\
\", \\\"8\\\", \\\",\\\", \\\"20\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\
\\\", RowBox[{\\\"7\\\", \\\",\\\", \\\"3\\\", \\\",\\\", \\\"18\\\"}], \\\"}\
\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \
\\\"5\\\", \\\",\\\", \\\"14\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"22\\\", \\\"\[RightSkeleton]\\\"}]}], \\\"}\\\"}]}], \
\\\"]\\\"}]\\).\"", 2, 806, 134, 19518561545030772728, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[806]:=",ExpressionUUID->"48a57630-bfbf-4568-8da4-4cb3bdce816a"],
Cell[BoxData[
RowBox[{"Insphere", "[",
InterpretationBox[
RowBox[{
TagBox["Polyhedron",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready",
Typeset`spolyhedron$$ = Quiet[
Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2],
0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2],
0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24,
22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8,
20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7,
18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30,
12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {
27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5,
1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13,
1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]]},
TemplateBox[{
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 2],
0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2],
0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2],
0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]},
{(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1,
2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{0, -1.618033988749895, 0}, {
0, 1.618033988749895,
0}, {-0.9510565162951535, -1.3090169943749475`,
0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-1.5388417685876268`, -0.5,
0}, {-1.5388417685876268`, 0.5, 0}, {
1.5388417685876268`, -0.5, 0}, {
1.5388417685876268`, 0.5, 0}, {
1.3763819204711736`, 0, -0.8506508083520399}, {
1.3763819204711736`, 0, 0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, \
-0.8506508083520399}, {0.42532540417601994`, -1.3090169943749475`,
0.8506508083520399}, {0.42532540417601994`,
1.3090169943749475`, -0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`,
0.8506508083520399}, {-1.1135163644116066`, \
-0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`, \
-0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`,
0.8090169943749475, -0.8506508083520399}, \
{-1.1135163644116066`, 0.8090169943749475,
0.8506508083520399}, {-0.8506508083520399,
0, -1.3763819204711736`}, {-0.8506508083520399, 0,
1.3763819204711736`}, {-0.2628655560595668, \
-0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668, \
-0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668,
0.8090169943749475, -1.3763819204711736`}, \
{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {
0.6881909602355868, -0.5, -1.3763819204711736`}, {
0.6881909602355868, -0.5, 1.3763819204711736`}, {
0.6881909602355868, 0.5, -1.3763819204711736`}, {
0.6881909602355868, 0.5, 1.3763819204711736`}}],
Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24,
22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2,
16}, {4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2,
4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5,
9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21,
25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29,
11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13,
5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7,
8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6,
10}}]], "Polyhedron"]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["30", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["32", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 2],
0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2],
0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2],
0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1,
2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{0, -1.618033988749895, 0}, {
0, 1.618033988749895,
0}, {-0.9510565162951535, -1.3090169943749475`,
0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-1.5388417685876268`, -0.5,
0}, {-1.5388417685876268`, 0.5, 0}, {
1.5388417685876268`, -0.5, 0}, {
1.5388417685876268`, 0.5, 0}, {
1.3763819204711736`, 0, -0.8506508083520399}, {
1.3763819204711736`, 0, 0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, \
-0.8506508083520399}, {0.42532540417601994`, -1.3090169943749475`,
0.8506508083520399}, {0.42532540417601994`,
1.3090169943749475`, -0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`,
0.8506508083520399}, {-1.1135163644116066`, \
-0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`, \
-0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`,
0.8090169943749475, -0.8506508083520399}, \
{-1.1135163644116066`, 0.8090169943749475,
0.8506508083520399}, {-0.8506508083520399,
0, -1.3763819204711736`}, {-0.8506508083520399, 0,
1.3763819204711736`}, {-0.2628655560595668, \
-0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668, \
-0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668,
0.8090169943749475, -1.3763819204711736`}, \
{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {
0.6881909602355868, -0.5, -1.3763819204711736`}, {
0.6881909602355868, -0.5, 1.3763819204711736`}, {
0.6881909602355868, 0.5, -1.3763819204711736`}, {
0.6881909602355868, 0.5, 1.3763819204711736`}}],
Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24,
22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2,
16}, {4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2,
4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5,
9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21,
25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29,
11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13,
5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7,
8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6,
10}}]], "Polyhedron"]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["30", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["32", "SummaryItem"]}]}, {
RowBox[{
TagBox[
"\"Embedding dimension: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["3", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Type: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Quiet[
Apply[Region`PolyhedronDump`polyhedronType,
Region`PolyhedronDump`computeType[
Typeset`spolyhedron$$]]], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Bounds: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iRegionBounds[
Typeset`spolyhedron$$], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Volume: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$],
StandardForm], SynchronousUpdating -> False,
TrackedSymbols :> {}, CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel"],
DynamicModuleValues:>{}], "]"}],
Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2],
0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[
1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {
14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3,
18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3,
1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23,
21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25,
15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15,
25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9,
5}, {11, 29, 15, 6, 10}}],
Editable->False,
SelectWithContents->True,
Selectable->False], "]"}]], "Output",
CellLabel->
"Out[806]=",ExpressionUUID->"24533a32-b979-4b72-b6f1-fe3865646cb6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"sphere", "=",
RowBox[{"MyInsphere", "[", "p", "]"}]}]], "Input",
CellLabel->
"In[807]:=",ExpressionUUID->"3df5a779-2116-44ba-a63e-aaaa08d359e5"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"Out[807]=",ExpressionUUID->"57f2bebe-ac22-4fd8-8408-3aecd8f54bd0"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["MeanCylindricalRadius", "Subsection",ExpressionUUID->"74f51c38-b35c-4828-8ec7-4d2ddfa84f1b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "//",
"Timing"}]], "Input",
CellLabel->
"In[808]:=",ExpressionUUID->"50d11bea-9019-4499-a610-ecb22f0d4353"],
Cell[BoxData[
TemplateBox[{
"NIntegrate", "slwcon",
"\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 808, 135,
19518561545030772728, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[808]:=",ExpressionUUID->"86b6fa2b-98e0-47d3-bd5d-4977433f44d8"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"4.327084`", ",", "0.8812884160408245`"}], "}"}]], "Output",
CellLabel->
"Out[808]=",ExpressionUUID->"d5612617-f6ad-404e-9409-04335a85ffe1"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i", "=",
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]]}], ")"}], "//",
"Timing"}]], "Input",ExpressionUUID->"f066607a-0956-48e4-bf4f-c8adb54f28ad"],
Cell[BoxData[
RowBox[{"N", "[", "i", "]"}]], "Input",ExpressionUUID->"0153a3ee-89cf-4621-814b-abb8c15da0e3"]
}, Open ]],
Cell[CellGroupData[{
Cell["MeanSquareCylindricalRadius", "Subsection",ExpressionUUID->"e587a634-98fb-4844-8fb9-555217132c1b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "//",
"Timing"}]], "Input",
CellLabel->
"In[810]:=",ExpressionUUID->"e85d2134-d47c-424b-a10a-2530ea173762"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.90305`", ",", "0.8937754633809951`"}], "}"}]], "Output",
CellLabel->
"Out[810]=",ExpressionUUID->"06c2d390-5b47-4d81-9a36-5a7ca6e26dfa"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i", "=",
RowBox[{
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "//",
"FullSimplify"}]}], ")"}], "//", "Timing"}]], "Input",
CellLabel->
"In[813]:=",ExpressionUUID->"47ac974f-ad6a-43b8-b063-9f5a675c5ac2"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"2.209788`", ",",
FractionBox[
RowBox[{"690", "+",
RowBox[{"271", " ",
SqrtBox["5"]}]}], "1450"]}], "}"}]], "Output",
CellLabel->
"Out[813]=",ExpressionUUID->"258302c0-fbd0-4829-9f7e-d5e4e439901d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "i", "]"}]], "Input",
CellLabel->
"In[812]:=",ExpressionUUID->"09ab9015-d6ea-4f65-a989-82cddad5b443"],
Cell[BoxData["0.8937754633809953`"], "Output",
CellLabel->
"Out[812]=",ExpressionUUID->"b27ed880-a2a6-4eaf-b714-d85278dedc27"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["MeanSphericalRadius", "Subsection",ExpressionUUID->"1a341244-0765-4406-a02c-66e6c1c3d7d0"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "//",
"Timing"}]], "Input",
CellLabel->
"In[809]:=",ExpressionUUID->"5ed94d0c-1309-4d27-bb8d-0940ab689a3d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"3.578212`", ",", "1.1202890665936815`"}], "}"}]], "Output",
CellLabel->
"Out[809]=",ExpressionUUID->"cccf5094-d4b7-4fa9-a2c2-803cf27f377f"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i", "=",
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]]}], ")"}], "//",
"Timing"}]], "Input",ExpressionUUID->"695f295c-d860-4640-99a7-6c7686d5d353"],
Cell[BoxData[
RowBox[{"N", "[", "i", "]"}]], "Input",ExpressionUUID->"02ca7c28-6500-4185-87ac-193eb3193476"]
}, Open ]],
Cell[CellGroupData[{
Cell["MeanSquareSphericalRadius", "Subsection",ExpressionUUID->"bae003bf-862f-40b4-87fe-7e2d75b98102"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "//",
"Timing"}]], "Input",
CellLabel->
"In[814]:=",ExpressionUUID->"8b65ec49-3b11-424e-8f9a-66f24cab9362"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.981873`", ",", "1.340663195071493`"}], "}"}]], "Output",
CellLabel->
"Out[814]=",ExpressionUUID->"c111c764-1498-49a7-8b76-744b1206f981"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i", "=",
RowBox[{
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "//",
"FullSimplify"}]}], ")"}], "//", "Timing"}]], "Input",
CellLabel->
"In[815]:=",ExpressionUUID->"45eca3e5-0952-4004-82e1-bbc3b3c7d8d5"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"2.194783`", ",",
FractionBox[
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"690", "+",
RowBox[{"271", " ",
SqrtBox["5"]}]}], ")"}]}], "2900"]}], "}"}]], "Output",
CellLabel->
"Out[815]=",ExpressionUUID->"34d14718-2f2e-4542-8fa2-f8dde22b7daf"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "i", "]"}]], "Input",
CellLabel->
"In[816]:=",ExpressionUUID->"cf0efa9a-f1c2-438a-870b-218f055f0887"],
Cell[BoxData["1.340663195071493`"], "Output",
CellLabel->
"Out[816]=",ExpressionUUID->"cd5d79d1-8607-4498-a5dd-540458a0f678"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Midsphere", "Subsection",ExpressionUUID->"12f4ad40-7e4b-4a16-a3eb-b163ee02b3d3"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"sphere", "=",
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input",
CellLabel->
"In[817]:=",ExpressionUUID->"cc169e74-abe1-49dd-a4dd-6707415a6bdb"],
Cell[BoxData[
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "4"], "+",
FractionBox[
SqrtBox["5"], "2"]}]]}], "]"}]], "Output",
CellLabel->
"Out[817]=",ExpressionUUID->"5beca25b-b77f-4dfe-b39f-836074c652a7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"sphere", "=",
RowBox[{"Midsphere", "[", "p", "]"}]}], ")"}], "//", "Timing"}]], "Input",\
CellLabel->
"In[818]:=",ExpressionUUID->"cb091267-61bd-444d-b244-8bb76f8e0430"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"1.135331`", ",",
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "4"], "+",
FractionBox[
SqrtBox["5"], "2"]}]]}], "]"}]}], "}"}]], "Output",
CellLabel->
"Out[818]=",ExpressionUUID->"f5e9bd4e-ea5e-404e-85d0-ceffd57d7f1f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Opacity", "[", ".5", "]"}], ",", "p"}], "}"}], ",",
RowBox[{"{",
RowBox[{"Red", ",", "sphere"}], "}"}]}], "}"}], ",",
RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input",
CellLabel->
"In[819]:=",ExpressionUUID->"218fbe15-e60e-4e67-a198-51b48f4c948c"],
Cell[BoxData[
Graphics3DBox[{
{Opacity[0.5],
TagBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2],
0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2],
0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{0, -1.618033988749895, 0}, {
0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`,
0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5,
0}, {1.5388417685876268`, -0.5, 0}, {1.5388417685876268`, 0.5, 0}, {
1.3763819204711736`, 0, -0.8506508083520399}, {
1.3763819204711736`, 0, 0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`,
0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, \
-0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475,
0.8506508083520399}, {-1.1135163644116066`,
0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`,
0.8090169943749475,
0.8506508083520399}, {-0.8506508083520399,
0, -1.3763819204711736`}, {-0.8506508083520399, 0,
1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, \
-1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475,
1.3763819204711736`}, {-0.2628655560595668,
0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668,
0.8090169943749475, 1.3763819204711736`}, {
0.6881909602355868, -0.5, -1.3763819204711736`}, {
0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868,
0.5, -1.3763819204711736`}, {0.6881909602355868, 0.5,
1.3763819204711736`}}],
Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28,
24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3,
18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22,
20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29,
27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29,
11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {
11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1,
3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]],
"Polyhedron"]},
{RGBColor[1, 0, 0],
SphereBox[{0, 0, 0},
NCache[(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
1.5388417685876268`]]}},
Boxed->False]], "Output",
CellLabel->"Out[819]=",ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzsvQeMHUfW79evq9O9d2bIYSaHFCVxKYlUpkTF1S43KKyyuAorifttlkRJ
pCgGJUoUleMq55xzzmlX2i/jPRumbfjZcKJhGDAMBxo2DBs27Pb5nzpVXdW3
uu8dkvvwDJhA19yZ4XRX1fn9zzlVXV192m82XvKHNb/ZuPp3v9nzxPW/WXfJ
6t9t2POEK9bTj9S/iKJ4Gx3/es8ooc9lFIWL/yCK/v8f/H/+B8v4o1pBxbfm
ZzmXCt9vlSMqtprf3uP89SH8MXf/Gsf2Y5cegq/bfv2zs6P0u3suvS5S+Lz9
2AMPxxEVKLutl7nKucxB/LFrfrdjYnx0+7GLFuhL/PT07+753Tp8NZecu3NX
/I1zxQN0t7hXJFX86uiDI+VeNYq5VO7Vo6V8+WTbnb9dt/22C1fj2PGbFT/L
yx/td1Ckdvxg6aG2Vr3StEubwP7jSvzM+byEP6YrpNq6lxct4CrF39398+Nr
FUt1xXZMzJiFSnGVJlDmqI8qbz5zVVpuPO4s+rO1h51aXrz0RBxRhnK0vGjm
IvrFad1p5WF0LTqoplQWrdU93Pm8L39MXDBQ3UTXFN1pa5oHajoiFnS6MEpQ
pqh4hop3ub4KVS0voitchKtymexYM3PO9k3UxXTsOHLmnA73NV1h5hxD6ICm
LHQ+Lw43Ja2aAty5EZ1AUxTKmFugdtx6zm/RAByRknLzCeehPWKMfpOMS0Mv
XrjcNvQQlArto066UV+Jr9ZD2W1qrwbab+oM5/Mi3dSt0lQ2EwGWVU1F07iR
XU3ZtjsvvKTcc/rM7b8hAaBl1JooQSv2MPYhiEy1j+y3D46pqHSy/fzjV9Gf
ziN7RpUrSbb/+IgVcVPlpzmf96oqbySLyueBymco1fbbzvkNAb/5R2eWG486
mY+1Bx1fzutMLU9buHyvAF8ruMzc+pve37bunEsVmpCUhy89Mdn+69NXF989
tfWxKEUDdIWmz0avrgjWfqFfe6PtIlB79jkx1z7ZceuZF9ja05GXFy9eQbWW
RnAbFrgAaWtEP0MZl6dB59uvP2LFtrvOv4SrO8ZltmOPuQu2H7vksG2/+slK
t+Jc16lOveeH1dHleieoN+NBlUVHx6gj+KZ+popyZXuBKk8E4DmTS7VjHdVM
aky4o7Ycr1DT7+7+9dX4Wkptqq4ec6o8L1xlBkVtv/WkY+nCGw5YUu45dRSV
imY4FTyMaEDV5gToOJf7FHXTllfbrvvDDeAZ1YKTplKhU031dHVGnarNCQuQ
3Wasq7Zj81HLuHp0oAJzF1I5Nyu4eqjoTKe686j/UNHZKH+pO9Azd6JrClx3
HL/8LF1Hv6Zbbe16Tk1nhdWmQ1GybcuKo7dvWnbQjo0H7V+u2ft7udTz1Omz
bT1nB+o5M9CtfxOwe6yrveOkY8/dfv6PLuQKJ03V7jjV1t4ur8sMtTZ1JiD7
Kzs3UNkZAUh/axmgX5Aj2HbFGZc4tUuMnkpXT7lTwXH+WNThRAW3b1q0YMfl
JKiLRqaMOHXEfztt/iEQTV8dp6NcLYbfRHreolVSr4+n79SpzxT+mLn12XEE
hTypS4JT9wKVWRCozHjAupeKdS+fPtvUTwAM1005dRv11VLOpbqtHB8tcMpu
oE4LA3WaGqjTWm1Eqo4WbeKK1tbkXzg10crQ6eJcmzFxy8qLqAZUF65PFqjV
XoFaTUG5yVYjRLUHt9r6B31VvuaoufLIFHvlNHDlRYErjwayjaskbJON+Bpz
dT3+b6caWVWNb/8gfzY10AFJoBqLA9UYCZjlOjkfVWHrofra0f/p1EEF6jDN
1IEcZL0r4DTp+nz1fQJ16AX0fYM+H86P6/C//11/+X/05Vf8Tv+K/+Osli5w
L79f4PLdwOVv0ufD+XEd/ve/6i//V+DycwKtTwIhY2ng8p2ABW6tLm///c/6
y/+BIsZv5gfaHIpTBzRd9M5AI/8n/eV/C5h4QaCRoesdFLheEejjOwIm/h/0
l/8lcPk9A82NA5c/JHD5PNDHdwda/9/pLzsqE9vL7x1ofejyy5ouf1/VXHu9
/1Z/+R8D1/ueToHd5vIh11oeuEwWaOV9AZL+G/3lv6862f73xeaqVSv5kBB9
ZOCqacCRPRBo63/tdrF/VR5OKsdjmc48qul6jwaatd3tU/8C+3GZep0pnjE6
NnCNJNCTjwTa9F+4Herbb2mgJx1n/P2mqz4RUMV/5vagf5n92y/zg8BlVECL
F6KktCEib9Evi/9Ef/mvAtc/sNazbrxZEbh4HOjZY1Eeg4svDjT+X+sv/2XA
rAe1XPzHTRc/An90Eq62VwCi/1B/+c8DVzvYXE262r3aT/lqqXs1PjC/w393
OC7YLS9BqLrY+lIPpn9ff/lPA5c+pHZpHObSJzRdujstWoK/m4cLHopLz8Cn
uYFL/3v6y38cMPBhOiexfSzR9KSWq7Jl+VrH46qM1czqqvbfv6u//EeBqx4e
uOph0/Y0ieXFFM4vmrYnvkpIT/yaLFy+EGeYjkuvRCXG8GlawOD/yrW7X4nl
phLS6+J693Ar0bHJly7xPVWMDkm3+io211ZsISq2b7kaJroEM0cX21zOs86/
dPnwwTgiXEUzKOCqyH/tBqq4V6CKZMEZtoqzUbFjUcU5+JTiZ1MCVfxnlyPu
RXvdo8x1q+pR6tJfv3HOwrlaum/NvMVEuJJjtpIzULVTUclptpJjAVP/o4ud
b+qjneTCVHJewM5zbSXnBfxL11ZpOiqyH6o0u7wU9l2N0YKpnIwbbO/h39/r
L/9OwMi2cjTMMJWbG6jcwoCFZ9WruXB5lPg9txCVO9BWM7fV7AUM/Xcukr6h
j3EypMOoqqjmHNfQUs19atWEiKfVq0l+c5rtyDmo149Qw5l+DbsBr/IXl0jf
yt+XK7spxqwAigc2oThSryZ5uxFbzRmo3CGoZl5ehvz8UojFq3AngOW3+ss/
BSxvK6y7k68+o+YDrafiCvcCNcxtDaejNktQrwWo4Tx86uFnma1hHjD6n/WX
fwgY/TinhpFEpOkBNo+V/3cxWgGjU9/mdWF3p/l9uRfqtww1nYVPHb+mWaCm
37iU+sb/QaCm0wJ4ck25y2JTy4qA8hI6TH0vob6dYruVO/MEVHYcn7r4WWor
mwYM/5X+8rcBw9vKygQ9KjseIJU1xwQqXAoXpN/WK9mxPTrd9mhSXo5BxmX4
c9O3VXWTgIf6Qn/5LkDBDwPVnRqo7tG2urmpLlUT1T2d+thUN7F9OgNVW4JK
LkR15+NTBz8rLAqJbnw/Cp+76lLf/mFAdccC0FbV7TVUdzVVd5rt2L1RvyNR
0+n41NWuwNRU1Wpq/32qv/wp0LErAjUdba3pCC4V46LUNatRXfpvXF3EHdOn
E6jfKajpmO3T3CLg1tQj9mNXZX6f/khqOlfX0rvj4CJwlF/TjGua6pqajqX/
upr9lunYGajkr1Ddju1Y/stEt7aB2A9dnfkd++NAdbuB6h5pq8vhm2USo6b0
/1wIYltXNv3+Gtc1mLa4HBU2ncy1VrbWIRw+cOXm+7CfOLU28aAI4MC1HrWd
PCIX9WtNmcBUW+FFqOYRqPAs281VheN6hT0q3nMF5/uxUIXzpgpX3TzGVJD9
yRKriQpznOHUfcTWfQI1PgN17/mdnfh1jwNe4l1Xgn5n/zRQ9yyAyBF+Z49q
Li/lv3UaAEQ43JlGnLFweXlpd1pm28E9/0u0o+vbQDW2w/57W3/5JGCDUDvS
pnZUNhjRmUt/OxSXKbcDPknawf+T2zEdtV+Kdswp12JQ77WowH+MfRnEAare
1F8+Cljm+ECLVCAtClnG+A5rCtMEYmqqrf3eqPMy1H4ePnUsV5mtfWw9pRaF
xepN1/n4pghVPA7IIWSKUfHRfX2/Wve/rh/Xfg/U+UTUfqrf96lf+0aaXtNf
3q/63jbhBC4zjkjSBD4khQp1+RQDEVXaQJSGGkIDOzQktQ2ZQPXPQUNGrRk6
OntpbIgH0Suuh/IDlm5I4jWEGlHzRKO26xNcl1pxqSOFTMq+VsxcZNswCzXf
F20YL69ANrMW5zdmyZtaU4NKGvJOwCInOg1BJbghYokwQ/0NCXF1KRpCjnaK
TmjWYOS2Fg24AoSthbc1NskGt4L/veQ6K98c9VacpuVweICnEZ1fSyvIdKYV
CUqqRp9NpCnlZd1pXN8ZqPneaMMP0JoZ+NS1rWH+VMDxUpUvcmLHC66j8m1y
Urg1hzXZZFRfkqpfcPWVW326+KU8aUrVR/1w0HfGKmyL09GOqbYdud+OPoe1
