(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 14.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 12462732, 233090] NotebookOptionsPosition[ 12356087, 231257] NotebookOutlinePosition[ 12356488, 231273] CellTagsIndexPosition[ 12356445, 231270] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Octahedron 20-Compound", "Title",ExpressionUUID->"81242623-AD16-4C82-B01C-A23E04D4A33C"], Cell[CellGroupData[{ Cell["Author", "Subsection",ExpressionUUID->"C5DFD79B-385A-4BC9-AB4F-9A501697E759"], Cell["\<\ Eric W. Weisstein October 7, 2023\ \>", "Text",ExpressionUUID->"58F6F0E0-E7FA-4D2E-B800-A9C69B45C5E4"], Cell[TextData[{ "This notebook downloaded from ", ButtonBox["http://mathworld.wolfram.com/notebooks/Polyhedra/Octahedron20-\ Compound.nb", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/notebooks/Polyhedra/Octahedron20-\ Compound.nb"], None}], "." }], "Text",ExpressionUUID->"3C6A58D2-5827-48DD-A775-3C88E6997FE1"], Cell[TextData[{ "For more information, see Eric's ", StyleBox["MathWorld", FontSlant->"Italic"], " entry ", ButtonBox["http://mathworld.wolfram.com/Octahedron20-Compound.html", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/Octahedron20-Compound.html"], None}], "." }], "Text",ExpressionUUID->"4D483F9B-A1A6-4AB6-A011-5F6BEDF35C76"], Cell["\<\ \[Copyright]2023 Wolfram Research, Inc. except for portions noted otherwise\ \>", "Text",ExpressionUUID->"50532708-49AD-4686-81D5-80EDFD7CB461"] }, Open ]], Cell[CellGroupData[{ Cell["Variants", "Section",ExpressionUUID->"00D4638E-C87B-4C16-9B91-F650B08EFCC2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"variants", "=", RowBox[{ "PolyhedronData", "[", "\"\\"", "]"}]}]], "Input", CellLabel->"In[1]:=",ExpressionUUID->"824A1C56-76E7-4945-B952-A0A509A7D8EC"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"OctahedronTwentyCompound\"\>", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"OctahedronTwentyCompound\"\>", ",", "2"}], "}"}]}], "}"}]], "Output", CellLabel->"Out[1]=",ExpressionUUID->"C33C2494-0413-4A53-BE37-27CEA8F4212F"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "&"}], "/@", "variants"}]], "Input", CellLabel->"In[25]:=",ExpressionUUID->"231DC05D-9FC7-43C9-9008-3B78745F182B"], Cell[BoxData[ RowBox[{"{", RowBox[{"160", ",", "160"}], "}"}]], "Output", CellLabel->"Out[25]=",ExpressionUUID->"C514D83B-05C2-4667-858C-3BD0A0775CB7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Length", "[", RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "]"}], "&"}], "/@", "variants"}]], "Input", CellLabel->"In[26]:=",ExpressionUUID->"466CAD01-C319-4208-8A7C-2F2EB9DE3919"], Cell[BoxData[ RowBox[{"{", RowBox[{"20", ",", "20"}], "}"}]], "Output", CellLabel->"Out[26]=",ExpressionUUID->"06668F5D-8746-4298-B323-68D919E83E64"] }, Open ]], Cell[CellGroupData[{ Cell["Polyhedra", "Subsection",ExpressionUUID->"34ABAF97-B33F-4374-83B9-691FD8C926EC"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphicsGrid", "[", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"poly", "=", RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}]}], "}"}], ",", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Hue", "[", FractionBox["i", RowBox[{"Length", "[", "poly", "]"}]], "]"}], ",", RowBox[{"poly", "[", RowBox[{"[", "i", "]"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"Length", "[", "poly", "]"}]}], "}"}]}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]}], "]"}]}], "\[IndentingNewLine]", "}"}], "&"}], "/@", "variants"}], "]"}], ",", RowBox[{"Dividers", "\[Rule]", "All"}], ",", RowBox[{"ImageSize", "\[Rule]", "400"}]}], "]"}]], "Input", CellLabel->"In[7]:=",ExpressionUUID->"11256C70-4059-44B0-9321-FAD4E4F58C1A"], Cell[BoxData[ GraphicsBox[{{}, {{InsetBox[ Graphics3DBox[ PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]], Boxed->False], {192., -193.6}, ImageScaled[{0.5, 0.5}], {360, 363}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[ PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]], Boxed->False], {576., -193.6}, ImageScaled[{0.5, 0.5}], {360, 363}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True]}, {InsetBox[ Graphics3DBox[{ {Hue[ NCache[ Rational[1, 20], 0.05]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, \ -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.17677669529663687`, \ -0.639584092002116, -0.24429938448106847`}}], {{5, 6, 3}, {6, 5, 4}, {6, 2, 3}, {2, 6, 4}, {5, 1, 4}, {1, 5, 3}, {1, 2, 4}, {2, 1, 3}}]}, {Hue[ NCache[ Rational[1, 10], 0.1]], PolyhedronBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, { 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, {-0.639584092002116, \ -0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}}], {{5, 6, 4}, {6, 5, 3}, {6, 2, 4}, {2, 6, 3}, {5, 1, 3}, {1, 5, 4}, {1, 2, 3}, {2, 1, 4}}]}, {Hue[ NCache[ Rational[3, 20], 0.15]], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, \ {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, \ -0.46280739670547905`, -0.5303300858899106}}], {{6, 5, 4}, {5, 6, 2}, {5, 1, 4}, {1, 5, 2}, {6, 3, 2}, {3, 6, 4}, {3, 1, 2}, {1, 3, 4}}]}, {Hue[ NCache[ Rational[1, 5], 0.2]], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, \ {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}], {{4, 6, 2}, {6, 4, 3}, {6, 5, 2}, {5, 6, 3}, {4, 1, 3}, {1, 4, 2}, {1, 5, 3}, {5, 1, 2}}]}, {Hue[ NCache[ Rational[1, 4], 0.25]], PolyhedronBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, { 0.06752268918443158, -0.46280739670547905`, \ -0.5303300858899106}}], {{6, 3, 2}, {3, 6, 5}, {3, 1, 2}, {1, 3, 5}, {6, 4, 5}, {4, 6, 2}, {4, 1, 5}, {1, 4, 2}}]}, {Hue[ NCache[ Rational[3, 10], 0.3]], PolyhedronBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, \ -0.06752268918443159, -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}], {{5, 6, 4}, {6, 5, 2}, {6, 3, 4}, {3, 6, 2}, {5, 1, 2}, {1, 5, 4}, {1, 3, 2}, {3, 1, 4}}]}, {Hue[ NCache[ Rational[7, 20], 0.35]], PolyhedronBox[ NCache[{{ Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.17677669529663687`, \ -0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}, \ {-0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}], {{6, 4, 2}, {4, 6, 5}, {4, 1, 2}, {1, 4, 5}, {6, 3, 5}, {3, 6, 2}, {3, 1, 5}, {1, 3, 2}}]}, {Hue[ NCache[ Rational[2, 5], 0.4]], PolyhedronBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, \ -0.35355339059327373`, 0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}], {{4, 6, 5}, {6, 4, 2}, {6, 3, 5}, {3, 6, 2}, {4, 1, 2}, {1, 4, 5}, {1, 3, 2}, {3, 1, 5}}]}, {Hue[ NCache[ Rational[9, 20], 0.45]], PolyhedronBox[ NCache[{{ Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, \ {-0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}], {{5, 3, 6}, {3, 5, 1}, {3, 2, 6}, {2, 3, 1}, {5, 4, 1}, {4, 5, 6}, {4, 2, 1}, {2, 4, 6}}]}, {Hue[ NCache[ Rational[1, 2], 0.5]], PolyhedronBox[ NCache[{{ Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, \ {-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, { 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, {-0.21850801222441052`, \ -0.5720614028176843, -0.35355339059327373`}}], {{4, 6, 2}, {6, 4, 5}, {6, 3, 2}, {3, 6, 5}, {4, 1, 5}, {1, 4, 2}, {1, 3, 5}, {3, 1, 2}}]}, {Hue[ NCache[ Rational[11, 20], 0.55]], PolyhedronBox[ NCache[{{ Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}], {{3, 4, 6}, {4, 3, 1}, {4, 5, 6}, {5, 4, 1}, {3, 2, 1}, {2, 3, 6}, {2, 5, 1}, {5, 2, 6}}]}, {Hue[ NCache[ Rational[3, 5], 0.6]], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, {-0.5303300858899106, \ -0.06752268918443159, 0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}}], {{2, 6, 4}, {6, 2, 3}, {6, 5, 4}, {5, 6, 3}, {2, 1, 3}, {1, 2, 4}, {1, 5, 3}, {5, 1, 4}}]}, {Hue[ NCache[ Rational[13, 20], 0.65]], PolyhedronBox[ NCache[{{ Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}], {{3, 6, 1}, {6, 3, 5}, {6, 4, 1}, {4, 6, 5}, {3, 2, 5}, {2, 3, 1}, {2, 4, 5}, {4, 2, 1}}]}, {Hue[ NCache[ Rational[7, 10], 0.7]], PolyhedronBox[ NCache[{{ Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, \ -0.17677669529663687`, -0.06752268918443159}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, \ {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}], {{6, 5, 4}, {5, 6, 1}, {5, 2, 4}, {2, 5, 1}, {6, 3, 1}, {3, 6, 4}, {3, 2, 1}, {2, 3, 4}}]}, {Hue[ NCache[ Rational[3, 4], 0.75]], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}], {{1, 5, 4}, {5, 1, 3}, {5, 6, 4}, {6, 5, 3}, {1, 2, 3}, {2, 1, 4}, {2, 6, 3}, {6, 2, 4}}]}, {Hue[ NCache[ Rational[4, 5], 0.8]], PolyhedronBox[ NCache[{{ Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}], {{3, 4, 1}, {4, 3, 6}, {4, 5, 1}, {5, 4, 6}, {3, 2, 6}, {2, 3, 1}, {2, 5, 6}, {5, 2, 1}}]}, {Hue[ NCache[ Rational[17, 20], 0.85]], PolyhedronBox[ NCache[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}], {{2, 4, 6}, {4, 2, 1}, {4, 5, 6}, {5, 4, 1}, {2, 3, 1}, {3, 2, 6}, {3, 5, 1}, {5, 3, 6}}]}, {Hue[ NCache[ Rational[9, 10], 0.9]], PolyhedronBox[ NCache[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, \ -0.46280739670547905`, 0.5303300858899106}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}, \ {-0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}], {{4, 6, 1}, {6, 4, 5}, {6, 3, 1}, {3, 6, 5}, {4, 2, 5}, {2, 4, 1}, {2, 3, 5}, {3, 2, 1}}]}, {Hue[ NCache[ Rational[19, 20], 0.95]], PolyhedronBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}, \ {0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, \ {-0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, \ {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}], {{2, 1, 6}, {1, 2, 3}, {5, 2, 6}, {2, 5, 3}, {4, 1, 3}, {1, 4, 6}, {5, 4, 3}, {4, 5, 6}}]}, {Hue[1], PolyhedronBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, \ {0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, \ -0.35355339059327373`, -0.21850801222441052`}}], {{5, 4, 6}, {4, 5, 3}, {2, 5, 6}, {5, 2, 3}, {1, 4, 3}, {4, 1, 6}, {2, 1, 3}, {1, 