4mJHJM/pL28ErNLQjmV+EleJZEysglpSO7gt3ZYWwShUXRwkjzVQPDXhfDRm
im1M1tQYMYqn+GddD+Z735+FG3MoftwLGGXMjpPQ96SWYVp0mdMidlqz0Y59
tGjWYUx7Bc68FqytQbMa2qYtBd7cZr1SsWaj4cmBZpEP4GZ1AzYa0VG4v1m9
QLOUNOtyQs80K0c5wzbrMDRrNj6N2mYlzc3yJPS0/vJywFqnSLOcJsE/Hxxo
1oiVUDfQrJGWZl1Gjto0K7bN2huNOQHNmmqblTc1S6cxqBCLSlr0YsBQp3KZ
umMO46z1lFOnyTOM4rpT2tpB1FElcZCO1mK8TBU/yzZhBD/L/CbE1sPpJlif
8KTr3ny/dqqTwByGaRyTwBxg6x8yyxQxyxrHLYxJc86U5pzJzblM0wYREXFo
Dld9Phqxyjanh5+lgeY4FrHSeUJ/eX5Ac+r5mJsa72eh6wWsM4Y6JKgNmygu
L+trWCINk0Zxw3KUc3ROsA5Ty1ciVzZN7Axoom0e/j2mvzw3ZBNNrizpJv+P
fWwTuwF3wQAWLBNfXByu8pYWX04KMy2OUc5E6/ZDO49Ci6fj0xT8LG9qsYaU
Ffa7qrHPTrKxnF+7je34jR3x1dYNNDZF2WtrLHFLLcGhsz225wlo57htZ9rS
TleGj+gvz+h2emE51M4kwO33/HaOBIzKMQo1odNIO3FMDbQylVauJYhNK3so
90bbzrKtHMPPkkArtddEJb79adXAp4dsII9ZFwdaNFL3k9pyl1NHUCO4IdOG
bE5u4/Qq25yRQHP0YCAxzSlP0yu1HtIteqqlRYc5a0XSAJp7+Q3sBQPBGtHS
rJZmuSzGKCfQmH3RrBnletzoNw3sDmjg6ZFdivaAGyHCDXTvVYSmSxZaR9Np
auCIzvrW9plxZqC9mbT3CjIjNQYHNXAdRH4lZvPX47bglfCq6+DC+puquKk8
NOZIPk/nUSvQxPt0ex+vfI2N5qcF2stTW5UFqwbWEGVPymnFXGnRWU6LYrSI
qqYjBpnRNGsM5SI05iQ0axyfpuBneUuzqArbz19ymLcq/l43bPgu1G1WpBMV
f8ZO/t8Cv5Vd34wyUl+DpnJOeIW2JZ3A2JL9KPWG1/yzqPm5tNw1aIFyT7T3
bLR8Kj6NNrU85pbzxOWONdNn15e33q0b/+iQjS8CDE/4Iu3Yxndtbl1rfMrN
oEYRKdRkbva8lsbD7NRGHLrdv7Lt7jW1my53GRIsavba6bNDa/TvdCPL4KZ3
0PT5flu7dhKtsIYu/Lb2pK1rqF2mrROBtjLilDdxg68ka1MLcVAz1+NU1NZL
bKu7OGnmt1r5rUb1tt2o112763jv0K1+eDKtrtE+x3daXX1Tp78TOGsrdP7G
VrqST7/OsTojP7Vcw9dYKd2xkrqjkJ5YS6Y3PaFQZuUGuOv1uN23AQmU6ZMi
0CdxpYDc7ZB6p0S36V55KODKQ70Sujky20ej0DeQzBRT0dQrbNlE2reWeoD6
gvtjj0CvdBw+qPE4KGfcgInZ9ZhQ3SDhbKy1Q7Q3NB7BPHlhHhDg/rhF98eD
Q/YH39ua43dAbqf+04AfqHVARzrgys5U2wF7BjtgrXaHhMVG+hkdxNBGRLUN
uOR6PLGzAZ2yHnGmvxeSei+Ig2ha/n+T7ogHWjrCLJOxHVGTywxfLqkFI9Vz
6P0+o6Ojs+kXRp77hQbkfV3SlS7ZQExsop9t4kC3CV2yEY+GbMCn9ahBf2+o
pt5oeFDjRt0b9w/ZGyMBmUyzvVEEeiPR08D9Mql6o0CLFFueeKEzU5dwtyxq
6Zx1xIvpnHGU4zjBhTjVuPWveaBz9JwU981llVNt6p8bdP/cN0T/YEEQ37ye
YWWT+x2S6JsUl4t0i6YO6aAVBdqzGD1A6S13w8+lG35O3UADE+6GjcTIVfQz
PObcQTnN9kWOsxyOT3PxaYru6v5eiQNuhLskDTxqdr3uj3sDweb0pv6oqWeq
5SW13VN5ldTONmQBr1L43cOqqEEzhnJOS5ddSeRcTT+jg5p9NbrM9NsJOOkc
nH4UF8qtwFJUQ7X2VhZ4buw63Vv3DNlbYwF1jVmYUr0epF9dqZ5pXStpUwVT
rbc6aGKMxi4NdM+IdM+GmYts94yiHMdfsMRW4Cyzcb5eU/foWTgzjW88EDoo
D/TPNbp/7h6yf6agfxifXK+JaFNXqoNDg7vpoCkFGpWzdggL6gvqFe6ZRSiz
ch130tnSSWdzJ63jTlpPDF1F0ruGW3wN8DE9NYKT/gCnn6Uv1N9TcR9IVP3t
Vy05jLsoCz/iJxsZ3DVkX00NTILxise0VXmSbq+Vmma+8mpdxw5HMSnEDUFr
+m8M5YJA/40G+m+q7b8pOF9u+2+mzQCq/kvC/UfV37FODwqiPOzJN+r+u3PI
/hsPeK7C77+aFivPldr+S22aXNNi1X+59N8mMhQYRKcdFOi6Mafrrqauu5Y9
/rWg7hoUV8v5Mpw5wTXm49NCP5eqAoAa3JNFuCfX6568IxAT3Z6UZah2vaRL
YmJ7MmnKGdJATyZNXq1AyzvoA8VMqfIquhp1InfkPigpW+JqnCN9eg7f+72S
H0zZQH1Kvtoc02y3juCUGU5+IC4zFxecoi9tsAx1ph66cV9eSblXt+pHd7i6
Tvfj7UP244xAdOBFAcpXdMgZJn4/pqh4ZhUd6sdC+nG9RpL7cRrKPQP9OJX7
kRim2CF9SM7G9OQUnCrDSXO/J0cCPRkHsUQ3mqFe1AlEkit0X97W2JeJ7ctI
D3FmyrQy/tvF1dGek6SBfkxtRl/zjIXW5DXoxmu5M692oFQolwU6c1w68yrq
zM30s81c+80g8joU14pxcsvmwbjkbFy857vMrLlH0S7bo91Aj67RPXrr8D1q
1przAmidWus5//akpdadPHJOA46y6s5CunPTNIaR+3AJSspxuQbzqZ/PwTwD
P5m9Xqd9S08sryW/ie6cYruzh1PlPqDcnbO0Jtq6U7fBzXW2baVEcCQw+r5M
d+Ytw3em2dYAq0Yvkc5MBuc6NSy5HzPbjzV5c/hQrFZym9RnGwhDdOYslIsD
nTkunbmRvkdnYjiQo+R+HcOpcpw08wE9BBefHujRNABo5Tyd7uwLQqt1j94U
COdntOBploliQe5qnb0PSIFCPZro8ZVHZtWjhfSoi2eG8kjp0QV08XOlR6dJ
j25CCJIeHUc5jh7lU2U+owtwyXl2mFf4PZo0Sx7daebKol64W+Xu3Nbhu5XD
UsbdmvAauEtlunI471nJPbUjuiIg9w56gt0gck3NKfdsjHIpenZ6ucHr3g28
DwGVWa2PMajvouSO7uGkWQDdqqPHbEcX2tmbjtaB37kD7Ics29sNEMvKnhuH
721+pKNAb8eyWhUrxGQyQ0+MtmdPaaC/U98tVP1dSH9fS9egDmZ856HcL9DV
M7gkR0JxawtVaAtXaAt6+Qa43OvRcZvRt15XM9MLUYM5qMuonboodE37mdYw
Gb+Lfp4SmKn4ve7bLQP61nnWdKrt29T0LW7ORc6KtCG8beJ3ax7wDR10Q8JS
J1dKLJu+7aI8JtC3MwN9O2L7lj1wbvs28zHmvp2NCvV8f8EVV40eePu1MiCd
EsgOfqt794YhelfmDnlyo4Pe5WWlsV5LMtDfJgFUUx/Vqk8L6dOryW6mT3OU
S9GnFNJtx56H6WbenIPKnvTutdS7pEUcdN0bEdW2iKeoujgLuOQ9UauZqF/X
7+KkvYuNR46mBrr417qLr2/MGeSBaf8ZYj3lVvVzIuuQsNDDLAWblF9IdBTv
9wsddEnMzpRyCOpT6XW49MUr9kCPL3F6/BjqXPT4LC4pvSULXE/OeCv//Vbw
fCM87RZ0nenxLAA19/heds6u1uPKdxi6rablps+j8fAcy9/oLt88qMv9zSr0
PYKu7fLMdDlmJCNnbVCjz+AuT3y+Uy1gj2/u8pS7POHu3lQ5D45+xzgdvoA6
dyNv2qU7/Grq8Bukw0dth+e2w7MmxLs2GE61HZ7rxLIdcS/hkLQYO1lhry10
e8R7TUqnXzfJTu/YTs9tpytZboAb8Ws7U6vFIcM6Fe70NOBUCuF8M50VnQ4X
PY7yUPR4r9wEpR1D8ku47xFR0P8EPV1h6YnTAzaYhTKzNsh86GsJCc/ETqCe
owEbqIAN9N2OHRtkLkcP8TLu+uOXn4VNxXBsX3nMBdt/cuAJ8XfXnbFR20Pn
fvRvlf5y7SQNw8sper5hzBI63DPHGoF1bJi2HLDyPZVNct/3dMQmCIiwyzXU
/VNgk8WwyUxrE15km5Yn7bU/9RYss3XlqvKcI49zrTQFVirESteRq6KBBQ66
5k1wNFtxhoFySe1U3BxUv+ebKvX9k/bAxkOwsdaTJnj6N4adYhgohoUyWId3
r/yltsk1k7RJ6tskh00y2CTlm/YJGwa38WVRxhCuKdUN7rdIwtmJgjnKq0Qq
PZTzYJYFvlkSmKUoH/zJufQX3xufybZ5a+1mogNl5tkKB8LILxYunwl7QY/0
7c30Yzqo429Cn3umCqmKTZWgDdPRmlnWVB1rqqTJs0UJjMSrDchCvpW6lYZ2
zJs9f6ujIUzxRme1GEhZAxW+aApZWYJ76FhMsJ6V05BshqyTWesUui+2WEdm
rFOgnAHr7Anr0G9/Qb8hE7FHi62xFGtIlT/ba39YjK2WoczLh9iAa5atKPef
WFi+zQakMmm34oyAFTsoR2DKrjVl5quuygoSPYNxDax4NezZYMoGB3nmzEXs
AOmIxirrbbvwzN+XjvWualSbvzPRYdVaOTZlxzdlDlNmsgZiHfWuWfDRHonY
iqlustFYR6x4PV3tWpyJpxg2IAvYiNxrEy+/dKzIxwIGjdvCWoMd6aDuoHK2
2NA4SNiww2VlPtgWvz9Wmy8ur1p64rjY8Hr62S30u1sY0Fsw4rtZ3GcnoMnK
fXL7lNXkHHsnrWsNmQ0w5LZNR54J87EJR7lkYL+7deMDRooXaltuCtjyNLEl
TwHXdpoie3KS0bW2zKwtO7BlLIsUcA/aLGBJ9T0Yz5aZb8vMKpJtqXjQodiY
RpaxleVEzaDHylEZNHUNygdpMdpDbIrvjS7HuExD9iTZXYXZkn6D9lB2AgYN
KVNZZbJB56ELxnxlpnrJR7+T1VnLto0/uShkSwjz28qW+paeP/o8xd4RQdBz
jHmabIhWWGvmvjULWDN3rInlJVdFgwyZapBvwJm3SEJXUyaLcgZsSPpG9CPb
0d+ZRNEcZEFtK/GkZDu23/ccZZLt2H7jXCrXitSBZMdxmJB+cQNZ71b6g1v5
F7fCAregdgM1mejJCc+5LkDjR3xNJk2ajPg5ECvHES5TY0IjyRWo8QXajhsC
duTHvnj3CwiTHOvFZMOLKzviQf8Upuz5TjazpuzAlAp3oileTtuz5lUz34Cp
NWCOPollWHodRE2RF6OqqSin6fTFWDFpEd98mG28fJhtt5j+w7lkq3dYgVTm
ARkiFyUT0pX6bdhDmcOGeZMM2Yapb0Nl09L5aH/Pt6FqtuGOdVNnWxv2+m1o
pOjZ8JTKaLl+bIyMFTCcvq/RsyKsLJdby3V5JUHK98twE3IjTAHvyOmsl91U
FsysBRPHglfjz3lt6kZESJ3ikAmNH4VybD5K5psBy+0lllu7jLddZ8vN5TJl
S9aNNsUx2m3089tYeLdBN57lsibLJdZylQPl+e/Z1nI9vWDFqK/mQPVk9I41
+3zfMVrmGg2Hmes4X9ttfSAenmjNqB9qzJrsGFtfWvi+NPPN2OU7ninP2eOu
iDmuIVvWLJiiP8QvaQveQG5SdIjpOqwA8pPUgAVHYMFDHe3dRBkMbDdfLIjv
z5WEdA+xYKe8eumJqZhxi2PGDsrCmrHmRBPrRBNrRuULcBRmnOELMGtyojUz
dsNm3H70suO+rcx4ZcCMJ1gzqnYzsgU7AQsWvgW7cisLM06YfTIHJv88+3GX
dAI+tEA52pKeVibsWRMW5SNsxytkdPEuWbCLclaLMUdhTLHj7fTz21mOt6Pz
b4O52jSZ6oysQZO8XmlqwJghbxrxA1g2n+lUgwxjyCjmUqdx5t95+su6QGA8
vmbVXD89GLDsGfx4x2rYzZi28rF5wLQ9WJYH7jJA3CKT4cq15xZM9YpHzVB2
Bw43wgFyFBZeDAvPEwuj1jeTMd9lX0tlly2ceRaOJGE9f+HyXsDIGcpisGJV
k2LZyNPtpFvXOt4k4HjjgJGLZiNDtVtrRr4iYOSf+kbWD8VW+r2EjtMrK+dW
v7VAmjUZucN5acJDDehTDp6Hj3neS9vZ+F2FsqhmOYdPXtnIEzDyEjHyyTIY
gZH35TJjowfs22X7krno2zvox3IUvokzX8cFGqF0DmBMrAJZ0Qy7wKun7396
Jq50bEy8ZuYia+I8YGIV0PG5jomPD9mUPtIY5RKy5SW84/YlvEn0PPrZGXo7
mSjxFVw5Z1Zwxzcu30DkybaO2A1KvUbUmvpzbyLLk2qynAaLTYfFjqjJ8j32
tlQurpnN5ELfJztdsHA5DfsQSLU2t1a2o7Z41st9gbL1ct96jV6YrdcLWE+F
rXf5wuU2nc2arecJVKy3NhBbf+Qb0+wzsBrG1AINGpNv2veajFk0GbMnxiTz
BableA41wTzcuDXdUphuvHzUKu48MhPsNwsl+9ZaHiu2w31Va7dbKZjewTGm
326Z71hTa7dGx8qqm2nt1tWrPBocqw6fO9ZKFtRiMjtb55hsTcBkK3yTJQNM
Nk/vvKO3DckD1sqbrJWJtc4LTqKytXjWtBLaHrDWXmKtdTLggLUWoxxjaynX
WnQ+slcuprp+4XI21538izvRq3fALP32Yi+Z+PYKeclGnfGiJxXwkhE/0bpj
zaFn6rFiwF6JtpedG8e/c/SXywMx8Idhe/Ez6dpm+IVnL9x35ThYBJIdtlcn
YC8d3Yy5tKki5Ua4KLaW61jLTYPlZsFyB4vlMNAwOluGMhGdnefoDAkq2S5y
jQed3clXuLNPbJl1kmmT8VRAbKnNYiqxZU1Osma8pNl4ntjEeJcFjPeDgPHs
LhA62gUVdymv2LgUhmqwYOFbMGcLkisj6x1NYju6IflElDPH5cvgiR/4ybld
ufGEZOU+nbTQON7Ydpq1bVE+ZqV5ANnxfbLqNJT7SUxsM7Aokw2cWnWygXNf
nYlv4Lg1h8ntWKQycBrwpsbAFABt+qICBk4rda4wBj7bMfAKO7Ga2IjHasRU
T2VRPlbTIRaNMmvNPGDN3LcmT3knMGJjiqlvQZEJYUAcVB8qezBlzBbMy3vI
yDJxxsedBAB+dv8yDFmMfafDvotg37liXwj4FsppYN+9UM5n++pE5zxnhIlg
eS1yHN8B4+GcIuCAWcMpTKwGa7hywF07d9DzH++oOeA4YOK42cR26s4x8aWB
gPn9gMXtzp+ehlf3aVih7DZFTdZwB1bn1VlscDclPZFsZQ6ItVezsGK13kH/
89ZIuph+dhd9fy/9xQP0F1OsgOfBwPuKgU+hXxsBH4xymgg4YGDkK0tPVI6K
b6Nf3MXR4C6xc+5LOUV9koCU2xMjXhk4Zu1c+FKufLXOjMp1VI3Llp4IU4es
nAWE/HP9ZXXAyse2WJmfb5SxiWIrJ66V7X5BIT+dWxvHvo0TmDUr74dFjVmV
Y1aI9TZG4TZ0ze1ck7vph38U22bWttNh28PEtjDdrWTGD8igIyjZwJ2AgiNJ
dy/EUOVaPWtLCr5JFJyizH0Zs3mTgHmTwXlUTcZ5k6fWrpr3xsC2Zy22NZN/
rm0vCUThYwbY9lLJoxJR8Bny5gC9C2Cby06cB1eOonB7FCdOnolhTvLQ9+uD
+tKzeCIWv9+xeKLD4e0w+x1cScTN+8jsdJCkH4HZyeL7weJTy8etpH9BhoXZ
F6DcB2ZPhze7UXUWUHXqm30I712pujJ71ze7qpk9LddSrS5feqJJwNgTdqrp
BCvjlfrLxQFTH91k6thsTUW2Xq1js2hZ23uiozfDKuxqk5q9U5m8P7syNR/z
q+laFvR9yKc8G6cBG8c6Ht4u4uqgv9mfxjByalW9ADZeKDa+UoZEsPEBKBfA
xqpmY3ck69gYsr6bfnw3hwpP2plvYzXYc9ekzY8PjVgbZwHPrXSE5n1vYGCj
56gIzDi4Bm4UrxKLXtZgUfTBmfMPiXiKoeNbNJO7aj8PGNOky4vIVCeQqsxx
KafLf/zJuR3fxt1q6U/i2thaOLMW7mgL343i/r32H4OFZ8LCB4qF96E/NSo+
GuVMWDgOpNdiXR2dHc99t44TMK+n4xQ1SQLuWw3WccjGaSAL0+vlyiu0jPlA
V3YDM4Jn6S8XBSLxEYMMzo9FaaN7LtsYPA0YXGx9JNnYHJWtsz5bryYz3gur
/hGjnn5zFwFJp9bWhbV1R9v6HhQPQNePQtfG4Fn5BJ9lvej6Q7LyHJT7w/Tj
nJ4ptvoB7nyHchR9O3ntu9n53O3KOmsyech112TNJo9h8lFr8sKXtWdy7Nmz
pjL3ti1/2Gq8tidqMbl+2MffBXZ5q8nt7gBkYyP0WKx/KX3v2D7xTU9/hP0w
xOL0R0dWCTZMfjyZ2hxkcuo7Y/Q8YPSOY3Qk2bdzvxujZ9boBWzR1Ua/F8WD
kDoZfW8YfbYYHVK/jVz2hzz/T+VeMPoUNnrqGt0m4rEj9ZtF6rkvdZ5ZTqw7
V4MzNRWw+xjs3rN2TwPunD5iByuxebnhhFUhlZ+pv/w+EKgPbzW5Gt7kypo8
hsmT8gibfZFZaRAMY3pm7fhm7QbMqnQXGrMW1qwdmLUDs6ryj2LbFLadA9su
dgQN68G2y1HOhW1HB9o2YdtC03QVHIU1L0+ZpNa8Q3jyStaxfkTFePLKvHlA
1rHIeh02TRbzbjxh1Y6rTr/IyNqbunRt3K5jvX1d4hoVRwyL1lx4bBdlV/ak
v/ypo9fj0fF3w6Sehdlbc5LdtQmYsfDDmCnRVq5bOAtYuAMLU/aOPnmIE/lH
6Y/JzBysR1AezAbX21eLmHGMlx+t3XyI/kSG74nhb6mNro9zRA1Bi9Hpu3tc
ZSdW2TWPHkrUYl/ZNdNPsaZPW0zvmN2avghMfIrpfxcI4ocORcLlFMUdGhST
kFgSlpPfpiMGAvSHE/0z0T/FHZ+7YPp+EvImEmJeEJMYFMwt81T3sIEhD8DQ
0TDczzZ6mCA0MKQo9wMMI+WTzNqpMsVCIESLUC62OHQYhyKEQ3kddf0W8gF3
4JUxhoLUOoB2/x5yALH177EdkrED6NqHyGr+nf43tI9abTphFf0ZIUCGv/EP
W0NzK9YPnKG//DYQ3g8JzIIr+/y+Ehj4wbQql09qMODYe3ymgs3pxxch86Le
lyMfTEHHp0DJsihQgGmVO6I+BNImBApB4EH6O/gEOIE9UM4T66OyZHO2/qEo
p3IsUOWbZPMXyeZ00He6fLNyHPSdoSQPUILjOJ34l7fghnJ3WoHqZahoYn1F
Y5hQAV9RURL7A/cpduVdzVfETElSXllRgiMESmiqVUD5TSApOHgwKPaxUSHl
UpMTULlcdm782cQEvmaDwcgDYCQBMJIAGHkAjC7ASMsHuIqPaTKYjiko9xE6
kPqdTyYFHT/gUpUvaSjKJycW0lke5BPQafB9+QJhEqNkOqaCjozpyIN0/Bor
1nni9l6pZWK9yBCxRPl8xIFYklkvUgS8iA4mBg/6zsBRBKZkT3doqIJGo/mV
Y/5LPfNnPCW7eGy0fPjII/gABuwxhsOg8DFIAxgoiwF3Jssu03laPwZdwYBs
WT5MJ3iC78k8gbGfxmCDDPs+5ik7KvcACzFQ6JUP4VQPoukPoCDjs92Tmt1N
Hgm7/x7LFPjNiveigvcIp0kgejT6hcS3ey165HZUWD30neknFGUHQnEJV8ET
cPhQJoNwA4fnD4SAXweyiAMHA5EYIEj7Bggl5ZkSOggE+n+EBP0MgCCNvIsf
2hoOimqYkDmpg0BhU8gKiVRH7n4kOjBmR9T9OJ2DQGAYvodytHzKuofbyb7g
4kCUHfERb9EP4SeeZh/xME5qMMlxZsWeQpXP6xkknkXqoVSBkYcQQzW+F73o
0dIYRWoZpxpMy5j/wHqq98rb5AeQw4/HETtRxBDjRhFvDvg0/eVXgXRDXuw7
DDV44vQyoqRyI8pGkbVL9qPqamoeIXeCn128bEXUnnBW1HQsNXnAlYSQYVMU
QKYLZDoWGQ4IKYyNQQjRa7iZiXKecAN/ciBZF9wchjIuXz7yuKx8BDfIH8aZ
DS2FuCY6f/k4/cXzHGCeZ3je0PeOGJ4cZRyA58fkak7ghMm4mvYQU0tUYx+e
UArCD56PBOCJZSNg7HzL8Cw6iMMNfY3ipjwkCdwwEoL+JpCHVATFrQSZBygF
IQYodpzPhI5IGiOmiH5xxZL9EJbYA8Uos1aWcrDEjwbzUvCixpJdThFiKbfu
p8ZSV1giKspH6Czki+i3TyJFecomsMYHHcKlKl8hAJ4hALCx/AyUHUtVYalK
OTVODVb2IKzopxoq4olnuQ1Ni+ggmlBZJ3glg4OXaiIqlLR0fKJSSxTVCDCt
lVEvgMIzb/wU4/jsgVB5M16nOlAdZKNX7C8VqVGkd4wtXIr4uIwOE8LIGXEE
ywQiE8bu5sHn3YCoYdhT8cO+qOPwc4/wo/zENrP8ZDBJ0cRPAfPTHz8hgQzk
7C/8nEZ1gy/6hIe/n2AOxIcIL2YYQznWRFIug6z7+pxUUb4uTuoXtak0UESp
bzJkTKvcUmwz3/aY1rW3NCu3xHsJ06mxCfUVBNEVAtJVhx8v3orH1fyc80aE
OsEpC0ySCz+/DCRD+/thLW7HiT5mHlIxeMIsimTJCG8KSHUEKYlvjFTchFQV
3nKLVFeQetBBKm5FKgsg1YH1OatJ2cNQoKNzPSVczUc5Vj5tnRMhxXDtz6Uq
3yEiXiUaHmNTPIYn4R/FSfvh4lSJR/DMFn1v8iUsm/hF3/zcLbjjYngKhbmQ
U6rxFPGzFmbPqkC4q3HFzgmPlThIWaxOWKUTqKyiCi5LJuuuPv2iLOCYTtFf
VgXypf39aKfsIsUGsHi7jmr8ZcByA14FVlw+ynSto6iH2t/NefdAsDouWI9g
kwUN1zBgFX6qXYHVBQ0xux5VPkknNHRx5j1P6ILruoAoAFdLhK53HbpmoWTX
Vfh05TXXxUmcdVUNgGHGL66G6/4ccHsIVD5t7UkVe68RvU+JoczsWb2pooz+
n97/HFW8mpC6itKqOm4bxme7uKUBPya4XRhIrpb6YbHyY8rHLZHkysEN/8Ub
2VknVoC1VFg7hQb+uL13D9tzIGuFZU3Jkx6ADWtu7DKoWl5VsZa1slYIa0/s
tb9lbbFgtlFG/5/wo9CfYMLv07WbpwtwgO05Cmx4J9UIypmgrmupKwI+LZWA
iWApWTz1rk65bm2YRbyOTc4hsz9aVkm8srzFdr5giJSr4o2fvY6FN7x6wOct
cXmzWX4su0iAufUSPIk5JGHBhdgudAcEomXs34BQljLzwD4wu0xnXlEoXsYW
tQyoxeVjNhm7BP6JZ3jaUMstaqmD2l2CmmpCLbWoFU2oMRoJOygigOAnypi0
7wlv+9LP4NY+5ecpPmXKXkNyTrTg5ZnzQdkYTtAJUJY7kwz9lCkusybKYsZM
mSlr9m9xazSt8TZsdjZiV4SnZt9uBzVVc21X892NJtg2YFzpw+bd7zhZf7kg
kKnt1+Th4gB7Sl5JeDm5NGHPZv4mnFbc5eBOCXcmpmLpQto6dMxt6p8zd4nL
3WDqJGV60M44edR1hbqn6JSGOuZvtHyG0dskExOf8mBAo/ceoQL8gN50lDPB
H5+qsJkb85dbL5c08ZcIf6FZUYe/LbJw4vbuNIe/2uhAWf7iScfXUbuvltl/
fyNdbh3xt46dnO/q2N2Nz64jmFgE11Oc3XD48SFXJ/SdH0jn9mv1fCpEHz9k
ZggUz5e4QdbnLxX+Hj/yiPJK+uUivp8+kD+euujU/N7dkYSdRvgyC1/Hwtex
8PVATMpxkuKs4/cKlPOEQDi/OwkOsLenQ+DruOMS4fRPwgM+IcG2wrDmBjOL
YdyEYWi6TDiMNIi8ItOu4iEYQ2G3huGwYZcHEz3rBul7vF/EEKhQ1iOuRF1V
Ta45mZ6QeGUU7bjq+6clgRs4P9NffhHI9PZrGlhUy7oqEpNGEqsYfAXF4ArD
DBgyhfRf9qFfY+XeH3l80Y9hlenxbGxPMHwIA17BUA3GMGvCkInpGQzphMQd
s7eXEHi6TIiAvVGUo+VnWJ+tWRQOmcW5KGfiJJ0mFtklJnpSuJrJlWEsVdJi
WF89SCDGesThLyWDR1T+YENZCuMhk7/YX0rWsw9PYqDhUJhKaQa0BsKrDz8+
SgZQuP3aZcepwE0kl8IlreG3uovch90VOv2L4too4+SJCY1dYb1fKtg9ITcG
sDhYBSbeath1gV3Mz0kmLntDkpf70bdjyeuClJyDKcVhQs3gt6fghzrCAX7G
m798xmi8gVvOhAZeZDyGcj7IG8FZ+HwdS15uyeObEKlL3gvOzSaHvKxvmZsM
duuPmuhg7DnARvTa88BY775ipnrjAHq5BGIPO0zH8StznLsLAfSikPc7SX85
L5AF7tMahyvvpyyG+iH93HBoD3NHCu4v9znMwGEMDJHsSj74Rx6HNIw+Csuh
kud1DYf3RDLJ1Q5h5ru/GoRd4KMA0gygN1o+a93fhQQEyJsn/L2P25kEyNMR
NrJ+Cnngk3ICPlXhe74cl0wsf0kTf6qdvzTAXw29eOdSwNTe9Iz0O4DwPiXw
1hGHh5pcU1FXXs23rJrQk7fDwuO52zJ8W0Pv3EAKuDhw5yEOeMAKPb1LT9aH
nkTeirrMer9UqEPkxWzLfezU2qjj3C91qPMmu9LB1OWt1HESV/N/Kco5AuFV
MuXyGa+zryCEIwSEs1BOgMSeJbET8ISp7wlVgMTcve0eWveZ1zC8jSPwXTgP
Pwo02RSwCr6pXe0pGOKVP1fyVAuVhsX5VI8LDj++4pHn+QyLekGH2cgTOPJm
u1G2bcuZvw9toyYwnhPIAhc33beIfT9Y7Q2fCIzukNiJxVkAxgwwxuWTRGTC
RFJA5ufu2njkHbVyJxrfU03AttOY6sFAP40dSyMjpDi4qvJp0gcxyBwuEBox
JjEukZPBTvm5XiOIW2RIIbkTnoFzfBrO8Smc+Ulcw3BZecjM5zJxuTTrCy2X
SQuXhcMlHvalA4uCkDfufFA2L6y5Bq93xjvPORRTmQuNR9GVvr/oIKZRiIwS
e2/NGRwr4xp3bJo9P7hbzYkOifsOHoBUflBV6PErhDz8jnBCcGr5y31nmDB/
VEWJw/fzWKQNvkKc4cMC372R3AEPkZdaP5jpAakhrxMgryPkPUNnNuRNOH7w
IIqMwG1mALoJlBOArtcEXY7rpha6KizruFw+QacX7joVclnTatYM1GXufknX
4RUB9Msb+M7IDeDvetyI24yp6uvwPoENyCXXLz1xFCBlMr51QCLTXsML0K4Z
n+2/6bYRKni34AZWJ+gvZwfSvEVDjjZinzG9WUFqIbu8CrbNgGUC2FM06jht
YoK3gkiaZloYsI4D2L0CWDwkYFkTYAwEo5Fw3PT92xjK0fI56+TuIpsDshmC
2svExrNUFzroLM/ivTHP4OUCT+PM/bzluHjWwpvD2kDe5LHJ1OeNd7vkN1Sk
ePdBArZSy1bSxha+d9lyUrnEHUXAX4XclZD180DgXDTkAKIiS1VkVakcyDqr
ip4J4OoE4EoBVwK2JKnDthP381DCG8jWvFfM+w4kLmF6Cc9wfOWWLxlzGr66
Og97Gv34LHI4DdQZVCnju6YLUB+QkQ1QjBY7sK4FqhMAKrVAJX7UxOClAop6
k8oCSKU1pMzYwn3OOoRUAqRq7koFkFIoY3tftgmk7dfZGRDPRR2vv6wMgLT3
ZIYDcc1FaZAu910U4mDS5KUYpFxAQg/JLjVR0gqSkg0sHhGQ9Gowc6M1baUo
871UjSImgTMpOv2zBBChxDjNFahQSeOlRlGm5RdM1tu4DUu/pCOagnJP4DWO
UzGanQBeqcUr8ZMy1YRXp1rRn4bQipTdZSezbCXWXTFbCmyNyTtTMd0haFEl
CKvE3n51sFLuUNOEPe8el8+UF/b2mkxWXzknJWFvnTB1lnOXqwZU5gOVAai4
fJqp2kgZFnbIeYDXKrVRlThU/VGoiidDVd5K1QhQmFfzTV/wvliaoFfoe0PQ
3ijngaCedVA1gvImghKXIDwo4j0xVFRPDAUeGNf8AB/exSdpjXseSH3+CX8s
IU+OurOyVMFRmQ1fvXtXQpV+HtyfuNhr0gm7R9UVlKW74e4KXh5iqCoCboqp
SoWqfcmxgSr7QpcKqNwClQWAqrFUGyJWLGV6vPa4nVvwWOoCipyjmCqfo9Mb
N9VDOVI+b30VocV4TRXIPsLyJCyRjDBOfB5u6jm4qWflpDXSClw8s6QlgVAY
B0hLaqSF93trz6qYrpFGuqjEnIQmK6oFwyitT0psu5Hy9TgwLftTB7G9h0zQ
q+jnMMXvFSvXEE+16BcHsMosVimwygWrZ+QewRp+eKABK7O3HpC6Tx+RmgxW
uXVRFVYdPYZ7Bn5KsCK8gRVYmiVE7Uc/W0WWrBP1PO4pRZjIfp59HE5qiOr4
ROWWqCSQXCWtRHVschXa58RglTRFvwqrXg2ra7W7QlJl7sir0PAv3XHV7Pl9
L3QQL3VmwEst3LnE3I19IOosb4WHh1Mt9lU4MU2YnZMpBnn/VBtReEb5IWwe
xYoyCXk6mKhMj/b7ierq/OdZ/PY5Nurz5K2eF6xmCFZXy2yri9Vr2kkxVuPl
C5gcfB5PpzSwxTO6WYCtWlzUgdGgRf/5Q/gok1Sp1s3tGrBSFqsuY5W4WOEw
Duva8dnAS242NTIGV9X34hdxU2cEcvaFTZEw5LXqgz9+BaiXY0k05KXeIcwy
i1kGzDLGTJWn60kG3j8hs3cxC58xJZsXPUD/Efeh7+fEfRKM5ZaxToCxUcMY
MVxnDK7rbjKrpusLPGbwJX/8GMuL8Ogs+68X8O6e53G+53D6ftByXDxFNdLW
sBj5T2unPmhJC2hx08iwAq0T8F9KSp4Yxc8iubEZQk3fMg95Mx80L5Ff0Boe
BzgzHR5N2uWEx4qxPODKmLEcjMXlszb1kv3yI9UEGu+yMARZqU9WESCrq7Nw
xuF53P5+Hpd8ga9+jUyPfskrcyueiCLmSaEcL19EavEC7nM+j/N5ZBWWrGww
WUrIesoZF+YoM0uWu4/fubXprAswneVxpXyuimBcrLgy3qviqj5SZK62b152
XP22z080V6cHHNiCXUvlTdrlBslGqKosnqFKGKqkvEqCpIAVQioT34XNPOC7
HogErmo8mDbBlekBm4FLkmwPrjGOdL7vmiaYoWb3kD2/5EkHjdm7WJKBSBZh
GcuLmMl6AcmbR1jH+q4c101tkEybgmTsEPZWH2Gce2VMmMJO3YayKJbn9+U1
FDIz78XKmgvLAqilxpE5gbIZNb7/XX+7T40zz39NTCa9V3aZheu/TKB0bvLk
FrWiyX9xjMzFfwE1bJv8MN9z7uesEM4ewqSFcBZPhrPMd2IVZ8wFE9IBK9OF
rjNlLsKl63X63tCVoJxevgQn9iJm318Asv2cFXruzHDW7skaOUutJ2PO4oYX
Zwhocas7S9sYo9HjdTYZa2Is2XF1FSLLCq/TArn+xK7k+j5eJjyaxweGwKsA
XnH5nI2ReDvJwzzp1cBYjB0mJk9W3krWmIl75EgJL0ZsquPGCC9GLEGZl18x
bZ9geQ/9ko7oAJQTAK0XAK3QEx8DQascmk77LWcfgav+gJkKZgHEfC9WIywJ
EJahjO2SxvrURGamJkyeb27y/NhBqzEktuf0oZAY6Zs5EYPUaQUptSClAhL+
GO/ze4Rv7vQzpGQbu0cINoyrHoxk+D4sTZlPU8fS1NNZ+Av42YuM1IvkEA1S
XZRp+aJN7X9JhvuKN7HQSL1H3xukcpTTy5fhwF6CA3sR1zBwdXwvlqIuaSAf
q0XLpAaX7OGUBWKlhivBm7lcwPjto0yW8snimz9xE1mgir6H75JD+ZjFLe5L
GDs14L7m+cg1Zvehya9YNlsHc05oHNZ3cWjMBbmrJRV7hONjP3KpIIeNcgxy
VWqfDqYtb6VtzNBGRIO2F/k+tQbtWpmncEF7k4xJZOGIDkY5D4z1mhjLfcaq
jCxpipSR3vHJ7BHWCFjc8qpN1UQZzOfcASoAWGKXxAZHjkndb/1IM3VKILMP
MTXJzL4WEqMaU1mTG6uYwi43AGs/CopIvB7hoOiBlQOsQsACVA/pQ6cpNbAy
+xxJDazMB6vjg8VIFOyQNF0v1uhy3Vg3QFcH5YzyFbixlzGsNJx1fM4KXDxF
NTKfs8ZAqcSXPV35MevLUj9QZkBNyUsGA6hZ0Djdj13QjnY8WS5Z2HWU6YsX
i+J27pSZpeChhg+dl+bPbYJuiPkw48hA3VnuOkJzq7EROnZkmYUuc6DDazgf
5QD6KFAzjszwhg0xsFOP5S2dDG95K2+jwttLDm+jjjdD3g/SOsLb12T5t+hn
BFm0DOUEUOvhLF2LWteilg9GLfFdmmbNkEbffQSwGhKyNPC60sqled4sdiA7
rgaZSfUtZCoAmb5lZGYu7L3tFZqzkwPOrcaZTtL4bVv2fRE7FTXTJtgy38NV
sBUC2zUSOh/l0NkPm5Lt5LCPD6zwsLGHrAkdCFsWgK2rkXgRA4CXgMTLfcSN
CHEv0ffwcveuXEV/8bXeqUzTxsSNohwvX8WCJv7UwB7fS8gse6GULQm4Obqa
4+Hq7NXCqWaPXzpebiX+znH4O4Yg28S4GfwiHg0Y+kDZCasafVxouKmXUbsT
sT55noeb00re8EMEeLmVBJ4XWzNLXt7q5jJLHtazA78zJyY4wD7KAbYfvxT4
TZ633GZpXZ83RmOUeUvKl8ibCW84eoCN6nQWYXgwGf1rdnIauU/JnECOOIsO
RzkP3/Zwom6AtgyXTlGJLJC8hTydaqKtMXnjwYHiN9znHm44gNt5NBDdyJxt
8PzcdbzCkMrM0EY/3Cy0qWbaXEcH0n6oaftZYGAwBG01PzdEUDWjgzRAW8jP
VbRlQhsiK15l8xjfcPJAy8TPPYYpEAwlIjsj4N1NSluRK6yL69h42rXIpWBm
ilCGFpFTY74Kh7JXhbJpKLvla3jQ9VXcxfR461jeOkPyVnk3hRbFwtszDm9J
awbn8EYuuHJxMpGbMnPnEnMbHK+WgrNUz254ryit06UwRLC3x1205k2GpdBE
mWHpispt2ZiZ2fn+otVzpZalQlh6UdZdrON1Fx5LBbOU8BZTj2iWAkPMdpLy
gPPq6vT9ZYTNVzDsrPwVBgEuSZ85JCmUy0DSBD718LfdAEm5T1IVJzO9GLvf
cynZgQYNfEb2hsxaQ2QFETNE//tGqunZVPulzqCAyMkATlJzUJsjF6Ha9EWU
7LhGz1wYB/UDTdFJTeEw4s2gARUf9u2ZvDMVvwhGjsagGMsrxcIRkZ8eV+Wd
ExN5edfEhCrvRnHPxAT9xb0U+LDQ/imz5D7kvHILHPOGaRy5E0C8BZiLsQdQ
bL3WsKxllrVOgDXOsBKQMyrAXSdzGl+b/D8tv7HUEWY4olko4/J17FT4mqRo
3QB6BS6ZNaEXCprKRU+wa0cvCaBHA2V2eeBuIaVbm09YhYMdljKTZjQKEO58
71VHj72XvZ8k3J0YGAC0cqdc7uqxMe7zZyYV64uNZtcCAs/eE0v15DK/hIWf
oeenp3h3B37W9I9A07i8NEBgxgTqGIo9hB/nGOrhp2R7xsfJIT2KMQX75/55
tbQVxI4FseODKI5Lu7RXqAoYG7zE45aXEMBf5osvoV/8DfmTb9gbai7fJhsb
LjOUB4HLBfjU87nsWC5zy2XaNHSoBVfmUm8Al7hc4kibQmtqJ0eSyismYJO9
ImxL3jAGmuwSY0ETI4Q6mrWJkIj3HzVO0dxUj47z6PS84uxJ0tkWba8kOk20
XedG20hv7XI/ebKtvJnftVJ9eeMbb3fDj5tWdG5FcRM36WaqwP0ENo7H6BxY
SlR5zMzymoNXbHdu7klcqV+vEikf2lSgfQyjEIE29UcY7bzmNkhXvHYtr2PC
K/B7hXTxMq+4fdn6UQw0XFTfoe+JTRzR8Sin40+7AUoLXC3zKW33nmoQpVkT
pUmYUhB68qFHc/euwhbbhtJI6YVs2n9GqhFR3pHDOM+tFZ0nBHznJOjcyYBN
vxAsq3UENTSVRTP20VT6QVV+ZPVWruc9dJoHiVIcT0AB/XwmzKcO6+hEeeNL
RWcudILMx/RB5+8f/6atdBY2rHd8Otn7ddgvKoMnw9l1vOkfKap/w6PMfkS7
KJeUb2BR+Os432v2pAbWQk/xTALWxIdVmm8STGVJrYX6tCnUiwO44uRzZMnJ
Zsy08MDEPMxeG5NoLl3X6XI5d2dArE3kmZfR/tx79NcB8Q6iBiDqnb6ulXrK
q8nbfGRsQZQtPPl56tvZreGNAn/ESyzo5Die5EcYPCRzcZln0a/3kRdLZJbH
gnlMeM/Jxyom09YkM/NpzH1f2fFpHBMaX3Vo7AiNZmbGpfFdbJFFtXiDHeYb
2NzodRk4VyB2LIgZrpsOzjmTMIjPOumm8gN7BWISADEWlwlbP/K79ew2Ke1U
rsvc7AxzVDuamIsxLvP7Gk29pNyfh5k1SVInG9D1Xm0Jw+o9tXOtzFtWvA7h
OOWpf8OrbNTD+6bcxVW4ny79KF0Kx9NL9lMW2gLQ4oUEIHcJ/a/18t4k5ZMb
y3aV2MIS6OodtSbLbuF70q7NS0dAXcGOMQwwrH8fudM/8WjlT3qOD/vXC8BT
UC4q38T9ujdwPuNTOzYBYJSzAMqNPrWGchxAOWnKURllVZv+yXj6B215lEgG
zYvnzi9/efjxHs3XV9lp1Dj5Eykzh82u2UV5EkOlELux62XPlWlRu6glEXBv
D4ArqusHd1hHW4Eb6z1X7kaht6J5kODE1BEGU6lFN2F0qYMkDxB8K3ATgJtY
UkMZaYjU3JLa8UllqMaAVww0yUkynyvFwbp8foE9bITPGOVPwOcsy2fX8smu
tpg0n0rvZWKGUdrXMp6f8K28hnAfRDO3WOJYpyM+0Cyv1y6W1yrojzSCut71
trXhfc3bmtt7x2pEfxrwtjN3htiGvOAo8rReXmC2Zb2PELmRINLi6WdWXp69
i862YlbJtiGPk1IEXIttLh53M9UJucKTnCsYZlNxtk/iVYbibJOmjDVEb9ZE
LyPH8OXAsCf0or+IWeY2deglXHHQUOpNjPrfiqLv4dNoE8KZRThtTVsTvX+A
cbHKutgawlkA4cRPFHhsFYt3xfoIoOtivBBbuV6PqanNKDTC14FrutD1kY20
AYTZxdpVEC6/kx1RhYA1IyqkBwvoP9sRVSwu1gFWT5hN1s/KrlQNfjZuYpaf
dqTyIbr2s1SHl3ii4CWg+zJq94pNFk7V7zyiUz0JV/gUhl0Vuthv8wnugX7H
m7aim9sUoeOj2wN0jF9X0DWzVk3oZih/CHRn49OIxv51GbwxukUA3Xbvq8Lo
PqexrdCtJQYhdCOeF+BbkKdQZvvY79bHQJd+jNTgB5TYErt9/BoX3MRvxG+q
cD3wCmB7jEb4JwEXPGPXiG5PGiL2wZwzODuy/Btywcq+L5jKh4laIpmZji3T
qTCNSm/QL6CIeAKhwzgnvG/dUxXS6WA/nPkwF9YPd3yYGUiG1KQSm+UmgWb5
T/Buf+aPXxLWxDEOyvHeQth8G5tpvYX0902cr5/tbDJsJ5ZtZTPfWKLPq/rV
G+ZIA7NeiX2q08P73AptF28nvbB48811AA3sNd52n7LaLFiUGMLNvU8fbm96
dvpOwx335RdHC9w2v3Dg5jsaAbjjv66vTgC32YD9SaoHIc0JRoYyF7g3S4r8
FE/8G7iV7ET7NN4WFemtjuNJ450HfHVXj8GYyTe5aq+Rgohx4fwV5OWvWieO
0d2f2Ylr2t/HQwRCewflMaB9Lj6NWNq7NgkpcN3U0p425dGJpV3ZJKTKo2Px
5HixjPHksc97GnDnqloTrFzeMWSkUrnJCJyci3vSQrhMpRn/fbQmXK8r96d4
dwfhJiHB1jMmIdGEJ+UfCR4hXK8SnYQHl5eX7rwHjy3k/JRpLBsoPkq+/Dmq
l06lDel4SYvJT/bRr6qKYot7BtwrvtMh+c4s350A36PgUTGpqnydICeqmexM
+L5e7lfU+SagcUTzUY6U7+ClT29jyYqBvGshZ5eeByCvMu3Ud+lJE+Q6XzGM
03efAG0vXUkCfEfVQxXA+/HfrVcO3chWfLojTlaMLzdkeJNzse/Jt1+g7wP7
nHuefNqucd6YpiQO51uIHOE85MxV4JbGbnTmynIuLzR40MIOt/4Ku/VXMN1d
cb5Rv+JDv1yhAOIV3aFMO0R3EaC7a713t4XuSObm/syMaLo/cOgeQ3k46J7Q
nPfTXeCSqZ+wpE0JS+LTXSXjsdD9vJOHJ010qz668djjPoQxkY0jEbpB9t9Q
onKDnpzjBVmWbpOEt9EtXtzcRz5K0/2jgBffnXSLB8eMM/BhVkD3DZpuvf6i
4jv+6/rxuIlv3tzPPKD6NEWYVwRyHmcWAvn1krs8zdgZyGPZOBXbXD6FzCaS
HLby6Gkr87llvhNgfkyYB8dvaO4t82a+r4l5/qszwfy4Zb5nme/oGRiP+TSQ
pKc+8yqQpLvMfyrMp4GMpYF5dKrwXnn0xM7/EfM4POyvr5LzKPZ3tlayYka2
3mTyj549n9f2+Nh7Y8/x3YB97Dh1k7wY7G8jrPAcqN4HbWD6wm49aRqA7opb
Vz72Sm/ApJ8MeJx0+QJhDuBzlHgPGGr/c6r9vvoNOmBd2E+E/WcIxKehDO6c
fn+fWfblTrLHfmHZ7/js9wBsB+gWjpcnzstvmXVdfkq5ACGOgzLQd7A86F1M
FL6DnOhtOUuFPd/gyQLYh1x90oq9zmQM9fQXxssz8Ymfw6jq4Xbdjic07Uj3
K+ZP0TcWg8zfUA1Go9hP2DXzvJOj6+ld3HcxOe/j2ww/4ya+J5+2hNy67HE/
Cbce4lt2INCLpp8gyAlt8eqvIot5zWYxeMOnzmKeQaLez7dMwDWkMjW0M5vK
VGh3Ldqck5AHtsPPXxHKLtpfUTJg0M5RngK0GfIRi3bXop3jGimuljXl6JVH
r6Fdy9Ej/Q4sOHMf7bQJ7YjnWyzZTyB3eRwzLY95E4ku2BGn6OzLb4hkbqI2
CO3341sB85Ea7BUBPz51t3GelvOr9IXTluvZn29yAQ9NiA8xg7jLDlwFAE/c
d9i+qN04o10I4DAOXrhn335RCODP4oeR3uE9bs1bQoAXNm/p+ID3tO9+hx2u
HYSiFnXK38VYMML8+Lt4ZOI9rEh6Fw78HTlLhXpHT1b2ox5KXhKLugok7Br1
xEUdR+anLky76qPdIb2PdvxO0vU67XjHcyPtfR7cBb0tMecHKSJ+BgxQ4wiS
Ldu/nUOHgfteDbbsdr+pLykfNjvZjd67Ee5E4Mb9uZeo3q/xQPQ13BB6nQm/
gX6IPEXPJz6DCZdnkaM/h8Jz3NlgrvOA4+5arkddruG97yeKvuW5un6ueyhP
BNcz8GkkwDXfDE1tdlLjOp0M1zK35KGcBlCOZWMnbEh3KmUeT3A6YmCOOClx
pgwdkm/QPjtEcsQvuXTddnlMFMFtH6Fh/mHAa0/ZHWxnlm1JTgzXNZ+t/FVO
7Tcx48Dy0F3x2Uq/oIp3bPawNi/oFa6Z7RhlKmwvpcYYthnrBFin1lOHiM61
T/SILnxPXRHNVKbMKw0d6UrEtvBdee9DKNutKE/KryvKcUxo3/0+7tK/B5G8
i5Mb2rs6o++nvTEXTwK013JxKl+Qgad+Y6LhnhOWxE9Y9HuXePhpsX8S+XeN
ejOVmFRTLsZ9R7H2ft5ki+u/r9ZpcNmHvDeLOLb7kDeuHMjDnfcjP0SaUkM+
tD5qJz15CPnUIm9udxjuX+exZ4X8VfotNREn45lsp46d+s1rHZLWNKUGfx6A
v6sd8Tvipun0b9LpDfyxwP86fQ+/8sBK8PCdXv1H3BHlOMiFUfkjkD8Ln0as
n+9a8vMm8kN+viJfBVJ1Q/6LDvmJ7/EbyHeox5GAfMXk82SjzV22YOR5A4rr
+X4oXL4kLy3811z+cs2/fqbKn2ccyH9cPaoC9HEE+HdTmUcIH5f/SWUySr+c
yqTpcavLD60PbHf5oUxGHiDX/GMq4WWq/Ou8tvB15DRvsAi2yLzjs7wK4Flk
7VoEz+F1FZF+f0DcmtOERFDoScB+ETC5CTOtyrfoGiD/dVbC63zdn9PPEAa+
4zDQrwT+2wVQwuzyAywOeB/WNproWU3wHVVedpC15vSsiWSwJmLRxPvOyDUN
aEJZTbhvwj1NawLJU00VV8pE5Bb4f08VzIxN6VNfEvS9mwgRjzwH6UvCCwmj
u0cSzuoAVxJxIAuKh1zKFTeNXHclJLRLgld+ILMlYb+u4wKOlFWRlGfLjKS8
WqrDmkh4J1VHF2mrInKddRhF5AFFdG1Y6DYqIjVxAVrg4+OJhdFMYP99CGAO
Po1YAXStAIomAdTSoaRJALXkX0cF5v8znrVpYz/iIYBF/ynwXiffTEe65ANz
fEvhwIW/PgrQ8DvhgMewh2v4jwvEg12EHzqN9HuaJRzwvvn0Y8HfzE5OavK9
MSna5aAQt44DKgWY6bhnSQZEPtOfSWQw6dFzvFTsOYwInseIwDCfDmY+s8x3
AsyPAtoY+AJTupKAzwfCwK+PPM5EAGIe/5H/cwflHmC/V36ILT4/wMScUUHP
qqCjZ0DbVJAGVKAGDAo+A/aG/cTPhZTDPmRL3ONI7CjAsL+P3HL12NcDAcIB
XAQHAg1e3wff8/ojuwX8n8uS85MnJhrAHzYbYtefBMDf3a6/HXy5m/5UH/2J
lG/S9zdKbkQqSCGADAJQ+o5lWxpUE0AREEBXJ/Dv4bfvow7a1d8gM5jG1X/B
e6i8Dy9PkC8H7vPwaTSAex7AvXEkoAK417IevtcGXZD0iHlz5GA/bWHf4d5n
P5YRsMl4iH+6iEM/vP5W7fXb6K+7/cMc+ofL+3luPuJnL0E6Dos7fPyR1RMW
w+E+RKaTNOEeWlswhJ+PA4Nf1Yp7KssHnqtwx8Gso44yu/kcpx7PYSSg33VB
aIARHJqWkOcPgZ9b8Ds++D2QO6bBf4Mzq6V0YXL35V/wjMbKVVMA+VnAfarF
nf+oa3HPmnAPefdG3KscRyc5hvagn1eW9ZhZ1/c8ntacw5v0067z+74sJ3E9
vX1lcYV73OLsBXf9PJw/0amdvbL0r44mgT79zHnyXbVwP6n8JsR9Lb+Jd9XN
N3Ivz4w/VaWwzxP88O1v8kD4TZvpnKFflBBp6BO9NTQ27dXgTwr5IoB8V2fo
7+O/fICWae63yKSncJ/hd/PA/YHlRxjmfgj4P5C/rBRQBBSQNuU3yuY3qinL
V44CTIKfWAWkAQVEnOZbATwN6g3/nOVHnOpwovND3sPQgf9GcfSD4Te+foH4
+mUO/GPD0l64tIN1dvJnyeP1J2N7Gw37owQGZvUnCXvNyasA7LvbyatW2BM9
YfFMH/HG178lO5RdvWxFJFmN3lQfyJs3NSjLfBqY5sl85nPLfMd38z2dqljm
Ffv6B/Gk88pV0QwQfgpYn2ZZ57/oWtZzy3o22NuHWFeBXD5ShvPK23Nmk/iZ
jRLW8VrLjeTJhfXEH9EK6+jRX/lJTQIWWlinlhBPnp//hZ7cFNKPDbj53pDg
86Q+XcFQv4aIX15tKjEc9cOmNu3U70YXryz1qU1tKuoTnbo+yx30GgUvgz5D
T+VWSeolt8GI9gXt8Sv09Z3QBmcfAr/wwe9a8HsAOgXaVL5DVyAJlGfLFOef
eOPaD3Ff6yO8ke5jvIf0I6jgQ5FMJYViMlJIAlII5fnGRXxepfeO269JIZa3
vv6C0rTTDz0aMsAYISQGZ05TiwFDG0p44PcdPZhU4XphSzv+xKpBHL8oQT/9
pBAGGke3sv1jUAep1cFZTp6TDBJB482tUJ7TKILQcDYe7PqTgAhCrj8kglRE
8DoBD3//liOCcyYmeOtknfFo1w/uzTsu4snAn1v4OwH4GXD6EwM/zAfv/ykJ
4ENM4hPwPwX6My36PYt+B+fKm9BPA+grvSXhwJxf91H5sn6jO44M4KcB8CNO
eCz3zwD2APZ6QnPP/lT/ZiFehrYN0Bv3f6x2/4d60H+7V5/7nwz0awn2M2Wr
3J/xsyBDQ19t1dKe76gm6HfZ8ycWejUk9Epe3Bgif3/sm6TfJoRpTPb82OT5
pYr+tIn73D7JKll3P/ddy/0ISFZgmq7wNl0RXv83xNBnEwvH8OP5gH5e+Qne
E/kxstmP5I9ENgb/LIB/GvD8yaTwVy76UcU+5/rKZf/8inuf/WqsS7VFnv+r
akKT3f0W+r4x/Wn0+BX8Rzse/9Sdhv+y6kV+5dol+w0J/+TTHjUY/naP35j2
TAp+TnRjef2fq4C4fNtLgF4w41xl9tOngGDeDqKsBtLAKLemgcJqoBPQQC4a
eJf4v1HmN/+Moe5H8P5E/g+ggVn4NBrQQG41kNlZzjSQ/SSoomrKfmoDgVhC
wAcUiEQDTSEglv3WHRkgbwL+3qA3ltxnveQ+N9rcJ2Mx3ESBYTgx1CLBIZ4Y
yqgvEqRWDLLzNa/v6RcDosAZjhgeZhnshBiGTX9UQAyNy9niSUcCNaQYUhHD
GwQ+SYBloMWQ2ERI3gSm3wGW8OsmRAp2d/ZQElQTQh4QQtcKocdCSMsP6Hpv
0vUwDkZA+HxiYTQd+C+AEHrlp3jK5BNEBCMJvs/FJ+oEJNGYFbVLohYWzJjJ
kQT97HPooV8UEQeH8jb6v/uS438WQmiWxKmSF7mSQGxAYtQoibglPogkjpLk
CJI4rEESq1skkXBsOEMSo7WY7H8YTyUNLYkhkqOkaeYzJIldiQ+JlYQKSEJ2
v/AkoWRGv18XOk3Cmzxf5NtSEh9EFK9EkmcMq4gioIieHuN+hAp9bHMkJz50
8eO50MHhUAQnSqP42YiviLxVEVWilDQpojFR0pmSEUSkBogB9SYhDBKDTIh6
Y+Ot9H1NDM4wIW4IDsiLDtZKONLJlKJJKYE6B5OjaygmXDp3YTmvSpT6xHBr
9RBWoxiGSJZCIwXliyE0M9oeH5JAsjQpMXCCEMu852vU0koR79jHW67Vb4XR
Q4ZIvyVG3jZk9ZAGhsmZr4fc6qHjD5MZ7YL14IeJh8AghYlYD5Q/wZO3n+Lm
mBEFxxY+R6dVFKkfJlgUqmn0UMucjChecQYOiRVF0icKRxA4ksDIWYsiNzOn
3uiBAAEpEa+a1JmGWR5qpUF/SrzZt1eaMHF+pG+V+erAj3acNmfCUUfG6nBe
GmIe4dLaSFkbJkjMs7fGasLA01tDCaM9cWocQquAMOLdEiWUFUZqE6eQMPj2
F8YD5BpIDva4iVpO6ROPIJS8AkLehVS9XyQUIUKKKKwiqgjR0yMCrQiCvXyL
FLGVZHconhRYuSqagp/OgxiWlp8hhfoUidMn8keVLAqcMsPJMzunlOlHErxY
MawsqlgRD5YFD6pj2RnYkQWSrj5hxPXRRD11CkQLO6+kGgOG3EE7SEtCPzqg
oKwds8enlxeNTPEkUQsYriRMqHDypt0iiVCsSAbPKsWBxKkxVoTuotXGEiow
lmiUBPMAv1/TBdIn0gW/fSIJRIVKA7nG7x07zelpoOtrgCVA5fuUib0lc6kI
DV9QaMjwu9nA/0QIYTo+jVghdK0Qcl8IjUlTgnqqyQwjdICgoHlc+QXPKX0O
/D0NRBwbuN7PkQSeA/cDFIB8qa4AjKUHKyBKg0FBFLDcT5m2r1txwuCUia69
RiJCLVv6aylAtU4t1YYOuzsoDKEABiHmOaNKBu/KARlQzpSYyECZDCLDa5FA
lU5GEB0riK4VRKcmiHPoq4kMrIAF0MJE+Tlur32GyGBU0bOqKAarIh1SFbWh
BGdNutfKDyFTrOiDEowwqoEE/a8LSDdn0Ei5TxjVQMIRRq9vxvVG+iw5U10Y
URyODWaFxR46NhzoKQNi2Xbm939crl6wlyij15QulZeNTPGCgr7L8DBWlz1i
N+YxOzi06yFuWiSd7KoeYn8Hh/ap1lpEUJPRQyJ6QCr0GmnA6OFmPfVqMiVs
AY83a7zGfTIwScqsHoqAHnp6bPwJJ8UfkdKgB3PAJH8H+ihQdKGBOVDDD6GL
mfg0anXRtbrIcerMjiZquqjSpkTvDdc/xG4fTVD5UaWJqCYKJRu3OaJAogUx
eOPr2A4lIr4L506/mmhxM0WLujAGRotjJVqIJvQK68TkS9s2nPkL5EzdlpTp
0pEpcbl67kK6hll0oW8/7KIqGvOkdlXUhg47ue4iFCXUZFTBzhKO35HFuXoS
VisiUkYT/LKEZEhJ5AFJdK0kEvCNgEIjB1cXZgr2myOPo+t+Kmo4D7oYw6cR
XxdFky5SP14kVhdJ03AilEWZuzavUgQzuohR1oYTcUAcqkkcTszI3JlYjhlb
dcyQ+cngODuuRQ1lo0a/PEoJGTsuO+SI8qKs6DTkU6tptKFEG8ihvkcwPMSZ
0yS0Ue07264NjhjJYG3EO7cmqT1i1LQhO501aINvM8Q8cNYCeZu64D3Jo65b
tiKKjUDwsIwIJNY3gNtyqMwKpLAC6diY0QPeOQtE2UTqLV4E/hZfbatMyv49
QTcVqpgLfRxWfoGBt6eUrlVK7isllFmlk1FKLbPSIcQIhb7rF0nEeZXVyPPQ
xGCJ9Oz8rJHITfS5Ka1SvkD6QwgUFR2gNaLXbSeIKtuXLV7y3cbzflVeNHdh
VxbzGX1AG3F5CWkjhULcjKpfIxhobNxpjYSyqsZ7dnEgq9rJe3ah+KH8e3aJ
fcomCWiE4YhlHPEOiUQSK4iENRISRRYYWGRWFB0riq4VRVdE8TFFCUSOt3nS
920Wxf546T0WsVLkyCGA2ZDC6RDFVHwa9UXRwUmzVlGkTaJoH25UaRV9lLF3
FTlSfxAuQWM/Yvx5zqiehxiMLHi0EfujDWqIm1ZhwGGUQaC0DzjaQ4fIQq/u
S1dIZgVZYCzOM1Ids9CV8qeLSQcXz13oaeNwyavWkPmD2pD7d0NrIx4ytwrd
r5i8NiYfP4bVBk83gSjRBnYQeln2JU+GTKZ4SFwEZMF3qGPwTdV7T+vC04aZ
n0XAmAkxTEAW3yu/xPrWLxAwPoc2PpNTsUCKVoFU+VUyWCCN07WRP+RoEAiA
Ilm0C8QZd1QCqWdWkxCIHzp2HCNb0e3vacSkV9DIjksW719eNH029YrWCOkF
3yOk0ClJKYqFkrgJFg5HI2n9Hrdsm7tTMmlMs1STTOLAwHzYqdrGEBIaglQy
Se0QpJIJ0wO4SCcHUF+slD38sZd/QwAJKSX3ldK1SklFKYgiRimZKAWsmSgy
AlXMhj5+CqXMsErpWaV0dKrWoJTUDyU1paghRyJaKuVrpN8vOYvyRKIckbwg
IlE2uVKNIslYJPXc6ma8ueiWSHxs3+A8qr8prgoiF0gQEYEc2p9bYYgesxpS
rY1I1k1pnUAxcxeyUHREUeXpkmmdxG9hfwjTubtTKsNmW2rSUmlfLqiaIoqa
tFQS/Va4N9hi70rOhbe5vIpJ3oZEKwvopPB1wolW4ehEogoGMqwTM6/793qm
COP0L7AHwJeII19F0cH4NBU/G7GKkZN6ismaYssQimlMvkQxH5OOv+T6mcEI
KyauKeYFnqryFKPs7Y/+4YibdO1aTJGX1EVLtWQOqfIuXASS4dzr8sOO0dpA
qeMJf5dYvdB5L5GbHyb5epAXSuxOycRNSdhfWTLt0WUnJcMjESpvpjEcugzh
hSQjr+/qDy2Nkun4kumJZD4keZjQUjih5RG8s4BCCytjLjRyFNTCn8Z8tXRw
vrxVLalVS7JzmZhZXvO6ji01taTy+JEjFByJP3SPA1qJlDtGATonrKJ+uIXS
sRa5xO0hZscFsq27p5fE3BUxeulWstARRNItOtWD2GXL10R4VWHEGwmYF41G
1XMXQwijSrvaV9vWhFGNTuKduz8YiiVq54QRsw7S8i3qlvNIIRis4A0cb/KU
cEPilfnqyAPq6IJrBcKp/MSJKpx9qfIdHrKcS9r5LY2J/4GA/HpiYQFZzIJA
VkIqU61UejgRn7KwUsnsVFclldQGlmTSUlF9UpGgEgos9NsDSUjXEPUv8FCl
QSz1Af0Yi6U+E0zYtImlKbLsuK56eVO0RCtFr7pKtzojejOqx4jelwvUfjnv
9P4glPIQNPPXlgvHkWQyN0omJZfQ4kMVGKUofzI4sU+dJq1ySUUu75JUMF7B
vqlGLo1xJPOVUlildGwcyUQp7og+RpmLUm6SeWAo5R+Q2HyBZSZfYnj/FZZf
fY2M7CvsVfkl5r+MZjo4ee5rpjG8DKGZxulh9FEVWXCkdvASi2IuJKWfSei/
wFHDU0yVijUPXkwmdjMNYhif/sHLjQMjy/YL9UugjF70ghS7EgVaiWIulb6R
IhlYLnnYxZJ8YVB/OVaeeIHGXYNyW2jFbqTXhF1bHe3iUU1JWGgZe+hOSkg8
8WSG+NW9d+XHmp0Uj36RWWLTMajntWUr1JDiyQPiKUQ8JhODYnqiG0wVmwjz
7ZHHjUIesyGUkyCZ6fg0pkcyX+C8n8tQqF0y6WDJhMYvVUYW68D8JaKJUUnE
gcWK5EUogzSS2lmwZo0UfVPEtYjCW8BomOy2fqGIsv2GZcfhPBxR9nMVktZz
LwzxdUSh857m5V4PQBKNuhhmbVZs12bFTXqo5V47qYd4F2aGQ8Gk2qKpdtdd
tgbo1wMvb8IQmBzKL5wE7HXeHcTTQ5V2Zb4eOlYPXT1dpfXwKZ3qfYobUMII
lynHEQzmJY6U30xgSMlTXl8hhHyNBOwbvKnhayRgXyGYfIlTGnnkrfJIbURJ
muShBmdhOqSU75EU9DSYCSeJCMURCY7UDyZx41hlpC/9wrC+Jf0aFE2Olmgi
WtF35O3KXjeaYGxvo0nm6KZKwoxuqkxsd+imtvtxLQlr103tjkoc2Btn2MH8
sHGkUTfyVJ2nG44amOmSdOznsrv36xjf0+d3opZ4ktlkLPf1w5wnIJ4u8BFO
I0Fl1AkqGN5DQH+7ctW4Htd/jU1hv0F4+RpBxZNO4Usn88f6qY0sSSCyqCGT
sdiRzlcybKmko+Q5Kkc6GOi44qmiTHDsMto3jXwriahJPEOHmX096bi3WYx0
ytWLlljppCKduZKEXWakU0vF4r+mdGrv99lJ6cSTnjpuDDmTlw7f7NaAlR/I
bPL1yMNe07cpMRDBrfco8uNPKB/L9U1ETz+Z6AdByOhnTILQuTKj/I9EKY7v
jjyO5PcVQg9J52yIaKoV0QhE1LUiynwRheJP0hp/2tMzIyLEHojoq6CI0FkS
e+g7k6oNI6KURWRStZt09In4rp3OZqyI2qPPjs2z5yP6bHUkpG/qK/dGjI0+
fFffnU2m8lSKPkZG90M2/YnbX0FFcSBx20kVxbs6m7x7VKQ4zqjyXerH2/QN
f/wFr4RhMWFj8XcwBxZFrXlcpaOO1VFHdCSJHCuoizIt3+WTRzLXLGJS0Mx0
qGcCOjqo/BN2O/kGMwNfIyJ9hYhkFJW3KiodUlGNGV1sFaUgpEpHsaOjl0RH
SUBHceOQJ/du+mNKwAlEmrHm8U5iAtG2rWf+vqwEtH81GWDTNxWYDDC3aA6T
JTA6Bt0PuTTlcHpJzMDlxsPqJ5TANd7r3z36GSIKqaYlMe36YZxifkELgSap
3BL9lqJM3kyBLcrfJhm9r8XQl8dV+sl9/XRFP4S8yeWwZwreK/CuDUa/I29v
gtHfrVxFgedr5HGkmpOhn+n4NOrrp2jVT2ojUtKqH9WU1lX6iXhIZAIS/cxT
UqQ3kBMhYWIB+mlQUnBM1LNpnVETsRRM626MLJbXc2LtPP6LlM7Eo308NYUy
Or2Ev6YmhKJFZPn7+H6mUVMwrVPuDNtuUlMoGg17b7OmpnjSc9KN0UgFbuFU
apIHZvvVZN719aGsq7lh2Qq8746l9BZJ6T1S1wf8P9pUVPgqYhFR+Zkzr5Cg
HGUpUXosk9T/yJz+I9P5Z8rzSDg46D9/jdUD3yAicVj6Mx4N+xNi0zeRFl0P
AusGBJY1BahGganWlC92ZuS+gpjMZJwTlnZSUSPelPUtFJvqiqoNkkKh6btb
Nz5QVmJaGphZ0KGpcGcW+DhVZhVOJH3cB8m0JXfmLb+yRiC0TqD2IMxOaqnx
dmilpdoU9RBaar8d2hiZGqeoG7UUyzti3pccL+J5h9eRhumNdbHF4vskjA/Z
iCatywKC6lhBZSyoxM3tcIyLnDDNIJHJyglS+kYfNEb6Bg+TkX5+CCXNwqcx
G6pYSR1cIdfXMjMQWSBUNSpJtaZ6lZJMqPqUMlEzboqtsJQjrJdFWCogrLh9
8JS4T5hh9oFvIeo8qG/cFAhS0JRZirNY62pJlfLZ+z8Jl7k77WBTvUvJ9vex
YFrTveoWkGjqryepxmfL2iUVT2bKoVp6owLhaScllYqkPqBeOp+OpbzkgCTV
FUkhUGHjOr2H6Ud2xsxTU2HVVDjhCUqCiKbXItM/MZb/xDD+Bc+eiZQ6KGdC
QOdCSlPxaRQ/G7FSKlqllFopJVZKqX7JwnCjpthmfWg5gqadfTAJXywqWkUV
P+vQo6Ek+DRXRWqIoVPPToBj+mFAaOqLTdu3LDtu24V62ORryL1DJLEp3b7+
lJVWQ5LgUQtMVGrM8HRUSmxUulofuyKgavevZBcEVM3Zxbsw3V2LSar1NlG7
gJQMiT4if4NM7+y99ido38AamzcZfWzthe2MPor68juZkDYC6oqAPkdyCO3R
309DSQzbgPQoOXhXRd8SqkZFMcrp0M48qOjQ8lvMQvwZ+Z3RUw966gT0FEry
El9PQ4yiVFhPiEr9eoo4LBk5YaICKpqEnnRU6tp0bwWmIUhXrqYGhCXM45mw
hCD0PS2p/QLpng5LCc9EOCmeCuR44dkHCUfDxKLq9fbDvjfzryylxliUWClV
sUi1TtwlVkqy8NhIif01eKN+ul2mxLcsW9GBmgpWE8FH8QhqIjqbtNSxWuK5
OCo/pj96VyLSFJSZCAphaRkJSEuJSg48syCZ0yCecXwaw89GbDDKB4snHVI8
KhCMYpvX6WhuY9HXyOUc6bhRaAjptMw9oJ9/S9Ihiqx0hglF0A1C0beVbvZt
TOcSnnNw0jjWTXsax1EotOxtCN0M+2rBYZe9hW4bsW7iXZjwDoWgxgm7dt0o
mU/4mBwNxLOUV8S9gckBHYfeIdbxhPMn/N/6ZVNY2aQiGzcOjaDsiWxgwXoc
+lvCkXSCg677JyxoIO38Ciqagk+jVkVdX0VZYJ4hHVJFodGRqqmIY5CJQPSL
ryGhrzAmqnS0UnSkrI5S6EhZHUUspPJpGv7YrcuCQ6SOnRevzzsMmsXbtvUP
W91ItMhTlHdTKZE5cWxeZmbskmGTOmWHRVdHbhiqPY3wb52cGue/28NQbUg0
rJz4tgvoo76CpA7UqV1sFZXJBgF4Nho7znzK/71fUR09l6YVJWpiRfH895go
6jwSpheIFOQyDcKZgISOKr9DUmfENGLFVEBMfPrciikLiCkJjI+SpvFRlc/F
fj6HiFWFI0dMsYjpHpLZEsrEXuGh0cvQkQlKLCa8Ygzb/5FGnqD/9ijundHx
GH1+SmsrqKquTe9MjBpiJg8jJQjKLBISQe1Thaj6TSbe8QnO7eR9FlNnDczr
zCjJGSHtFjnx7aRk59bRxf6k3bByGjY6qdYZhqRVTgrkxZCTxBC8AO5Nvp9K
5YgI6gOSAqHLT/ekvpYKfeNUa+kTJ6nLUU5jLWVmnsEe/4ylditXjUI4cyCh
syCmafg0ZsXUHVJMiRVTYuft1JD5XU1MaZ96UHNSTk09qlIPWY508DgUE4lt
I95kAvYuH9UqisNLVN0sb4jB0Y7NS5ZDPWYeHHrZ21NQ4MZSAkXt2Hvu3B0b
Tj2lfPBHK1I/KrWJ6PYqKu0+EammrTJ3UkTxkDPfQ8SkxlmGSkTyvJknolRm
uBGYPqHAdIceKHUgoVFISMkzcHiUQbTkSCi3Eor5lpCf5fGahpnObMPvKTn6
Z2ZTl39H35NkcFAdeNKb5xhIUPuWf4mihfg0jp+NWmnx3F5uk77cHzqlTdIa
IulTgaRPZ33lh1TRr3m2wYybosTVF47UZntKVhI9S3kgmRX21aamyj8GZUmc
Mkp7CJ9JbU9SzHrGvArMm5IwE+W3y3TEwHgVQ2iRsita8W8v/UVP83XcFJBX
gGOzKdHbd2/duGXHMxf9IUoHp4GqFrWucQQ3xNMQ/5YIbojbtrWoVRtTTUpw
/C6jGIKjjxfoyXKZkTC664ju8BQEHrj7nBn6XFhn6nneLRXdufErtrpT5ft8
lltkwvyfGdx/Roz4swStOdDY8VDbDHyaip+N4Lc9qK0IqK0WyNIh1ab8QNai
tm+wkt2ojUNaLZrFvt5gLhII2ZKPJ3G2J9ilSGwzquMhAVXYiO5BCBCJI88X
+qIreF6dYlRfiNvaF+JSIG5GXCbEmfim5zJyN0M0euOYt+kX55FcSXFA9Nxz
oDi5J6UHYiQ+aM8cg4JePXP8N6HBIZZOxLr/TeYYT2bpxBBBrzYQG0KDqbxC
5mOJfJ/IsOxG3hzOZJBjIkPcgcJ6oy8YK6NASe6qyGcUOAPiK0R8B9AvHqOR
TD3ykdBwkNC+FfFdABlOxacpVoadwTJMh5ShCuSTLMO4T4YIeJ4MlSPDV0WG
ysqQ7/5G/DIIfvGxI0XRYlrXIkuR+aDfGTESPKCIBelNg2DA9huZAmm9t6XT
TTNYMwO2rVX403LM3HTThD1IUZS47ZVNG8uHTzm5mgyJlKvEqE2Gj9H/qeee
uyxDvsOV/DVkuJO3iCsZqtb5kGSwDBWINfFQUlBsfUXSeAvx8G1MkLzDYsLi
CgjxS+bGaLAQDX6BJRtYEMX3ut7DHGMVADEjYgMg/ewv2N1aNJignA7lzYUG
jyz/FpHxLxCiUWMPaixa1ZhaNSb+VEmlxtDoTgWCYuzMO36DnPNrc7OrPIjq
fT3Fu1cR/owCIx7clc/jtWrUJhHi/8vcm4dLVpX3/uvZU1Wdeeg+TXcjajQG
NXEAxZgb8sNETERJFMUBgZvEGJN7ozFq4oBgO0bFOKEyT044D8ioIHPTDQ3d
jDK3giLI0GD0/lu/9/uuYa+1aq1Ve1fVgfA8e7PPrtN1qmrvT32/77DWomc4
gT8oZUMZQjfgm3JsqA/ipwAqPacli++wBid+WM0LEZHFXe+roz4ji4pDmT8x
Q9tt+ykKCeHO097yL64cshWljwEUfrbegpa0NHKoLCkw/B8gh3V5rCmHTRMp
hZmDq44BQxyqEUmDHJZ6dRD64M6mjxabsqd04TWKMwpFYIjujB8Jk4D/Md7K
BYzi2fQoAcgozmM/r1DEvaPlUHnRi5TqrYC4V4C9RRzN4dysYa8TYK9ylbAw
7LUypFmAPflBaiHE26opPEwl+SGEXwWAXwGKMuV/ChZxkwTCU/J3i5JCTaGM
BTtGCXU8aNlSeefA/SkI/wuPP/eFflkAnVMfUpNyJ/TQhlDr4ZMkh9KlmsmL
HFtaSg4RCnq2tJ0Y+p5UcCbGGgSTItFbyyfUIR+apn5sErMxsjGeInrBYVMS
ua6Wg0Law5seLKcUBtSKRR7DWKixIyhMExN6Y0oKhaOtjLPYLykcda1gC9/k
jONWlsfL6SYn/rDRDXcx5PESdPleii7fy+j+wdECzs0aTnsBTquARjblNA9o
ZDbA6ZmWWWVO2bHSAxan9IAmNVetVlhL4mS1naRhLX1YmVW+P+hNhDI3Si4F
5yDIs2taPwlykdWxhlmqmfpiemmHkLory+WUJ03Cae1XKxU5Kq+q2u2HSKVP
ac6UKrkUXMQTckkL1WqZHMD/eFGaTU4voymcYjilpVoo4mxLNLEpD8vAMqs8
XrKrWhiRI0XORvpWxkSCqiBlUKewX7F0k8hkOgvF6KUbn2gYzWWy9BIMdbkU
KZ3LEFVeChnVjM6A0a7LaBXQ0sL1sVFGc1dL80BUqRm9UPLJjLKjzSxGX6UY
zQ2jgk1t/3RMyU/vT6FKz3YS35pejDlKiPkpoe4+MhdA9XP0p+zBnDzzLCEb
UdWdR+3/OltVdSPyEyWt0uRyxxeecedL93m+6Fih5WdftF9aTSOWVqtpwtI+
ZoiGOr4yN8vaCtGmQloka4NFAFFuo8pwK2s1/RgFmc+Us8gSZRrOOQUnvCsE
8wJRC+j5i2sNl13DJYFscjyobmzlycUknADzErkRfpcoGl8HLhdxxOdm8GvT
LpedgMcth3OZxzxuFuBScLqnfx5mzOXXbDI9hsivgUUdZNJvnIapzhWMjYCs
DJCey+U7h6ICP9LUsnk0nsWaKl2vY4mVjpVsCms0tQ4zddVDd5Hxf3s4QGpr
yyh2YmGmqLOuSjYT5taKMqPmdvWYbNCFGWUya5juaSCbXpjZgEnVlHU23yfQ
znPos9QbzC7h2TUWd67usywYTzQpA8kz99qvY2isFI0fVuUOm8Yr6U7XNHaw
XwaD60Hj8/uXq6N5l8tejMsqwGURyMLmMU9b62U2wOUP0ftGHPpc4h0Rk4bL
TFf2MW0hPXaq3OQimqW2tXZOVl57UfipIJkJym1bK28n+qIK8fkFNNwoW/tE
srOazyMVn3rdG57pYHGdKCSXZnZD/PeEAS5Bo83lruPfcEjI0+Y2mCJkaDOA
SW/TU0o91c8R6qW9Tzx+ZIZqklEyRzS0+fBEbJTMyqxMUIBIIQPQTWraz9wF
c8EQOJXQwyvoZ01gJisdlyLncxkW+7gc5cjLYFYvBXyXQBQ1gR2XwNqxlgEC
GzjWKIHyE+t/l1z1hRxLXoiczwWm2q/oMwQKlsb+lzALIj18Gp7rVCFisWUk
EdSNNgUofZSRZccgCKsKedQIHv68/XEf8wptQPD9ol526r3P23/nkYe8PQ8o
4yCBsKk2gYNR5aAyRtoBoIyfIpNltwOIwlbG2ECfBvSFBnKvMn2tkj55wKtG
yyBFTBflagdV/xxPHD8mCySZyyDnWNeCwVlLBZHZ2coryEoGNxODBBg2AuxS
eNLLsLTn5cjnXCHE7+FoAedmDYi9JIhVaxBzVwqzQHpHgahVkEEsVOxogYiP
HP6UxfB0/NthCNbpneOEn95Zl2JwQAM1gL5HfR9tR+CYdPEIgvG9Lzl051GH
vF1roG5+4/92jxNYWcFiUgM/l9TAsv9++tq2Jyl9r7CDRcFpVxZsuQrXmBS2
GiMUpbBOvWaj9eWENDCd1IlSyD0umbqr+ZN/A/H4TDkqVc7dU/O3BvwtWhp4
LLnOrXwHb8UdfNUAhCX2rHy7Ab39AOFaHM0bCKcBYTcAYWX8aNkQwjymhhEI
bSvKOZzMgvAMBWGBfab1kHDAlHWny42JlJfNjhsb5nGssFHIPM50lElbFF9G
x+RLlSiWhsn3qu09dLYIdMgN59GJFX1F/Ew8xcoZ1khiNQ1iPVgvC0xN74HI
oyQElyP5S+qTYmQaQ4WQKI2eI22gifnwFGsRo7FQM6JqYTyXr8W5DOez6Ovu
NWpioI6ZzYThXAacaxScr1NlDxDZwT6X5YzLFH4HA8QFHM3h3AwenQqAWLlq
WINYxIodeUANPVtaJ2ykL+2fhUZZttIXshm9QIWDQPAMmFHJITfm0L0PAK2Z
763gUEWHhR8dDu8TCEWH04ZCEPgZVewAgcdaRQ+lilAdrCRMAJYBLdw4lL1d
X3zFX3vslb4bZTn03KhWwv+k2yWohELOyacssxUNjgggKyF9xp9UH4zaogxG
O1UbMJj2pQ0UsWjNYGmmuM+U2PBn/nHVt/OBvfYThUse1xrXgry8/wNTzIA2
GvxmQNkyeNsI8p7d36yO5nFu1jDYNQx2A2IYYjDtSOukaRYLDRWDxJ/FYN4/
XKVJz+Di4hnwoayDekJwSV9h04cLlnHetDBpGSWBMjNT+vAxerJtNQ/0B0wb
+fsi6a4NHz5gigttSyqYPdIwigd12cJuFN/UGMVC1y/05hcb1QJ5IREUhQ9h
1I2OzWAWiAnTXeLpRoCavayhG03rXzojk2ZPz2h8Ln2rneuJ4MdVdUPO0qoH
Bi4Z/asUhRDBN9FtDAq72HfAGaveOrB3AChcMhQyo1OgsAcKOzEKyzYU5gEl
zMIUno81mBSFRYDCHPtMayGdpKvAs+1NBskvDiA5F4wSVauOg+O/EZ7IlCoc
WQrp9argkBm0AkTz34YhJBaNVNCCL+9/WiVlTOVQBBKigodFcSJJ1lr+hzGY
jetB84D+RbOiRYxBPSsy3eSGwdwzot/hKFEzuGgY7CkGP6JqFYZBOreFbnRC
DRvdY5fDkhKDbwCNCziaMzT2jCZ6NFatacxdTcxjAaL86jKWNMM+t2h8taKx
UHvkar6KQbz0j/QEskyjvGI6cypk3qb08zbBNlYLSWVPu8ae+kh+Srsv2Tln
u1OLSBMfIjYsA6Joo5jhiumI8OS//zvPleY2j6IOB2tLqpVwE90kvhLSacuN
xlpT0wxG1ykbm8E6N5pNxIPmSQ9aJBksDYOFmuvoPCWG5/FVOM8MDf6gGpHY
MSAuAMRlgDirQES6RothhX3Wv1pWDukk8YaNbrPLYVOvQL2QaHxh/0okbjZD
IK+ATb0cnuwy/N4gl5VRydLlsoglbvKAV80SXH6fAlotkMxl5nH5dS7ks0o6
EzpnatEni8e6lDhCsDjYVG6Lo+VVM7CoLhLsqokTpTgamxoSx/Xyf0+S4ghQ
d21YXuZfkWyWO084+NW2TWWXyiMZYWGVTz1Gbr5NpZufHniPo5SFrZSmdEGn
IZSb6i2KqTcX7aQxDZUwPEzb21VPKvPhydMihmmlMEWD6nkepp9Q4aNsZXUw
XQKmC5Ze6sRNjn0VwDSXZYwrUF7cjJbyK+FjN0M5r4ByXo5bdBDTjiufIUwb
mNlaPrNAWqdkOmVD3KdI55+xfnd64OtoS1V6idYbeh9flVsNqTQ3OrNqSh3D
6/2pqLIT1EuVyhFy6dyusbC4QJ5gIpos6/q+0ctBOne+cM89azpT1jULW1cA
+TH6hm9tXUMjOtI8cgpV5HYKZ7WhTPvXBtpZjAGlntvsfPp4XTKL/qGq3qEG
N866XC5b8nkc3c+AsaeQ3IKl2ujTo42guwLVxs2oNl6JQuMW7K4EppuhnJrL
bpLLsjWX+XAupX72zzZJ1p+YGgdxyaLJhEpL2z9DAepMlpsiVIzQaz7tjArR
jNoqegK9FKWiQsuoKnzYMqrjS4lo3QZgpHQYqHm86hj0tJZs1p42kGEVuS2b
ozKa1TUO/uaSbb2rymi66pgWzgZ5nsJltDSMVgFGC0Uqos0PquEd02a0FVci
1wDQrH8mU/p6ikj3JvUEn1PYTwG8RSC4G2D8c2C5FkfzBsspF8tOwNV6WBbJ
aLN2tVkg2sxsLM/BMGms9cgZn0Esc40lYk6JpDeHNcchuiDi9QiMH2v6uqnS
PlI2OyybX6Tt90lOD5PulmUTMWYV6InbLY6iHIpVhRytmRVA5MbQfp75DAko
8j9DHe3k0JQt9jxJB39zfVqE0WwwyqMVmk3TP3lAPtMp2MKVz9Kgmctb/zx8
6Ofz53208rREpuwZZyoXDJWVohK/o7WTqSxlznWzYvE1oHIRR3M4x1Lai1HZ
aUNlHhPLLJ4Dugj5nprFbzgs0l6xaObzkJdB539WI9xcdICMiKSh8W3KyIJI
ZWJ3fOj/fkRnfZweuaFEdmJE1rkfkWskFZZ1P8CxcjACfaGrfgCRSgGxlxWc
h+URZHJVpKFERnOxggd08Of1GTGMyGijXKggmcUMbdNkUJ40tEVDIvXkOOcT
h0QkU1koNrWrlS3lDptsaXsBxZzGnhFcBowbgeWz+lsxKnILjOyVUMzNMG8a
0E4M0NIFtBjuZvOAm/WSQfJj6/+Ivkou4hTQRTzTj4PqNyzZBKpfl6iaeeQy
Ncm2VTtJ85qKPGdDkWdUPY+VeSHhy+fbVPFEyScizqB8rrNhLTSsvL10n+cX
xsxaUeeAn6V3CVC/UG8WqqVp3bF6WEWW1E0h1zT/UL15tHr95OnKieDWAf7U
Pss/TZbWUOq2lX7mDVO3RYDWStGKoR0/IjrBaaWYhb99bT2jALM6b1idsXSU
CGVWO9jn/W0yTYQV9ehB2ugpNysxXQdqXwp+l3E0b/hlU9wN8FuNxm8e49eL
Rj3Hy/wK1tr+s+kr6NU8TdU34C9rqQW/X+ebzSW4sAketfg5Hyp+BsX2s5gt
0hVb3In8NQP7+2dPeRbY3XXkq/9PFei8a4xuFUoYBdJFEtjC1ta6zaCw2wzc
ltfMbXltgGmejECRaBZ1GrwZrulun6yN3Y1mi3LX7jbIFpUG19LgqkdH/pj4
1ApbKYUFjZh353s84bcGdgnAzitgdc1Fpoto32Vgi/5WLJQkgZXVlSthhbdg
iqytoHcLrPCVsMKbobQOrh1XbqsYrmk/XOOaBXDVC0idiTmEFK652v9vVWz5
BiNg9JZp/QbfHF8fF9fUTFvTA+2zttbqllnFqtLaymjtF1Tv0GGydb0T6NRb
SbKaq7KoZYtFNHs0RG0/QHdVUG1FIMnrGeMGQ7eaMpy1McYjshs1xtEsUh4L
VZuyq2ccIChcd5z1f2TCVxD6PZ5fXAO8CICXFMC6ewEAzyixBbuEJjZSUq68
bMF041sxr9ZVqJxuhVneArG9EvfrZtAbQbgKIFy4IW1TxfVCWvkN2L84QW+O
vTcdV5YKadMdDYMTcy2EgtqoxqqJuGyN1RKrY1oVy4Yktgm2hRPN6mlfRW4L
rYgo7WfobrFgHaq0IreNcTtUo1mlxwzVpq44JLMNEr4hVJlUSJf0xnorFa2w
yJrWCvs5Q+saResPyT3/Ef3K8QcdSuwN0lrKeswWlE23YlTmVbDGW6G/mtZe
jNbKCG7Zhta8Oa3nYkIizxqD1oNtWqXX4dFjamuI7gjR7cwAuX5k6znjkNge
QK9+j8V1CGo7gSaHtcOp9ecQqRNPhUk82eqaq7TTx5U1NrMUDPXFgrNNPOPf
h8UwWkOT4gk34zQZWrNADjgL9DW0yjjlsRi2Ka1879PTXEBYEqAMacdCVTvj
zAjrvEG1AKn0ex+l30HuCaQyr7nMAW9BJXUrhmxehSzU1UI8FUeLOMePzuD3
ugFUKyOspSusxfBQtkY1i6WiMoXqDzEvEaF6cQDVb2pUvYm85NSzhd37MGph
dTFUWE1KK1JP4fA1Z0ophN112IsOEp1AZ2ADRP3RKoNGOLcxFRan4THTTQ2w
kKupfqTeot26IV5DOadxeM0CNZssaYRHVNdohjjEaynHUV6I18IzLtf2F57q
e9xFrwFdBqBdBSgeJjFlQLX9vQaLhNB52uiptsD+boXpvQoL+14Nab0KIrsV
grpFOeQa1U5AVdOoNlDVLIZqwYSy9eX38k2+7Q2h3Oj7Tb7m/nxeVrV14hHs
VFJPLRcc0tN/lU4YVZyQnq4JwnrxRw8/HL+WBfoGP21Py0Wv2yqxambF6Loa
csHprvoop7UBFpwX1p0jov3wzqacRl1wA10NBawhTutKTimHeF2oOKDn+jEh
qsW1Utj+mH4+jC4BeWGKLR1spxS2uqazjXvut6GH8BoMfuEk8FaF6KsA6xKO
+NwMHu0lYS1dWIvhFjiPWWAv5wQfQV8ztaRebGo6BGuN7cBUJoPZYXnhtP8d