2, 6}}]}}, Boxed->False], {192., -580.8}, ImageScaled[{0.5, 0.5}], {360, 363}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ {Hue[ NCache[ Rational[1, 20], 0.05]], PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, { 0.43701602444882104`, -0.5558929702514211, 0}}], {{4, 6, 2}, {6, 4, 3}, {6, 5, 2}, {5, 6, 3}, {4, 1, 3}, {1, 4, 2}, {1, 5, 3}, {5, 1, 2}}]}, {Hue[ NCache[ Rational[1, 10], 0.1]], PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, \ -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.43701602444882104`, -0.5558929702514211, 0}}], {{6, 2, 4}, {2, 6, 5}, {3, 6, 4}, {6, 3, 5}, {1, 2, 5}, {2, 1, 4}, {3, 1, 5}, {1, 3, 4}}]}, {Hue[ NCache[ Rational[3, 20], 0.15]], PolyhedronBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}}], {{6, 4, 1}, {4, 6, 2}, {4, 5, 1}, {5, 4, 2}, {6, 3, 2}, {3, 6, 1}, {3, 5, 2}, {5, 3, 1}}]}, {Hue[ NCache[ Rational[1, 5], 0.2]], PolyhedronBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, -0.6682348722113773}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}], {{2, 4, 6}, {4, 2, 5}, {4, 1, 6}, {1, 4, 5}, {2, 3, 5}, {3, 2, 6}, {3, 1, 5}, {1, 3, 6}}]}, {Hue[ NCache[ Rational[1, 4], 0.25]], PolyhedronBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}}], {{5, 4, 1}, {4, 5, 2}, {4, 6, 1}, {6, 4, 2}, {5, 3, 2}, {3, 5, 1}, {3, 6, 2}, {6, 3, 1}}]}, {Hue[ NCache[ Rational[3, 10], 0.3]], PolyhedronBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}], {{1, 4, 6}, {4, 1, 5}, {3, 1, 6}, {1, 3, 5}, {2, 4, 5}, {4, 2, 6}, {3, 2, 5}, {2, 3, 6}}]}, {Hue[ NCache[ Rational[7, 20], 0.35]], PolyhedronBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}], {{3, 2, 6}, {2, 3, 5}, {2, 4, 6}, {4, 2, 5}, {3, 1, 5}, {1, 3, 6}, {1, 4, 5}, {4, 1, 6}}]}, {Hue[ NCache[ Rational[2, 5], 0.4]], PolyhedronBox[ NCache[{{ Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}}], {{2, 4, 5}, {4, 2, 6}, {4, 1, 5}, {1, 4, 6}, {2, 3, 6}, {3, 2, 5}, {3, 1, 6}, {1, 3, 5}}]}, {Hue[ NCache[ Rational[9, 20], 0.45]], PolyhedronBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}}], {{6, 4, 2}, {4, 6, 1}, {3, 6, 2}, {6, 3, 1}, {5, 4, 1}, {4, 5, 2}, {3, 5, 1}, {5, 3, 2}}]}, {Hue[ NCache[ Rational[1, 2], 0.5]], PolyhedronBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, { 0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}}], {{4, 2, 6}, {2, 4, 5}, {1, 4, 6}, {4, 1, 5}, {3, 2, 5}, {2, 3, 6}, {1, 3, 5}, {3, 1, 6}}]}, {Hue[ NCache[ Rational[11, 20], 0.55]], PolyhedronBox[ NCache[{{ Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}}], {{4, 2, 5}, {2, 4, 6}, {1, 4, 5}, {4, 1, 6}, {3, 2, 6}, {2, 3, 5}, {1, 3, 6}, {3, 1, 5}}]}, {Hue[ NCache[ Rational[3, 5], 0.6]], PolyhedronBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}}], {{3, 6, 2}, {6, 3, 1}, {6, 4, 2}, { 4, 6, 1}, {3, 5, 1}, {5, 3, 2}, {5, 4, 1}, {4, 5, 2}}]}, {Hue[ NCache[ Rational[13, 20], 0.65]], PolyhedronBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}}], {{3, 6, 2}, {6, 3, 1}, {5, 3, 2}, {3, 5, 1}, {4, 6, 1}, {6, 4, 2}, {5, 4, 1}, {4, 5, 2}}]}, {Hue[ NCache[ Rational[7, 10], 0.7]], PolyhedronBox[ NCache[{{ Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}}], {{4, 6, 1}, {6, 4, 2}, {5, 4, 1}, { 4, 5, 2}, {3, 6, 2}, {6, 3, 1}, {5, 3, 2}, {3, 5, 1}}]}, {Hue[ NCache[ Rational[3, 4], 0.75]], PolyhedronBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}}], {{3, 2, 5}, {2, 3, 6}, {2, 4, 5}, {4, 2, 6}, {3, 1, 6}, {1, 3, 5}, {1, 4, 6}, {4, 1, 5}}]}, {Hue[ NCache[ Rational[4, 5], 0.8]], PolyhedronBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}], {{4, 6, 2}, {6, 4, 1}, {6, 3, 2}, {3, 6, 1}, {4, 5, 1}, {5, 4, 2}, {5, 3, 1}, {3, 5, 2}}]}, {Hue[ NCache[ Rational[17, 20], 0.85]], PolyhedronBox[ NCache[{{ Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}}], {{6, 4, 1}, {4, 6, 2}, {4, 5, 1}, {5, 4, 2}, {6, 3, 2}, {3, 6, 1}, {3, 5, 2}, {5, 3, 1}}]}, {Hue[ NCache[ Rational[9, 10], 0.9]], PolyhedronBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}], {{4, 2, 5}, {2, 4, 6}, {2, 3, 5}, {3, 2, 6}, {4, 1, 6}, {1, 4, 5}, {1, 3, 6}, {3, 1, 5}}]}, {Hue[ NCache[ Rational[19, 20], 0.95]], PolyhedronBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], {{1, 5, 3}, {5, 1, 4}, {5, 2, 3}, {2, 5, 4}, {1, 6, 4}, {6, 1, 3}, {6, 2, 4}, {2, 6, 3}}]}, {Hue[1], PolyhedronBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], {{5, 3, 1}, {3, 5, 2}, {4, 5, 1}, {5, 4, 2}, {6, 3, 2}, {3, 6, 1}, {4, 6, 2}, {6, 4, 1}}]}}, Boxed->False], {576., -580.8}, ImageScaled[{0.5, 0.5}], {360, 363}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True]}}, StyleBox[{{}, {LineBox[{{0, 0}, {0, -387.2}}], LineBox[{{0, -387.2}, {0, -774.4}}], LineBox[{{384., 0}, {384., -387.2}}], LineBox[{{384., -387.2}, {384., -774.4}}], LineBox[{{768., 0}, {768., -387.2}}], LineBox[{{768., -387.2}, {768., -774.4}}], LineBox[{{0, 0}, {384., 0}}], LineBox[{{384., 0}, {768., 