kNfTbHlNha7TjbX1BH51x3NJx67DYvs8bS997gtRxglqaxNc6xLsp93ya1Re
MxvX4+jkB8mQGVylwBZGYDcJkbTBocJrCNd8eNAq5CA/NQfFKjLb1Avnrrbm
ySRTkWS2o5i9gNjUzBbYF0CWHng2XQSMSPs+N+p/HwGszjTNWXpLuKokMe17
AJce2IYJpZXozsmKzlXoNCSE9+xvE2IPHC3iHD86jV/sxmCuhsMcMsnZcJgz
BfN5KpRNwix9DmvwtwY1eFUi2mkDdKhO66mvCMnvMbQ9df3ugLgKNBu6POM0
WHZ5zncds/+LvXb9QAaK/jl4/mK95VYmamTDnNuGuTHWDaJbIUfQq6T8KmLd
1DLnMcucDnE9rCtpSS/C8xHMHQXzJ5V5/jCPBtcqvAiYFxjmgjNR/0ggKKBn
FcpXY9ow+pe0EZhblQavA8D7A+W1OJrHuVk8OmV0ueOiXAVQLhua6FqXs1hq
SqJM/lxibDa86W8ha8xyrEevhuCVl0zHukL2K5Z+v2KdSZb4LtjNisZAp7RY
t1h8Tiai9DoOthQrcneecMTR2jxXgZ7+5eH0RkfADSajBlQYxnlk00y/D2g/
Wm/RxsTQVGEiGeTiu0bURfCJkZslg92mgtw02A2Ry+IGVSZe4ZxBb5f3BTOM
jDLRa+R4AQQvW/kp3O8Adz6Aby4rPVcpaF8LfJdwNIdzM3i05+LbcZW4bI1v
HrDVWQBf+e3H9F5iifBzKCrYRBHktywRRkvVt+UWhFmMHw0vhqLhoVp8IlE7
OAqgNMb6s298+463/993s7muAs2NDXCm+8PuabSMtV+/tTU4A86pTkbBo1lZ
fT8gEq46a81xVrcy6oYLi+PMTVZNht90x0U0WZW7ypsOgqP8dhS/REf/Qvr+
BLlTnqH+AQ8KcOAlRWOCtQaHCCZESWKvUsjuDnif078GCedtoFpjPG0w7gYw
roZjXDTE2EtlSYzRbLKvxpgF+G9lnjljhlmGmeDv8I0wqMfyopmO5eEtGaWP
sDUR9mwrQf6C9NIipMjg93NvfPvFXznxO7uevMdTwHCo5XHJRrjnIwyCd5z2
z//UOI+V2TYakvxZZaWduTqFO+DV6Zry/POIAKezWCMCnAVquVksIm5lnfOA
dS6GA1wagAtgQU9zERGrVZidNAmz6aVCr8UPePZ53UHFKJcK5f9UxaJruFh0
DYpF12J8DxeGroaD3oZux2tQO9oGB321wnvKANwxETEDXCUBDkXEhRwHkYqI
a4DlN2D/bHrNUoIv4cF3il/gy9u3eS3A7wzQK6IZrnbx8FIoHjb8xnqWA/or
5bdiM/05aaY1vpDd0PACB9/KxleXj5DbirdPBdJamRFgesPIazUZ3BM01Llt
qEVo2usGEEfTWpOBOBse/6ZddEiFQ/Fv4UJcl3hriCsFMVFiIObcVqUg/i8V
E/+A18bWEC8B4p6lxyccdChD3JNJ6WsxHOgqBexaoHsIIF7C0RzOzeDRXgDi
yqhwmYTYM9N5QIWzWFqL/sgPah/NmyfAxC83WkkBdjiWF0g3aojRQ2P6hgsM
5UsKsT344DhZ/R0QYissBskw07iAVaApctEmuRMjeUhGK7edtKittCjNMD3L
SQtrUFBhZ7Lc7uVagqP0jpjCWmWEGxjpUAorb2OkQwgzwSBD2mm99Zjion+4
rC2BX8PwIhieUQwfoqpL1/BEMrSfBsP0AGEKXrFhKBGS1NvQGHkNGiOvxQjc
a3Anb4MuX41f0Vx3DdcdV5w9rovh7joPuOssxDV9Mlgxw2L6NTz8QEL9HQW1
GXQkkslqMX6IvKaVPCPX5cmzsdbHSH3OgLTId77kzw+ApbanmXH6Jh2yeyGy
d31+/xc3Tng5+oyM15DpZJq562inZN4qzZXbaa7VRtuz2A1yXEUbi12jXcnp
Iy5WlNATAm2imYmeVuqMaBkW+0werqChnldQQ7e1MGfYzymor8G4XQV1R1aZ
tqGCTCgfCKjX4Gge52bw6FQM6ioAdTHccecxqL3MFz01fYr9H1nB8mfplT9z
/e4kxwbp7ymkM2s0YST1JdrGzcuhuHmoVPvjBBXUSqoLBtuKl3MJNTw3IPbn
jjJyvTDUeMtZLz7D4utNFVUP4xVy5cRj5SZymfcateVDcLUJOGNrzHSDlJfg
apNuVZ0409lEHHcRKCSnmVbD8S7BK+CJ8i/Ax38hX4lPKbNNSBN0uuy0aGn0
m4kFMLyoSN6GgUiK5Fymt7Ypfp8Cktf2twvxNBwt4Rw/yjLeM0x3TBqsMkJd
Dme6GJFpbk3tX0osX6qYFnx1JdDfVUB/TwOdrWIUvTZIc2rUL7JfIYn+fB0+
C6XR2ngjdrY1elMQ56D75hRYo/RXZttu5L8mYruzhhw3zXwJuYjX8fU2NsrZ
aM47JM9FMnhOo1zwuhh5/0L66LVGcwRdKrK1AT+TBzpospcV2R9TNSkwvaQ1
GlVmOreNjfc2BfB6oLwvoF6HowWcm8WjUwGoPaGuoS7cqLoIuO88EFUnUmOX
choM7+HbSH/RBpK/zzeCHnq4aoH0wkjKfExtt7Uwe/FzXpPsu22nP3PeJrlr
k7zjsP326z9tt91sp93QaOf9D6lEWHL2KeEO1W9Lcp4MoMXwHFjTtulWGDdw
2WlF9lx2EcC4riSrhqlLVEckPfVFltXmbHZPYQy/jUbMM3kQhMZ4CRjTHzfZ
MK3S89jn/e0DQFeyHHUNTDdh/EoAvYyjeZybMUB3AXTXdd5VEugi4LxzA3Qo
nPbSZIJb5dh0a5H2BRpF6Bja8tuXyZZN2OMMlZgLgj2sf/O4Aw7O2G+XRqOt
EJoIHrTbeUCfHaqnbKp1qcrv2zRD+oWbFLOorvrH00lPndt0VwvOaYNpbCLa
3JUPD59FMjO2emC3str5cKtdDAe7ki72MiFxnlE44xqiH+SHPFpCW+2OIvlj
qjh1LQ+UuBZ57e3Ia3MOm0tS16JJczvmhNwhxJNxtIhz/Chrdi8AcRWAuIjl
xGqrnSettg9xp38uvXIL4P53al0W3pwA2WSTYetM0NxEln2L/cWAxbaCZVFK
fLW1tvF1RHkuaq8Nvq1TX58gXQhPcNXSVGdJYkcMjleZ2BEdddEmOPaI5Tqu
RBbEMrXTit2fvEAu1kl6S3RqdqcsFUbq61oeLXEt8tnbuV0TPprT1tsxceQO
FSEv4Bw/OhXAtjbTJbAtkxFybabzgJlOp7Iz9tFF/+9k5pqZ/T6yXc4AqBET
XbHgeMkPjkcS3RPhomvRtYLiHad8/EQtujootql1ujUdarspaut+rkBBGQ3e
9PNxaoPmwk23mPNqTHobhMSC54vU03WK6JxXE6S3lZHOXSPdIB4O0Zupuc0v
pq9OjTC76QIEK0sNWn/IIyg0xzOKY12XupbjS9rPg+OezE9fC/tM9L4aHC/h
iM/N4NFejONqOMdR+W3AMWe68HHQlw+k10bZH1GhMtcqe90szyVCwfHGUHA8
sgKfRC/VVmAvKtYK7BShssC4CcXyE3lv5qEEx/Tr2MuEgTcnlhjioIv+5+hb
f/zmTMHNXcAZW2Om28fFTXHO3LERWaD6lCXtc6jBKy3Gobg4hHMpR+BzoClx
vpSo1ThX2HctnLWlLkwxaoFxLkxFikDGtqRC42vRzUkPXcMfJuepr0VAvB3D
oYjtZ/SvU0eLOMePThm17hrKO8Mpj0bKeUPK2WTjQ6PXfJkLuMjckRatUl9t
HPZClO9hLZzHH3BwLdWyEqXQ3vWFtxxZ1aGx8dZZoINzdhjZlSH7c1YZylnm
2UlZH62MtVV7Ek2HO0UV2pt6h2nOJxIRrwrSY/trT6GLhkhXCmkseqCRLrCf
YqQLU5XCTDw/BMtnQaSlPr9B1aTA8RqLZgIUG7n1axW0uwHf/QHyWhzN49ys
AbkXA7lMguzZ7hDIXsorGwDZg5iLVGmQRftQeaMPciuV9g03YmRbpf0YuQqU
oLJAK6fDcc/mmMtQH3jlK/tP6HT6b6EbYHAiLeHWkTXK8NpBlJs2bbZCOR0q
i1hvyGOLctps58NRVn2OKZQrOaL/ckUy7S+xHPecUuf/TedgtlF2msV+SXF8
DrGtqlCCVbno72CYt1swVzJDvV0h/FrAvGRgnsGjPRfmznCYi5j3zhvG0Jnx
3nguBfNrJcyZ6Q1b3Rh6XRLnVDvnsR7Kx7soc/BcBepQIVmesXGeGsD5iBe+
sP8n8/P9l9JNMEySc5tjMVKiS3AbCOjlBd7TCKfjZZHMdnlrLEwQ4XS8nDbY
RdJgl6Z+XLoIq/ELNcLIcwHeGezz/kV8cZ5DLhuh8Vk8y6XW4xIYi7oEtZ1H
VWzHDLU7OK90LSJpCbPMU3PZaQcGSl2H9auvh1BdB8HeoR6dcqHuuApdBaAu
Yla7MFA3CKgZasEdsf0LlNOGB/kuF6EiUMtv29jIKdE0ml5qrdGhpNhJ+PY5
0UmIWYMsRIeZruwqFDbdxekocyeFsognwcqBJBiFzmLMhs0ssP5f3RSSTy5a
HgfmLJb8amqt85geF8loOQQzN1RlcomFn2CygYtM7QnDn87igRUa4Y5CWHeE
bOfVVbZjrfkdyF9vV3CuA6Z/BWDX4mge5/jRXgDYThtgCxfYprGxBJY+J/qK
sWDNTI+IB6xIpr9E0wB5qbGvHjKuIgOw9PloHT7WjYy7Ele76oRN92c6ytv1
ce2/Z6+9+v9LKe/wGnHBqCIkHq8Nsz2pIwbBq0dquqs66pyL4UFwVHYZDHrq
iyno0dpbYd9T4H5aFp0Y3MyAO2Vp74kHHcrgcr14HuB2ZZFpB4rGhOvrAe6S
AXfaKG0X4HZd+1wFwC2S9rlw7XMTcPP+5Y7COtRKz9O67SNooDf6BnosofXd
s9/robC1nbOtsg62A/Fv/z/23NPGtm6hHqwMa2LfbxHbwivXqArOQfManmZ6
9zSv7SPdx4LXdBuHmvAxpaxFgFc1M47Da0fxeqnllbk6POt5ZQS689jPWBr7
PJKr7eyNab+sbPJ2nIT4ym0OjC6D1o3gdq/+DRgAdT2U+Dqoria45xLciRFc
BALg2ivnrQkWPLCE4vx9NcAcDMtGEDbL3HJ9phgwzOmUVsgwS4iXG0M8rBnz
OB6fVUvvcYPhr2S41DMK2NLrAuzY5B0feu1r++/cYw8NsMjcWFfktjkGJszx
R+hmsYzx2Dkrb85LhjhvON2HCBSIozmrbCIkZ8OnDEh75CLmkcvhJHNPFM8W
DX2jC6FwxjYHmLP+xcY6A96zeY6Qs1FjOscMeNLiu04lsHYQFkQoNtLYHYra
deD3pSB5LY7mcW4Gj07FSK4MyWVDEz0CyTlT/Fz6/vkIg6ELytE8lmgf8u7u
t2C2UmHfOn9h/e79kwlWrcKBWLdXA6y9s2m0nI4CzNlnAPz6lZX+78/NirRr
lgDLCfMUvEMsc7oU7NFbl4Lz1nN9pCV4lcFtZZmLgGUuA8nmELhccZXKC1ZZ
fGewLxS1n1FlpLN5OpCz4ZvPMTUk6PAOriHtQO75ugF0S5lnvk4BewjQXTLo
TuPRnotupw26tY3OjY3OhyesMhvdv6eX+wZ6uefwzZBCV0wm+N1tZPnV/tkm
14t6LXLtri0jvQ65TsjL5P47kftu2nDFB5PM9FHrlBS2E2irS76j2GbGVXB6
mRdEMrPWesxOJiE1aWZHtM2e2IYKRGWA2dLYZmY24wlo8/5lZKA1uBzrdhW4
f6uKRrKF42wUjc7B6tznGs0lZpneBRnrXscu2qJXppOvU8RuBLvP79+I0Uw3
QI+vh4u+TslzlOIyRnERsNIexeksVmYKw/SLFsVuU5cHsvyOjQ1WFE3j4aWJ
qPDJyLSdxMlmLwxG8kpMSY7tji2jwFNRjne95/nP7/9HgGMRqPxq/T2GvuXf
30h/RcOUlTdNT74aKatsDJaz4SFwK+Mc1d8oy2rcLoeWkuXNc7OGZU44TzPL
BQfDyjpjWwDJpSL5WcT4PwFaLhvtQM5Z6vB1dJLwxEaMXodM1vWw0ATvy4Dx
GhzxuRmDcddg3BmOcRHw0floPlrp8OvJlkodHmRYeiJOaf1A2Ga6fTgsNjQ2
08M6MCkSNnIc6OmYZoQLXS/SjZYOvY5/5qSzRa8IZa502PtJ+opXrjk5Y3yD
Em8o4o2mrfwBwrk9QDjIbL160qSZbe+Z85j+hphVc9INMlspZjF9pWa2wH7O
M87ELanoOSgSSWA/ropEO7hIRPuFALClTDNzpYgwfQOAXcLRHM5Nu8B2Xd2t
GgLr6W5TYDMLWDRsSBttujnY/HD6KtmSJQJdHEELvdG20K1l189eHW/xage+
ugdrRgKrK0Z6lEMvDey7gsCKcLIKtlmTO2YFNzQXXj7hINcD1hu+MBlgPcOc
J0XWM8zFcGArOaJ+i+IV+kRwXlSHvMwsQSAnS1OVIoS5XB+aspT2pIMOZXA7
2C8rz2yBi21O1oluwL1L2O7Tvwme+UaIrQaY9bjnAtxJAlwEjHM+GsBScvuf
p7fyh+t3lxY6pLhNw9+Qa5bsbjDsDtPaJn2UsYQV+WWFra4Y6XZJB1szLomT
zO/ac0/G9j3KJcdUtmReLZX1lvxNj/FtyusEA9xV4TUa4DYwxWmBLQ2vdR23
5rVUk7tfTt+XhChL6yz2lYIVzhiZqHN4HBLtpy2V1ekp7opcUSp7PUW919Ot
TxSSjl6vqFwHPl8OUtfgaB7nZpKkVi6p5XCpzWOJqhSpl9JLxf15Ht8RQ0kV
sfg25I1lfLvRjm9bi2yoRHQKQXmyV99VoIrZ2hGDVN0J2Q2SarLJ71ak7tHp
9N/29D0HhyLofJSGteFwolpZBQ/H5yru0aIRrpMp49a4ZquBa570w/nkcK3k
aFuJK6afvEIiKziGnVK4KkOsUsjnYKWHc80QI6Wt2NYC1gqsdmS2+AYF5mFA
dAlHczjHAPdcRDttEPXE1Atf04hmjChMvyzhnkPRq05JRSkVsa6MkCGWEWxl
R7A2pLLxMbc5FXpunWG9GCcdcHAscEX5drYer2+mqEww+u8Wo/vOz/dftnFj
1AJngFTkET0Vo5VoQ+P90osxyGWoeOiuXt9GpAPWNKBZYPhuGtB0wBpKGNeA
FjH/2wBQ5pP2V1iiylnjmYADXlB6eqgq91zH5Z7rMJr3esySc70ikZncCDpf
0L8ZRY6bkCO+ETniG6CiDqcdI6VVklPP9BZtTG9mOJWfosH0LEwYHeFUJBsv
RKxsK9ylwM28ObuNLaeheFVhilLPbO17+b0J2djYsUk1E8nuet+LXhQiNViT
rVhK/6uOU1NlHTG8FDsOpU0N7+oB2jRAzd1GqFpBi1gWOARoJce+E5Hzls1F
+HkujwA6F3Wc80wd52TSzeu4jnMdmo2vRwqYU7s3wtfeBF97M/JIN0FIb4Sv
vQF3hSay6ypnTWRpqrAekbW5zVuHoRkTmds0iiw0KiiZRxJtYlFRhIVzjUNk
kybGEyLZoy9IGufqIfZ4byyaYRT771ZpXmD43hCKIrdrrUKLJoB0RFM0TBoJ
t0MxymQ+kfJMKzA9a5vFOhTTYOYNrW0x3NrWmaPSgFnJ4XBX4fWxUGk66cY3
iCLoPJcH95yLqeXOM8qJAs11XKCh/aL0tTcoHNcAzMOA6BKO5nBuOoZoFUA0
bW7zQPyZRlRwYye9wX37b6TtUDo+n2+Aoea2fQgq6vJMXV1daSyZobLMKV53
hIo+d554xNHz9Uj5vlD/VUFXa9K6HqCeTEosi/6naiwnlxlKa6QY3meYDjWz
CfMYDTUbONky6WTTPBZgIAePc+Cxo3j8rKq/nMtzt9K+Ujx+QtVfwOM09muk
k71BsccUbgSPL+j/FJnbm6GlN8HJ3ggnq+1s15DZaUhmbWdz1842zQzx25RU
HsKZW6cNYjIxJ70lz8v6eSE5+eMSgxnzsX7LQygl9EUHSu1hN40NJYI6ks0T
ZSpIyDRQYdJASirbF0Un417plZysPjC1hcTysYAz5GLzpFgWreGs5BK6lyAF
JLn8O/qq1FY2x76ruNSNDNdxeYX268AlPXDDW48AediIvBsVjevA5ctB6Foc
zePcjCG0ZwjtGO0sk4QWrnaGCE0nhjJF6E8oSgahr+MpG4cSKmJ9DaJBtKno
lLK5tpFshiosmk4vytx17FuOFAsunvxfOWBqBzK1wPPQlZX+08gWue1GWjPB
p6+Zok32R/AwG17k/lMibGTFhEsqq8fmOEY2LZxlgM1Kji29Gi9yG39Ml5Nc
EqUcb/awn7N8LSzseexrawnVyaAS+xWgWoJUevRGekTzWshqyk2K0kPB65Lh
dcrw2g0oas1r6SaICtfr5q7XDYWjKV4Vq/2zORJ12oPHD0d3N+FoQlBbdzOE
eFVx6GJtcTdpXAsb19LgqlNBhCq92iNoL/PwVsbWArb0gW06PVt7KRWj1VPS
QWc2bj0lzWoDk1s0ZFXNgjbIaqFY3UwSqlntYD8PVrP+ZabGAkDP4479Wlt1
mijDfi2A7SlgbyACNLBzssByMyzwT9G8cAvK+D9FMvdmCOxNCE5vxLe+Q20n
Rm3UB+fDI9QQtYIHCOvmhf4PDziYE0pNrfCQCLVrR6i+ytbrDi237hk81SPW
atsXi3WtZb/WyJY+sk66CMgiNq3TRYXxwEpkR6yDTqYvsEFwOmlu08Fp1P8W
Sf+b5rZS3F5pcVsabgvFLSbIBKfncSvDeYGqy/VI7yqNJWQJRWyE4k0Kz3UA
9WVAdi2O5g2yUzFkq+HIFm7eNx8F2c1qmPoP6JY/j7Btg6yIRq+VHb3axMru
o5WxdBbEhlJJ5IsXao29KGiJJbBH7b+/neNVwMov6EBFtLBprR1xYWBVPfcN
qqEisDTIY+GHV4/VPNbDG9JYL1YtkrFqGWCVZzP1gM0MsF0F7HMtZ1wqYM//
i9fomozgPO9iANgC+wXAuQaYHgpglwyw03i05wLbaQhs7YzzZCTrZYEzA2ym
gL3SApaMsSrajBHMFnYwW4eyZUhkhT9LTBOV1bwGmhqaZZh4eiY7u0S09t8n
2wP96LViVj9GN4BlhiecVRITrr94mHoTj4+NadOwNW8jqSFMKzlDwzb820FM
mdDpgBXmimkGQJWu/jMRiQTTHPZrApjOgcZlcLkRhD6/fyuywbdAa3+qHp0y
rHZdca1cVkuTdSpi4hqKYqMVmwyfpFRXjSqsLcaT6cakPACqaB3FimKS2hri
1Ipfd5z68RPnhpVoON3EmeB/X1npv5s2j1VPVzOgSp+9NZzNtsBNh6WuXm0m
ymruSuqqsBoKW/Ok/S0a2t/SZbUjJwi/FIml2u/icp2vhZP2R6vazPW8eM/1
SCwpLukmv4nYJOYIupsVg+tA4wHgcgVH8zg3E+OyY7gsTb2mjGnoWFzW8nkm
3djK84oazVpDczWNEyZMPEtuokGwKuq6TV1JLUPpJfmFT59Wk6b70+Jo7jzp
iKNV766ro6q/YQ8JKk5hZAzz+c75+f47wOrKSgY46XP6Mzr1cvq2Vm0NFqD5
YFqJft+yvWP0ADZQUhFrBGwVoUYRDY0cb49o2vUWDV1vFFE2lLlci+NSeN3L
cHEu54vz96pqcz4r6fkmqaRFtGtgLcEqPapoZWJLmfHlWs0tmAbiVgirJnYa
j/ZcYjsNiS1cJc0DYapXv8lcYumPXKhEdC9M4HLAwQzsOeR5f8w3wiC0rSJV
ejue8fVTS7JVcE0rMdW0htJKx0laGdaMNTTfT1j/lWFikVp6R6fTfyc99bs6
HUls6RPL7lcSW/ZPop89/yuiDQ9ijMSSmFxC+LHAtkGwGnLBUWVtgG0pJxAl
bBeAbcnYlhyiQlMRliptBVrI/96A/K9E9caDDjWozssKzS0oXRCle/dvQ/73
VkjILWiBGOS1YxS2SvJaBBQ2ymu0fgObQayiaPN6YlQLrNOT3769l57Vsr42
qX4LfrAXYj7ZRahBDfRAsKzOBNoGu3FI/42ekiHFX38fZ5QsSIWlqR0mNGB6
01M3iOF1VSmrhS2rq5ZFylYDzLy15S0ahqelySKpAZ08GkXraVeBeYwyv4BS
FWfoL2gwZwHmjKy63AKbeyumPbsN8nkrMke3QKJ/qpwwk9h1ldMjsYx53Tzg
ddP5otzkiwBvTSIUkBenQXoXFZofya19LEqvzDK8mkch66llqDAj2kzKEiJS
54vI7O48+YijZ+qCzK6nPukJmwaAnDZAvpPiz7fXQPaPoJ+PJEgjROaGyNrl
lsblKr1cldIpPXC8Mg4niJZUhgLRSVPZoA5TJOWyCLhcL2lUulRmQAO3O7FI
fHK/Q2Yi1BnlfI9RZZnnbXwiPapTRYsgtAMGmcY14PIQELqMozmcm44RWhlC
y0CWyPO2hRyx05ZQ+Yn1txCg/yABlXzSZy2d7YTcbenrpdV2v3akXocQmyoQ
3XXCW44U09ZC0Af+xZ+xpenZcPISGjzP/tux0fG/azjpZwtOJz0ELr9IlzqU
HhKBrgbRsJ+e+cxHkUuR242C7WLQeqxLaG2MbAw6W5nZqGaGzGxNpzKOks4t
9C0KOi/jBXEug45ebpK7z6eQDQmiJezXgMlc5mZvUSQ+AUw+u3877OxtkNNb
YWI1nT2Xzk5DOguXztrJNsgVSTpzm0x89ozmBRLLVmiKQMVF5AHlrNItDQtD
iy2nUmgcyhApKztlTcFAogk2N8XR/Ff6/zsUmu+20Pz/BtCUJvbTdBd8OGZi
xfAqi4hVRC3pLGzpXI0Q8zGjMnedbB7IDBUNqaxMiFlJJyup3ErX4zJFJVdb
FpSxvQIzrtP36J9s3MDbKWRs50DnOp0Xohuf+MNG6niLYnI30PmX4HQFRws4
N4NHpwyn3SSnUZ+bN4w4PU4z6XO3cIcj7lpEmno7n9O5o8ec9Da0xQ2EnPXU
DGtaK+gppO62ggYhlUtFHvmWN7F4TjUj9L20gdCjdEXUM7WKUOHPEjiRBJBc
T6qw15NatShzgmymo8yon42yWQ5nM+N5d11AewbQHHyqvNA79tm7/52DDuSb
G5ROgdIVUFoC0q7Mz94KH0dEvg5sLuOIz03H2KwasllraN6aTfmtxhK6RRVa
fijXceUIFA7XktL2JVH6JC2na2upNUymCmlpPbh0Llpx8RG1U0JkcuXsvQXP
+ql09CKfUp6BrL8PbW9TlP5HTSm9gKNML68eCHMiYD2Ju4w+o6TUcbiFcbhK
RZumg2p/20xE6XdPVIbiJDGM1lD3bij6DHXaZ2PQ2jT6TCtpKCfk0VoEaO0Y
k1spWnEhf/WWN/OmiIUGIll0I7K4N8H2alqZ0T1A6x/274DtvR0SexvuSM1t
z+W243JbxnJHRcD7hiLThKZuYQuggGVcGdrM9OOPGpHWpdEyVGeRNwyFCU21
9NQApCcNQIp3Ah0FqPv5kE4bSHXGFpC+B2YXUrqyoqW0rqlIREsfUcvpFoZR
paP/c2Q0ZHFXGcy8ocUtYhY3BGYlp0KQYGJKPw1mYWS0w2DKqihklMCkt4V9
zj/rsDQzYeksIKVHb6FHCENsJJ+3KjR3A6T7A9cVHC3g3IyLazeJax2qFhPB
NQvhWmss2d71u7PGXiBagkvvQcerEX2V8tqJySurqyy7zDroamxPjyeQdpz2
8RPVGo4ssBBX7YOnB23wCyx232WzS/ZYsZvX2HYYW6uz3uR0R0saMbZ5QlTF
GCnddAV00uxGw9OoqNYp3bQFLmPsMrqFkdIpRSwuKyRUsir3CFNB7I2cSLoR
E/JKWH/6gn0NrKWsvHANhhB9DWBdg6N5nJvGo1MBWKsYrFFtDcWraVjxsdHL
31rb4ZxZLThW1W7YmRIpCmrQDhe2zNaDZcpQN4O8lehrbZjKnqZQjaSUUIcR
lbeSxVmnHKPzSiFe/5g2uxgDXt+neH2/DltPRBR0kpwioOZV+IneQCJJ8NIU
nEf6tLBxzZurrEj2GY0dsWYTxrVBxJqWWs8DR3FlMDKD67TCVWeSjMDm/fsM
s6cedCgzy9XSNcxsYTOLbV7WZIjTJ4HYp/XvhDm+A1bwdghIhN2Oy24Zi2eL
gNDmDdnNmF1kzPZldrc6GeEa4AslvK0tMr2dIUprNQ92h41N5RuSPiYf3UCi
CehW1sT3RCzIBX4zg9C+VUGrizTv1dDSZkMrRbbqn0xuzALXaQ2kT0xbY6Wx
I8yrUti9u6tRl/Hi1lD7bjYas1F7HGU2LbG1PS4DzHbkZNeXo2B6hRkR811S
VzBaKlK/q1JMp3KK6UYkgpUVpnud8MNGDHJx5nY02BOcLwKm63DE52bw6JTB
tJvEtA5fi9Ew5c8lM5gKXkArRKmElIs37Icv5Fu1Bab0+q3UsC+ySmWrkMrW
kz7MB0U2RqmVa9p5CglsWQssYlgtsNyC5LA6w6z+q8WqzgmD1aMUq/uR0B5I
bFqeWOMa98SFzevwMupjJLHpaDZbNVwbOOKQxDbAlfWLJ+zEHU/CSuBy0aaH
/YJlkAlchrfyEIbYVtivAOGif/MAx5Us3nAZh+h9FTheg6N5nJsOcNxJchyV
27xN+jhjjgeV9hBS2kJBfB7RopS2JcSFgVgBPLwzYqlRXed0eklfCgB8Ug2w
4lfnocCvzkW5/E7zBdTZYlN1VTrL/K6saH5FrlLFNrxmSFvpp6BCsSzyzPTI
Z+utreCKNonipjFtbZInTXCDmDZkkoukSS4NwZUR3FIRfDVdF01wZQjO+psZ
4zfSo+/cZ28GuKswfqfKTN3ImakbkT7mOs8gxpms83DFh+D9PWD8pP5d2N2J
u/cO6L4Gugege64wVwboMhb7FjGg60RVCOjMBnpzAOgSQGdmLGuNsb9oHF9U
HnlzttAsdx2WPUGuZ3XpxHoprCE3M4Znm+VIcgosF9Zyb0qLTY121mVZJ5Xt
yo/N8ibiGCz/Na+gfBJui5MZ6KPJoA2Y5tw2zU0ccz5UggtbgscYmhqNcUNd
htlo+LaKcWu/XMQE2ItxSxffTgDfAvt54FsqfG0V7lkhL/CFe17Gftoil2DE
Rncdl3vuQNM+ofpngHY3HC3g3EwM2k4A2jroLWLQegmraHaZoUUXNL1KMHuV
YvZYiuD/iJzzWRzsSiH+sXTSrdw0vUwrazWoxVVIi+vBrAtRKfbRDYy5sdDV
OSonT+Wha+eUnXoQJDiKrj+qpnbPpXHPaqRqumf/sdTekHvOYi0VY8PbNNgN
aW/aPZcuvBng8AjODMGVJcAg1ghw3r/fYHwa3fc38dBz2s8rjH9KJzXGHVkG
4oIQwftKYLwGR/MG4ykX446LcZk004xxPiLGpYPwVjP6nCDWaSuY6Z9IhgNC
HMKYntUaA6splneFKMIqvCalwgOOOoTxKS7Geb3kuU5a6cSVmBuOsYmEgXGn
E1LgTqjXX8uvaNpuUZOcr54IN6gLZavLcT7cQ6dF2OO4MlEwc1x4HF/BDca0
7ymEB7JZlUL4eyoeJowxWwsWgrsZXVO3Kz6Z1KdJZncK8fs4WsK5OTw67dLb
bUNv4YpwHkhphejNQvReZdGb1/TmNrkS3TyGrihsD11nngs/n+XP1xQcAjs3
wC64/RJx++UAtyfX3GbMbWWXiWwJdtDtRKtER/Hb3cSfhkJX1YlO5n2qodEY
ZxGrEYUSWEkJLmwJnnCFKItViLLRwG0a/HruOSTA0eBXDWm7XrX/0t/ElIVX
KHBnsJ9S4H5eDa6Tvpn2Ux64N3Ei6ybkoqX2QnfvkBs91R0K140A94+B8AYc
LeDcLB6dCiBcGYTLQPBbxBBOZ7M8hAWnszTBdO4qrnnhLRG/etMqDCc9QRUu
E82QS0NlGCh/hV4fUI4ktSyUdYOyLcH7+SjPGJT92hErsJDL1nxANVkZDa76
p9BNY80qoTVYTvtSGDOtJLjdnIeFPeehKRzRaUWxrh1Npmz0uIIcUuDC7cwo
h4OcyyVprsCIu80cDFu5K2yzCl6dvrqJ73wNL/nmtx4xJUtFd8IuE6gHAtm1
BtlpF9nucGRr1S3GRpZCDUtwr1KCWwDUTAnu+cou/4R5GopqS9XtxlTXHQBU
NyzbmAY6NIApKNWJqgyAihy4XiTUfw6nFeed/brRkbXaWpgqte0YRuM+uTCQ
KrVNp6pWUWybRruPP6NF0iWXMUZLORvhFYhx6wQVYclozluRLQC9mScrvZnH
x2IVRy7/cCHoLix0sxNycRduuDuV2PbAZs/IacewWcXSUiE284ZsZjWb1QCb
mAPmPw84uMbTmxoxBKXgaXqYScWlP/CnHplXJnowloMCCiq/TEoeovLUQSp1
KUgoLM0A9giWA0N8PCxXViwsCwdLPXMEPVMgB5VcMXVU1RzH/kbjVq/2k02E
yLyN/S2S9rcMENmR4+AsIq+kK6OSTpLIvP9rJ+EELDnXNA0sYXrpXofpJQzJ
1t6psHwKAH1a/2dCPBlHizg3a2S0RrUbQ7Vsg2qdeoqiKjj3xKRebUxv3n+T
rPeo3LHJINti2kRLS19Lh/c9rk2JqTG9X6HXEWP2lJpZ3YYscslrX1j/eUkn
f7CPzhtrq4u5mD5Akavgd8Bp41OY2qDRzW2jO8Tl5uMoKP1rAlYm4cQAtHnM
6qZj1klDG002tZLRBtBmPLco3e0UpOroNTMgM8f06F5zsxytQlmnsa8UzXbu
aQY0zymabyMe7lQ0d7FncncHw/uB5g04WsC5GTw65dLcaUhzETPFeVOaO/0t
kmSjuZrksw3JHMH2zzngYB4snw1nuY0Ed0IS7A0UKg3OFsq4aWnfCaWidr3j
1X8rhVJibMo/+G/exdiu3Oryz1Eexh8cxLiyJ6GwM08y8VQYK6wGuafTTquj
u+2dsJcvzkZDOG/jhKO6G3LCpYuw8qES4WtIboHwZs4cb0b5VtL7BZWAup/L
t/cjAeXSezOvcXUzMsdske9UaO4GSA8Cris4mse5aRfXbgzXUAxb45oncfV6
LrIa18rgerWLawZebVwxJHc4roKn32JaFbGygtuzM06hdkhrKotuVHxB61dh
2oFr19FeO9n0B+t3B6CW5O4XZHUmWuMJsApScya14w+mtf2xiM5HEfLI+apo
bvsCz+MPbFpzQ6FrZYDtKGCvJWA3K2A529RRwOqUE4DtYD9rAatj2hz7FQCb
yWLOXQrTpwLYjf2fo1PqZ6roM+ui2zVKW8XQTStt3gZdwfknTS2du5rzxJbQ
YiuVa4Zjvkg65tGVNtIFORUT2sFR819lZGPJp/844GCEsnkg2bRgI9uJ1XY4
qJVrQeb9D3U6/ReZ8uwpcko+ugfCmabSzzR5zE5SX+nJuOolN5/Zpp1RXnC7
Kszmw5sramaLhj7ZYzbjOUldcLnK01PgKpVlcAvsF62oF+DCHCtmb5FRL0FA
aGIjIO9C2mUn6CVw/wQIr8cRn5vBo1Muwt2GCBcxs+xlqTyEM2OWS8Us3qDi
1Rbcc6U3HkNw85YlHnelDlD7NZ4FJ44tFJf+4c73/d0heZ2MMkqrsH0C72dx
OlnLsScaBrp/Y9CtGN1RjPHjIbZNazlZLE+cjQFuNCvV1B2XMXfsgVsEwO1g
Px1Q3Az7ZYCb9R9gev8X0Xv6QYcyvYvSIkt6b6WTmt5C9lXsxFAhYvavQe9a
HC3i3LSht2e8cydAb+l652JcerUAb1OWuRbg3IZZ1P65nlI1BLHgCb6YYcWx
LNV27YSVL7519WcpLb4k/V+jF0QQBxH+G3r8GevX7fz2ke8M5acchHmW4niZ
p0wQ3DEExw1zYRAeGFCQPxbSm7bL6fj2cSA4Lb0NCFYDcwjZ2UBOagm0VopW
XHdN6wz206A1A4CM4hpAeRjwXMbRfADPbgDPcri45g3xzIw/BqlkC0DnNmZy
kMwc+1wJ7Y+UOTZC69WC6BXRNWNENabnCs1oqp2iExuRa40TKkOQCpmGKg2k
eO3ffNPhgFRXfZz006JN6TJT+ppBSp2Q1sOUyz6nYmY/C9Pm/ji9SDpdIWsa
i9gwWym0hS20Y4wciPpjL4+cPQaQejJbuEmo2h+XMUgzKWObMQ63zj/BAMMK
L2DfU6R+X+WfQGoP+zmlq3cSE0QlNkKTS7Q/w+ypP8cSAHer6HYR5+bw6JSh
txugt4pZ45C45sMLuJkRV/xM/j1E7zmD9BZsky+W9KZFtrTp1UZZOeVuSmVD
a8dqlQW8Z9DLUvDKrFRlRHbP9bv3D97r2ZrdLCCwDro9RvdPRLIAJOSqkb3+
n1OIm0DXalksfYMMcH1y88dMXkc0yKtCbp6sANXkFsPltQyQW4CRHOTOK3K3
0JWCzv77PnsTab9GIqomdx8VzxbYL1nxrCa3khXbnyGRTLz+FchdwdECzs0G
yO3EyC3bkFvnpWpyM2OLpfD2ryaHsI3N8DaYg5rcjxGk5zCuFrkWtQFyRWGv
MTBSGWgqVQaSBlmiK0PcKeOP30svFy/72286vH+i9Mb2uPllG9lFB9lQscee
b/yNhOwf0MW3kTXz0IhAvZbOWYb4sRbb9o44FNN6yahsDGTzhjFt4Yqtl4wK
OWLVg3Sz6tSXzHLLBbBlg8zsqjuauGXt5bLPohXT7mMyUrdgAP1OReZaMPo6
0LoGR3M4N2No7bWhtUgGsXmA1twdOlDWysoJ4zfw2h7nIFY9GzBIPGGLLUSt
xe8Ke+7ViZZ95NofTCcpp6JT+Hg+nR774Mtf0j95/Trc+hpPnXpy8JwdwNOv
79h4ftjUZE+VbeYSz2ZGWPAYPF59+RhhA5pPWlNFLstgcotb4gZlnklTGk0Z
Ry1xSFijlniQUuKjf+OcDGBnsC8Vpf9A1440lintYb+sKH2Q0AWp//KCfSWl
8zIfTFg+EYA+vX8PZpC6Gzr7c2iqFtaei2oVQLUOaIuAsOZtUJWs9rfS98k1
PEX5NlPhIWDZDJ+DCo/pqTBW+GJcveaKWvqKWq9RKXIbWHnv0FsOSerX6TWd
wbB+jWHV+aaD6PwzCdSvkA3GPQ9gT6rnZFwThjVQ2RkCa2nDGk0sKS1lGaXT
YPXz9fbYyWnaAadj11BtJxs+4G4yoBYxB5wGlTmFnaRrpDWVCzwdS1ORefo1
T0qjaS0Bq3r0S2Qu4YcXpLDeyhJ2B9FAeGKjP/QzhewGwPsiYLwbjhZwbsYo
LmPcjWFcNlTcvDnGV9GLvEbFs4XS3n+sMfa1Nw8A3FJz55pobghfn1588O8n
ck9SinWspFcnnxL06uKOplfnnPSkbh8hJ1zTW/W/QHeGNduMltmoCRa5Ta+F
br56Qju2Hc5iCeIJ8psHItiQHS4DdriM8VsG+OXOiq7i94tWPqrEfgn8dhW/
P1BJqS9xS+MtmJJG8ns7Qa35zbFnVldA7avA7xoczePcNB6ddmW44/JbxmR4
RH4zxe82epHg95oIv7nhVwmxts4Xq6smF9Mr7HkeJ1X8KQzJTDEIPoMJ1ulk
6O/riGAo1UlKxBTFuCRrBwn+XxbBZs6KAMFoObYJ/jRWIhXOPG+xyaJ0ECvc
BbMee/Ud0SaHyjtZbMqoBvTmw8s7tU0ukja5NPSqweY/VbUW3PEWvQX204pe
lY9iejND74xFL8LaW3gV6FuwbqWkF+T+XG7kkLn4czcGw98DCf4FBhrcgzTz
3epRD+Gui3AVcNJlEuFQctlDWGqwoTfDPlcIH6+mpjEIay8NH32JxLeFFJe+
FFuTTk0Nm3SqXouWEKbPSOeU36cyUV8hB32KUi2AAHHbX8iFZB2ES4OwVfgR
sj47E0OYU1Gn0ebZ56R7jumvv+x6eI4K+ud4P6fKbQQFnoyDDuWQM3du5AYM
h3LITR10OdxB1wxnPFG5C3KG/WwgNcVZqQXFsE5NyYzyLZgBXTJ8JwmZZriL
/ZIsBhG5LwTDG3C0YBiechnuxBiubXQRsNF5Q4azAMO5zTDe77kyErZlmFPM
zPAlfNM4FMeEuPSF2CoQTQ8rENUQc8uUSzESVgcTwaeJeo2gE2uK9xugeN6h
ODQIyFs7pP9kstPvIg92Gt8RsWRyWIUfk1Sy4CyVLJiJhIEOlYBCxdusTQko
dwcBtcc3ZKCLgASHDHSNbxHAd85LVz3Aw21pv8Yi918w5TmvXTAIbS7rtnej
R+oejIz/BbLN98A2343vfAfa7nBo08KbD4dWKm9/m4x68YGFeS1s2/xjsqnj
aK6VvhLxitCCg+s36W9+g14MwcqoHkli+4eE6dfCqF50CEUmNqWLhtLYGB9N
qR6d9+fz8/1X0IWG1roV2nALI522UsoBTHPGtDSYWjI7cZ1Ne+UGkW6DlPJk
QI165TLmlT1QKwtU1Gu3cAlIgrqVfsZ1//5BBxK8BOpagJr1HzKZqi+TsbRp
Bal3y43+BZeACM9DAeoyjvjctAF1KgmqF+QWo4GaeaBeyxnma1C1dUE9l/uQ
zkFWSgrrecocjySsg50XK40yVT6peHVHEaX2ZOg6wCUgNv2nR+pSa1JfTJtH
6sQccWlQtXqNhdVs3FJL21vhaDg7aUTzZDgb0tJQMqp0k1GVnE9NIkpI9K+T
mJLYbcFQyq3M6bHkhqCdD/D4Ws1pqTg9U2WkiFUsqgeFuk3GtBufaGDtYb8k
y0G/wCLTv0TD1C8gt/fAD98NWB1sOwbbKqmv7bHNrMD2WkxFJ73wNrU65rmc
Rz4Xgmq54EslqDWs8sLpcUATLw3NSVqJUE3rq4ncpwt3kqhhtC4jrN11yPJy
sgRkT7MYobWZ8xW5vfbWYx+/tjfAofg1mkFuBW3eJn4tAroaNcA1tMwsbnRL
XDmNXCpykY1CM9QDXLnVVrhnkYtIFto6hX1HkXsX6Zgmt5Dl23sw2OcXWHjv
l7DHv4ADvAem2CG3lyS3FtzCdcZ5LKscIjcz5FbKFesMslJZR2S1G3ZFVhT2
ZG91f3Lh9yfLeS8qG1pbZmV38oJRWZ9ZfJ98AyVbi9nThjC7wOOAjtxzz4HC
TxNmh4zkidhg4c6K2lJkAyN6BK9GKycEEMO0dhw7/JhhG7XDRUBrQ3a4xrZU
2G4jXdXYYuj4Ph2FLW4bgpWxrQy2swpbnYC6lSdmvBUzukls7yC3rLFlOteC
09eA2DU4mse5aUNsryGxZYBY1to8SWxmLDL20hmzO85s1bXYlarL9GYqloVF
tpR3POG15q1Rwrs0YJO/s353A/Az6PjVwp1cSs9zrjPIxwcAXnQAPjIAsE43
6RG0+7sAt+23iLhjORSvNORatVoxYrFWcLKJ28q+IRImuWnNJ4vVfFYZ3LTe
ljFwO3I6iS0o1m4dyDWV2C+D1EUmtbATTtjmweksIFwGjr8HMH+vfy9WCvkl
bsZfwAkPItqNIVoaO1wk7XAeQDR3RRWHFqIsr0UA0dwY41x2WVwq1DXR+aa0
wI46AGhe0kmvAnS+X9Vy9Mg8n06dboK8EmteBMt4HmXhGSvLajzfTNue5KRO
r/EcVo6NrO+eh1TV4nN1VHVEMzwinHV3cSs4Q2a4iKlqGUgyMZyZ5GIL5jce
1NLMELrWSzLdxvO91e6XKMRGT3WPInMDGN0XtK7H0YKhdcrQ2o3RWsYEtT2t
UlH72wnU7ZxpuhYBdw3qoQrUwoCaWXnhplpa+lrKUjp8ErgFI6YaVYjoJg/V
rwRQPV6i6pDKA/ov/ujhh+u6jSy+9qKgouiKK3o6l27au+DcdsEJJdVqOlxJ
5fJGPG2bnAZAhJV00hY4SzYZTwbWkAVuoKQ1rAWw4KEA0wxrwXKqMk3Ylgyq
ef/hQLLpNg7/LF5lhfUXiFCJ0b8BrWtxNI9zM4bWXoDWKqCtY9OaAdI0o+x3
BTdMGLurMG0QsJY2oJ6erk32PX2L/t7B6CgW7hg8PTOUnxAmFvb7kK+lEULL
UCJY6FXdcf2+SBd6HJdLf8LuSlRFG5FqTVwVQY263XHC1FaM5snyatrthgTV