0}}], LineBox[{{0, -387.2}, {384., -387.2}}], LineBox[{{384., -387.2}, {768., -387.2}}], LineBox[{{0, -774.4}, {384., -774.4}}], LineBox[{{384., -774.4}, {768., -774.4}}]}}, Antialiasing->False]}, ImageSize->400, PlotRangePadding->{6, 5}]], "Output", CellLabel->"Out[7]=",ExpressionUUID->"AEADA9C9-985C-4DD5-B949-CB5D0D8901DB"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Solids and duals", "Subsection",ExpressionUUID->"3A3353A5-4084-4A22-BF0B-1FA78733BAFB"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphicsGrid", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Table", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"With", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"s", "=", RowBox[{"{", RowBox[{"Yellow", ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"dname", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"style", "=", RowBox[{"Directive", "[", RowBox[{"Black", ",", "Italic", ",", RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", "14"}], "]"}]}]}], "\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{"s", ",", "Green", ",", RowBox[{"Opacity", "[", ".1", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"TextCell", "[", RowBox[{ RowBox[{"Style", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", "style"}], "]"}], ",", RowBox[{"PageWidth", "\[Rule]", "200"}], ",", RowBox[{"TextAlignment", "\[Rule]", "Center"}]}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{"s", ",", "Red", ",", RowBox[{"Opacity", "[", ".2", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{ "pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"dname", ",", "\"\\""}], "]"}], ",", "style"}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"Green", ",", RowBox[{"Opacity", "[", ".1", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"Red", ",", RowBox[{"Opacity", "[", ".2", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{ "pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", "s"}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "style"}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"PolyhedronData", "[", RowBox[{ "pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "style"}], "]"}]}]}], "]"}]}], "\[IndentingNewLine]", "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"pname", ",", "variants"}], "}"}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"Dividers", "\[Rule]", "All"}], ",", RowBox[{"ImageSize", "\[Rule]", "800"}], ",", RowBox[{"Alignment", "\[Rule]", "Top"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"50335AF6-404F-4721-A8E9-84AEA6BFE313"], Cell[BoxData[ GraphicsBox[{{}, {{InsetBox[ Graphics3DBox[{ {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}, NCache[Rational[1, 2], 0.5]]}, {RGBColor[0, 1, 0], Opacity[0.1], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox["\"first octahedron 20\[Hyphen]compound\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], PageWidth -> 200, TextAlignment -> Center], TextCell[ Style["first octahedron 20\[Hyphen]compound", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14]], PageWidth -> 200, TextAlignment -> Center]], TraditionalForm]], {194.4, -12.666666666666668}, ImageScaled[{0.5, 1}], {360, 380}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}, NCache[Rational[1, 2], 0.5]]}, {RGBColor[1, 0, 0], Opacity[0.2], PolyhedronBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/( 1 - 5^Rational[1, 2]), 0}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2])}, { 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0, 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), ( Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, { 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[ 1, 2])}}, {{-0.2860307014088421, -0.10925400611220527`, \ -0.5303300858899106}, { 0.35355339059327373`, -0.35355339059327373`, \ -0.35355339059327373`}, {-0.5303300858899106, -0.2860307014088421, 0.10925400611220527`}, {0.10925400611220527`, -0.5303300858899106, 0.2860307014088421}, {0.5303300858899106, 0.2860307014088421, -0.10925400611220527`}, \ {-0.10925400611220527`, 0.5303300858899106, -0.2860307014088421}, { 0.2860307014088421, 0.10925400611220527`, 0.5303300858899106}, {-0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.35355339059327373`, \ -0.35355339059327373`, -0.35355339059327373`}, { 0.2860307014088421, -0.10925400611220527`, -0.5303300858899106}, \ {-0.10925400611220527`, -0.5303300858899106, 0.2860307014088421}, { 0.5303300858899106, -0.2860307014088421, 0.10925400611220527`}, { 0.10925400611220527`, 0.5303300858899106, -0.2860307014088421}, {-0.5303300858899106, 0.2860307014088421, -0.10925400611220527`}, {0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.2860307014088421, 0.10925400611220527`, 0.5303300858899106}, {-0.462807396705479, -0.39528470752104744`, \ -0.06752268918443159}, { 0.21850801222441055`, -0.5720614028176841, 0}, {-0.39528470752104744`, 0.0675226891844316, 0.462807396705479}, {0.2860307014088421, -0.10925400611220527`, 0.5303300858899106}, { 0.39528470752104744`, -0.06752268918443159, -0.462807396705479}, \ {-0.2860307014088421, 0.10925400611220527`, -0.5303300858899106}, { 0.462807396705479, 0.39528470752104744`, 0.0675226891844316}, {-0.21850801222441055`, 0.5720614028176843, 0}, {-0.39528470752104744`, -0.06752268918443159, \ -0.462807396705479}, { 0.10925400611220527`, -0.5303300858899106, -0.2860307014088421}, \ {-0.5720614028176841, 0, 0.21850801222441055`}, {-0.06752268918443159, -0.462807396705479, 0.39528470752104744`}, { 0.5720614028176843, 0, -0.21850801222441055`}, { 0.0675226891844316, 0.462807396705479, -0.39528470752104744`}, { 0.39528470752104744`, 0.0675226891844316, 0.462807396705479}, {-0.10925400611220527`, 0.5303300858899106, 0.2860307014088421}, {-0.21850801222441055`, -0.5720614028176841, 0}, {0.462807396705479, -0.39528470752104744`, \ -0.06752268918443159}, {-0.2860307014088421, -0.10925400611220527`, 0.5303300858899106}, {0.2860307014088421, 0.10925400611220527`, -0.5303300858899106}, { 0.21850801222441055`, 0.5720614028176843, 0}, {-0.462807396705479, 0.39528470752104744`, 0.0675226891844316}, {-0.10925400611220527`, -0.5303300858899106, \ -0.2860307014088421}, {0.0675226891844316, -0.462807396705479, 0.39528470752104744`}, { 0.5720614028176843, 0, 0.21850801222441055`}, {-0.06752268918443159, 0.462807396705479, -0.39528470752104744`}, {-0.5720614028176841, 0, -0.21850801222441055`}, {0.10925400611220527`, 0.5303300858899106, 0.2860307014088421}, {-0.5303300858899106, -0.2860307014088421, \ -0.10925400611220527`}, {0.35355339059327373`, -0.35355339059327373`, 0.35355339059327373`}, {-0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, {0.5303300858899106, 0.2860307014088421, 0.10925400611220527`}, { 0.21850801222441055`, 0, -0.5720614028176841}, { 0, -0.5720614028176841, 0.21850801222441055`}, { 0.5720614028176843, -0.21850801222441055`, 0}, { 0, 0.5720614028176843, -0.21850801222441055`}, \ {-0.5720614028176841, 0.21850801222441055`, 0}, {-0.21850801222441055`, 0, 0.5720614028176843}, { 0.5303300858899106, -0.2860307014088421, -0.10925400611220527`}, \ {-0.35355339059327373`, -0.35355339059327373`, 0.35355339059327373`}, { 0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, \ {-0.5303300858899106, 0.2860307014088421, 0.10925400611220527`}, {-0.21850801222441055`, 0, -0.5720614028176841}, {-0.5720614028176841, \ -0.21850801222441055`, 0}, {0.5720614028176843, 0.21850801222441055`, 0}, { 0.21850801222441055`, 0, 0.5720614028176843}, {-0.06752268918443159, -0.462807396705479, \ -0.39528470752104744`}, {0.462807396705479, -0.39528470752104744`, 0.0675226891844316}, { 0, -0.21850801222441055`, 0.5720614028176843}, { 0, 0.21850801222441055`, -0.5720614028176841}, { 0.0675226891844316, 0.462807396705479, 0.39528470752104744`}, {-0.462807396705479, 0.39528470752104744`, -0.06752268918443159}, { 0, -0.21850801222441055`, -0.5720614028176841}, { 0, 0.21850801222441055`, 0.5720614028176843}, {-0.39528470752104744`, \ -0.06752268918443159, 0.462807396705479}, {0.39528470752104744`, 0.0675226891844316, -0.462807396705479}, {-0.462807396705479, \ -0.39528470752104744`, 0.0675226891844316}, { 0.0675226891844316, -0.462807396705479, -0.39528470752104744`}, { 0.462807396705479, 0.39528470752104744`, -0.06752268918443159}, \ {-0.06752268918443159, 0.462807396705479, 0.39528470752104744`}, { 0.39528470752104744`, -0.06752268918443159, 0.462807396705479}, {-0.39528470752104744`, 0.0675226891844316, -0.462807396705479}, { 0, -0.5720614028176841, -0.21850801222441055`}, { 0, 0.5720614028176843, 0.21850801222441055`}}], CompressedData[" 1:eJwNw+nWoQAAAFBSRNKGNtpUyNauBSWVssSZR/heYP7O4893z7nyz98/P0Cr 1fr3G/wN9UCg0wZAoN2FOmAPbnfgbg/qwoMh0u8j+AgZYvigP0JHOIYOByhG j8kJMZ2QkylDE+SYmhIUM6YZime52VyccTNR4uccK4hzQWJ5SVjorKwqMquy uiYr4kJRNVFfiNpkvVpSm+WKWq23y40x2VBbYz0xtqq55xY7br/YmxK3O6i7 hXQw1YNkO5jvej7me33bxRzLsfuW51r94zhYLoNoelxOw2C8jabRNhwfw+3J vsBnF77Abnw6X2zAPQOxfYqBDEqTaydJryl0Szp51rnecijLb2Y5U3aFMlMK wdzNSr3Y6UJpCvp9k4DVGkyqZNMF17f7uureNvdbN5XbVa5V7UrrpXlbvmv5 vSenvXsZEaviuCIKIjJWR7o8FgYdlbQxyh718Fo/6utrNHxkz+vw+cpGr+f8 jTz45oE8GnTOI+9Xw7/Q9xx9kXUzYJ6DhmlqfPB8k08Gf9fkG/+cDtb3bB2+ h5Nvnfef89ffnz573/nEofcNYy/+BOH34nycS/D1gst/f29OFQ== "]]}}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"first cube 20\[Hyphen]compound\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], {583.2, -12.666666666666668}, ImageScaled[{0.5, 1}], {360, 377}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ {RGBColor[0, 1, 0], Opacity[0.1], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, {RGBColor[1, 0, 0], Opacity[0.2], PolyhedronBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/( 1 - 5^Rational[1, 2]), 0}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2])}, { 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0, 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), ( Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, { 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[ 