Y5RhkJByvQacTlvZJXQ0PcgtEg9CWh9Cp+LDTnbpNl67R0rr7SRbRCI2wvEX
iEuJzsPB6TKO5nBuOsBpZzinhRum5g05laD2r6FXup2DU59Y3K7nqfqNr6pl
/yLSN0tVawcs6zilX8fhMs7wNqfFIK94KR+I8OqnhFHNXGezuuiwOqxqo/uX
8CePlbAOzQGL3O5BlLSK3J4hxpbT8BwxIpfr8cpNyJW0c/42+rLc4poqp6Pk
yRT5I5JzA7Q1wO2j05rXeq6nEK/5aAY4qqllgNeO4hVzFfu8HqtmWnyQGyM0
rzOKV51Wuo2Hu9/Ga/QwAHfTSQ1tJUutXL0haPfq/wodTvfi7vol/LCDbzeJ
bxnA1wth80b4XkuSqv1wjW/m4Xse46rxVYJ7gfLEAcEtfcFlvR3e37Q0UIb9
Hn1FvIb+0GtFPVDAnhpKR692cvg4D94lA29oUsWG8LqzFrc1wSJSvins8g3e
QD3raUhe5UrcPOc4fwJfF7a80rN9S31MamtghaNxa9QKTxrbtBUuk1a4Mtgy
tbNWZuk/9tmbYZ3FfgmwLliwvgWL0LIDpn1PwbqTTmpYM1lg/SUG7xCifwlY
1+FoHudmDKy9JKylq7VFzBPngfJrDWumYN1OwbaGNTewChZbzSo8Ejg17rgy
sP5YbT8hpjSqvtJavU0DSjvY3LRgWP2Ayip9dwindg74WI/T+SinfuHGnl5C
cTq6G85tN/x46us4fjgNqtctPEFQi4C+hvxwDWppg6oUlUGdMqCuUaDi0a+o
BNOMYvRO+pkAxEaO95eI1AjK1wLPZYPndADPjsGzimlpFE+vYlPjmdl47pBo
NsCzdFsk8nqNnpKXtDzX2pop56JRzu/zSNfd+68TdeOSGV4nwokkRaOL40Jr
HJHffQpt/0qxzbAhNw3t7mMjnLktnHGz26oUkzUsxbQKTotYcFokVbOMwdiR
q7zWqgltfJAbHjSMaxnGor+LMP2hyiARlLPgcRqwMXZPBoBP6d+HesyvYLnu
BeRaKXvDUayVsghEpWkUM6OU2JPjBok7OMNrUbg3PfAJkqkAhfVUTjzDOAU1
2P2AazbfJ/U8k/7ZWTw9xQ9pv9w/E3MbC5kfOhPTQKBlVwinlUEPhtOxps2c
jjUTzIVKnzHmXkLbX4q2w9wa9dgXdo+9Ozf/qihfK4vqRZbZRGDLk3VPz6IW
MeUrA5kghg0SRh/CDcRaLB1UueyVQA9fO/TwC+gevt1Sw5+RY9VqmMtC6L0o
t/wK5Zb7UG75FW4qDeMUYJwCjN3hMJatYcxcXcQnRq9PwYiNeSwUj29W2dzz
ZEOvMq2eKno8ZsAx738PR9+lf7fQ/w7hCbn7yBD8QqlZ34AuOvQNq2zqDj+L
vnopVnrvCj0dKEab/MTqDRJvpXgTtJ/ZcAjrAacNIPTSOyH72UDxagiZQdy4
kkJmUHclXEU/q2SPJHHRkNhTJP4piaQmcdoj8V4OZO5FsPgrVFHug0P9lTo3
E4CwAwgrU08pXXNauOY0DWHumlMpif0d5Jh3cHpnKIENFJEFMbMJfC09wx+J
wY75UBjoJ1vjIWBbAl/JIWBLwznCDNyJpvjJiN9knGbemru8YdgXdZoh8fO4
KwPcVdgzdvTAm6zETW7g43hw1oIP2ZvbeRj47ag13IGx4Pcq0A4Dcss4mnWR
6wWQC+neOMiVhrE8wFhhGMtdxgrDWGYYY5UjSfquql3YNY0UYnZG9FSlM4qx
3Xlf7Ee7XRuWlzVnsu445WDmZ0MtzEawmCKUY5lUc92IIjdBp9ketqjIRcO6
IilypRvWVXIOv0HYCuxLhq2wky/YFgxqiwo1FeophbsdPe538OE9JH73KrEr
sV8Cb3uAvOf078dicPfBTWkGpw2D3SSDZcB7ejmZPMlgpmTvutpyitwgmXlI
ni/zLbbxbCB79L7+kPzmIWKwLSCVbtHJz1NCSPIQzp0v3HNPI3067EtVKFCZ
+EvJ5HDjOdBOF2xSn3w7XVr7BKdZ+Pvse2I849mAybrrdVWYTAtgzSTPV++B
ycPFKk8FH+JZtR9CrfFhoFnHgSDzqwcdivViuIjx8xfsq4HEtgD01gPClwDH
FRzxuRmDYy+JY+1Ci+GhYB7DEezRC7vOZGM0iYIdaP8E+m55FrF0PlSxBYck
7wRi/0Oq5mDXDJugqMPAU5QXdFBcslHc+YE992yM4v8RstNVFSCGjpyOuc/V
bDpvqovjmNCsYS/OiAxGg7/C1cU0g0WAwa7CD7kYNOA8xNVDjd8K8Mv6jzCD
Z6lczB1c75eiuJPuZkIMG3H2K4XdwQBwDY7mDIBTrh52AGBlcjFVQA/TnjQE
YKYAvE4BeJ0DoJZC4HM+1jJuIYWZhSCU8GMRBJskQhsg+MEAgqEkqK7T4y19
nq5gu1Fbbrdqvlp95YJHfTB+3xIJIRzRnHqRYDa8ADhBCAtXCL0MTOlGgirD
ISG8kSBE2uUqDgclhFfTz8fJsdMSwiUDYaUgfDdJpAPhlKwC3odKxP3wo7/G
GJH7YUU1f9OGv16AP08AR+QvM/wVwM6SPQ4KNXS4bkr48ubUfZhE71nCGQkd
nK8glf8MUrccFb5U6cGm7ni6jCooFKmyuwjV+RIeVIxRdg/pn1xmjnvF+QtK
Tvwd0b9Je1APvXp6ghB6eSz5mfagaf2r5HQeEj261TV+guNCJo8e2Ju+QrUH
ncJ+EfytBX/Tij9kYt5K8nIHZ2KkCMKIahHMZCXwPnS53Y9FD38NU6pxnHFx
7DbEsQiEhyEcc1cOpSE1SpgPgGkrIYNZGDnMYyWJzAZTKDJsMLUkNkmLajA/
74PpBIe73rphwyhgrqIdLWw72nCGkFY6uCpmdBwYoxnRwjWjXkBYJmFkFj0x
zLAvFZG4ksQhE9kxishR4bxFJIWFzGLHsqWEGzaSwPvQz0YIvhwwrsXRvAtj
z4WxcoPDalwYMwXj9ZYtbQBjU5Ukp/26576QBdIeuezbU3tSn1D+1GIxkac5
fH4+OTLZmwKkEYptbenjr43j2NIJ4ujlZ9K21NPG0o0NVey1k/8asjJXD2Rl
KqOIzN+SFRbiKiM1U4C/on8nahP3IQQk1t4A6pZxxCROg7qpGHUhCSxcR9qU
OqmBDN31HAdq4AoFnJ0SzQPq55UqMqN+9B3yEZWGsdtEQ9ANS8t8Sd7Xm473
BdDEgzvedsABuw561nMaFQVt6k6gSzekFzRoSquQKZ1cKX5EFRzRkjbAzmsH
bYpd02gwrYKVHPcrVRAKeLXcRGUJoM7LFAbAZQC44gF4JwvgnXxv/5JCRC2A
hSwO3o81VgjFZ/QfUGHiIs7NBqDsAMpOwJdW40KZgcXKoJhbKB4WRjGqfWIF
LHI25jBRD2lMkehnZ2wST69JDIeIOw974Qt3vukvXtwKxL+i7UCKKlR5QrQt
y8uumHxwALFoWZMfUffoz/xA1CNTWox7itrRbHjNcBwQvdiwCOhfGbOjGkS6
0wdAVHkZNQ2AHlnBIK4DiHn/USdBcydPtiNpvPsF+xoaGboNwO9FAHEdjhZw
bsYFsRsDsYx50iiIuTvkIlMBIhhMgVgkNdEBEXL4bOEM/jey2DZNOhTEXQc+
4xk7jnz9YQbEWIHik6JeLgwgvlIqogVii8p9FQoJH3dFjE5H19SIZslCYT1A
Im8IYjoujCpiGQAxl/1hV3Pd3krNuPCxCnYUfLpJzcA3J0uBxNhBoG0NjuYN
bZw77QVoqwKyVwRo42+SPEBbLXtS9/o30Ku6nhFzuMs87n7ENYnzQVYqE5Mp
7iB+n4xwNyxRqmPAYdyZ+K+/3x57XHzcO9/NLWrDCoMed+1taCo3Wpj4T+nf
2NX5ISqY2yroe9FaAsf2ohMkz/Oihds2E5LA2ouWNXl1CuZhHgT8MAI/jd20
hd3XDjqUsSuV5t1LNzxxho2e+X7F3tNB4Wz/QXW0hHPM6HRDHsuADQ1lZPIU
jzIkDPEoWAg1jriMYE/rYDQZI3YDkP3XE8GQQT0XTgzJHw5B8usekseGgsNd
z9ywAYEhI3lUeyRH6RJta0ebSmC6RC94CmX+tOR8t6PnYhp40cmAGAoKi5gE
lgEQu7Ii/jMQIEH8R7pm7yIJfJhL9BrEtQBxXoF4tgoFCUapfwXYYsqeAN72
BnkbcbSAc7Mued3h5JXDA8AQeZkmj74kHPLqUFBwWoZf/Y+wjpfNXVQHyT4L
dXc3YS6WCtWxoGbuJMlcALr+k+bnEQQCul0fWrdbo+q8hu4gG7qRmkYHuSsN
d1YxQqSrESEBlIsA8xJ6/NF8VzQXwGgyJl2SyBqW5sfhLmo9PQEsXevJPSlC
Lh+gA8FCYbhNLUJw5kEHihmD4RpguOxheCff1lIP78JMNiQrhB3WnkdV8AG0
qj2IGPABuNJfw5VqIHsBIKuYFBatgYQWkkDfQC/qBhbtkAoqFpuoYKZUEIt6
HS4GJrBhKkfJk3pEugHhRQpIBIMAcucn9tq7NZAn0nYM39PDOkYjo3IrMyr3
NCFsGtsnZMZRwLGtaNaQxEKur6qbZPIkidEgsHCzMSEFrElkEJm/DPjRz8er
bMzDXKnX7dsM4TovEXMX3993oVPm14gFH8AMxw8iI6qpmw5Q14lRVyQDQo+6
fIA6KKCmrhqgzlI/SV26LiFYBPsflcUI+SUr1g6Ap+WwTVr0q+peDkqhLPwT
eaCOyft4hDw/HwryPikXj25EnogM0S39IbpWJbAwlUAVCk5QCOXksnL9BTVJ
3iQNaJYsBk4GvyImhGUMvxL3fQb8CoXf3qpbFPh1DX7LwG834Jf3f+PkY+6S
8y7yPa5EkIUwl7XBB9C89iA86kPqaEnGiRrOqQCcletRS9ejtoJT0qkVEZQC
SW1PixicRTJRQwIPNcQdryeGioHZJk2aBHMNXuSu5+zxpAEwhxUqbDBPoy/X
xvX5Ec3pYyaJI1YK0+Z0bCbTQWFaElVK8uf8GdxMX6JwpNvYoW4zGZuHVcam
wn7BpbNj0Ym0jU3nr4gBQg8b1sLDsKYHsRzlQzCsD6J88QBsqgNmF2B2YqpZ
xoJHD8w6jeqAaQtmDWZpg/k8es1HkwYO96q8yLvY0P9P+u3n0Lu8qCGcTXOp
X3HhdNhci+uy80V77W3Y/Bix+YGGbKLHFNf1K3StdQ41PYlMbttVJZsdu3Dh
JFEnUrVoL5vRGuJji2geqCFGES3cvE1INlXeRiJKDPR/KjE1iNq5nNJFdAWI
TitE7YSORvTnRIRGdErWEAnMlwHRFRzNu4j2koiWYyAqGe3fRPjdyHbWoTNX
dP6TVdrIk7IpNvLasULd8m3hTGVVv27BeWIwu4M/u+OfX/EqTeeOT7/iVQN0
2pVFm87P1nSO4GZlHNmJxZGTbmgTPOJQL4fdRDRbGdloHBmq6qeJDJU0QnFk
VDRL18iyaDKQuIEt5cwDypkbLJcMlvMelr6v1VgW2K8FjK8HlssGy2lgORXD
sgoopxdvRrHMfSxvpK8Jg2UdamZJLEOiSX/kEPpF6OXFEks5geJah8xheVeb
Sp3lGUolX5Gdr/qTPwWRIuP9HNf9Y/X+/7L00qKyfxLG8Me9bFAtU0FmbgeZ
Ij3fWkgqWxX4Mze4HNHIZg2Z9LKseYDJaJY1FFymVVKlMgeZzCyp1KmeDPt5
l8llxeR7rHyPZvI++pnQw4YJxzFlG+H4tP7D6IV7CN/6DyLMdMDsJsEM6WUD
MDMGk4yE1Eq9eZLps/ljhi8imXqZjo+pVlQ1mbicjHglqpxt6iI+n1/w8dwk
JGKoQyo857k9YFg7TgDPEexsFbOzsh+gNEkg5WYbTFEztmpG0z9NfWzWuv6Y
u6Fm3obQIpD+KQM+tkoQameDajjXAs51gURQ3t8pu+JIoDScM9hvAJJ/Bjh3
w9GCC2cvAGdlzGzZBs7cTQRJ2ezfpAQzD5ApONa0wSwCmmlxmXPy5++EvQDs
ukaWdlh55NsWmKfWYHqJIJC5c+89nrrrZU97utMloMm0pxP2A02Q+eL5ea6P
nP70PYcNl2q4iEYdYpYGSmVlQwtniEDmZxzBnLSJbY+jl40NhZWeiS2NYFau
ie0oHLGEjY/j8WrWfsycMYf9osFxPXDM+v/NTO5LTJ5B9/xOi8lf0g2umayw
XwGJfwMm1+JoHudmwORUksmQYBbDmcwdJmutxJcYSHScLO44evl4q8SjYTIP
+Fh6Nsjkc9av4/Xn+BuXcFR2diL5WSD55RpJsZvEUU7xxnnZi9/9l6/RODKK
HxbpEqWP4lfpQg9tFsjtfGyL0LIwPKoSyWMmkRM0sV6qZxwmQ4FlVCJrJhlJ
P8sDEmcMiWtA4m4gsVIknqPCyTM4yyNJvN+yrmuA3mGAcAlHcy6EXRfCynWt
5WgQZgrCm6Uo1hCGhdGHMGRYlSZ+bgwIz45AqFM9NoQnRCHEtvN1z3l+/62d
zvgQhmcyHSmCpOeyAHyc5LC9Ox0HvVCWNYqeJ4eeOy14AUbfol5jEjuYzHsX
9wtoEpcNiVMeiTs9n0rUYSP0HkLoSCT+YX8XCpYPI7B8SPW0MpM9I4wdMNkJ
COOITCpNvIl4u4kTO0EcLRRjmpgpHLFIKzTxMqEcDxlvFUYykjaWo5ZGznCR
dIhcq12qofKIPZ7K46qGlUJ8Ik+m/6u8jpCp1txOtaYtaidUptQWtV1aR7Tp
oGuQ22lvVbPW+da8IZuhyLGBLKrWmXvYUd5C14mINBsUkmJDRnLBIMlR47xC
EnmdP6bb3kbyXrKpGsmurE0SiH8OJNfhaMEgOTUcydJ41cKNH4sAkrlJ7mSM
JH0o9FoUktgq16kWCSo9kRRsVfk3PyehzKTjgU6uRHWyTTnkWy6QF/lArgSB
/OB4QEYH9NcGtYrVJGW8WIXixeHy2L5PwJPHcZxptroIFg3lsXamlZJHLPak
8DPyiAwOpljcxdNsaBZnuZOu6u+iRx7AIqsY/gg7Sz8/iuzrb8BrHUz6lMLC
akozWZ4kNl8JStfiaB7npkHptKG061JaxYSzGE5pbigtAWbpymWhpuGwwMS3
LYAMoKnSOXs9G9dXXmr6zqGrbq/jmLSxTeoiNp6nqFkBFJ97SMF0LOx7R2QT
KR2LTRFNsDaPHks/elyVRoFWGZ1sNAvrZXRCjKplBSNlyQaMRmWyYzF6FzFp
M3qCldapPEZzw+j9/IHdjz/+axw9vM/eC+B0XSDpkylO76GfCUdsZGa1t636
j6ijZZybM7BOBWCtApLaHlYY3FpN6SetpzW2ucLWLpFkAZ+bKWw/rqojl+31
bHnhxQbcA/Yijo0i0FTJRJdLPHQdcpcHyEVvAQLPWE+BJvfje+zB7wDkfg3r
NKQs7mhhZ2lrqm4nEOlWggnq6jjWdoLMemFnEbC2VYzZXC12GvK379pn73I4
r1OqIfYhlDpJZB856EDii8jdoMg9V4WmXz/oUPrpZ7JbjyjQ5E5hvwd4fQ7I
3R1HTPOsIbdnyO2YnFHlymwZi0+j5GaK3JtrD4xPdsAJZxa5hyty84DganIx
SfIxJLhXCPWVLVV3t1bYxgoqPrZq8qv9TvSwNXUUg+2mBth+LoxtAyNchoyw
8Ic312FpaahVDUANJhyPpokEN7HrJS/j8ejYZrhBrihPQhvKFRUNzXAdj/K9
XgQyRJmHa2HjamDtcqtPzrTuog2VToa16P/WIVayKve/3vhEQ2yB/Xpw+mIQ
uw5H84bYKaO1XUOsZ4xL1xgXSWJzk1Giw1sIQgB7M+eRBt1xFFZPZpXCPpfi
1SvWr5Pf0PQhXA7FVVtbXEPFlgiu66OoYuNGhI9GUNXqGkL1FPrSTjUGNYpZ
cztmFbJVrzCkqoLKBOspnrqmHbGnriFHnAWi1tUDNa2ufIvnDGphF1XMNJBz
YUx7sgn2AfzNB/GWCFN6nkfptwhT1tUF7HsK2PeqVNPP2Bz/zDHHuzj8ov2r
wOoaw+qMYbUXYDWqrkUg+5u7rCpffDO4HDTCggNYA+gFoHIwsaS+2KCjm4Vy
UNIG5zac0nORSW2a8Y3B+TVh5rTTdD5R0mn7X65+hsi0fW+CTLfzILVoo8gD
wWoVClZXt9CSFs8RHa+XSYo26uVJJtNRas1k6WaSmEnB6y/2b5WuV9jVFqST
HuEOBMNnztkjPSnIlOy4e0B5UwgpkfsIrC9RygWZOcWlTi7ZXML67lJczmL/
B+Byqf+oOdqFoPVhPH0zQsvWhEpEtZj6rJY+qyfTV8mzydVeAEId45spVjEd
JbR0M2vpZjZ4dAewnmpNrWuna1rnhH1kv1kje9HJQ4n9iEg384HYo1dWHGK/
9PQ9kzOI1JP6dPxJfQKBahUKVI2QTrACExXScRzv2NBGU0tFILVUBhwvt8pl
vHIq3Z10aXSciuTSn27cEKe159LKRZcMpOYAdckCleJTB9QHCFwNaoX9HsBz
L4C6EUeLODfrgtp1Qa2SoNYpJg/U3ASqlSHT87lCrpuFO/YCrsA4FlfwFMy8
gDJ+44qXvwQXVF5baXXX21g2srqpUo2PJUGwaUBJF2yfy+tmfVikW/nA5afU
2M6vYoTK1+SMhsK0LFhCmpm1H0XeMAitQkFoYL1HMW7KKGuTMoqa2qYpo7w1
i8VwAfVMbYFbObeqMJi1ALI5PRzEKdly8BBLJ3+6uwi/RxGJHnQgYfVbHluG
i66Q5O0XnD7ahVv3Ecw/8ijKMo+gZLoLz6Yx7BkMOwG9LIdjWEefuVz/S+rl
rVbgWWJfxvVSURnQSyHTQ39PtvZKlsor+RttMyBVm+JS3hDk3Eet0YzGpWlk
SLUUaS73p+1VGJ8ylMtRgs7SDzqblmEYTcHLD/CncZaYgMH1tLKBwW3AZyFn
NB2dz5BWqryK1ErlcPvXqg0XfMbO5w4g2jNaOS3zrw/j3RKds4HskNbK+4gO
YhEbAfwIVtJ6FGHZIwg2NZ9TMT6jMlkM51Ma2v5PCbufck5o0MoWCTRZMzM1
bezROiNEerlFSDqlm11vo9k6OxRDU0+PoNAUGySWT+L9vLaxBsmPN0dSaCZP
o+vvMBm0sFWsSirjzk4s7px0b20D2QxVR1tZWC8XNCKW0VxQGRggVlvYSmF5
I9lWjeSb6RK9myPHAJaorXRd5ZyWPUIP43l2KTbpX/w3YUmAKvX8Ldrlf8dP
dR494AehD9LPmtcp7J8GXtf0f6OOmNxZQ25vOLllQ3Jrg4vPkL42FLnYPLfr
6KoFrpszyixdPQbgsq5qfMUGI65eLDpybvcHwl20S031FYHX7nUY5nNdeAsb
3pDNHT/wpL9hUTt85RARK7Q0CDtHtLrp/G0DZkP522K41a2llFvSpTIZZpWU
YgmDbhLbXgDbGQ4p8/4j5HpB7O+4MeJ3zK2VMTKulxsangAsnwdAN+Bo0QA6
baS16wJajQFoJj8bzWQZFlTMX/JfpJkDXlew2a2zQi9/SYYLKng4IC4ybyYY
LUNcym96svc/mSCXS04M+oF2XHJe6Azavvz0PSdXCU0HoauSFcraZIVaOd10
eWUcPMukpGZqdfPb6CppPnVqqANAZwLtCz0XUGZoRrYM7WI++VN+lH77dwFK
7diU7C9ZxEcRlv4GYemjuG8fUaRPGwVlQDsBBS1jsWkRA5T2lnjST458MqpF
jWre/+e63ILLbwuokHnvz5N2XsV30lb1JUyvV2HqB6eaU1l9WRyQ0FT1RQ8J
/bYw84JtGjC/bq6IfuDWhRSnn3Y5zQCqhLTwJ/oKLhEbmkeojkWrUCy6ukmi
VsqZtQlCo5XPfAw0Q8rJaBYKTdvyqoQRnU2h2XW1c9qg2UmgiVv5G4Tmz4kM
bA9tfCKx+Cgi0t/A4T6K59BoTsXQrFw0WfyLJJq5jeYttafFRxl2tnkMTdbR
TKGp00VbuA/wKqFq2yykSkxliFr4gMpay1KrWotu7A0Aqvh8sutvuVchxeYx
is03r6z0n06X/WtcbjuD/e3J9LNuUnCsrT81e+totPa1SjknmCIa0dfmMiZZ
LTpDKaIykCIqXeFk0ckBpZIBApLzuFkMzW5ANadl8w/XQySav6V/odEsFJrn
qcSRxvOX5G2nAOTvA821/f9G8PkbVQtlSKdjkFZGP8uAwS0CkOZGPyWl/TvI
vN7CK48NutxiOJ/0/JhT82hVYtn8psNxQSWi0ux2fLMbSO8utyq76EpoiNBT
RQzRnUdSCKqbFkIdfxrRT6imBRvRr9C39okhRK3o06PUij47segzncqdYM4o
GzdnlDXMGXmlltzlNJrKLZIGt1bRKmBwdeIot5c0CaPaC6DKhOVgLcErYlEt
pfeTy+XffwIofR543YCjRZybNbz2DK+dpKi24PVW+saApt7CGd6InmYBXnNj
dQV7XZZTON2tez2br6zgbk5WVKWqMm2U28DKm4VgbZo2igFrTbcpNjqwar+7
830Eq+5XsHsVtM9Nwfp1uil8WCcdjxY2rrFkkeA1FthRnC0eP8s7QViLNpZX
wsrtrg6wuF5nqfaiprxOmYzRPAjrJHjVuSPN68NkfVcA6EuAKh+xE57BE00Z
ae0GUC1bo5opVO+UssqoZtiHeHX0FZ+KyiBZoSk99SdVOQbauk19E0sLXPkW
WNMqWwTXjFShScAaZnXHe5/7p6aHQbNqx6RxVktm9XQs4yC8RcLigWknNprU
mnW6ND2AVlJXrEraKK2qobRR1P1Gs7oTBDWkqjzwK8MdnikLrJJGDOeUas5F
Utdqzu24lPaMqk4bVZ1hSov+b+oAFVve/3/8hAD1baRSygTPg8xXgVEuwMy7
jPYCjFZGTsvhjOYmRpVBav82qab4DG08yzieFyo8WU4z1VSPB74gpZQ+vm1C
XVXWU5NIslK+DqKFj6jM9s41JtSb6k8R+nu8nzPRqV02bUCnDedX6U6wkkbD
4AxljfJkZGpXXJo6XsFz2/IHcp5IAFqXSrMxSqVZw/DUy+vmDQEtG9reHLc3
IJ6bdTJIZx90INFRM6r4dBntuko6bYLUBaWkRFz/vwnI/8caKgHF7aCjVHK9
HfzSHwDQpf5vzdFvcKM9iqd0UO2YSLUaDdVcoXqXpaRFQEmLAec7gCo9NYaI
Y7zpXiSkV5KQXiPUdZX2t/Ltb/PKzFy04T7B6qYvD2X16BasZkDV76NXXjfe
R5/bGSThzxdWh6bDvO7YCSRPQtNN9NHCqOd1xyG0iCWQSjeB5BHKdzXyUMrs
niiHfHfDcHZNcrdrBNSDkzWwAmL0WhWdzKaU0Gogl0ReF7/9BKC5FyDdiKNF
nJs1kPZcSD099TxvEYA0N543U5DebkWmZVJP45ByPonPA9CrEJleI9S1ZUU1
iSV5+TWmwu+0HxwYM58szdic2oNhFKceqNr27to0u2jKpilQn9Lp9I9EqVSD
Su/0S3SH6P4jo6dVrInBXwCpnpuhtIswWlKFLMQUdiGmTRlG8JwM/HX2Y/5p
ENb2cpo1DEzTZdK8NaxROa2k393OflflkNSEKTIktbzuEFbZpSoRrFn9HbFZ
s1qYPNLdxMm9Bx3Kid4Xg9F1OJo3jE4ZRruu540Kqcdo4calSkNvpT97Kyd6
B/GsNVRwpdTQeSHCUAknRr68EQ27BOe1+OSuUQpKf9nyu5pM4Tf1Do5/WRha
k9Fk+k28QQXVYO48ao+nOv0MMTBN364F5jcw95EPZrsJxhpFoVGnO5mcUTZa
zihrkzPKJ4dm6aLZUTp6N7lb4pM3vgyD3UWdGJhTBsxZ2YegwKR/54OpE0YA
89cv2HcGv/QqgLkGR3P4lzMxMCsjnmUbMNnh4jMi3VRgYquS0qnY1IndCxGD
SjbRfWSc7fp1GS6evI4sntuE9rl5ANHCR1TWZBYa1WQShMqZrMVTeD+LC8gl
GLtK6md0P0dSaZEpBtA8je6IodNTjxmDFjaZE6m5RNWyfXYoT2aHQrXRPIZk
EcsOhaytUsv75F1LarldVV7+dOOGysrhai6rAJe9AJcsexU4oydQYDKWmQXn
v9EdDzh3bXxiiV99JuDs9H+H+Y1+i4LEf+PZHEy7BtNOQD/LhphKTvs7pXzi
o3zrEVH9LNQaZxajuBE4/ERiFwL6RSSKaNvON6GWUfoFy+NqRGWkQ4/F66bN
GQ0NhTkjxChnc/UEKSFGsXLZ0WFGS2b0y3RXWDHoqgWgIpnDFbwqGaeJzhWr
qZ5pY+tFoQ0SuUUS1SIWhZaueua4ubW7fZ7MEjGmpYL1QeLq1wrWwoW164ro
tEnlMqzTUVhzE4qSvaUY9LeYyuh3iEF/ixhUQzodg7RKQlqa5qMaUr0W1E7L
3xYupGXI5HZtEeXtcJUb2gJ3CwXdLtRlZBU16SL6ErMQ9bNFXqV0sfGIUt0V
6A+JARcOo8blmlaGT3qM6mXpLUZBaC5TRN+QHUfCmVosPrPYZGLOySSImqpo
NEGUtUkQjYNm1NhWUm3uc9ytyhJpMH+D9cvI4cbA7MXAnGcwu/3f1nki3uwc
0QMv2HcNaHwRuFyHowX8qxnDZc/lsnLFs2zIZaa4vK22tvR7gwa38AzuIJd4
4RDNq2jbwd9oSjjp+Sx7q6EUyWrLUuOCqJ53LMDkJl82Gcldu80uDjQs6Ma/
4UiW/dPpbrDn6Ux3J6SjTavpLx5tNoBS8MRh/IH8SIwsmtkY/nZsMkMhZ9Tf
lgF/++599i4sMh8hmAyZnRiZU4bMOdlu8N/4F7+N4qmjTzK40/i1VwBPBnXe
4Dnl4tkJyGYDPHl9C2lu+3fQFwIIvQ166cBZhpxtp3+KmgBFC+Y/oCFXCiZd
1h1CXT5WzWuFNrddG1A7/nRrLFVsVJpcrXDalFh0Z5HNpzXgZZOlmU+tfe2u
DxKgdg00BOc/raz0n0EgnsG2ydBZ9c+g72iPzvSo7cnEm6LhQLOoXNa9QyG5
DOWBsjZBZ7qeMiKUpQtlpaBEZGklg/J6nfrCNrPDuZyWfXqayx5z2RngUmeF
7uVFXeh3DgWUyziaw7+bHg7l/8/ceQdaVlX3f+eUe+/r0wdBkKYIIkgvUp4i
GogtWBKJEmLshRhDdETUl19i+8WYYn4m9l4QEenMAD4UUBHQEVDqFHpnKNNn
4P7WWnvtffbed+1T7r1j8sc9DK/et873s9Z3rb3PObnvZTOh4UwLKFMXSDgP
tyKMvV42rJktqpGf5Q24V+PSCdTK3ypNpDaymWtki1XPLKRRr6S0pJWUYnPC
uLfgGdIYbMqd/l4A4wjBeBLD6K6dOOYVfhPgyA0FXmr2fdoyZIFsd3+AdxPr
BbKiuczd5tKUS6VvEZa5twgr7mWdufeyHsoMaJAamTSZAQ2Mo+ReW7qxfIBC
4wyBEMeMnxbI9pUv/3yIHWTB4ojA4pReBFlL+nN6y+5RPAB6+JAjd0QC9+qu
xwXOdbwLYcKyOGJZbDdmsSiQGsbuHUD+rdRN1qyOGkOsjlgVEcPfQDvpYah9
a9v61mDe44xk29KqSbDvYKwJhvx8CMMgOtbui5XqWb9swGCHGPw2nH2BwWGv
WkbNqqq5Eyi6z6BGXawx4UmFCU90fWQQEHMfxJRBvJ0dK096DIjsVnmlpBLE
cb2Zx2zwwSEPfPM6AHADDXk22CHPD6BSPbbDs+Dr1uEjP9fjfZ3XYUFdiz/F
I7LjV8dWzLJKRKZM5J2aRiIyjxGZBUTqi+BwqIM0XgNF8XpSiGFSZa5ZLZYz
sxBKzWQrxqTeYjDec+9NF8lgQ+3sGSKRuyjVs3DZgMgRIhKtaoTIigYyC5Es
JTJziRzeREeqidJER1qqrNs3Nkcx8yc6kkUlh4rQ46VCeqQDX/eEHbaC2OmG
07k1p22Bw1Gfwzl2pQOO64FmQJBeS3moY0Acwa95BYK4EP81ZUEcLQUxj/WO
mQ9iom88eBuS5/nSXCiICRdEnOXge/wvXPQABJcDite7BGpz2rbmNBjmOIsg
LWkRpLi6c6JnmFMB4IxTE59Nxw69VaTPXfhw6CuHL0H24Id8ExJwhDzkrs5l
1AM50T5HNoNUwaS6O0yFJcka6GWl3WGun1lyP8sWUwCclndAJfzQwQco14sa
9DK/L+xY9EZ89CYsemOE3kh3PfwUg57B7zAoSndBUXoc/otfdSLSNx//Oam/
tZe+tlAG82r64M9YAZwDffhSbaECZj6C8KPfxfQdvvNObhFMJARbYX9oENTj
1Ja0xlHsFJgUx6kugcIuWGwMBQCllUcPwMwFEF9pgd9I9ztw9kvw2xatoGq8
0DhI7asxnpFsqDQzTRsDGLWhLQZwBYR/Od9ez/WgHoBtH8COX/vGLIBTenli
HX7bBhrzYCvoUPdMBG637galdsZ/kRedsOiNCOi1mqCXCOgVJbDgL/cdKPx2
fODu1+C7DoL3imr9++kjug/MLCEUsRj+iovhDaQXj0d4n8aUCjgyj3nJmuNk
dH3DABnZlr6TByP50Zeo3iXGAEbc3PpRcDsujCnXwgoQNYcticNK8ym0gzU4
VLSVlYJxmSqphsVwJqk5nJGWFst7wvLhTFYTRsmItrgnxMbv93BquCIaHh9x
vGhSzeOo5ZGqGkGWIG7wo5yqyN1hZsc1zOgc/NLDkNHt8V+E87jAaFsoj7nA
aNAlcm9o8MxiDpXKY8rPNvq6j2bSfXBmCQrt5BOpUCKd12KhvKGXzlbYMho6
9b70XNoQoJUE6Sy2+GgWHiN70Wdw7cCjc9zSKS1omMWMz8DrpVNT3dfiFlef
zaz7LfCp3i1FhjirkTvD5pMaaQVj2CUybTKpaU5l7lOZ8kPCuEbSpVupYFQL
Lts+lyN+nRy3XBJYHUQsD8Y095/wRv2J45DCRfivKUvhqKWwE6uUUQozvc9I
U3iXQ2ELj61YkXQAfCHUwx+ffGLGALrl8be4B0cAMJcA1KccPicsLuoUDvEp
u+eluSIkRuAZFsDn0HGse0x9+FQS2NRW90x8ugKkZbc6fgffasPRTG4BdJYP
lbN+mLnrh0NZrpD6w6TxaCbaH9ZlL4tNSfOYPTXsoUf9Mt8Tz6wfOh61mrxR
S96EJW+cK+KGYkRjK6I7qgEYX48YLsCvn8TvHBMwbDfGMNGG9XZErteh0r23
Uobv3dwXMnyQamaWpE4JxM8hgddhCbwRf6qHIbwbOJNEoWtUq9YU58RWM0oZ
dHasPsvnT6neqyRr8pcgfrjjhuFrepu7IbWHyr/KqvmQJqk5pJHWDMshjA5p
BoYwYwjRl+JaxYfovj2+MX1YcXvGVz55BI7Y2jdmCZzSSw/sSfVqBRfBjUTg
Mp7W3I3XMZ/wxp2QwMXdjXjHrQ1oaT0WR0pZzP3mMRNYxAAB6sCiebV9W1oU
xADHc04+MUccE6cgvnX/fQnH67EgCjjmEo6qdCVjbtnqYh0eZ3FU4gNJjvRt
qnftojaQLaqIAZBFnzi8eU3mAjnotGbY5TDaIKaDkhhY0VZgRZ+giuVbUUti
UQvbPomjlsRxSyLxlCJZCCCgBxASiAZHM8ZhHOfglx6AOO6A/5qL3z4u4Ni2
DrVVE0e6pQn82lUFjvB/BsjAoSYBkB+YPgKBTLsPzyzJkEoM2cwSWyOv0TUS
z1djMFNhiWNebInDI9O9flm4tgN7RR/MaXyvu6piqmrA/MyiRfXAbHfPgGwt
gCl2ic4EZxt1iYoeTkI56ieqfqUMWsWk8QBniHxm1a2i4fNuqJJmTSNxRqoP
M5+54FU7Pp+jPp9UKTvM5wZA3fCZOXy+HyhgPtv4pccgn4vxX3Msn6MCn22f
z8C6BnzC778Dfo9BMxNqZc73/fgmIHwwz2w+gDObR5BKQJMKJnwBzlixViKW
N2Ct7OUSfjOcUMLSoFnsUs3ClcdBqAy2puJaB1O5Bx1H6e9w1zn+ha9JNkS+
U+9ELRYYaXCTcqUUpqkI47AnNpnLYn87a4J5jVQko/OapL+eMR02hLRqQX0j
nrULTniFrZMAiuEwsxy2qzmcsBxOIFJtB7wzQegM3quQuYX4BVP4pWM+cx1r
UVvWoualzCXM3D3A0QpmriUwlwjMfXD6iAyZy4tymNky+Gsog7/Hny8wl4XM
6V1wmbzSOC+20tgIubPM/dMZtzbul+u+Q/Fzg9rt7qcAMcYNfvNn7ML+9+3C
vo9cu/s9OP0CcgPNaOBbnGv9Gy/k1xjUDLvy1egR0ybQ5f61FwV0Ke+V4UkN
XXuBr8dPeIVT8iTURgTUiJ+50ZKXU4eI59+hT70W8ZuP3zRhS96Ij59U8nIB
v4yXZOBPtPTBq+N70RZfv2i4w5bwg1jrHkXkDHwpwZeHBQ9PTCMCU5dALQr4
ayMXNPYgGN7zKth7OoMlx2OwRR3isfD6Z+Dvk8AeMvjpnXYyK4mf4XtaMYK9
BP4Qt5uWElh2vw35KosIgRAcrng0qaGyBx+7hHPOpWqwUU157UsaG9DyUU02
MIbahZp5TYJPjOWNY15bKDE4Zhmc1NtjNlBXaGpe7s1mDHlT+AV7dzfhPu+N
DO6ELYESg636DK4Gupg/fLX9Apgyg+8BX4oMHgEMnotLFI8ifsZ0pk4BvJYL
4E145rwqqGgDIp4+etVdROwPQmEDOG1y8yActd3gx4E2B0LPe5K6PQSpEUyQ
QLyXOehAYLD6Qqc8RJAIjF7oBD/GgbC/lcJgPCMVwfLxTBLbTFO3/cuElUKJ
Psl5ZkzfTXo7KXKn6Uv9Chilb9Snj0DqIFLBZCbn4+lQGkMYc/z6oxDG7fBf
cyyMoz6M7SYwJrxhyIERjYOLI5VERTWRaMQAII3nnXxid83MkpZfFXET68wS
KooHQDFEKG+E//ZCSYVRZYZIUxvDC/6LVcWWtKpYXFM8Zomssf2Ub52snktH
uhSqisRSFL8PprQcxTxEkUjU98/I3PtnVK0ZbhM/Gi2ENdYs0sZNYHMUc4ti
7hRCM46hR6cnthAGZrQjoDiut6gZFMcNimBwDYotRtEMSe/BmyPjjakAxeOQ
woX4TVP62z0KO7YktqwtzUsphF99F5BlAMx9ADO+AOq9PnwZ0pf79VBRR0hf
9QW8uw0uHTZEb7RsF3jv1cLjVBDrovfDkDxqCN+yaFH3E32R1+mehbdGlsmr
ekhAQ+4yl7sm27ml0UvdAhgdvZTbz/LRSw3qAvvZYupudgogUSfVvgK4Ees8
xyxwc/TaQm/ta3U3WeB+COXIALd2h2epVyBwC/CbJvHbxwTgpLKX+8BRGTfb
D+4DplcycC0fOEWXNnW/BW/CMLdk+gg4F48hawJ1OS1SmHr3O/jvzSRbDz1t
XMiJshutXp/IJfi0jCCaxo6G9Ll3b3R2fdP+NQ8/vVp4zNQU4fdJAT9ekAhm
MT0Efg+fpFVGYB4SWDyUTjVfHoy2gDXWCLdJ5Yu2gOnwGbwHb70HHB65w/bw
vdQCVjI46jNIVWs+4pQgWPBDN4HhBPwIQQ0ihJhnMQAjfN095Ayh+uF30HdN
4XHn7mY8bMKRoYfniMWz7dfDcjx1QbR0rsThjIEz572l34Y3cQjPQ5fgPPQx
tKGGy6zgMqXRDVdC+Bturg1lFkIZ3h+u91rhSdsiuu1hBZO4IuEjSZ3hLu32
oEieCRKpiaSzYN8PkkrYQANf6qwNxkxpjelMtDzWmM5IplTqD9MB0MwtmmRA
uUbiiOZC2lOqK+VjgBfIHF/wdR6u7VJcxy2uVDI7CNpIwOc9dD1EwScUTEO1
Ugcjn9vjv+bgD5jw+ez45bMen3fA72A2fT4Tmc+2UDcTdqvnQBNp6uYtSkS0
dITTKbtKo1g9nPRGOIbPyyN8ml02Z5tbGqs96ahXCz/h9IkRLiUsE6QyeAKd
u5OmchdNbpl01gdVdLEefoxDZROrWj6rSaoXLMpnNXUbxEYs5n6ZNCyaWqko
Hr0sBlWzLWA4ajGctBiOC1WzzVSa0Y3mUR/Xwf8DhvhSR+NxEf6AKf2jIkC2
rJ/NY0Am7AgcIDGXIY0GSfirv8M0Ytt4Ae6jeRyrpUGyGN8kTsn8IpTMG+g5
Oh6U+izi6aTaWUpmOzZcda6fmuqZroZoSttsQPq08c1jM8dOcs3JO+7iznCU
uVbYsHmGqZmJXdDw4PwB3hCuFM7cNbBmjqr6Xb1XwoVQfXrYgQtl3T6yBpyZ
v4wRwJk6hbK4StiHE3SuxyVBjexYOEdsjRyzcM7RqxSbkFpNozO9sTRijTQ0
HoPHhfgdk5bGUZ/Gtl8eJRoz/otwe8Ld0DGupJ7SgJgxiKc48xsAsYUg5oJ3
VTRItaXxOiiNt5I4egukoh0YZGHZxvaz2O9j6C5wVGBIt3jzMcSOcs1hz9y1
FMPvl2LY6f4IW0oZwz5vhxGBUGok4Ut/wn82v/oc6pRXyqR6qJNWN5TBmmIW
gzE6Ss1Zur/l7adP0mJ8AeOjDGNWDWNRKcctjPMRrYRQ88tlxwGUpz0eoFwy
1R/jcZ4FdMwC2okB2rLz1gJQk3IeKNpKDWiHB6649S3gE972E8imVy4LBwsR
wUr5tv33xUqJ52cIgEp7AaZ61jwMoVX7UbEy7eYZWGwu9R1Sd9+jZ9waGtgS
OM/ELyuDs/lmG1Wyyqj8nablm9wk+xpMeQapkNFWUtpvk1VDKbWSBsqVEGas
kHbUAx9bi5tvNJghlO0YlGMWSvKchFObodwMAIZQupOfXPCwBPTe3S1KPRP/
RRV3ohTPVimeuoASnasAxFXI5UpceVzhFc4PTR+BYGbIZVuonilxmeI+Afp6
qJzwVg2ZdOL0OIBcLDtZZ0UkD1dEiscDqAVld4uLkhnuzjFk/tCCuRcdaQVy
1T+84KDYGkh5yUwQSrSv0O4ISPa9+0ZGsoZpjS45lk93kiaLH8F0J2papelO
cyRbTp30pjsJEilVx3YpiJPWqo6b6gjQxUC8h4rUvQTiQ1AdgTx8qYPxuB3+
gCnL4KjPYLs+g3fCT2b+LIMJF8jvOjMd5PBJIK0dK5ApF0hcFXk7FMcb4XWb
clikKqnzqWFRlc5jW+5O8d6LHef00Ohu1Smj8QK9LuLTiL3kqj9//qGD0XgW
9DflNJZtxKm/+l+Xxz59a/OFkHIepSayfx5X4UNOeMKT6i05a/EQKYwdn8dR
n8c5ek7aWxgzPObdzQTlR3jCc28A5Xr4GEL5QjwutFCOWyhH/MLYsr41F6BM
CcrUhRL/XOwpV1JVDIjMEMmWXxp7icQv/jU0lHBGBCL1kCdzhzyV+wUW1tov
EFuqdDcKXKz1P/0tFfKITSU9a+Mf99q3fx7PRuMKqbsOj86mgHIeq3YFlIPY
aJqTNCmMwTQnrW4gCxD5AcAREIMGsqUnkbqC/La48ZtemVyLBfJRHphEWRyx
tXFM72ozLBJF48ydmeXcS82b5u4xsIamGB6FxwX4HZP4vWMCd0ExlLjjLpGx
Q+OAC48+ckdC43fa9BEtRK4ogoEbVTTMsTXwd/gc1eEgt2Ag5MKVyLPNvU+Z
ttw0iWtmDnihWeVQ7k3fcGf4GfoV5S1B3CC2AmzbYAOOSt2ZTW0jWmNg07w3
lApfuo14w+rnTG5ayFtQ9tqlqI3rTWybcFKzGX/4Fl37gF+AjsAbdfDDSY2L
n+tFc90PblVqF/zXPPx5E7YAjlgQ29Ugpgzig8Daaq59bTwmDOLfAPYGxIvw
3hlrEURDYy5YUkUV0NQ/CODtGEWPR50uyZOyL3XWH3O7yuHg2MOjsABJPLqb
xyt4nP2B5fF5dCTmVp1+5PHdT+y+B7LYL4pngViiKOauBTUjVNV42V8Y1DRa
Z4wOapoXv2BQ06grbASjcWqm+OG0po0k5rGi17EkjgokEjljyJCpfO48psPo
odsE1vCl9sLjDvgdcyx1Y5a6jl/+Wn4vmFvq4G9F4O4CphG61dgBrrK44e9n
3DIft5bgN+ENfrAofDJuqYubKh2X5u5EJrhgeG4pcVV7cS7kVQwfOSwiy1+z
3xHdf9KGM0Tu+w5ytMSfSsi1uz9Gy9mL3FB32jRGrobfLK9/SfWCRSO/WQO5