1, 2])}}, {{-0.2860307014088421, -0.10925400611220527`, \ -0.5303300858899106}, { 0.35355339059327373`, -0.35355339059327373`, \ -0.35355339059327373`}, {-0.5303300858899106, -0.2860307014088421, 0.10925400611220527`}, {0.10925400611220527`, -0.5303300858899106, 0.2860307014088421}, {0.5303300858899106, 0.2860307014088421, -0.10925400611220527`}, \ {-0.10925400611220527`, 0.5303300858899106, -0.2860307014088421}, { 0.2860307014088421, 0.10925400611220527`, 0.5303300858899106}, {-0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.35355339059327373`, \ -0.35355339059327373`, -0.35355339059327373`}, { 0.2860307014088421, -0.10925400611220527`, -0.5303300858899106}, \ {-0.10925400611220527`, -0.5303300858899106, 0.2860307014088421}, { 0.5303300858899106, -0.2860307014088421, 0.10925400611220527`}, { 0.10925400611220527`, 0.5303300858899106, -0.2860307014088421}, {-0.5303300858899106, 0.2860307014088421, -0.10925400611220527`}, {0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.2860307014088421, 0.10925400611220527`, 0.5303300858899106}, {-0.462807396705479, -0.39528470752104744`, \ -0.06752268918443159}, { 0.21850801222441055`, -0.5720614028176841, 0}, {-0.39528470752104744`, 0.0675226891844316, 0.462807396705479}, {0.2860307014088421, -0.10925400611220527`, 0.5303300858899106}, { 0.39528470752104744`, -0.06752268918443159, -0.462807396705479}, \ {-0.2860307014088421, 0.10925400611220527`, -0.5303300858899106}, { 0.462807396705479, 0.39528470752104744`, 0.0675226891844316}, {-0.21850801222441055`, 0.5720614028176843, 0}, {-0.39528470752104744`, -0.06752268918443159, \ -0.462807396705479}, { 0.10925400611220527`, -0.5303300858899106, -0.2860307014088421}, \ {-0.5720614028176841, 0, 0.21850801222441055`}, {-0.06752268918443159, -0.462807396705479, 0.39528470752104744`}, { 0.5720614028176843, 0, -0.21850801222441055`}, { 0.0675226891844316, 0.462807396705479, -0.39528470752104744`}, { 0.39528470752104744`, 0.0675226891844316, 0.462807396705479}, {-0.10925400611220527`, 0.5303300858899106, 0.2860307014088421}, {-0.21850801222441055`, -0.5720614028176841, 0}, {0.462807396705479, -0.39528470752104744`, \ -0.06752268918443159}, {-0.2860307014088421, -0.10925400611220527`, 0.5303300858899106}, {0.2860307014088421, 0.10925400611220527`, -0.5303300858899106}, { 0.21850801222441055`, 0.5720614028176843, 0}, {-0.462807396705479, 0.39528470752104744`, 0.0675226891844316}, {-0.10925400611220527`, -0.5303300858899106, \ -0.2860307014088421}, {0.0675226891844316, -0.462807396705479, 0.39528470752104744`}, { 0.5720614028176843, 0, 0.21850801222441055`}, {-0.06752268918443159, 0.462807396705479, -0.39528470752104744`}, {-0.5720614028176841, 0, -0.21850801222441055`}, {0.10925400611220527`, 0.5303300858899106, 0.2860307014088421}, {-0.5303300858899106, -0.2860307014088421, \ -0.10925400611220527`}, {0.35355339059327373`, -0.35355339059327373`, 0.35355339059327373`}, {-0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, {0.5303300858899106, 0.2860307014088421, 0.10925400611220527`}, { 0.21850801222441055`, 0, -0.5720614028176841}, { 0, -0.5720614028176841, 0.21850801222441055`}, { 0.5720614028176843, -0.21850801222441055`, 0}, { 0, 0.5720614028176843, -0.21850801222441055`}, \ {-0.5720614028176841, 0.21850801222441055`, 0}, {-0.21850801222441055`, 0, 0.5720614028176843}, { 0.5303300858899106, -0.2860307014088421, -0.10925400611220527`}, \ {-0.35355339059327373`, -0.35355339059327373`, 0.35355339059327373`}, { 0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, \ {-0.5303300858899106, 0.2860307014088421, 0.10925400611220527`}, {-0.21850801222441055`, 0, -0.5720614028176841}, {-0.5720614028176841, \ -0.21850801222441055`, 0}, {0.5720614028176843, 0.21850801222441055`, 0}, { 0.21850801222441055`, 0, 0.5720614028176843}, {-0.06752268918443159, -0.462807396705479, \ -0.39528470752104744`}, {0.462807396705479, -0.39528470752104744`, 0.0675226891844316}, { 0, -0.21850801222441055`, 0.5720614028176843}, { 0, 0.21850801222441055`, -0.5720614028176841}, { 0.0675226891844316, 0.462807396705479, 0.39528470752104744`}, {-0.462807396705479, 0.39528470752104744`, -0.06752268918443159}, { 0, -0.21850801222441055`, -0.5720614028176841}, { 0, 0.21850801222441055`, 0.5720614028176843}, {-0.39528470752104744`, \ -0.06752268918443159, 0.462807396705479}, {0.39528470752104744`, 0.0675226891844316, -0.462807396705479}, {-0.462807396705479, \ -0.39528470752104744`, 0.0675226891844316}, { 0.0675226891844316, -0.462807396705479, -0.39528470752104744`}, { 0.462807396705479, 0.39528470752104744`, -0.06752268918443159}, \ {-0.06752268918443159, 0.462807396705479, 0.39528470752104744`}, { 0.39528470752104744`, -0.06752268918443159, 0.462807396705479}, {-0.39528470752104744`, 0.0675226891844316, -0.462807396705479}, { 0, -0.5720614028176841, -0.21850801222441055`}, { 0, 0.5720614028176843, 0.21850801222441055`}}], CompressedData[" 1:eJwNw+nWoQAAAFBSRNKGNtpUyNauBSWVssSZR/heYP7O4893z7nyz98/P0Cr 1fr3G/wN9UCg0wZAoN2FOmAPbnfgbg/qwoMh0u8j+AgZYvigP0JHOIYOByhG j8kJMZ2QkylDE+SYmhIUM6YZime52VyccTNR4uccK4hzQWJ5SVjorKwqMquy uiYr4kJRNVFfiNpkvVpSm+WKWq23y40x2VBbYz0xtqq55xY7br/YmxK3O6i7 hXQw1YNkO5jvej7me33bxRzLsfuW51r94zhYLoNoelxOw2C8jabRNhwfw+3J vsBnF77Abnw6X2zAPQOxfYqBDEqTaydJryl0Szp51rnecijLb2Y5U3aFMlMK wdzNSr3Y6UJpCvp9k4DVGkyqZNMF17f7uureNvdbN5XbVa5V7UrrpXlbvmv5 vSenvXsZEaviuCIKIjJWR7o8FgYdlbQxyh718Fo/6utrNHxkz+vw+cpGr+f8 jTz45oE8GnTOI+9Xw7/Q9xx9kXUzYJ6DhmlqfPB8k08Gf9fkG/+cDtb3bB2+ h5Nvnfef89ffnz573/nEofcNYy/+BOH34nycS/D1gst/f29OFQ== "]]}, {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}, NCache[Rational[1, 2], 0.5]]}}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"compound with midsphere\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], {972., -12.666666666666668}, ImageScaled[{0.5, 1}], {360, 377}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]], PolyhedronBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), ( Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), ( Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2])}, { 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0, 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), ( Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, { 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[ 1, 2])}}, {{-0.2860307014088421, -0.10925400611220527`, \ -0.5303300858899106}, { 0.35355339059327373`, -0.35355339059327373`, \ -0.35355339059327373`}, {-0.5303300858899106, -0.2860307014088421, 0.10925400611220527`}, {0.10925400611220527`, -0.5303300858899106, 0.2860307014088421}, {0.5303300858899106, 0.2860307014088421, -0.10925400611220527`}, {-0.10925400611220527`, 0.5303300858899106, -0.2860307014088421}, {0.2860307014088421, 0.10925400611220527`, 0.5303300858899106}, {-0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.35355339059327373`, \ -0.35355339059327373`, -0.35355339059327373`}, { 0.2860307014088421, -0.10925400611220527`, -0.5303300858899106}, \ {-0.10925400611220527`, -0.5303300858899106, 0.2860307014088421}, { 0.5303300858899106, -0.2860307014088421, 0.10925400611220527`}, { 0.10925400611220527`, 0.5303300858899106, -0.2860307014088421}, {-0.5303300858899106, 0.2860307014088421, -0.10925400611220527`}, {0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.2860307014088421, 0.10925400611220527`, 0.5303300858899106}, {-0.462807396705479, -0.39528470752104744`, \ -0.06752268918443159}, { 0.21850801222441055`, -0.5720614028176841, 0}, {-0.39528470752104744`, 0.0675226891844316, 0.462807396705479}, {0.2860307014088421, -0.10925400611220527`, 0.5303300858899106}, { 0.39528470752104744`, -0.06752268918443159, -0.462807396705479}, \ {-0.2860307014088421, 0.10925400611220527`, -0.5303300858899106}, { 0.462807396705479, 0.39528470752104744`, 0.0675226891844316}, {-0.21850801222441055`, 0.5720614028176843, 0}, {-0.39528470752104744`, -0.06752268918443159, \ -0.462807396705479}, { 0.10925400611220527`, -0.5303300858899106, -0.2860307014088421}, \ {-0.5720614028176841, 0, 0.21850801222441055`}, {-0.06752268918443159, -0.462807396705479, 0.39528470752104744`}, { 0.5720614028176843, 0, -0.21850801222441055`}, {0.0675226891844316, 0.462807396705479, -0.39528470752104744`}, {0.39528470752104744`, 0.0675226891844316, 0.462807396705479}, {-0.10925400611220527`, 0.5303300858899106, 0.2860307014088421}, {-0.21850801222441055`, -0.5720614028176841, 0}, {0.462807396705479, -0.39528470752104744`, \ -0.06752268918443159}, {-0.2860307014088421, -0.10925400611220527`, 0.5303300858899106}, {0.2860307014088421, 0.10925400611220527`, -0.5303300858899106}, { 0.21850801222441055`, 0.5720614028176843, 0}, {-0.462807396705479, 0.39528470752104744`, 0.0675226891844316}, {-0.10925400611220527`, -0.5303300858899106, \ -0.2860307014088421}, {0.0675226891844316, -0.462807396705479, 0.39528470752104744`}, { 0.5720614028176843, 0, 0.21850801222441055`}, {-0.06752268918443159, 0.462807396705479, -0.39528470752104744`}, {-0.5720614028176841, 0, -0.21850801222441055`}, {0.10925400611220527`, 0.5303300858899106, 0.2860307014088421}, {-0.5303300858899106, -0.2860307014088421, \ -0.10925400611220527`}, {0.35355339059327373`, -0.35355339059327373`, 0.35355339059327373`}, {-0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, {0.5303300858899106, 0.2860307014088421, 0.10925400611220527`}, { 0.21850801222441055`, 0, -0.5720614028176841}, { 0, -0.5720614028176841, 0.21850801222441055`}, { 0.5720614028176843, -0.21850801222441055`, 0}, { 0, 0.5720614028176843, -0.21850801222441055`}, \ {-0.5720614028176841, 0.21850801222441055`, 0}, {-0.21850801222441055`, 0, 0.5720614028176843}, { 0.5303300858899106, -0.2860307014088421, -0.10925400611220527`}, \ {-0.35355339059327373`, -0.35355339059327373`, 0.35355339059327373`}, { 0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, {-0.5303300858899106, 0.2860307014088421, 0.10925400611220527`}, {-0.21850801222441055`, 