oPFLg/qHE5mLTngF1T/4JM5HQdAk6iRWDqMQknucq/u3eDk0TN5Lj0vTTD4O
nBgm98PjYvwBU9rE9jLZLmUypbefdu+DH8o8wv+tRjfqUwlOFKlslxbBjKnE
b8DV/RUUml4qk5IpqYos9S+o2oQjEnm56l25WKpr0LNdGEdN97fmI4cdG1uw
qE3j2Xs+t4TGPKTR2WPT9zK+ogui6G/+mWIapU1vdccwjQpgczfaiEa+kKEo
gGZnKhVA+GYHRX0JhFcN2wKIoz6IVNHmM4hbwIMaEMeEcUzH8aUGxIPwuNCC
OGZB7PjFsRUDEX8eXoul6yJ8YrXpC7vfg485GMJXrptZ0rEgtoTymHJviOXx
QLxcGErkCmaRTpHOnXjaqEpuGyDr7rlZqouXD6RpEMmUYoXsC8gEeYRo/ghy
d0DjEFfzCxYVrRgSij9VfZvRRpVRWqJIG7OY68d5mk1vWQ0Wi8qIhvS0gw9o
B5URZd2KFcWOz+KY3jhqWFyAKGWEFlRGqIIhkO6cZkRwq4fhkYiesJVxRKiM
Ldsj5hbIlIG8uzCpDGTW/T587FAeiNJ0Zh1i2FsUQxZ1UfySLYqGxqIy6jaC
7Cpb1pputff2NnOiKNbYd4MXEjOKe9OR1g0vX/Ky13f/4QWHxjBU9Tj8MWTu
bcdh+YRGcqjSUuE2qYmp0BSmg3JIVyImiCDrC9ft19LVFZrEJ4DEx5jErNSe
jggkTultMVvws1t7SuN4bGQDbpJwfAJq1lPwy+GldsLjTvhT5lkmx3wm24Jb
LZiEn3e/41FNfXRx/DAUu/WAWsdnsiUYVUX9I63hm/K4shmWeiExDxcSaR0x
rI/C3lQRytgS4vl6vcKDsmO6RzKsn9x9D3F3jaL94XQH4jPp/+JknoO+Fb5V
JDN3raoZnKp6F+6XQwnffgWHgF+SYS2f2NQtktJyRXPDWg5nMbFpyUWyI6CZ
+mi2S9Ec1/vUDJqTCNUEsZh1twCbl3LPeNYJbxxlEh8GSgyJz8Hj9vhNc3j6
45LYEapjQWLKJD6Cm109p5p13wd0HsrT0otxB/h6NKnGqbZiTlVReaRdbl+i
y6dWRjBMXQxV6YpGscXGKY9aKvBHhyTW3VqzVIPxHI9C0zaSS/04uFTz1O9+
KEwQQpUNFcHyyY2ijd/0J1+hqkxqjfFNdL+pVByD8c2w+dMmlfZ3d+8D+48M
mmUMM8ZJuutwgvqYvYq+16IW9I369M3VCxBcGJ3hTYrHEWQRW3am8T56VozG
cQNgYnB8Hh4X4U+ZiuHYjuGoeSQS76DLs+7AfeAFjvh7GceWxVEqjB6O53FR
vIlGqiv5xBCOOltS52g3i0cWNFRkj82C2B6bHh6rNtcs1Tee8nhsm66R7OrM
wS+yPL7G3PAU3hiuZThAVvJ4DpjWHh5bEo8DbKGRBjhDNKvReiitYARmtdEA
JyvlkdbpjWPlMQ4VxFzvqFmHh0gxlHAcszhSNVvEOCJdWAuRwQkmEUc4hwN5
LoluYdwXjwvxB0xaEkfxx3dKSUyZxAcAOOCPSMzomJNbNSAeBSAuPflE/ANc
EqXCmDGJuEccFzdWKT4Ryf8sibEljgv1JcZM4vPp2LJNI1JoKiO9VR/CH9SE
8Fz4uh9DGvcgTIc0Qq0xtunTkTaviFFHKrWLfRII/8QLo0xJxJUNsKYawgwh
TAQI26UQTti1jAXIUJuYSrtbgbqQxKOBeYnEjbouqgPwOF/7WkPiiFATWz6J
aCXZmGr87qCfbACE9hBCswHhq6yFqVML8Xt1LVylRH+qu3wzS63cb1O2AXzK
Y7DuRhusMkjDHh6ApkEka2pKYd8A5gQgVkJn95rSG7tzWwad7TSq3tY1RZcJ
E32Xq55pjaIlDPrjr1L9uNJGVVAa2ZS70tQf2TRl0LSGjjXVDObIoG4LyeI9
TpGMlMSOQOO4pZE4GjM0AnmGxkmHRugVicNxphFJfBp+L7zUdnik+c1ci+SY
RbITQzJjJO+FH30n18WUq+MZ/tSmLVDZKqES6+I7uC7GqZRWOPJwhYMWOEr3
wc3pKY1199ugQT0noNLuMl1+2otfZUsjxsE85NTOUuENoUH9YfGK0pkgnPAH
nwN68tFMXTRVo9udVsxtUnduU8eklm+zSQYokTVMah94tryuEV/v1BOcVG+A
W4db4SIFMkBy1EeSOJrLSG6BBjEskM4IBz6mkXwEmDFI7ozHZ+APmIM/alxA
si0gCT8F3mX3QSiId9LPvNOUyZBInMjOLCGr2vZnOLlvVRNGEr/vZkBydWMk
I4uOZVvhfCTrLv9fousSLm94SKbTqugZ4TcAlCp88PcZhKPTMyKOaRWO52HF
rMRx+MObGla1xvAmGWB4E7Wq0vAm8zksVjZS5tBY1ev5hefmIrwxv+EQhQ0+
01TKVG/09Cpl2/pW3iTqVcpJva2N1vDjldKd5bhYcrVUz8bjIvwBUxbLUaFS
tmwbmTKWa3AlUxdKxrIoktg4ApLjNYukoipJK//vINe6moksOkh9yszlGap0
9TEPVx9p8VF3kPO8DrKfLTnoCc8zd6VS+9CxbTpHa1yHxeK5oKPhs6hqDm6S
bTG4SWsObtJtxSLPcIjFDrGYuSyWFsiAxDGfRAIpRaTmOvyZvnFScKp74nEB
ftukNr29/AVlUQMYoJfTI41RdIjeMmgBNwJWkzH+cpE/Loiav9SviE34i6z+
z/f2qlYtMMbwA5HP4o40nz/TONrpDf4t3z7y6P75SxA/CPu5YKiCfW9Buzi8
sami6w/pz9cPhh3QljYvh1FbKnWNwVpGFkUwtbb0ejod11N64wkOjVJHhJIY
MNguZXBC72PbyjCNEFz+KGdKGOVMCk51bzzOx58yISDZ9pHMGMmH+Ynid9Ki
hq6GAZIZMjnhm9S2YFIzRnKJLod4CkQk9VA1c4eqlRtVF4X74mrzKC1rGHt6
VoAjPUoDO0bEcc1HDzu2O73Dzt0/3WX3yBxHui4jguN5kLuHh6OKzVCVP8QZ
2J0OXBHL3anUJUo4ZoyjUw0tjqhU3IuzTsDxCcXLd1JJ7Ag4jlsc5+napnF8
ynGoBset8P+I5I/ouRr3E46P4t1UAdEuObYuznKe5vZz3GeyY8tkyzIJPwDe
W/cxZBx+aIpgOjieDlwtw+VFwFGqkLnvUA2OXB0Jx9Q61Ho46uFq7k5wTG3k
4jhvYBiXaRr2dEEcmVZFn0jeFEF85R57d7+ja6Mzuknd0Y2qR+P58NXn7bBD
CY19z1JV6bCmuTENhjXJAMOaqDFtiiEa0xBDHtgQgKMOhk8whll1VRzVN3rz
MCR25pmq6MxvWngcQwpZ4z/Cp4ADMBKL2+Fxe/wpU7Y+jurNdr31MScW2/hI
cSqN+MJHjDsc4qjJhVCqiQRh6tREXOhf8YzFELE7lNMrhiQ2WG1c5DaKtSpj
bAOO61LPtTDuS8eOaRLJpBoQv3bcq71t4c05TBDDYG3fXCRlLpDaJhNTCcK6
i4o1rKm0oJH61jQt7Q6DiWkmQ4gLGgbC1KmF67gWjuqp6RP2vhSR4hdQN6m3
q9FOmafx9wBmcxmzy3gog4DNY8yeBCrgg4TZM/G4yGI27mPW8TFLGDPjQA1m
h/Fo9HS6/GITcrWRGNqgu0P6vwm//rUEO5o49e8b1o6WoVe6wpiHK4yNimDZ
0uKlWu8zZ4fcuc0h3S0Dufvyq95ARXBw7i6ALD487lTphFTR5YkUBn2D9QGN
aNK4AtYwouWjmdyFD/vCED6zxcYaUVA4Li96BLYFAkes/RyzBE45BHa1B4Vi
ip4TUZzvAIktIaI4X6h7dFyAP2XSB7LjA0keFBtX/Flc9gyL2AUiiy1kMXFY
XA81bd3OeBtQvfq4DveEw8eBTDUulMbAnyoa4djKuBJed247ROeWIlq2+m88
Kk4u93L5bLvdoscn1EYVGd404RO+4wLQmcSnanLhsCqdmipa6ac/XT+LpH+H
OnBxLHeoNfjk5/QWg5qLgZB1dAM22u62Hg8RI9qxD3ErSuKYvoLCAEkodQyQ
8KMNkAsYSDOjQRQXOEBylVS74nGeBXIMf/KIUCFTArKFz4mj58XhU8MNjJfg
pcHE4obpI3L8G3ImcK1D4KhPYEswp4rcKS3xf4PGp3e6+KXFXjg8U8EFxjEG
Ixtx5pW607I7a1zuONPzAwLtnW2QQLq8f48Fi+A3AoPwxr+rqyQVyaTYDU4P
0ziLPlabQsjs245CJUxPa1jUgsKoRS2vkuXjGsmiBn1iOYX465w+0a2SbFM1
lBlCmVgoWzWhHLdQEk4TCNZ2DoWnAjHI3yLBp+6Gx7n62zwKg7KIhhu+zQCI
b5sBzBFA+KkbkTakbued9Eg1t/txEt6s+iR8B4K5gS6XipRFD8rzeVf4SmoW
7+S0qDMkniTzotqo8ygtctyuhgVnk/VFY1/Ps3C+gI6Z1zbSW9NcYufocamf
ckPLGnQz4h/RJ8q4TBBL+A0XQA/UA2XJczIGHp4m/XnWGlOb6FpGjZoYndp4
NN7veNZMmNq09QUa6/UlUxCEJ/VLyzkolm3fvY7qHdwelwTYHMG9LhamNosF
9/psPE5ZTEd999rG35sxpo8CnlgrA0zT7mYiCmAlTDdQT7keY2JYpdqZCay2
hAJaWNiMWeXiiWdGp0zJv4qMSht0nmFXPwIXW3vZQ6LUcbDTZ6oAU3rOhnGx
FLsvAaWa1YxqaLjg0YjUlEhNXUqrMVX9DVcVrTlSGK5WQ/CvyZArZwNW3f4y
F4Y7LZfVtXhzRpnVtl9DJVYn9d42Ws6nKak/68Hlje2FGlrAOW7hHPHhdLh0
S+hHpo/QXGbdTTjSAd42AkVms46EZsJ7jZ5w+KT95e2YwaWn4mCF4F3lq6Ce
3lWCaHyzQB5uFnBubrygMZ/S8JXtLQ5jnuehOROgueZLrz3Jovl1KKPiWiT8
Fcjm2fqlqtEERxZD81IHTTW80U8jU9to9COV0WD0k1a3lmVo4t022NhaNN+p
7xJXoNkS0EwFe9uOoTnmo7mIy+jTO2xvy+gzhCHQDg6ppow+B4+TAqn0xAB6
qBzeWhm+40F+SusPnTHsR6hkchlF9OBjG0gjZcBmvI0egX1SAxsrpw6uupy+
V6MKJ/ouFTaldYCN7O5Z2Fc9DXkNHK8PrH7WI9te/O+qL534VqynNBX6Cry+
x/X0TAKzb2LhCy/C4cbQiVXVw6BBjG9SXUzLh0GpsFKSCSslPcSu1qsl4myI
rgBpC8QmPrFBMe0IxE7oHalPYx3tNb7bC1OiHYXaWhA7Zont4O9o0a3MR+jZ
HQZWAdjuFoApcWssYAXv2I56A24ze5kzcZvwjRIQ3nU46CU3HDHCirpWr87e
/b8R3tAIn13Aux8dR1xwL//yOz7ggcvVVjes8C6dQVL1GIm4TRBbiNbFoDxn
12sxOYoiq4YyOYperdWn/40W2Rr+txay3K9aZN3JESHbIWQzF1kB2KDEjvjA
jltgd9T7dXonSDsJc9w98DhhCR2xhJpHYyGhWFKLZ7lmltKjgatLcV/dFl1V
EVANJ/xfL6KZUFozRhTj9AQAv/bkE3HfAjLZ64UVVVdaaXkvjZTursVn6T69
xdLVXbXglNZaXBeMVxfv7YLZMh0qTnqXv/uPT6CqCmAmSCb8cVhUz3SLKrxp
p0Otj+ZF8MUGTw9NNeShrqK1T/PkoXh/WtcEJ41LatQES/1p5vOZ6Oer9k6Q
6J4Co0Ehxasu+MLhSA2VkKTq9yyhhu4oDI92jrleInTU1tCc7zqJN6/DBw3c
a59Rl9nulOHMDZzwv5sYztzCmZf63qy422tm6EQ2Y+aX+cTfvvp/lk/pkQOS
6/X4tNdZ0uuYvfdf/qWT3xsWT+VMevuhM0E4IVBLAc9KNFV/E15F92qlIOhH
2tbbFyS53eGUzjS26FKOpvJXXlrC/IhuxjPGpDKlRGruk9qOkTrqk7qrsCa6
ozBJ2i3mdsctqfb+d/BpBlXpp/JEId0MfDGo8Jdtwj8gQmomkJoxqY9yLWVS
WzKp+KysU8Dk3kO/6w9OatnDQUKL20Mq3bKna2gFUl2bq3Q5zWw5da+Ehg87
HWo1rinhmhOuTldaYxu76m/E29ziSnOkZHglVLK4WQ+nq51NfC1hmEScjiOn
UVdbgDnig0nFj8a0uwiTot0DVwuvkET47FaG8HH4bEJHfS9mwNF5XFbW/TsG
86NAx6W4R12DuQXBhA9vIvlHwIz624yDhGAylCrwtxlTybWzDyql7baL3VFv
KZZ1lmFCc6svhVb7a3Mb4mjMbcrmtmdzX78oXgxfvAxw7EFRNV5tUdUj3fLV
lqibjQ6IapTMdCjdZpspvAHCdZAeEmkKJ4yvxbtocbVMBCjbpVASXXsIvnZn
YTa0Jx6pWO5qyUyIzIxubId3feUX3Qh2hGl0x0EfxSfJbUVSuFZCnYS3RW1q
qxTJYCqUxpAMLG1KSGZuocRX6lOp8yjtaFit+kZzkBXSK31fi5uLfDTp4kzC
k9F0fa0yzee3j3nZ8PhcCratFp9qKAPcgS1t0l+pTEuXXGpY2tyB9Kv8gAKC
dErv8DNUtoRS2fGpHLOlck/Bw+4izIP2sVRSp5nh92bIIN3RJ5cZbCODWBEB
GqyKmwnizTKDWalfTWv51dSpjD/UCEKI7pHLo86nZl/RHwhEM51FIaPA+fZ2
1GB6IKYzDogqQRRVvuaLrz3JNpj4+ipB6T8jMjMI0quSwgQhxCaTMWyMoGo8
kJUQrOFWpYHPwCWyOYIJEqj8IdAcrpPrACOsk3idcV5dIkcsjFTmnicseO4m
jH4OxGNG7jU1sx/61rl4TPkTj+qvpoum5+ExCSjFhhIoHTGUAlamSOY+pXm1
efUqpUNoaF4VMUqF8jBSy71liObh9j/pNurqGeHOv74RdTvL0MLu4+E5zXiu
2WnhYsazZVc+HTy73znmZWUTIIgH3hn9XP1SUUxTwjTvLgM5OrOfgRdMlD+V
lUY/dVvKGj62vE6mfbeU94dbh1KGFM8Szn8Qz7kM6XqEliFNY5AGFXPUQvp8
wcfuJkx9jiBUc7fXNLNapS9vyYld93PwtfCb4PvmErW6xTycUb3s5BNHDarw
vzgqwsluuxrVeEEFauFHRUwto4p/0FmVqBbNpopunx8Op+4EKPCzVEaZ0wMU
/XJ8P0Rn6k5n4RNfxbUUO+rJrX91CqcqKmdqd+D2IrkUm0zAshaSqr9pbN2F
kqh1TbZF3ZSQTPWj6hwG3UI5V29830BrmOtw4KNBtBi2rHFtl2K4LyK0hzDj
eQ0e9a1CcjuiQX5+Ag70KVC1qXdb4f8NRKndGiSRFLWmRdFLBTcKH7wQfsfh
8DvuGwo/2w3Ej9QPBjZ0XwedwoESPrrEtSUH2v3Gca+ubAXhr8Iad55+qShP
CeIEn76EgeoPJlU9Mt0mJrTP+iaZ0MzCFJhQ2saeOfUNt/SsNyY0Q7YSvw+U
qtqIxWkMcdpPsJ7PEaYzr8XjqFOdHLpyxKtl6MIdOcp5qHJBV7GkmNWsUxG6
8NkDZ/0P0xVr8gIHOXNBDboyO2xhuqhKQRy+f+TRPRtv4MNcpoyBLC9UBqxl
8MUIVwFW5oIl3F1ONZl8DuIYk/7KU1rqGCNtnbsI4RHFo5WCqJyqFUgQMYMY
rFcsXImtjsDWAcKMZQ9hxvI6PObMFt4x2VlgGEG2UmIro8q1deedzLPo2gJe
dYtXKnRsZANzBC0j0DK3jOFrcNYWN2KtaqASuEDemKoO1KAZyBzQ0u4XQy8I
H8My5l0nCWELHGHRo5VzliBmEDgE7XJ+d2UrDKq/CeY2sYHNK1ejzsxwhusM
HwZXuJ5uL7UeN6NusO2Z4SzxOWuXcnYQcvY8YV7yem7FgCzi6vBiRIkLFLpe
gfiJK6pXW5ElQ1Ues4RS0UrDfTBMlV/BUgYLK9ipzcGqc4HVzYpPvprXA1ad
McjPdS0w9nDmIokr3JnmcuVOQDCXwjHHCYhbvYrt3hAAZ/ZRTVXKVF0GuZuJ
Eh6kMUSW6rrApLpmRVcDBmEpd1zgep5yTOJxxLCEhYxZausdlpFyNWIxOlgY
cOwpDDioXKHb94maZKCeKgoU/FYDVEvosaIuMC11gYnTY+Hvvp9O9lAoWuRS
1PeQQrCB+7kEdYwFNGN+pMldb8u4MJ3B9s9eeQjRcgqSgcdpqlK7fayXnkvg
q2dBST30qAEG+UnNHqqR4wsqUTCQSKsdXxZzfB49OJ8wlYjoGTP0KOVf+lNe
hEaRnkMFs7eXMKY4IaCHe6ik+/TMElOTnsKJxc70aAxFS+BtgSPJ7pUXpghH
phb9r+TIsXizF1uODtIcYSuzZvftFq565YH74H+JqVfssXf37194DFailDn6
Jhs8iaNzmnGUIEYQWATJWRHrc+Au7eFKhI0jzW1d2l/7lFXB1LMq1hIGErR7
ZJxh2ggfNDClMZg6PkyHI0z7CGOIVzE9p4YTCKBn1KVHKd46UklPeRXybJ2z
tdmilLsocTnqF6XMRal4QunCgcZ+gqebxlt/MkoH03EcUVr+0dcef/lFp70H
X4hUd+/FC+hPehUg9QFACmd+X4MX1KWwTzon7JOSapZSZulyYIk5Em5vrwYY
6ZUTVNfMNSpHUTOn/KtpWy487uyhgCfpbqRx+QaoURuKklTw0xasHPHzQsHK
PV+YPLxcxmkEcWozTk/rQkQ4tWriVMweUsHUJVVdktIbqk4taEp9mPQ5wJPB
F882JGpBY6JK/N3sUrM4rA6h41g3gGnNOW/+s+6P33hC9w377OlB9cEXHqMq
Jw4NSLoUvu+nTNOAJEmbGPs0dsFwvEYtSgVjl8Vu70IktYXpwrglKSOS8AG5
2xNFGxX3IQFGQRk6AjHaTxgsHMf7iQ03H5s+ArdV4eDsKZIv1iAEB36Ivota
Lzd5tYlLfRNXzY1+lw/YCnS/XIZ0HsPTEL0LIbyfgBxnO9T8WuiE19oIexGp
EHns2F37hp/l57/vLd2zgZ1z3ngC/Ppz4ZgTR89njvaGM/5n9BBecbJQl54E
4YFv/xn8OGdtaZBBeKO2qIaTKx/QRetQVnpDz7ZLjztPGLP05EwPOjlz7Sav
5fSauKIIHSksLe0rzBNeKswTAKg5yFNiPB1InllStAexXU1UeSUqjF2GEOXW
y8EHT+Pi84DONdsGonmlEMUuWAvc3Owys66kDqVjy/Bjag+xA7UnRXSgnhA/
b3ruzt395o5bfv6c+CkeaHS+fqka3KTETUrceOuxA0MzRPNWXnLSUvNWCY07
RiigaQvQJH7n0xagOVpwbi8QxgjHyNDMR2jYtBleWgIvue/cstIKFDi3zBad
LCg6pbwkxW3DaDe8fWKKw0vL8nJbwUtx9djcHlzKmh/Bqk3jlZTMy2Galxml
ZwjU9Jz7zjeRTzsHUbG8dLoXvf647hUv2Zdeb951sWXn+aCJN+ywQ7TGpHZN
yGEl614GMrqCeal32726kDT3ZdFxdd3KksUelkCQdITKMmohGTGQQIkwkEiW
bMQ+LuhFyMeBDMRH+cnriMK0MFezQEDJAEPGu2Xx1bFMtOxKal5aQ/pyZalT
UA5nQBI8Rq1ZHUq2i1HSuKMRbNnsZWZMrQ6nYz7rEOI7sZTwAGm/eprQuPIl
eGPdq+DY6v41YLK/g8mJkCUbATILUhoWIMOxXs2rSGG90ipA3BFAAciYA4i5
tjAXAOnYAvIioYAcILT+R8qt/wJTQKaPsLvLU4EYyXVJVURyXXWIwbd09tCI
SV1i9PmGJqaf7T6CB6Oiwsi8kI4ZIoMTNFNQiJaMzReTQi9gpftzouYXRM3n
D9it+xYgx1DzF3jP1ypgEuQFZ9IgIWcFdGBgatiuVG/tKLNdfVaUxLFdDA1U
AAcYvl6RgBmxwIwzMJvgM97FuG3BcVFFOUZYuDnQAcb0/IfLwCxkYLrwvwaY
PAZMoxJT2C7dp3Qf11u2VWobloRpuYj36TyoeHbSJy3wjpyNOwEw8xoDE3Fh
evVGHaFZMc2+Z7x0Zcm6F4PxclhJCJYRhKX7S35dDa//Amzeytjso7FRUVxS
wiXtXg6qKtssoOhONfSHXKdcYKQhcw1gyi1YdMhco8L0AMMPFveB+SrfUkoA
Julu6qEmEajpWGqORYkfInTzhwaYgAdzMXF8GPygLv7wSkyidUVyYkV3oqg9
oeXNH2s2aqARvV4X3pmAhj6vt1BvUncmFjFeM3gBno+G6eXX/J/jXmTLiEHj
fMDl8uMP9dFIXTRQ0PiJX8E/8+5/B4y8kRjx1jU9PH4CGkJErpqcUDVWMWts
qIl2KI0MWI16kgptvG5R6EFSTAfBMSI08R0fjszA4XiwlmC/Ci4C+3Ww8ESp
A512xUFlsVBNxgRMct9+ZbFqErVfHiZYPl6oERkYk7bFJBh7OXf+nqrc9SlV
D7ZbvGKpjvQZEfr2lBjhEsKNSYaYuJAUjKTdawiULwAob3NAeROB0ssIIQKf
uQKkw+sqzZxW2piMGk6reeFgMswDuOE16pLhdu4du0uGyGg5ZJgrSDNLRtv6
LLJCLxN81iFCI7+fPNnaTiggEzEyygtIKvisysZEpW4lgS99sFZjsi1AqWGz
qJgwKEfRUV93gIuPQfueEyWXQgt/VU9DklqHdTV9zFAC4qZ25Tr4zBcBl7f7
uEigJN1ZktOVQEvZZW51h1x1J8HlPXyNEuKAAkQ55ioRi4jp4QNU2o7DMqik
MXP1MmHl5DBhN8w+MirbC0Vk0qLSqvZaUhGRWxImRbckGXNyMW/MfEhxHGtz
krmcFO17u2zgpZUAueD3zT0XLzqqo3UtmTWIABwWkAT5QOGGdCS2fMD7BjIQ
DPMiQFLkA6L864CSfUFEJyElHiApAZJ1Lwd5XQVCYovV54graTwDHqSOpIyH
464cPEaFjr3t4zFCeGQuHgIcVEeOExzW4UK//jynEXE2Wu4g1JE5AhyFw8qE
OpLWdFiZUzr+fphISBOtubUvqonYq5nZAolpBwlcbmckkgKJnKwVI2FslUp8
U5X4NKQIA5zH38BXfwmQeIePRPezeJcDF4gUeYC/Fom4Gr7oWlWfhqAdL+83
kmpXVbdYGBocR6XSnmLxNacdD2gY42KxmX3VFsXJOkDheNTtkUITvqc8q9pR
KAxzY9ovLwzlHoq0n3J34ZQDfDWTfx7Kv7gRiFrguaY6ayBl5eCnZgndSH/6
v7iz+PixR1rpU08Bf9RPofN2ZF9D9QmKHrQK+m93v+xoH19/ydrXHcUsXi11
OVWDn4J+roRP/Aq030D1jXqJGl12jRqgZW8cEpy4UPA3wp/yLt1mh4KfYMFv
AcGbi4cz20MUxug4wRiF+kflP0fW/05C7p/v6z/3jVHWxBh5PUSwV9jAgCuB
HxgchlU9MKTCFpOpfmGYwVs+MQ0v4kLwNoEG440ugOJQ2TlEoUgRCpAykfEV
IOOdARn/ipctG3OUIhPox+CD14DYfq36IaJ50yC5ovI6wESwKXKIGHWI8ErA
aA8Rm0Hlm0HZAhFFCQiIOFroqncTdizuIpQDeixWq7QcBMOmtHQmG/QJicsC
vo+Hm7Ogp+Rm9aJYu6jTUE9EG+oSW8RbRQwJVBc+wPKUSLgMemm/S4BPIAq/
0i9VTkKKJICEqXcIcTgZxPRvez43QRKoOkA0foYdA9BwLdBQj4M+lydq+KHU
rwwpc+A2Bq1oZcA7GxaVYcxyQBjgZEmDYF4RFNwB04uErvlZcte8q1AcFpXS
EC0OaawxkGhIuEUwleFhEusQeEhdHlT8MuHxnh1VJZVh9qcWhxfTMZ39Mnzm
VYoaZ+V5JGThZ+CTflHhkRILQWo9EkGQIgSgXyLhq0DCuwIS/n3P51I5SJEB
nO0CBdehAdFQR9cfGvUDSePuuKgDCet/paP/tq//BOWv/O44FyDICYLCI9nr
a9uiPWIK1EuE1viZMgG7C/VgsU9AHqsHjdqD1NW9qQI6UBSzmrrPQ90X9/OE
jFCxR0o/ammspwa4undqwPSsCoSfTX8JPvVVeD0XXs9fvMCpA1r7S6E9ruoP
yrWfovYhP9K6BIr/IN5RxeJXJPy0ewUp6Fd4oatGWEVHpoP0AzWyfsojjnt4
2wYKfhSPndD4fI1vZdsStN5GrbetuKNO59jo8zt7NgI+W0jv21nvn9dM75LZ
kcStyONQTn+h4jTQr7hX94hbGv5MlTa/JQ5nFm9Norf6qWPomM9+BT71dVY2
Dn/OoyWD81HeF5C8nbTen7Izq2zQZ4+8/4rlnZGys+6VoJdr4GM36D+nfNaZ
9Ofqo30u12Gt67tB1zexrsfkRP4uZyk59139OIq7w4kc3Yy5UUIqa92dcb5M
6HMXy33uHkIif4aQyKnPzaoTuaR1ycqw6skXN1W9XpQxl1PYiykgKNznSlsv
uM+dFHVf4WQwo/uyp4T+NXh9gy3GJ449UsuefH0NO19X8ylqHrRLxubdgfD/
A+R1BWb1K0lOqPsb9Z+kpIlmXQef1Oxki1wOxxXwy1HuywFAeI3bTE6KT1nx
3MPyE+p6FT/K/n0LylkrPqJ3x7ofJ3SxC2S9P1fI7TuUGpesWu+FdU8cvfNY
x+r9wzrD08S3md7zUO8N14bHPcFXJPmZK8zeVPUSLXZyLpjjTwvFbnI82hdx
o4SiNWDUOy0DNxJ9xqK/Cb4ZhX8wC//NILTPYV97JSX8q0Bv18KHfqf/vOjw
JhFMeyP7UqR5nee7d0GCB9XDx4zeyzN85tsX0vu4Y9W9S6c7sSHmy4U+da68
k24vIbk/04o9MDJSck+rXXrG6sZlq3OHru5Ombr1+cW+dNSu6MaWrjiTH+EJ
e8bN4ixuJ4vDn3AFmJfeLXJBFk8EQWe+Jy8EnaGe4W9+T6Do/wQPk6CY4bde
B//PT9ipmL80cuJS9kYY8LfpxA3vqzx1m66zSN2FlCeMlEGoRsq5vpYs4lNe
KTScE/Jut72FvE2izpvk7agn13m7RY/2dUbxtCD1Qvz0I/2r+o4eVUvjlqnS
VakSg0IDeNb1sXRs2YT9LXh9WFHLiarOtDcpc+HNtQzapI3WgqC7P4fc/Cv4
7w2TNE11dDyw8y50jF8DP/938Ht+QzOTeDb+mnPlTFTCCSoYdQxaNzpOe3Xs
+I9XCb3lmDw42UdIyTvF/EdW03/06vhJf1uayc6NdKzX9MydM4oHLrTd9VUv
Pxct5oSo5BLnMYsXAx/pqrg9Y1rLb8Lr2/Das1CyStl5LAPn4WzvL5d0GhuZ
BJLOUNIg0x5d7wc6+2vclYZaQ7ONowtVX9KSsQ6ayYQlfRv8eJAzSTrBY7sk
Nbu3skityxj1dZ07ut6q7YaWtDQLPEFoITvyuGRfITXv7LuM8tSc1pL0ht60
rO821UTSeSjp4qqWWu3juNV0jcw8fYWV9Es5MRuzgYn5O/DaC14n7rOnsRsX
vvEEYzm03YCPOdvFVHNRm87xxgN2I+yW8+t6UPSNuy6GLhEPN6Pmb6EvvBV+
1Xsdye+vJQ8dLSltOU6n0W1PToRar+uoi/SNX+Nk7gyPHZT5mC/zTGgeUyF9
k5nusMy3YvoGRdv7QEhm+rVC55jLu8H2EzL3LoIDyWrKvDDTCcpcu2kyIBuc
phET9we10htKvWWlHlhr7UHmVznrnswtKR0zN97O7ihX5r2Z+7ss9U9R40gm
5EISfMnKPwQI9wz/ungl1XJXlMSt2iNLnHB6EN3fgcRvAqnj6+ZdF6O3JmuO
8j/Ekf9bqMf7JdqI62mD/03Y+OnoiaYFvTk6HpyI0O0y4AjWBym6BQ/X4e28
fo0pvSKvu92jJHjK66Mk+MwVvLf50TEqrxd6x0QelOwvZPVdY1k9alQkw63l
3iK5o0/Z4CR1UnmDrK7HUqR0Vrve/tKStr8UD26bjIq9bAr+c7P7V71M63z2
q0E6/6jSAxKrc3h/mNPRpVxd4VDqqfsGUPav+b3VW8BXNAzp3gLfeBtRdhvl
eUHkKPG8ezU9vowkfyNaHbTw+tXqXoNfcC3+6zoU7q/xXzVytukaU3vf4UDC
k5yzsTk0YjtWcCVvoGPLNoyBZg8UUvRuNVN0WluzqNcNjq/+YFPN5qFmi7sC
wa8QRFvcFH/CE22NDhGneYFqp78WZOfvwetjykw/bHbOurOvnnan181Vqxds
UlLtdfrNqWIDlqJ7xlWvQ8IHbwGl3hoo+HZ4V6eAik/hlX5WcQsVnKJec9Rr
y+q1Xsp1W8Qi5Y4Kek05mbqifbHgMV7jWGn0GfCCvwGPOQlZKXuHZxSyOljI
vLs3ybxRP61VnPeoWNF7ridhbd/M02t52NGShh3FDvQ5oZtu1B1eZbbZqj+m
Y2fGuGhjLb4Prxmlm8MLcHinzcWV4KSvlhdeamgX4gTitdKtJ9/oZnJHw7dT
Ir+dfsN34f8D/cJX1hNwJOG6vWDie4YxX8AtR8AoWHwXR7lZV4/q1J9EBZy6
AlYJC2l6h4XdmUP2whd8DI+t7uwJ093uKa+jF/4bvwcy9kFCxn62oPWsb62v
ZYeBL1yB+WATrWeu1osF95a04G6fDaumolIvW2f/pW4YjdaP08nasxeYqH8A
r+dpreuGEd7kJWwv3DwNn8RVl+v0S9UTPIrduZHBIILX/TK0iKBuzNS305u4
HX/XCiv9v3Gk/1ZyysZmBKqvZTNMa5j4NqNQ/QSqftSoHtRsVH+YoPqXDKz6
1FU9XpsNx9RVvzpASPV7WMMyDPmvg59s5I+/dU09+ev+nNR/r6ozPEldv8Iu
e8JjoMZIm1rJF7n675BZcdvIM5R+bjMzYHL95WBVIovsiX9JRSD9hKQP/w9y
vEa/FUVXDanUNdqO01a0V9BsMKkgQI9DfQxyIqDVXQn/L1CQx2x2YFs6rv7d
TjERbMu4zfrjgv4PdBZnjNemiyVyFHxeU+GLBIXvLyT4PfwEnwlmJhXaSEnh
CQ1LUpPZJXkHG2QVLeOap+k0GJhIizbjtfvHX+hdJCzu47W4Z93kjibmTEXP
Ue3uraiHNFOSi/CaCTAzjcWNgw4Q2W9Z256+6foglbpTwQp9R5fWlX4Q+u3w
a1aQuVmB88SVJHJX4Adogffjaqrye6HvKUffbM31k0ADfR/s6zsXBL2LIOgX
CCl7z5opOy0VNBR7ULRnWPCXnte3rGPDkQWx4YjoW6py9s/MLlf1J1rVYrr+
R2UnI6a7vBRcizPcjprzpEfTqGfn1jLbRNNmE/zt4NpXsLATPOYobEgJ9E6+
F6j7bTQ3qZS2l7rdjjNI3YG05wsd556CtPcVpL2voOV9heRcV8uF/RC1nJOW
jfvA9HwExX1NiZBVau5HXjwVo592c7JHy3XG2VeZzX2s4wmyHmF2/pGvZZru
YXpmMasa3juxa+qKdjx1l4OI+JHO0buJDSzqYHUS/rnCUTaJOidRt7rfhw++
zxd19wt7Pjdw4/FsnbkXKJQKepHQge4uCHoPwYunvr4Pd/SN40BU9vOFXP08
X9+B+Uib6dvN0+eX6XuI3eUEKbtuZ3k1bxBhab+cjiOz31R+R4mmA++h+U9K
T1EupF3cF5H7QOcRWYCUjAduh2NB/6FFbS5vXQniRXO9klA0yk67q3vkjS+U
9xdxP2GjjM2GJG5GqNncEYWboZa5uzQyXCyofOeaHWdqRX+sIPq9haT+vOqk
ngo9ZdIj+if18mR3KRAFCZ2W5uuKXuwpW1JPWZjuqag1qWoncZSit/mpV2jR
e+NCk8vxJk17h6Kv4bH1RZc5Sd15UkpwryJcw+T3xL1ksGCj6MZe/qZt6bJL
SejmsTWO2q3Wc9J62r0DPnaG1rsygwrWOyodvtvovWWby3ZPOneay1g6J7Xv
EVP7aDBfAcWr7Yc8X3kls4BfY1jYSygAzxcKQF8sGKN+FPyy8+uz0MSpz690
6nX6z1/yNWk+DtPhVNHUAIPEPnSR5kXWqzsbuaM2XZGv6f4GJMdPdIjeChI+
5rChaMyo6H6p5prMwRFJ+Rooihy8J23aDR8Z4gEZCAH5W6cgvN0UhIjVoVqQ
MxtcB8xrJMbGfpaNBDFQ/k7YeUOG4Q0MA36dgWFPoTDUgCHauSYFDKlbFFTi
XOA2LBJS4cLNiVr9qiHhGt2r8u5C9Up2QmGjaorCOVgU4PVpWsrXTujn7ITs
pQwlCFwLgnIRoNs9wue4XzVmqLhLy8Dal3aFm9HVavD6qxgA6l1bCECLAEi7
d3KV+FunSiAEX3I3ZsUNUWauyI8UiDELwTGNZ4pvEYRM1/DsZ5Wb+T4+ranc
hJSbWUuDafyCWuKt3acujPWpoquR0rjran7OadwT8Oi0ND88mwX8Cc5on8ap
i9Zwz+U4kruBSKKGnYfyFLcs/Z/RsFllcIVMGs5Rwy2UMLxpzOKH8aYWFrAq
Ns+Oyhk8aFalDD6O4j1cGhhm3somvOZ2u4fs9SZBtc8RHpewry/iwJen9UW8
HlLvUr551uNVItbTFvsYnv4WfKZ6dFynJcWB4eXKbBRUr6Lj+My3Ikn4XF/D
NGm57PXHlVtzFu+vQAe94k1d8Sq90JO5Cz0D+PNAvMF+WFPCQKKrqUqYBEzi
Tbt39Sj4HaDgL4OC85LM67SifuYd9cW7X0/mpayraOMEZl4826DcvVCRGf7r
eEHDdGX8/o0NdOobaPi+J/At83AQE+8SektGtLSdKrWiVbRCaW45rZyOMnNF
G31wwWplCuFEZSvpJl20p7giqfdNqVfTcWI2lmxxUP9JRb6ZhHox3tPk1dMV
biEP3UL/YtV7W1O9t1W/+hVrwttYKYSs2MRXbIsV+35BsYlVbLsn3QbN5EjM
KzyndOZH+iXZoqMFKXdBpvgJs4GF/h8/TsYCji8W9LybkJMlY9FU3mvZU5jZ
oN3fHchbpe5drfq0xnNLnUVZRl6uFUf38vRFTq7CNIZhRkahPz8Q+i+OP1RJ
F5AlxbAk7VW4ngxm4Z6TGltOFN3TIXaVZF2Fp6a3AEcB4iY7nPsKT7t3izL/
Csh8pH5LOCIofMfG8z7M0WgztK6N7tWruvorHM3r1wnT6nBB9nT/qgMH1bm7
9r5EFvlA7nl+qXuu2/pdy22f3juo/lTre6YsiZ/v6Pti7Tgq7HLqOg7d70Hc
giXK6K6SqMjJbijaVkL83kSf9W5eEhV5cSsqfuQ110R4j3eC2u8gC+IpvVWi
9Fatvm8k5j4WDHm8keCR8r7J9Jy83yhk/4MEAnYWEv/+MTOeVgNBZhw/42+3
Svz7/UhMSGa8dHlonrc81E8zyY0kE3ECHcdnvx/J9kjDBUgDvP4veHC2NXEY
WtbROPZ7sGwv3ZiqRqIPGEiZAaqemgOVCgyk3XuiIKSyqZF6yCDlEwhjQwaB
6gH6dfxYURHeJWCwn4MB3h8CAXgWHg/Wlj/i59NS3eOlxvCW0e9sdDbZfqhv
6Zda+rlR6depBDgAxKXQ41zdT06jyzF9Z1gJUPef1qfEav+Xxx8aNfOtcPpd
vQSaeZdlVt6JU5K+dAmmJP2Un0XN+Z9nJnBsW+m3ItJ/5w47OM+gdJvPePov
jI6iSyUEF19D4WbbrFU4+J1TUbGJSf/OFz/P0fhPIBWjxncUUn2596mU/DqW
+0bH4j9RJXmpi21i86c84dfd4YJmA3tYveNQvYbtz/cc6yMle1f0aH/sNpa6
zj4yJVSNV/wHVj3nj3us9O9k6We+9NsofTgDpP+/c/R/IOT2d9K+rlD/zqUW
sayfof7z7kdKdhnOxWMimJkPx2S+hyDzZ/Yn82K8SDJP7HgRr7iHH21kfrre
wVUqc6mbFd1+xNnE03ud8eLVPB5npb9WK33WHSmGqf1CVLjyjb6/YavH47Ot
YY+fW4/vCP1/h9LvRoPjKp38TdsqPS9RumNt/J23QYZv6dtKFOL+GM5knj7l
ddtZSX8ypuFdhf2IQ9SwTtXt7nr4UUbDGzlVX6B1HApZ0ayc7sNub2LltK2Z
K+TgWvv5sV0s0XZVytWgHboC4k88BU+7udqsz5tcjQq+SGlzblT8SxrFiHfM
N+4kMOYVi/KZu6izzdxJYm8QgUdHvamvXrIobVQvJBMr4cNZwgexhPOS/StF
nm7xs4QuATt+OnwBvxIr6az7UVIuCBt1jS+8f/Ipr1toFf6vodeObBzfQRD3
QYL1Tkt9CIlbZ2hjQ+BjG+km+U6Odi6QGJIDh+wcXhrRZNyIuRD6Tt6AqF5H
x/HZsOF0szPq+mJH20txY1bMgmSy4y6aTZZ0n8uUQxM2hVSL2xF2YUBI2DkK
O0Fdc/41qk5cVeMnwp4z52daLysEDd90Opnuo3pHiiDuke5Tp7xuHCU9R3Da
nw/FfcI0NI294t5+UHEn1mSzuNl8sLhTszzP203KlF3baC+QrsNv1F4a73GN
vnaTxf16Le7KpL1UFVOVn+CqpuA69GaS63iYYveR5NZ09FyqKYm7fGWokbiL
uXni39bHNi9F6o7pu8OJ+ywoRX/HG69Q4u8iiYu9ZY7qBk+6FISNqdy8UOQg
7IxVfTTo9COg049QN6lz92Wg062Qu+GFt7s85XWjVvKTRvLOAtJXjOS13Okr
nilI/hkxyUtmJfUln/p9ZeC18bUM/v9IDOoTJXKvbbjz0HCT39Z95WTtvtIM
U0BqeLu2V7hqn5w+s0YqX6bTT/efQfFXH39oXZvdkmx2aTYvXygajuApmWOK
d3pKSe1jpPa0+yP4ulO12uFHgd5BGqhwI2VHxkd5Mv4IyfhS0N4WkPEWGvtt
QRmDlsdQy2Oo5fEwfcNP+pag5e0FLW83FC0bb7K+GI9Yb4Lp+0JlvYkkaaWf
gWQe8FDTes+tTN5h8+gm7+U6qfJmKvVn2nLPutthzwky98WcuT/ja1kFbrvU
lqSuiFXdAbgSVoKGpmIsjajkuzwVF2Z7HFUMVZQ+jVLGv/100NXpWqfgoafb
3c0oS6PNIs+OCNo8Q/DN2wnaXDxEbYLfd3KsybP0NnoHG9F+UHTNeeiayTTr
wcZUZUsYptnfannQ3XtYm3/OrkJajTc5dinn2H9R2jKDq4gM7MzuKGmzST/D
aaXvMnWzMo8LGoYszdrw3VqXpM1UaAQpw+akTe2XN0Ge3ESt2mYUX2+ybAuC
PFsQpHRJ+yJBkMUaSl1B6srf3Qj620Q/rrC5H1JmPlHZxYleN3O97iCZ0jRx
mI9ACLNYkV/lqnFiOlw/lzLlJfA6qVCkqlPyU7fkK710ntulc0eRcUn6N99R
9tGfqny9sJ4kMcKVksxIkhmlSyzpLMtAlUWazF07yso6X+jAFgiqXDgsVWL1
xiy5yWm+OEvSIndaqsralnSBmydLlRkbnZn6zc0XC/MN2o5SCa9Kk5fCa18W
JtrR3gKekCTT0kFZzbuD1Oi3Cjkmwj4lqd9KHTneByndylHyoEaOaEKxarMc
O7EkmQrd0TIhSc4TrkJcMKgcaSCAs4FCjvgyijxdrzKTIqNNUlNHCX+J0x9V
7rNw06Qp2iCImV+YbXTqRC1GqtnhDiOTIZdxhryMxWh6o/pDLsFNSj2R6m/C
1aco7SxRq9K8Al2OupXb0WVYuUetKFVabIHbYaH6qdvh8NLCHEGP80v1SAOq
tJYeuWCHeuTsWOixtpnMXDNZ7P6ZXzs/hgOqsGqjuftTT4+2aofLvmFy/Ikq
epxac6lyE8lyHGQk1acaU3ONQ6FGVUix1WMicTkBGppAiiM2P46wFJ+Gr3ma
U+NVbmrkZntKuCh13qBS1KW6uwG+X1tHayBNWlTFxSF9+MdO6B/DrKh3h4+X
Do3cCg16mP6FFeFfaOs4cwZX6Kqk+K8swn8/+iDlrGal7mrWoK5RNZkSDahB
xPxeAMdqsEYj0xHSYSfQIN7o/GpBg2bI6e5/nBvTYNFUV2pwg2cUI7mwD7eY
h7XZuSJpTqMexi3MIICZq82uL/VGrcHZH5YkwUucJIgaRJc4S+2LX5XzsCo7
LjF3XaIRYYVRVDXHPI2al0CGZlHkHsAHFEg7f7PGWizyYctoEddJFd1/HH4H
HK8V6vO4IMg5gwoyD7LgaV4WrOsOY9U4l9Ig58Gx0qmOqcRw3mdREa9xBThF
i/tnqd5tKSYJXspJEEX4lyzCX4E7XE7bVBxn6JTiwhm2wuVP76Kh8lZFVU90
BlFgKigwjfbQqdtDhxWZsmEuKDDF428EBY4JCpwaQIEJp8RNhTn0yrLSaUUs
y2nMHoq1OR04KZrCzN0KFmbW5Ju0Jm1hltYr3aQ4C68XSJocRm0u71YUXetD
f49+zOHQdYlhZ22Guow2LVKVTlmXT8HXPMW6JEX9VijVo4IuJwfQpU6N3Y3w
ozbDDzE5EvPjkco0KzWdYuaqsbgEM5dMotJLi+OlsxxTnblPmbnGbHlSJ9Fx
cta0zVWJ0QjxTfvsOcD4RgmLLzUaFEW3CzTPDh+uAO+HNsQXYG+rIguwSIy0
IQ91wgLkF6nnRkGDI4IGJwQNHuJPc6o0CPpzNJiZlGiMYh8+sZjheGPuqdrz
G1OenTaFNyYZBVJ5RhWeE0mFrgIvV7ZP8Sqzs9RSPrOR99nVkGB5f9JcfTa+
Wn7m1acAneT3FP0BT/Hdf28SKnNbUN94qfrS0s1FXJQ3c1HOOANeordX0CbR
IAOmNVziiHWJQZtSKwmagY2pxs7scPoaK8G/1BL0qnG4lyJMgv8WSFBl3rVY
fYxp4MNOGe5vZNhcgPZ2oCzAe6hVFtWHfy52JpuN+jq2/nZYfVtBX1tZfZnN
fbca9TmbkluC+sb6U19i1Aff5uc+vch3kay+eP1thfXXH13PqT26NrXXnRFe
a/bxqJO1CaT1E1N7w8W8MOv9O8vuGjCBvyUTaGtv5tbe4irYhsZPNW6JE2E3
ZgPhYahRfPpqqNKWeDNlLS/ttQPhbVX2acsgmdvcoisIz1zRMdpEeGkgvMyY
PvOSMl9arT14307lNdJT4U5h7zqO8dIxdTgcvM5su2HpLbJF98c1Mt5P4fVX
SvcgLD/v7i+O+qonMpnbDw/QDUviC7YCR8tuyjtM7oPe4x5OfWljBeaCAhN9
iywjwxVC9c0FGY7EZJj6K3kRGZrqG8gQU+BpPSlQHNNkbgGWbiNQ7OitnwTD
8SDXXlbiX9FxPtVenM6cWyMJohJNN2xU+Jvi7qAllTcPK2+Ne12omg1wMKHu
S4oYdpajI8UaXTBJMTVSxG24LEVqFlq2FK8S2hAjRRS5J8XDqrWnrZ8pvfiJ
mSUp+79LeCvDWv2qXX5H3PwXdh7Bfq94AhRqL/a9ejeNejMd59q9C+ep3iW5
MPn9DF77weuvn7uzld11dB+/foYuVW5PCTtpyjve5ooz4wYnA9YUXadHdFtA
UVtYdJmf/+4QynDqrByz8MT8d5Df+0Y0uKmowPBHRZJfnRrclmpwkPqmaqU+
oQDPoibe4Apwyl5yhhX4/Bp5D0WI8fqPow9Spu29BirwEKpv1PqpJnOX5ipM
eQTr1uFGElSkQUp7oEL4yVvsc/tM3rtbKMFJTII15i25KzInyamk0YilmDbn
JUluLLpZK6its1jj9M4D9ddcWN25yoU1Mtx/sMC+AmcDMxw+NsG73baqP1DR
NTVza+qg3WwhqmKTYJmoHtKtRURUxtdt6vV1bOkwpW2hP3MLZ5+imN4jFFNJ
VJ3YxbZRjSWc1zYXls6vrbzu1qC2wvuOpDa97jYlrbtFK6uz3kai0zsN1Fvo
uGjWnaRcpPxNBlJG+xyL7lroK673n9PhuriyrdJlBbWRhYvOUJKY6vjZQI7q
0Eaz8lT5IKVQXZtVt0WnMVJd6qcyqqb3kX7abioLn/UIn+29G7ukuGKSotMa
FdItND9xxObkt7piGzzFhaM7rqHTvwnVtmDa3D0PhyimhpaluCvgBfW3uy/0
DybFYQ3dBvWzhosrn5/UFZ0JO6oO9Ea3HMiqldfxlAeK2sz5LhOK6IOko5Y7
x3NVZ0Tn3vX8gNLxHYtuC2e4rCrDSXUVvtRZz5WuHCl2QtfLce7kjgsrqU5v
JFBv1TnOK6w4O5HWbN0cd6XS7cOBcIaCwtqb4yobVbmo1pVb0KY2l5u5p+aD
4MqM3NLSnQSFZ8tJbhklus3wWZTcZr6leKC4h4ziigrrKq4lpLmo4lJW3Gbs
FeAbxDS3rlmaG3XTXNgu9I7rRsUL+oN6ilrT+wPU2+i4cDYcjlQlNyM17FTN
Y68CmfVfSzO3ltbcDSDdOaWByhDw++FvkFUmdwZZkNQ209+8uSezUU19hKST
SxpTLSGt7R8TmVYZaWwLfG+KKiORJcGGAN0rlMlMSRtVMtm8TVYmNqGcotD0
6qt6u24WvKWIi2vks6uU9m1fhZODQvs1nIpi9T9+E+VYBc3cCtr7ZFdOzrer
+lIr+s8aUjNTUNaaedVQW+KYN85pKhPURlltDWkoC9XWEtqE/f0RXNEmoNDg
67B0bqHv2oL9aJDNLpayWTH5VbQhilT2qOozpY2Q0krK5yyebr3Cqt6hDdus
u+SwtEYu+89AZtdCCW1SMpWwsA8hcpYZhGZU0VWU9CetVD0ykzrS4JKMSpk9
XHi1Hpm52+ILmSnKat3NqD94X5tYZFLpfMyIjNsEvkSjZW9IHKgqMQ2Ho6qs
J32ZNa11Q01fE9H0JU3U4BTO4qk9WYvqnXScZ/d2ugWyLG8ZUd3Aj+217n+A
yW294hh1/DWkVMxtSUqpnLFGXSkZ0+8POVA5aM20jAQpZbY6Pm6kxPNbllIu
5KsXCE0mi2oriApe8CNDUeGQllNVXFRislpQN1n11ERhd8jsjWY5ijW1cNo8
u84sD4QzjDBRoa7+Gl4HAb2oq99AsXBvH1O5AylzE1Xp/CJaD2sY/KbqesRP
VOXq0okqddWlEl9fmZ+qngz0xXtCcvsIjMJpJWZRyxFUgseWLYBuqjr4GYuH
nKrGRVW5Lsupf6goPehX79JZihTlzimMomJZ6ufw2t9R1HXwX7u3oyVlqVrT
V6lRVHShNv0NK1TfPj6pEhNS7KSr0eJuF5m92wULivTUZj1tCvWUx/zVWllP
WeyxQIW8UFmQjLaCdLZS/duKqUrKV+dUKYv/Us5Xxerm/MbpyjVWTg2cxnzB
6nq3NlakLjOPCGuglKuMut4JeQofXx/kKp2qcldZxreXqiu6alTuqQZRV2Z2
EDrzL09awaXYJK2WI62NLK20VFrrna1sLCuV2YekZXwtBG3ABJE8Re2jyU45
D7nwsgWzNh485sHecg0VVDzmssmMy09QFSUPNaQXitR76Dh3xswZzNjeSCiW
nH7BEvoarhfBq1j9Tt3spIbe99VYIkpKxVPMTY14nNRULZ48EA9vwikRzwZB
PKkwXdjH2nN0UVpH3adANU+hksRiZ9a5+0pJ82qnJOn+ZVzrUEp6IK/eS8f5
s8Y5SXVOykSfV9qRo5S4zgWuqXkqqlvomntySU1OodNq4vlotZoy9uSOmvQd
GyPGnAS1SRBUIsxE9+Gvo6u1OC9lVk1FgVOpm5xU4j90YyjpacxqKvROQYmb
Rt+rZ+3qFDounA1H7UZQbmlz85IRFJa2X/uCCvJSbvOS09epeo1djaJWw38n
MSUZi4pV7T79Uh1XTo5hsnJKOTltdJJTIggqcOKbnRXtMEO5tul5jqA4OTmC
6ql2OPQ8VRsmKTkpuhCAeFlD77NkL+JkND/FRgZwvmZ/b2bp6m/oOG82HKWb
EiflpV+ylNCDc4mL3RaxGDkNq5Ora48aKOkhyD+1lZQ4StrASkqrlbRFUJJk
wJ9rlAQf4xKHP6UnNZlCh2/xUdl7D5qaRsVS50rpVi0lPS1X76PjAjsciEnJ
zUgoJdPOBVLyB+QlCalsclle2iSjVO6yE0FGVNlGq3SjqKJZ2dBTVStVs1VQ
jTRm2t1RDXyWvqKNqsmD/JO6+ccpaNpwm3tkNk9DEz1pqGIcMIte5B2ucOZO
mzmAVM6kHHQ1i+ddwO8N6JHoXfZeUSRMk37v5qAh1LIaHjsqnSADtfUtuHtX
VxJXS46OBC1JbvupwBy5a3mulnYWtEQmqhUvaE4WCpNQ5iahYLl4btnu0h5j
JPX+WDT0cFL9rU4/0+ayoZiKwvRjVIQum1VUdr+C4sqgITRpjWx1mYAwtvUE
1CIBpd0NhYBUUlNCTwsSagsSeqb5On0hm/mKmSXtuMnGnHSwyUlK34m997ZW
8LacnBRslJ8j9m112v9btb9mJb2fjnOmywqZlIv+S2l7/XWtpNJUlIepqHyP
VI061txYJ3EtcUKq0FKuDdF6/CvrKahrlAGlEEMV2w66nasgvgYjr5GEzgmT
kKI9UpSDHqfAlfT9sn7Cghbp+VE/eqit/o6O82fDvXehfsIs9N++foS2rH4a
UrE96vD1K/nd8yuajuo66sSXEMW44woH/yizeEvCyZwkhDcU4xsulkgo8yX0
R85I29mcIl0xsUCQUtuXEiWjFl8oy4mItj7x9icVNmhyFsIlbOXVM73Rc0ws
Z0ZDzh4B6vH17FqdSseFs7H+PixlZuscigjd9O9wSx2IaDn8O8hAKtwE4N94
DP4MJ/9UbwsuV03hgqJ9mJt4HoC3fB/tEg70Y9bUSD8pu6BNcOpZP9VZKJBQ
4mwIcCRE174uQAXx0Kjw06aAhaZapx9nFaS/9DNVu3wFLohko+fV6u+1l56t
ckDhjcMOcGTze9wBMHdc6XuTZHa+6I2oc5t2nMarWec1NPuMwnl07nhd4WSN
tZI6O5QcrewRrUi5XW5lWxykkSa9+URPOaroy2fxTOihs/oA16I6dcjdfSvo
IbrtwxvoNNzxEc0g5dNlybqYbRGcQkgNGT8BA+Rgdt/i+UbXoivQeqcC1XAy
gS4yowt/j+RzhPISpoof7L9vzzOcnVQRXIk8N2y7Sy1K2HMbTZziamJq2qxF
lOkiuJKddAH+BN7W7+kGBY4ugvWH4tLhwtkOobLUmBVLfgT/X2eIHl2wrdW6
UGRNqLCwAUj7VEXu7Q8yZnf3aMpI3ZShmrTR0sUlo3VaaBSFHgCrD7ImwlsM
xeqG0cMXlPWsrIl293oIdLAmFUzscls4nEQRZgr4qsCpojDqlI7y2W9ilZGW
ZAy32UkdZRhb2JcycqMMZxOiUcZuNZLGe52kIY7sIsZ0qnTQUmIvKG3o+Zxa
0kAibsrolUjmSUS42YCUMW4bKGPUtRSJq4uHnbGc0YW7EdXoAovIQLpoley3
39XqovCdmbB14r79962XNKDPbVJMAoOBitCjNvUhOk5Ol81IJG+BggBvYdLF
TXjvAF8PQbpI3XShyvclb1Nr8ZAgiB6PCR/bWJQPlfQniba8KX6XP0iWqBrF
uubiFm5AWBSn1RSFW0Rw1ecAVxSZFcUfNkHUtRSUIFoxAfAOpgFOe+7eG8Ls
L1Y7xzJB4lzjcMfLX+pd4yB2oJ2wAw3PvL7L0ki0+3RPvB6Xqg875WFZSWmI
nHg67wmed/jrbyjOfH3n0LzjrHv2JduQ89k/q9iiafFfD+Xd3ACBdJDpBy42
0EGH286ex0nsGE0AuZ2jYwLAvrNRz+mt541V9puuAvTAU51eUwHhVZ6ogC8e
trejgDYpwNkW1wz8Bs6xvCCUO4TceQq0s38Js79KbQ7o89yjJwiuaOcV4B39
NBDuCdBp4Na3nuSnAbm7hMbSPf9N/ABfqkkC0MNK9REn919SkveNAPDkO+4w
pXMPR5x/K/kmfDfTx26hP8g594Pm/D7HC0lEAet2WDiQAka4jey5JeT2Av1e
CTD4gxsMzGAemkHnupHJRpXfOfN63Kg+2uDEG+q/WJx4DX2rezOE1Tn5/mAp
t1nfmR8MZAGbr2oEFlA6/Zj7ddldi6fQMwHRfULS6Vf+DUITQQ3PKM8E9Bz5
7rcKQxAups53pRCzAtHNZY4UZhBSPVZSHwu0UMcDoBbw7hPLjz804SRgtDD8
JADfdLcqnklclgykCxUr1YBB38iJoEwNRTJI66lBuF2Yq4bFdXIDzpfc3BCr
C7kkBx0ZeEMxY8BywE1hPFFSM44piMlBMgQsB1JDgmrApkDroXZe0GYgdc3A
QHmhxoJ56jQFG21T8CTGuV5TUOwAy6wCRoV8IClgkZAPnIugU5sPHqEJoy0N
bak0mJOvIQBHWGUKVjonX8+K1D/QccI6wjIzgCf/Oj75B9Pq0024kHMzVYbg
zFcudUcrgqLt7JS/9HNUKkdFNcpCFpz0DWQAn1S1PUDpSXdu0SZZAnr8ZrFF
NLxGObNj5dW6EGjs2yH27mnXQlfjlY4gOO16IKT+T3DWZyNn3b26Cs/6f9I9
/OxZb3dvhrMebJGRVhozt+8b1P+Vp/yURz+m4uPZXnfIXgOf7DHu/XvO7vwq
pHHgg0jfu/++Shz9eSOeiVrVPaRZz3TUPzqV3dBcVdWVPq94VlPO4u5Zrdhz
IGGs6Fpeeo93qCFk8aT05D6hRJIlO1d+clX8fscf0zst9eP58ui5LtaUb+Hm
zto5kIl7uoMM3uR8U0nVoxz1T3y+z4uc77BsB+fb5O5bwB/hOQ8orjRwKjWd
e43uvRzlIGlDh+3sNaGXOefrocSacx4t2WmsgyvO+Tg38j03tZ7jA12k6yjQ
oB+TqyMlWrhBescr0cEJxmvT+Bx/3DnHS/kcx6qz69SveP1xxTnOvHNcZx+R
ZMrqluZypouEDfnUcWb0QnUuw9n8IXupRGC7hjULzPmYYM2kW+pPlbPdtss4
yPbDwLiZ2kvbhrztIXFjZs76bcVZ5xmd+gS78qrTbsrz2/3TTmc9xbOO45q5
40FXVtOQSZlc0QU95smzcVdWAC6lczgF0qnfiBuAIhm9vFzHzrqT0VvOsBZ/
Ga7dTcbOesYZHWF/D7RjqwB4PuMqXKPxNomNlc7nnDNOF1jouYz6FB3HZ82Z
DjeAhUYMz/SVrz+O4E7oLOfdW/GsF2e6gQfrk+t49s7drRwU6/VkuL0zWz56
iZ7Zce64e07leCxvu3c9Rnh13i7xYOOVY9Y7/dOoJyrq085ZnFVx22XO4meP
PTJ6Fnv27MGbda5Y8Icog3BakaJb9sqFs/jeiGsBKXoWUmV2Tqud1zg3Uj1n
c6wczDbNShBMPKNOKnZWTiZrWSzhdM7o0/l/I6dTuAcmve3e05m6p7M/P6Xo
6jc6lfq5UX1haZaSHmEs2UwlsRMZTbhpqZ0aE07kiMUyk05kyz4Ek9E0J1KX
1KnaVtmcx1Wq2HKrpxvqn4UTGbNO5kRe8+pp1x7fyq9bIHDuNYxKuI6ornVS
qTvmbAanOaH3+u5YOqGN8mxwQseFE9ou98ct+5hdQ+dDYJbsCW3FTqieXLZL
z6eeW6jP0HGi9HxepworfNkbT+j+9vhD6XQSmAmeSzx1eFYhcrfSNKsqyWZu
km3S1EpEAkTmnkJ4/nDT0lKqkZWptW6hJAs0IZzAVnlqzTwib37rSdru5CWj
x+KZd2VnT08n1L84Z+8nwdlzU+rbS89egicP3tRtEMTb4BQ6CbWPBkbR/kR6
5/eqWhTqs2hvl5HwrV4xbBvAbz5ubGKN7FqjTEp2Vkq2WfmpHbFs4pACTm33
HmA08EBKuq1mJNPO3m4aVPVZfVpnLuLTeqWKGx88rT+Jn1boR6hnxfN6O4Ax
BL9TTiT+07kNU3gy9UoSpbCyyUPdzCqdTCnRJkKiLU5mgucSWMav/iY0Jzdz
pvU2Eo71lM2SE8k9p/pXfSanL6lxJrFUlpzJlM4kdJZA6Qo4m3bbT12r0whM
cy7vK27WFj+XfYJZ41y6OddMiStOY+5BuRJOZ2Fjx0X7EzmPM5ADP6lP47/R
UQ+D3dPo5lm8gFH1nkZ7ElN7EiGnEpN4FlcCK5xXm5ubKIn4Qfjh9wQnDp3N
hyG6G2id7jE5rRYeJxUWbqMlUlrBmQzOnr1TTJFRU3v26BHuah5NCQyEd0NK
LRsBSpu6IZLTt5kxgPp37VfxzM2aM/cL58wZbxOcucQ/bZRFUzpteXclRHUl
YLESotm726pG7gx406es+yA/MiTBY/SMNTc1aZM1tyk+Yx+Dj5kzlgoNR+qe
sWU8qb9Ze5x+z5hu+dXn6DhGZ+uKkrOFXobPloqerhTPFvzhqyCOq+eOu46z
mWVJnDNlHtIXPVNpjK1BMuMcPDXmKeNH86oZ3zUnyIZ0dsh7qrkeTyvgvw3O
zOxqfWa4fVf/ScfO7GWRU8M2M8HzAn/X9ZABb9EZUAV1zDk5UL3ga1ZBTFfT
8/SaMmTOzP2c8OzjE+G038sjM6xW+NK3dmmKUY3ER9xkdHJSe3LsXUTFMzOn
u5Sn4HhmboLXXbiTNTgzkUtX8Mzo1k39P31SpmcjJ+UA+aTc2ntSqC5leFLo
nGApgpjeCdiUjksUPyEe5yF4DnCL29342Jn4ORgEkDSWyqjatIRzkETPAfwS
vozgPTTIhLMAsDU4B9yBqc9zmSk7CX+5z56UsK58/XHGGKTCCUjtCQBDoM8C
sHEnRNZnQfFjgbFs4CdxS+ldeP5s7FM37spd+h1Q/EXgpe1aY/Y8JPx4SB+I
6HlYam89qM8D8iCdh2Cb5uz/sy2T+i86jorn4dqgzNN8saxu0ElI6STk3Tvg
jOFJuMu8DtgNTTYG/C4M+N34pfeQr3t/UQrwVeyhrqH4aPEWt00LXSwFPg0C
v4Uo6A18gnEHcD4MjvndEO2bOBPdCf+uiHr3UNPdqC/QcWQ2vNrlC70Br6jU
RcQzDHhm45uVxDetKexGJdfG11nqHLXxzYX4Zr6TTTm0GAAT1t/jWBaMknTL
Aw7rmr/YcccZ2ziqL3JofxYJrTFBV1WGNsHQZhja1IY2t6FNOFkHoeUZRl/6
La+abTsSLQJqnqNiouo/0NWJauoKFr4E4urMzYKorrlxxx0v//rnP9ctGjn1
pUhY36aKOVlvWAP7kpQqljIC9KpoSQ6DHH0x3r2Do/rYDgu3iWjbduGgCGrm
BPUj/KTmIp5ZoNLf8+tWMIruDNIo9KfPWLzmPae8Y9VLpo+aKcL5Zc66VwTh
PKA3nNVVL4q/dnV6CZTq2Xqywk+AXLFi816gqFCDvrauUHMh0XaEEJtbZWKc
cXvDJhJvGGejWxPn3+GIAq9gUN74Yfn573r35V//4pfXvOa1f9q1Xaz6Skmc
TwJ30TzOUi7gXd0oVvNae8K0SsL9Y/VMRA33JoW4LYQ4NY8uga85qgizE2D4
3Txv//rLXwrvE8ILWftG7HwgyBzgNb/baScT4FUvefEx+PXTRZC/GgmyqWSN
gpwIYk5ZzGeCrTsS78ihL6NDCQXbLysTQ10RZ7GNO1KEzd1CLuH56TKanwYx
RiEfRBurf0fJF2N8A5Y3k3R32smNLyYL7uzV1zn5mjXgz8eDq8rLmZQqEo4u
VrLTcI+biS6GklNFzapWrmQpAWd2I5wU2EwILMU0wZBC4mbhUlYwAb0eM8Qz
Fq+66sXHeMHUbZ/6Bh2z6Sv8YCYYSbfl40VX1SiWivKBDeU6/Dt00oWEYC+j
aZAWgmpWLtrUbhOOBjPhexIs44hiB7EBMwLGc7R7MfwviLQnnsvfetKaPzvs
UBNL3TSobxahnEXw36K4cQ5CeYscSskOFA2CIuqNE4BY2WDqBwYbWUr4J/3V
sEKWSWx3fXlgE9xDBt/mRFdpqY5010EOOBI82tdAria0v4XXO/bf10pU9wXq
23RMZ5D3/XRMXX1mblD9das6ceVHd+LWdP0yEn0c/thHAommNrDlGyID3qNd
2B8JgU2FwGY2r6b6xlwbaZ0KveBSDi5qFYN6EWv2RtbqO4uAateqvqPjSTpV
uvLDL72M9Im5k8OpgkXA8vKfskidYGqRJixSJL54SNKj9RNoI6X+EfsBDJ6J
YB6LYEpzjY4NIYYONfkuCJkTNu2a1Pd02Ogr/wVKzaUQsGTQsCVO2NZy2FIb
tkS8qKI3WInQQ5VXm6cF4SVC2Ijo1IaNiM70UGI9eYCLOXbm9TfghVYZE8Qx
y6bNZzlubtiuefV087DBH/G3XFQwamvxTa3Td5fBCSGYIpZaIqAb5MTm1eUp
e8Fxs2jlRAa+aYzF+wC/ldbOqO/7oVqz7M1/FobKMzVSqIIenbIcfK8TKvje
tfju1hlXQ2lO7x6JhCua6eqCuTW4OQu/orFLLKBe7Ezc/lbREszMCute1BlF
7Nbsvt3C5Re97y3dSwaLXRKLnSu0Rwuhpf2ltHJKN5vIOfc3qRe51GX0wxy5
93MTvlqvymi/on7AdtoJnhGfbKej0SvqqyJK6Zc+Ce/5SXxDTuyeBCU8rJQH
aY2+Jamur0VnuEloWfLqqurWBGyu8E/4Ox5g3KmJxdh9S8fuTDp2MHarXnng
PpdfdNp7Vi1955vC2Lk7UG/TL1UZQCd4PQFkaOsFMOmv8bMPnGLxPd0bQCnf
uQE8igN4Kk+CeNf97ApjQtQP6djCAC7/6GuPxwAaenX2q3B4iXV4iV8megOY
uQFEcsMANioTNeh1n9j1NAeQlviy0oKRUABHvAD+PY8muTu266rfdaOYmtqB
kVQJxlK11iwNUOZQSiQHcVSkxO77IAN+CPT2BL5JE0dTQQzJg1aQ8kiuc6Ro
IpkKLAdJEDo445BNID+g9KLE/Yw0FxJdfNVZfhwpghxHq8q+4ujEUI6j0WMs
jsOpJ2s5jk87ikxqdBojYgwfZKpZkFxI1I+KIGI9ofCldMy9ulLml4sImjVM
J4KoJymGDyk15BhKfdsTJoaOFhOf6iCGCWtxWRBDd4EMwJ69U1tnXVPU2TqM
s0IYqcQYLZaV5sRdiz907nj3AngLj+tRlhvBhLPiE/BpJ4o1glheW6QgkhAf
N0GEX8RidIIYAK1vHDlGVxi7Mfwg529Xi1BhZu6wJKsfC0HMODEaLeJyulNf
okrkivI4emb9ikTxEXh/w4xi1Fg/qmczT/cwHU2LJVEM1Xi31aA6p4iiKdIc
xZzc4iUQyR6ild7Sf7t+qcTdsIO/9zEdQwxFTyQVlWkrR29P6TaJ5MNeJCHN
FPXaRDLviWQYxUcDPXKNmb7LCtFE0ivULY32qmXsG+0qd9Qwwrv67gG7dY+A
341RfAzfVzSIj8Ff4wZRZe5Ua1sE80E3mE9xmnzKC2avLC+JBPNhH/AZDOa5
OpjnCsFsa3GSJK8owNaKbLuKxEB2T4Gq8kEI0Bq9PdINZGZNN/ftBuuH3BJT
3vb1GcD79PS6N4CpX2L0gx0m6N5JbvyWKH//pHOZ1uy9LMjzdAzPE4q1jmFK
jucyd4MktJJGkCaIHMAEI5gKSvyfCeA9ngLh13EQQwXqBZXx0uAFWxynQYQX
6NidLxSXDldohNnZp8W75W4jqA+BQoyie1RvqmoeuHSb5cE7rfISbXh6gRXC
Fe7XdfQ2A+G6SIfrgmi4UltFCqnpq2/xNzyCEcBhS1m4dMZL3VCFNSPoj5NB
Y7Xaikw//R0+A3F5SqMqBW7CBu4IpR9FW7LReZa1pi7W0btQqMEjXIOXAqg4
RjViU/qP12ZER45e2yB2xfi5UexW+DpTtKpv4qcSoRtxonckRy+8F9PDvdJT
y7zoeaViTPvAVT9782socvi5ByFKD8HrYZq9685MBy4oEVkAqo7eg0ONXtQ9
39ajPCd61bG7UIhd4AApdpfq2F0UjV2OM6/uqZDKHoDfy7FrojyT5B4uYher
DnXDF93xW4TvZl98CX4WvwbexFPWqfibGSZ7AvhEuQANvpfpGF4slNlRbVUw
hqv+/OUvWf67L38K45hgICEmLMPe9Jc0DGR5tUiaBDLQ4Y02kKkUSL1vzChR
TdG+mzpxNGLEOD7AaXBWB3KpUER0GuyYQF5+3Tlfw9eqFf98qivMMl0mUjiz
MJxRrKVwFhPrGpdBUTiv93WZcji3OOFMysKJF5c9KYTUCSc6GGL7pzqcy+I1
mQZgHEqV0jFfc9eH30LhdPKkKk+URVCTqqCWw95nlf6NrFH4wu5WiJ3VaNow
qI8KQb1CB/USoVS3haBm+ojgr7mbA9tMp2FIH3RCGsW+Uf6Uys+1QkgT/Dr8
Qh1T89JRzaWoalTUiBfZIKq2W7nSi6xXiqTItrRcw8jWlWtSxDZ1Y6uSxlmg
eVL9ZUl0MRU40TWJINTrWkGzrjd/wLGXP9eRvVSIbM6DCcira/bcbWeK6YiO
rxRZjGtCZSqjwD5WvALZKnKc3UfROCjl35uqUSYIFgTLM8FVfmDTIrDwLUVg
VcaavbQ3qqzZDkXWTa9mcIYTinvgHOqgXiZU/awIqilW4KYiiaCeUhWVq+7j
8H71Le0epL/JHYfXSAZSfq1hpn4WjSp9S3dLkRDSmoF9PB7YX+nA/kQoW6kQ
2IkgDzhKVRGpUmyTUKqYBGSpNsoBdaX6k1hQE/wOTMoc1S30h1SFdaQsrLNm
RHmNju2sEFu9BpbS9oDPnnYKRXWSju3lF0Bsz4TY/sbPBOV+Fe+vr+Xq1i2x
cNX1AjW0eklVWE0acMP6Ed480W9Yr9NhvZyOuWsK8EW9+jiGMln1jX8+FWL8
bxDLmVNet+azS05Syaqvf/zd0KLe/vF3k5MN4huE11MthvehP6xqL6oKL3xz
dzOEs5/wBs4AlyhoFvwbHV7tZ7OuE178d8dGNsGgQnghrBjU5ed/bgnYhGu+
/SnVjoWXEq5ku+D3OLUrFt4hZlpaeDxPCG/qZNpN/ILc0CS4Zbbrt15wjTkw
hkA3BSlmAIwwKldRmEm2EzWCG6lmqN37lapbzYIMUUPC0cXdH+mdfb0x1hIe
1UEGrDbDW4QYSxEubivdiQUYuwUM8A06vj+jY9vEF2OLJWzNe9/0cj8VzKeY
5lJMnVzbq1aTCPpJBtLzuWokgzPrRHIjJoQ6kWyLkWRToH6vw6jbr3yGw0ih
fO4uO6x6/UsPV9sVkVtz95KTbOQejUQuKsUo6dE6FWzOrdECfM+SngmJNMHv
hQBi8DbpbBoLXvHwklYYPGoAQII369hRG5DM0F9J9d9Ebvln3n+SWqijt/zG
zy1ZtQK0VxU9RcLrPqZrkNK3k0vdrj9u9qO1qNFV/d+KJUsnhG0K4UZgQwhh
T54MBfhAgbG6VQfxVzaI2j8ZBQK8EMkFFMQMA7jmHpDgw2ER7zN+Er7RYlM3
EX41Fr9Uih8yLMev49UZJ3442MMCvkKH7tfadWIKxPiRCSUlUuh03ktJe6W6
y9y4+Xf46LM618h3LQzTf8fynROwDgVsA3MbMlvygJGHnJq8SgfshlJg5+iA
Lf/d55asWXH6W4YWsGipbXQLIVLYf1YrLMGfAuHAiG2UI8Yha/UMPB/QteFO
Ha2bdGlw5eXDOcVwrgQ47wM4ud+Ww/UIvA8uCo30VTdc0m7cf/XDlfkJLS3C
1aFwbYCzeTov0QZjzPAWkg/rYkBu+m4drtt8Gmd8GkFXoDEMGAVtVIcOtbZq
NQD6vyl0hOanS9Gk0Km5Fk0peheq+BAYa+k9eueeuleHb3Upm2OczH7/6fcZ
qak/ULDKb3FJwfrH6mCRzhL8ecAm/Oju/6/u7GKjKqI4ft29H7vsFkQkCtIg
GEBpFLV8KFoUVBJI8MGEKjF+1BDEEEoaU2mRNI2R+KAkJvLAAw8+mfggL/Ki
L/COkMYH1ADdtprw0coW+kE02uucM2fmnjs7d3arvPjQdrPbnTP/35xz5s7M
vTMf0gXXIS+1puPxnfhZyr8mKf3mTPnkVehRV7p2qWmaZKBLfSQxaqSPbCDl
2/Zatp03hqj66qPKsww2bThWr8d3sA9TTjWaXFyMSlpXZxOSAUv/gyL9p13s
X+Jr4BKj0aN8EF9Po/jmaXzT1BEYCG0LiKev0+DghuT3u45J27VZSDEpvK06
xIFBz9K5U923zZHN/qLWIJZ5wJ2NWAScuizjAhsxGZtFxAUHa99mfWdvGpds
Wg/H1/0UmN64/HPTGaA+jQnOHu+DVBYPdb8ZXxWBOq7u6cxRJoOLi+uiwRrK
ZO4LjMzThAILrffko6Ap//ItmSzPMhnQgvPp4Ujyw0SsR2eygDtY/yitoExI
WtPOpJ8jWj8c76ue/3h/Fq2A53w1XDdp/WffCvTG8QmtDk3L7VuS1lxNS/mX
QawmHMekf01LWH86o1Hmr8q5o93xwOF345973gFetV51h/pH38IpSJ9XhJwK
QOc1ualA7XWYjROuT3llhARD8mk6J4uDMiEJCX9ISDNZKd8rAKXq21vWpxgN
C5+6JnzK8CZj8scz9lvO1R9+uykZ3lQENjvkPhYz9J7bm/IGpSlR4duieTmp
g7WU/pKUEIhvBJ8fr126ON67qTU+8cYOAJQDOiyZV+u7T6NhZoAJLGBCDWaz
3PRuht5L3MfPBDNHg1EuBHBuMzj0MEkOqMSMSiEzgQMa0T6/kNeo7m1WqTrz
SiqhEqTdJdRUQtAdaSqtcg/GGfAZRcVI1X6aCs4Ieb72lykZWfLZuUA/8dpN
eXpUIckzPOWs+JJ4gvib9hfjEcJDkeTlZgPGtvtG4i5B2l1CEBxpME2Ao1nu
SzkDdP4mbG53oXXxSezUJ4mM3L5RooHnlgkPKMYuDHGEDM18I54KOp4UkzG4
gXlWAWSbGzVcJSGCrhJpImVQvxw4NEmnqesgKQ4wdpuS59VJDmrvr6k0DNRa
ZBwWZkWQqCDQgCfSrouUy/KsbU/7WfkGkgg1iUiTKIHqlaC/LL1E6fez/ABL
hsEkXScTA+kKEboC7dVRPdfboZ6w79fySwzFIkJxkVBsYyjgSRRA8e0dcYoA
qh6knSICiQUQOwdkPwwASjoQfO0AvgWAOrp5gg5M0ttqTiMFIDDZubPy65HO
yok97eIyZEmaQhOj0Iwvi/DMKDrMAQ83ssRkoyjA08438My82hFCvv6qS3Jr
lgEi0iBKIHq1jI4M+b6Wnyf54AAMgZRfBPkoXfwM/HSs78zZrz4f+Oz93bUY
5jEMy/CljxgOJBhU5/uBMAMU7HOKxrFW7g33QhATafm4btRiEe2nRfsW0RPw
nIqO++pYbwcKHznS6YNqzzd1J6mQXq+QsjEGKhQH2xPZGz35qPtJ0/0zz0K2
bXWArR5p2bjQs1LmxFqxvm5hLEW0JwzuSG08RXtGchcXcr3IoXcB09tC3n4g
PW2KGyMcpDamlfA6ao1G9vW5HYnaEih7EDSGMgOmNPpao5wvKca3RAVA5KRd
5MCFY31e0SF0IRO6Jp3n+5M8H8RdG9dgWH8tekAQO4ZXAXXF4nl2flpsCHJw
XL5YSwyllyOKCfpG3pB4S+5DpyRWR4XrKollh8T7mMS1qKmfZW3o0kHcSdGl
XxKdGYirQozUHuzsa21+WlsIdS5C7RdrHfheCJ8G+qypHOgAXXIbOAg+MdYT
TeXllRLUMdehZhFT81S6wVjHHGHHLHRVhw/vjiu7tsWXE22ecT65bxGHyy+4
7ofnihakzJv0qfgYRmyqVeBnfMNqlUyEJoivvNKDahY4ND3AND2b5YRsig8m
ECrnj3aL94bx1qCRI/uqF7esxysQEgkVskksQM3xMN/5IKcsW7KKvqD03JRf
V4FEcoStTi1nkUNOM5OzWTtcnRk3UIJqwJrQlNICP/RgUghyCiCnAHLw9LIS
TV+Ni3+h+kOCEL9DbJerm1orQ1vbKoPiZ3hPe5ampQ5NS5mml7LcDjWpVbcL
ciUENYGdfbn4O5xx/V5QFcYrl7a2iQ8ub20LoWI59MygekXUdZDqKj6rDO1p
l9EBbW061WOOGi9jNd5uhH16WuoempY69UUP3GUi7zbp7Rg4JRLLCw4LDzEL
LzvbeT7dePGl8FOyIF53ooVNaQunuYUVzMIrzsC4m1YKhAUoXVnYWFv486rA
VazwV52AmhJAygAAAgPeOoeFR5iF151OU3Y0weMOCy3MwltOQMbiQMHRIi0O
g48yg7ud0Ir2FlnlKHwNK3yvk1fkaJHlDgtPMAv7ndUPHC3S7LDQyix0aQu2
oPAdTXC/w8I6ZqHbSSlvb4J7HYVvYIUfMgAVOCAb+nmOgp9mBffhyxKvtUKD
c5rb256E1/TeEigPFpgzy36Glf1RmgjCD2T7irLb4PuyJEd5bay8TzQEX14x
QSnwXfgbU+31N59j3/wUX4amytT/b2b/j79+/L+94d31D/lr+d8=\
\>", "ImageResolution" -> \
144.],ExpressionUUID->"15d7fe44-16b7-489f-8291-3618c6899848"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["SurfaceArea", "Subsection",ExpressionUUID->"cce8eda0-513d-43da-bd9f-128c4c0da6a1"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[820]:=",ExpressionUUID->"2f7fc9ab-003e-412d-9d7b-035ccc76fbef"],
Cell[BoxData[
SqrtBox[
RowBox[{"30", " ",
RowBox[{"(",
RowBox[{"10", "+",
RowBox[{"3", " ",
SqrtBox["5"]}], "+",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"30", " ",
SqrtBox["5"]}]}]]}], ")"}]}]]], "Output",
CellLabel->
"Out[820]=",ExpressionUUID->"727f8f84-80b5-4ed0-b820-7107a9722475"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"RootReduce", "[", "%", "]"}]], "Input",
CellLabel->
"In[821]:=",ExpressionUUID->"53806069-00b3-4421-a2ba-07c39fa86f7e"],
Cell[BoxData[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"29.3\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
29.3059828449119912363585171988233923912`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"324000000", "-",
RowBox[{"27000000", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"324000", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1200", " ",
SuperscriptBox["#1", "6"]}], "+",
SuperscriptBox["#1", "8"]}], "&"}], ",", "8"}], "]"}],
Short[#, 7]& ], 29.30598284491199},
"NumericalApproximation"],
Root[324000000 - 27000000 #^2 + 324000 #^4 - 1200 #^6 + #^8& , 8,
0]]], "Output",
CellLabel->
"Out[821]=",ExpressionUUID->"25d9a428-9922-43ea-aaf2-b2a8378e6304"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"SurfaceArea", "[", "p", "]"}], "//", "RootReduce"}], "//",
"Timing"}]], "Input",
CellLabel->
"In[822]:=",ExpressionUUID->"1b852ba6-9e50-4d5b-9e17-7532606cf352"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"Out[822]=",ExpressionUUID->"b1b1cfec-8513-46c3-8a1d-7b8e19f5cbe5"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"Total", "[",
RowBox[{"Area", "/@",
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]}], "]"}], "//",
"RootReduce"}], "//", "Timing"}]], "Input",ExpressionUUID->"e3697dc2-2a45-\
4e8f-9cb7-2e0949058bb4"]
}, Open ]],
Cell[CellGroupData[{
Cell["VertexSubsetHulls", "Subsection",ExpressionUUID->"0c1cdb9e-6ba5-4b14-b46b-c5597001feb9"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[823]:=",ExpressionUUID->"81091e04-ca9d-46f7-b6a5-766e83a41bde"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\<\"PentagonalOrthobirotunda\"\>", "\[Rule]",
RowBox[{"{",
RowBox[{"{",
RowBox[{
"1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",",
"8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14",
",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",",
"21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27",
",", "28", ",", "29", ",", "30"}], "}"}], "}"}]}], ",",
RowBox[{"\<\"PentagonalRotunda\"\>", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",",
"8", ",", "9", ",", "10", ",", "11", ",", "13", ",", "15", ",", "17",
",", "19", ",", "21", ",", "23", ",", "25", ",", "27", ",", "29"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
"1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",",
"8", ",", "9", ",", "10", ",", "12", ",", "14", ",", "16", ",", "18",
",", "20", ",", "22", ",", "24", ",", "26", ",", "28", ",", "30"}],
"}"}]}], "}"}]}]}], "}"}]], "Output",
CellLabel->
"Out[823]=",ExpressionUUID->"24667b62-0e2f-46ec-bdca-9f180e6b0ba6"]
}, Open ]],
Cell[CellGroupData[{
Cell["Platonic", "Subsubsection",ExpressionUUID->"083c9996-4c12-486b-9757-d87a7381ec9b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"h", "=",
RowBox[{"VertexSubsetHulls", "[",
RowBox[{"p", ",", "\"\\"", ",",
RowBox[{"\"\\"", "\[Rule]",
RowBox[{"{", "}"}]}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input",
CellLabel->
"In[824]:=",ExpressionUUID->"34ed40a1-f2c4-485a-8c4b-2d9bc206446e"],
Cell[CellGroupData[{
Cell[BoxData["\<\"Finding equilateral triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[824]:=",ExpressionUUID->"53376ef8-250e-45df-9932-64aa7ff2a83e"],
Cell[BoxData["\<\"Finding potential tetrahedra from equilateral \
triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[824]:=",ExpressionUUID->"3b96933f-c471-4979-a09a-ac49aae73b15"],
Cell[BoxData["\<\"Finding tetrahedra from potential candidates...\"\>"], \
"Print",
CellLabel->
"During evaluation of \
In[824]:=",ExpressionUUID->"23a2099b-b8ad-4edc-bce9-4fd49365e210"],
Cell[BoxData["\<\"Finding cubes from tetrahedra...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[824]:=",ExpressionUUID->"5d925221-8412-43c9-b377-7e9ea0e84c62"],
Cell[BoxData["\<\"Finding dodecahedron from cubes...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[824]:=",ExpressionUUID->"1849d3a9-9dc5-4fa9-a2fa-8a352cca47c6"],
Cell[BoxData["\<\"Finding octahedra by building up from equilateral \
triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[824]:=",ExpressionUUID->"d2fd3f89-ac4e-435a-b0c9-0ebb112183ef"],
Cell[BoxData["\<\"Finding dodecahedra from octahedra...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[824]:=",ExpressionUUID->"af154259-2da5-4ad1-8e76-1d7d58a2b6d3"],
Cell[BoxData["\<\"Finding icosahedra by building up from equilateral \
triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[824]:=",ExpressionUUID->"94192344-cbea-4c69-966f-1c0a40fcd176"]
}, Open ]],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.131011`", ",",
RowBox[{"{", "}"}]}], "}"}]], "Output",
CellLabel->
"Out[824]=",ExpressionUUID->"1d50d8cf-f5d7-40d6-b141-b836d48f5f46"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Volume", "Subsection",ExpressionUUID->"dff3e693-364b-4fed-a756-1eb815f54e51"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[825]:=",ExpressionUUID->"69fcbdcc-b72e-4391-b89f-4f0c78e500ac"],
Cell[BoxData[
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"45", "+",
RowBox[{"17", " ",
SqrtBox["5"]}]}], ")"}]}]], "Output",
CellLabel->
"Out[825]=",ExpressionUUID->"aa2a8b7b-f566-41e8-a182-4a3586e198ca"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Volume", "[", "p", "]"}], "//", "FullSimplify"}]], "Input",
CellLabel->
"In[826]:=",ExpressionUUID->"76c23ccb-b495-40ad-b1c6-8b5f7404afaf"],
Cell[BoxData[
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"45", "+",
RowBox[{"17", " ",
SqrtBox["5"]}]}], ")"}]}]], "Output",
CellLabel->
"Out[826]=",ExpressionUUID->"bbe629b1-a842-4fd9-bd16-eff2eabdd2d0"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"PolyhedronVolume", "[",
RowBox[{"p", ",",
RowBox[{"Method", "\[Rule]", "\"\\""}]}], "]"}], "//",
"FullSimplify"}]], "Input",
CellLabel->
"In[827]:=",ExpressionUUID->"e33470e7-fc3d-4c83-ad6d-cb457f56f1f0"],
Cell[BoxData[
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"45", "+",
RowBox[{"17", " ",
SqrtBox["5"]}]}], ")"}]}]], "Output",
CellLabel->
"Out[827]=",ExpressionUUID->"f8164dab-aee3-4004-bc1e-828a869e8a71"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Perspective projections", "Section",ExpressionUUID->"d6f231ee-6ea4-48e1-96b8-4bf0bf98457d"],
Cell[BoxData[
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}],
",",
RowBox[{"{",
RowBox[{"a", ",", "b", ",", "c"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"a", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"b", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"c", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}]], "Input",
CellLabel->"In[45]:=",ExpressionUUID->"48257389-0958-4dd3-85ce-0b9998f7f41b"],
Cell[CellGroupData[{
Cell["XXX", "Subsection",ExpressionUUID->"e694356a-c500-4d1b-9bcb-742dd9e45156"],
Cell[BoxData[
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ","}],
"]"}]], "Input",ExpressionUUID->"b4eaa69d-2d6f-4e98-ad4e-72a418d31c3d"]
}, Open ]]
}, Open ]]
}, Open ]]
},
InitializationCellEvaluation->Automatic,
WindowSize->{915, 617},
WindowMargins->{{236, Automatic}, {95, Automatic}},
FrontEndVersion->"12.4 for Mac OS X x86 (64-bit) (May 3, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"2d54c42f-bdde-454d-a82c-3b1a8d51d4fa"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 97, 0, 98, "Title",ExpressionUUID->"64fdfc19-0808-4413-a482-554b01fffd73"],
Cell[CellGroupData[{
Cell[702, 26, 83, 0, 54, "Subsection",ExpressionUUID->"f177f61b-4143-401a-9abb-efd18faee365"],
Cell[788, 28, 109, 3, 58, "Text",ExpressionUUID->"a6f87c50-a6c2-4ede-900b-b26fc51d22e4"],
Cell[900, 33, 356, 9, 35, "Text",ExpressionUUID->"c40a47a4-b306-4bd1-b545-b62070e4c00b"],
Cell[1259, 44, 383, 11, 35, "Text",ExpressionUUID->"1232a89e-9fbe-4005-8b1d-7226f0fb178b"],
Cell[1645, 57, 154, 2, 35, "Text",ExpressionUUID->"a701863c-fdbc-4d7d-9a0b-f59634844d55"]
}, Open ]],
Cell[CellGroupData[{
Cell[1836, 64, 79, 0, 67, "Section",ExpressionUUID->"2324fe6f-a33e-48e8-ba9a-8e6071a888cb"],
Cell[CellGroupData[{
Cell[1940, 68, 226, 5, 30, "Input",ExpressionUUID->"6ba4a078-b9d5-43cf-b9dd-f2894aec1713"],
Cell[2169, 75, 142, 3, 34, "Output",ExpressionUUID->"0dbb4017-4e5c-4b29-a868-a8f53a32028a"]
}, Open ]],
Cell[CellGroupData[{
Cell[2348, 83, 184, 4, 30, "Input",ExpressionUUID->"3c03c16d-c9e0-488a-9ad9-eaa686634792"],
Cell[2535, 89, 7199, 127, 393, "Output",ExpressionUUID->"cb146711-a997-4b00-a9fd-62138c075890"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[9783, 222, 77, 0, 67, "Section",ExpressionUUID->"669fdbaf-0d29-46f6-87a8-097671db0ac2"],
Cell[CellGroupData[{
Cell[9885, 226, 217, 5, 30, "Input",ExpressionUUID->"d0b668e0-dc7b-4a6d-b112-2c95cdee6f6d"],
Cell[10105, 233, 16520, 309, 230, "Output",ExpressionUUID->"5b98a496-2149-448f-9a68-47c097317af7"]
}, Open ]],
Cell[CellGroupData[{
Cell[26662, 547, 245, 6, 30, "Input",ExpressionUUID->"2977a215-ef1c-45e0-8779-4d2e99982ddf"],
Cell[26910, 555, 16592, 313, 230, "Output",ExpressionUUID->"9cac922d-3f6d-4e09-a35d-89178ff40d54"]
}, Open ]],
Cell[43517, 871, 299, 6, 30, "Input",ExpressionUUID->"a70995bb-52aa-47e2-b77b-6cc42384b222"]
}, Open ]],
Cell[CellGroupData[{
Cell[43853, 882, 84, 0, 67, "Section",ExpressionUUID->"fe4f13a0-d69d-4589-a170-e69a0df80daa"],
Cell[43940, 884, 158, 3, 30, "Input",ExpressionUUID->"3b87fd94-63e7-4be1-968a-deb12f7f2e51"],
Cell[CellGroupData[{
Cell[44123, 891, 279, 7, 30, "Input",ExpressionUUID->"fa3cb98d-b490-41fc-b9bc-e05b7ef37bda"],
Cell[44405, 900, 36809, 673, 64, "Output",ExpressionUUID->"72444f2c-bcf3-4993-9b7b-f98ce0b651bc"]
}, Open ]],
Cell[CellGroupData[{
Cell[81251, 1578, 85, 0, 54, "Subsection",ExpressionUUID->"f2122309-5862-4666-8010-15342edb603c"],
Cell[CellGroupData[{
Cell[81361, 1582, 714, 19, 73, "Input",ExpressionUUID->"9b7255aa-ddab-4ffd-8388-0949519c5c09"],
Cell[82078, 1603, 7660, 139, 393, "Output",ExpressionUUID->"31e3b3b8-7460-4a5c-9da6-25c284a7f748"]
}, Open ]],
Cell[CellGroupData[{
Cell[89775, 1747, 192, 4, 30, "Input",ExpressionUUID->"3dc686c0-ccde-484f-b6be-16c5e5748969"],
Cell[89970, 1753, 166, 4, 34, "Output",ExpressionUUID->"e53376e9-53fa-4e91-b429-8f25c2961636"]
}, Open ]],
Cell[CellGroupData[{
Cell[90173, 1762, 187, 5, 30, "Input",ExpressionUUID->"acd54e4b-ff27-40a5-a974-70f96cfb24b5"],
Cell[90363, 1769, 166, 4, 34, "Output",ExpressionUUID->"dfbf49e4-899d-43c6-8890-6f3ffc6ef1a8"]
}, Open ]],
Cell[CellGroupData[{
Cell[90566, 1778, 227, 6, 30, "Input",ExpressionUUID->"175cc544-4aab-4ed9-bb01-881476f35e45"],
Cell[90796, 1786, 1578, 26, 80, "Message",ExpressionUUID->"cff8db5d-059d-4e9b-8788-c05b2a29e0ce"],
Cell[92377, 1814, 1578, 26, 80, "Message",ExpressionUUID->"3179a2cb-2698-4191-97d7-18b324d15534"],
Cell[93958, 1842, 1578, 26, 80, "Message",ExpressionUUID->"447bb8b2-b117-4419-84de-32569af1e288"],
Cell[95539, 1870, 409, 9, 28, "Message",ExpressionUUID->"7fb0cbbe-143a-4c71-b75d-80c1cbeecd84"],
Cell[95951, 1881, 118, 2, 34, "Output",ExpressionUUID->"12d2ab0b-8f11-4141-90a1-65710057624b"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[96118, 1889, 89, 0, 54, "Subsection",ExpressionUUID->"feae7157-2c81-4ff6-80ea-92aeca1eb70b"],
Cell[CellGroupData[{
Cell[96232, 1893, 196, 4, 30, "Input",ExpressionUUID->"e82ae479-e9b5-4b3d-9c1d-35af2d16707e"],
Cell[96431, 1899, 339, 11, 50, "Output",ExpressionUUID->"5fea1e53-8feb-4a90-a5cf-ecb5a77c2cc1"]
}, Open ]],
Cell[CellGroupData[{
Cell[96807, 1915, 183, 4, 30, "Input",ExpressionUUID->"f3fddb6b-8184-4081-ac51-f8e4d0deee16"],
Cell[96993, 1921, 339, 11, 50, "Output",ExpressionUUID->"93adb96b-327a-4ff2-b278-f0de2a2acbd7"]
}, Open ]],
Cell[CellGroupData[{
Cell[97369, 1937, 236, 7, 30, "Input",ExpressionUUID->"b2a725fb-cf72-42ec-b697-3c21a7978607"],
Cell[97608, 1946, 410, 13, 50, "Output",ExpressionUUID->"f7e8ee2b-da28-430e-afd6-cfc9afea198e"]
}, Open ]],
Cell[CellGroupData[{
Cell[98055, 1964, 376, 11, 30, "Input",ExpressionUUID->"c1ef1593-7803-480e-bba4-5cf66c58d2f9"],
Cell[98434, 1977, 133201, 2199, 380, 7644, 140, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"f463328d-edfe-46da-a4e5-4f68c6e69a83"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[231684, 4182, 83, 0, 54, "Subsection",ExpressionUUID->"640eae56-a47f-4ccd-b545-da03172e8675"],
Cell[CellGroupData[{
Cell[231792, 4186, 153, 3, 30, "Input",ExpressionUUID->"80789be0-096e-4a8a-8ed0-b66b366c6d4f"],
Cell[231948, 4191, 114, 2, 34, "Output",ExpressionUUID->"e0e65b6e-af4d-4de1-810c-797792eff330"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[232111, 4199, 91, 0, 54, "Subsection",ExpressionUUID->"98fd4c3e-0340-4163-81b2-8017e8f005f1"],
Cell[CellGroupData[{
Cell[232227, 4203, 230, 6, 30, "Input",ExpressionUUID->"ac242428-4dbf-4c42-a8c4-5a890f22a4a7"],
Cell[232460, 4211, 784, 27, 51, "Output",ExpressionUUID->"4413785f-15d2-48b7-9000-4f9ccb8c0fe4"]
}, Open ]],
Cell[CellGroupData[{
Cell[233281, 4243, 217, 6, 30, "Input",ExpressionUUID->"97636360-891e-420f-a00b-87adc26557cb"],
Cell[233501, 4251, 118, 2, 34, "Output",ExpressionUUID->"604b1883-0a54-4ca2-b257-59c57d7840e9"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[233668, 4259, 88, 0, 54, "Subsection",ExpressionUUID->"dc94e98b-b86b-4b8e-bcc5-800b4323bb37"],
Cell[CellGroupData[{
Cell[233781, 4263, 195, 4, 30, "Input",ExpressionUUID->"51cef676-2313-4b29-8c2f-22e387b89416"],
Cell[233979, 4269, 133, 3, 34, "Output",ExpressionUUID->"51aebf7a-69d9-46b9-ac15-7d862a689328"]
}, Open ]],
Cell[CellGroupData[{
Cell[234149, 4277, 437, 12, 52, "Input",ExpressionUUID->"c36ac8c6-309f-4665-a7f4-ce08d73893a7"],
Cell[234589, 4291, 133, 3, 34, "Output",ExpressionUUID->"06fd8d12-99f6-4e0e-a350-f9de0b02624e"]
}, Open ]]
}, Open ]],
Cell[234749, 4298, 82, 0, 54, "Subsection",ExpressionUUID->"a5111090-4170-4d68-bca8-168cb9f80d2f"],
Cell[CellGroupData[{
Cell[234856, 4302, 96, 0, 38, "Subsection",ExpressionUUID->"584f5b57-27ca-4d34-a9b1-f8e0869f4237"],
Cell[CellGroupData[{
Cell[234977, 4306, 203, 4, 30, "Input",ExpressionUUID->"787f18eb-9632-488a-a890-d27752eb4298"],
Cell[235183, 4312, 145, 4, 35, "Output",ExpressionUUID->"21937a0f-8bca-4b25-aa71-b943ff3ae569"]
}, Open ]],
Cell[CellGroupData[{
Cell[235365, 4321, 222, 6, 30, "Input",ExpressionUUID->"5bdf9f41-b159-4be7-8121-0d37c804c4ef"],
Cell[235590, 4329, 145, 4, 35, "Output",ExpressionUUID->"5bcf8f83-8b91-4d9a-afac-ee0e795d78a9"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[235784, 4339, 90, 0, 54, "Subsection",ExpressionUUID->"503bcd25-314b-462d-80c9-c30e2e948e4d"],
Cell[CellGroupData[{
Cell[235899, 4343, 197, 4, 30, "Input",ExpressionUUID->"c9da5367-6759-40f1-96d8-9a33bc50b16b"],
Cell[236099, 4349, 655, 22, 58, "Output",ExpressionUUID->"46865d48-9dae-474c-8bda-635c7f2243fc"]
}, Open ]],
Cell[CellGroupData[{
Cell[236791, 4376, 366, 11, 51, "Input",ExpressionUUID->"6479e2ee-6afd-4f5b-aa99-fa727f34129d"],
Cell[237160, 4389, 118, 2, 34, "Output",ExpressionUUID->"be5269ec-6400-4552-a234-b85fa3da51e5"]
}, Open ]],
Cell[237293, 4394, 163, 3, 30, "Input",ExpressionUUID->"5835ff12-6b37-4018-a144-5ee0851a4130"]
}, Open ]],
Cell[CellGroupData[{
Cell[237493, 4402, 85, 0, 54, "Subsection",ExpressionUUID->"f9bd7034-d5ba-46f5-86b4-c783d7874853"],
Cell[CellGroupData[{
Cell[237603, 4406, 192, 4, 30, "Input",ExpressionUUID->"65a78189-dbd2-4c7b-b68e-0a14aec09681"],
Cell[237798, 4412, 164, 3, 34, "Output",ExpressionUUID->"be0e304e-d41a-4c61-bca5-171050ab2191"]
}, Open ]],
Cell[CellGroupData[{
Cell[237999, 4420, 144, 3, 30, "Input",ExpressionUUID->"edf52556-5d09-467e-bb59-0a8795eea2bb"],
Cell[238146, 4425, 5328, 75, 239, "Message",ExpressionUUID->"48a57630-bfbf-4568-8da4-4cb3bdce816a"],
Cell[243477, 4502, 37634, 687, 64, "Output",ExpressionUUID->"24533a32-b979-4b72-b6f1-fe3865646cb6"]
}, Open ]],
Cell[CellGroupData[{
Cell[281148, 5194, 174, 4, 30, "Input",ExpressionUUID->"3df5a779-2116-44ba-a63e-aaaa08d359e5"],
Cell[281325, 5200, 118, 2, 34, "Output",ExpressionUUID->"57f2bebe-ac22-4fd8-8408-3aecd8f54bd0"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[281492, 5208, 98, 0, 54, "Subsection",ExpressionUUID->"74f51c38-b35c-4828-8ec7-4d2ddfa84f1b"],
Cell[CellGroupData[{
Cell[281615, 5212, 509, 16, 61, "Input",ExpressionUUID->"50d11bea-9019-4499-a610-ecb22f0d4353"],
Cell[282127, 5230, 445, 10, 46, "Message",ExpressionUUID->"86b6fa2b-98e0-47d3-bd5d-4977433f44d8"],
Cell[282575, 5242, 182, 4, 34, "Output",ExpressionUUID->"d5612617-f6ad-404e-9409-04335a85ffe1"]
}, Open ]],
Cell[282772, 5249, 558, 17, 71, "Input",ExpressionUUID->"f066607a-0956-48e4-bf4f-c8adb54f28ad"],
Cell[283333, 5268, 109, 1, 30, "Input",ExpressionUUID->"0153a3ee-89cf-4621-814b-abb8c15da0e3"]
}, Open ]],
Cell[CellGroupData[{
Cell[283479, 5274, 104, 0, 54, "Subsection",ExpressionUUID->"e587a634-98fb-4844-8fb9-555217132c1b"],
Cell[CellGroupData[{
Cell[283608, 5278, 491, 15, 55, "Input",ExpressionUUID->"e85d2134-d47c-424b-a10a-2530ea173762"],
Cell[284102, 5295, 181, 4, 34, "Output",ExpressionUUID->"06c2d390-5b47-4d81-9a36-5a7ca6e26dfa"]
}, Open ]],
Cell[CellGroupData[{
Cell[284320, 5304, 618, 19, 57, "Input",ExpressionUUID->"47ac974f-ad6a-43b8-b063-9f5a675c5ac2"],
Cell[284941, 5325, 260, 8, 58, "Output",ExpressionUUID->"258302c0-fbd0-4829-9f7e-d5e4e439901d"]
}, Open ]],
Cell[CellGroupData[{
Cell[285238, 5338, 137, 3, 30, "Input",ExpressionUUID->"09ab9015-d6ea-4f65-a989-82cddad5b443"],
Cell[285378, 5343, 129, 2, 34, "Output",ExpressionUUID->"b27ed880-a2a6-4eaf-b714-d85278dedc27"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[285556, 5351, 96, 0, 54, "Subsection",ExpressionUUID->"1a341244-0765-4406-a02c-66e6c1c3d7d0"],
Cell[CellGroupData[{
Cell[285677, 5355, 548, 17, 61, "Input",ExpressionUUID->"5ed94d0c-1309-4d27-bb8d-0940ab689a3d"],
Cell[286228, 5374, 182, 4, 34, "Output",ExpressionUUID->"cccf5094-d4b7-4fa9-a2c2-803cf27f377f"]
}, Open ]],
Cell[286425, 5381, 599, 18, 71, "Input",ExpressionUUID->"695f295c-d860-4640-99a7-6c7686d5d353"],
Cell[287027, 5401, 109, 1, 30, "Input",ExpressionUUID->"02ca7c28-6500-4185-87ac-193eb3193476"]
}, Open ]],
Cell[CellGroupData[{
Cell[287173, 5407, 102, 0, 54, "Subsection",ExpressionUUID->"bae003bf-862f-40b4-87fe-7e2d75b98102"],
Cell[CellGroupData[{
Cell[287300, 5411, 529, 16, 55, "Input",ExpressionUUID->"8b65ec49-3b11-424e-8f9a-66f24cab9362"],
Cell[287832, 5429, 181, 4, 34, "Output",ExpressionUUID->"c111c764-1498-49a7-8b76-744b1206f981"]
}, Open ]],
Cell[CellGroupData[{
Cell[288050, 5438, 659, 20, 57, "Input",ExpressionUUID->"45eca3e5-0952-4004-82e1-bbc3b3c7d8d5"],
Cell[288712, 5460, 317, 10, 62, "Output",ExpressionUUID->"34d14718-2f2e-4542-8fa2-f8dde22b7daf"]
}, Open ]],
Cell[CellGroupData[{
Cell[289066, 5475, 137, 3, 30, "Input",ExpressionUUID->"cf0efa9a-f1c2-438a-870b-218f055f0887"],
Cell[289206, 5480, 128, 2, 34, "Output",ExpressionUUID->"cd5d79d1-8607-4498-a5dd-540458a0f678"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[289383, 5488, 86, 0, 54, "Subsection",ExpressionUUID->"12f4ad40-7e4b-4a16-a3eb-b163ee02b3d3"],
Cell[CellGroupData[{
Cell[289494, 5492, 222, 5, 30, "Input",ExpressionUUID->"cc169e74-abe1-49dd-a4dd-6707415a6bdb"],
Cell[289719, 5499, 327, 11, 62, "Output",ExpressionUUID->"5beca25b-b77f-4dfe-b39f-836074c652a7"]
}, Open ]],
Cell[CellGroupData[{
Cell[290083, 5515, 230, 7, 30, "Input",ExpressionUUID->"cb091267-61bd-444d-b244-8bb76f8e0430"],
Cell[290316, 5524, 398, 13, 62, "Output",ExpressionUUID->"f5e9bd4e-ea5e-404e-85d0-ceffd57d7f1f"]
}, Open ]],
Cell[CellGroupData[{
Cell[290751, 5542, 409, 12, 30, "Input",ExpressionUUID->"218fbe15-e60e-4e67-a198-51b48f4c948c"],
Cell[291163, 5556, 129494, 2137, 380, 7825, 142, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"15d7fe44-16b7-489f-8291-3618c6899848"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[420706, 7699, 88, 0, 54, "Subsection",ExpressionUUID->"cce8eda0-513d-43da-bd9f-128c4c0da6a1"],
Cell[CellGroupData[{
Cell[420819, 7703, 195, 4, 30, "Input",ExpressionUUID->"2f7fc9ab-003e-412d-9d7b-035ccc76fbef"],
Cell[421017, 7709, 338, 12, 46, "Output",ExpressionUUID->"727f8f84-80b5-4ed0-b820-7107a9722475"]
}, Open ]],
Cell[CellGroupData[{
Cell[421392, 7726, 146, 3, 30, "Input",ExpressionUUID->"53806069-00b3-4421-a2ba-07c39fa86f7e"],
Cell[421541, 7731, 1076, 29, 41, "Output",ExpressionUUID->"25d9a428-9922-43ea-aaf2-b2a8378e6304"]
}, Open ]],
Cell[CellGroupData[{
Cell[422654, 7765, 213, 6, 30, "Input",ExpressionUUID->"1b852ba6-9e50-4d5b-9e17-7532606cf352"],
Cell[422870, 7773, 118, 2, 34, "Output",ExpressionUUID->"b1b1cfec-8513-46c3-8a1d-7b8e19f5cbe5"]
}, Open ]],
Cell[423003, 7778, 301, 8, 30, "Input",ExpressionUUID->"e3697dc2-2a45-4e8f-9cb7-2e0949058bb4"]
}, Open ]],
Cell[CellGroupData[{
Cell[423341, 7791, 94, 0, 54, "Subsection",ExpressionUUID->"0c1cdb9e-6ba5-4b14-b46b-c5597001feb9"],
Cell[CellGroupData[{
Cell[423460, 7795, 201, 4, 30, "Input",ExpressionUUID->"81091e04-ca9d-46f7-b6a5-766e83a41bde"],
Cell[423664, 7801, 1300, 28, 98, "Output",ExpressionUUID->"24667b62-0e2f-46ec-bdca-9f180e6b0ba6"]
}, Open ]],
Cell[CellGroupData[{
Cell[425001, 7834, 88, 0, 45, "Subsubsection",ExpressionUUID->"083c9996-4c12-486b-9757-d87a7381ec9b"],
Cell[CellGroupData[{
Cell[425114, 7838, 349, 9, 30, "Input",ExpressionUUID->"34ed40a1-f2c4-485a-8c4b-2d9bc206446e"],
Cell[CellGroupData[{
Cell[425488, 7851, 172, 3, 24, "Print",ExpressionUUID->"53376ef8-250e-45df-9932-64aa7ff2a83e"],
Cell[425663, 7856, 200, 4, 24, "Print",ExpressionUUID->"3b96933f-c471-4979-a09a-ac49aae73b15"],
Cell[425866, 7862, 189, 4, 24, "Print",ExpressionUUID->"23a2099b-b8ad-4edc-bce9-4fd49365e210"],
Cell[426058, 7868, 172, 3, 24, "Print",ExpressionUUID->"5d925221-8412-43c9-b377-7e9ea0e84c62"],
Cell[426233, 7873, 174, 3, 24, "Print",ExpressionUUID->"1849d3a9-9dc5-4fa9-a2fa-8a352cca47c6"],
Cell[426410, 7878, 204, 4, 24, "Print",ExpressionUUID->"d2fd3f89-ac4e-435a-b0c9-0ebb112183ef"],
Cell[426617, 7884, 177, 3, 24, "Print",ExpressionUUID->"af154259-2da5-4ad1-8e76-1d7d58a2b6d3"],
Cell[426797, 7889, 205, 4, 24, "Print",ExpressionUUID->"94192344-cbea-4c69-966f-1c0a40fcd176"]
}, Open ]],
Cell[427017, 7896, 183, 5, 34, "Output",ExpressionUUID->"1d50d8cf-f5d7-40d6-b141-b836d48f5f46"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[427261, 7908, 83, 0, 54, "Subsection",ExpressionUUID->"dff3e693-364b-4fed-a756-1eb815f54e51"],
Cell[CellGroupData[{
Cell[427369, 7912, 190, 4, 30, "Input",ExpressionUUID->"69fcbdcc-b72e-4391-b89f-4f0c78e500ac"],
Cell[427562, 7918, 243, 8, 51, "Output",ExpressionUUID->"aa2a8b7b-f566-41e8-a182-4a3586e198ca"]
}, Open ]],
Cell[CellGroupData[{
Cell[427842, 7931, 177, 4, 30, "Input",ExpressionUUID->"76c23ccb-b495-40ad-b1c6-8b5f7404afaf"],
Cell[428022, 7937, 243, 8, 51, "Output",ExpressionUUID->"bbe629b1-a842-4fd9-bd16-eff2eabdd2d0"]
}, Open ]],
Cell[CellGroupData[{
Cell[428302, 7950, 265, 7, 30, "Input",ExpressionUUID->"e33470e7-fc3d-4c83-ad6d-cb457f56f1f0"],
Cell[428570, 7959, 243, 8, 51, "Output",ExpressionUUID->"f8164dab-aee3-4004-bc1e-828a869e8a71"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[428874, 7974, 97, 0, 67, "Section",ExpressionUUID->"d6f231ee-6ea4-48e1-96b8-4bf0bf98457d"],
Cell[428974, 7976, 680, 19, 52, "Input",ExpressionUUID->"48257389-0958-4dd3-85ce-0b9998f7f41b"],
Cell[CellGroupData[{
Cell[429679, 7999, 80, 0, 54, "Subsection",ExpressionUUID->"e694356a-c500-4d1b-9bcb-742dd9e45156"],
Cell[429762, 8001, 256, 5, 30, "Input",ExpressionUUID->"b4eaa69d-2d6f-4e98-ad4e-72a418d31c3d"]
}, Open ]]
}, Open ]]
}, Open ]]
}
]
*)