0, -0.5720614028176841}, {-0.5720614028176841, \ -0.21850801222441055`, 0}, {0.5720614028176843, 0.21850801222441055`, 0}, { 0.21850801222441055`, 0, 0.5720614028176843}, {-0.06752268918443159, -0.462807396705479, \ -0.39528470752104744`}, {0.462807396705479, -0.39528470752104744`, 0.0675226891844316}, { 0, -0.21850801222441055`, 0.5720614028176843}, { 0, 0.21850801222441055`, -0.5720614028176841}, {0.0675226891844316, 0.462807396705479, 0.39528470752104744`}, {-0.462807396705479, 0.39528470752104744`, -0.06752268918443159}, { 0, -0.21850801222441055`, -0.5720614028176841}, { 0, 0.21850801222441055`, 0.5720614028176843}, {-0.39528470752104744`, -0.06752268918443159, 0.462807396705479}, {0.39528470752104744`, 0.0675226891844316, -0.462807396705479}, {-0.462807396705479, \ -0.39528470752104744`, 0.0675226891844316}, { 0.0675226891844316, -0.462807396705479, -0.39528470752104744`}, { 0.462807396705479, 0.39528470752104744`, -0.06752268918443159}, {-0.06752268918443159, 0.462807396705479, 0.39528470752104744`}, { 0.39528470752104744`, -0.06752268918443159, 0.462807396705479}, {-0.39528470752104744`, 0.0675226891844316, -0.462807396705479}, { 0, -0.5720614028176841, -0.21850801222441055`}, { 0, 0.5720614028176843, 0.21850801222441055`}}], CompressedData[" 1:eJwNw+nWoQAAAFBSRNKGNtpUyNauBSWVssSZR/heYP7O4893z7nyz98/P0Cr 1fr3G/wN9UCg0wZAoN2FOmAPbnfgbg/qwoMh0u8j+AgZYvigP0JHOIYOByhG j8kJMZ2QkylDE+SYmhIUM6YZime52VyccTNR4uccK4hzQWJ5SVjorKwqMquy uiYr4kJRNVFfiNpkvVpSm+WKWq23y40x2VBbYz0xtqq55xY7br/YmxK3O6i7 hXQw1YNkO5jvej7me33bxRzLsfuW51r94zhYLoNoelxOw2C8jabRNhwfw+3J vsBnF77Abnw6X2zAPQOxfYqBDEqTaydJryl0Szp51rnecijLb2Y5U3aFMlMK wdzNSr3Y6UJpCvp9k4DVGkyqZNMF17f7uureNvdbN5XbVa5V7UrrpXlbvmv5 vSenvXsZEaviuCIKIjJWR7o8FgYdlbQxyh718Fo/6utrNHxkz+vw+cpGr+f8 jTz45oE8GnTOI+9Xw7/Q9xx9kXUzYJ6DhmlqfPB8k08Gf9fkG/+cDtb3bB2+ h5Nvnfef89ffnz573/nEofcNYy/+BOH34nycS/D1gst/f29OFQ== "]]}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"compound\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], {1360.8000000000002, -12.666666666666668}, ImageScaled[{0.5, 1}], {360, 377}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True]}, {InsetBox[ Graphics3DBox[{ {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}, NCache[Rational[1, 2], 0.5]]}, {RGBColor[0, 1, 0], Opacity[0.1], PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, \ -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, { 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]]}}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox["\"second cube 20\[Hyphen]compound\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], PageWidth -> 200, TextAlignment -> Center], TextCell[ Style["second cube 20\[Hyphen]compound", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14]], PageWidth -> 200, TextAlignment -> Center]], TraditionalForm]], {194.4, -418.}, ImageScaled[{0.5, 1}], {360, 380}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}, NCache[Rational[1, 2], 0.5]]}, {RGBColor[1, 0, 0], Opacity[0.2], PolyhedronBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, {Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/( 3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/( 3 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.04672763736315429, -0.4129918634945738, -0.4497268599869668}, { 0.5720614028176843, 0, -0.21850801222441055`}, {-0.13504537836886318`, \ -0.5558929702514211, 0.21850801222441055`}, { 0.3902883870856668, -0.14290110675684736`, 0.4497268599869668}, { 0.1350453783688632, 0.5558929702514211, -0.21850801222441055`}, {-0.3902883870856668, 0.14290110675684736`, -0.4497268599869668}, {-0.04672763736315429, 0.4129918634945738, 0.4497268599869668}, {-0.5720614028176841, 0, 0.21850801222441055`}, {0.04672763736315429, -0.4129918634945738, 0.4497268599869668}, { 0.5720614028176843, 0, 0.21850801222441055`}, {-0.13504537836886318`, \ -0.5558929702514211, -0.21850801222441055`}, { 0.3902883870856668, -0.14290110675684736`, -0.4497268599869668}, { 0.1350453783688632, 0.5558929702514211, 0.21850801222441055`}, {-0.3902883870856668, 0.14290110675684736`, 0.4497268599869668}, {-0.04672763736315429, 0.4129918634945738, -0.4497268599869668}, {-0.5720614028176841, 0, -0.21850801222441055`}, { 0.059438472901300055`, -0.58477223835583, -0.17178037486125627`}, \ {0.58477223835583, -0.17178037486125627`, 0.059438472901300055`}, {-0.35355339059327373`, \ -0.35355339059327373`, 0.35355339059327373`}, {0.17178037486125627`, 0.059438472901300055`, 0.58477223835583}, {0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, \ {-0.17178037486125627`, -0.05943847290130004, -0.58477223835583}, \ {-0.05943847290130004, 0.58477223835583, 0.17178037486125627`}, {-0.58477223835583, 0.17178037486125627`, -0.05943847290130004}, \ {-0.49645449735012115`, -0.3146814816181036, -0.17178037486125627`}, { 0.17178037486125627`, -0.49645449735012115`, \ -0.3146814816181036}, {-0.3146814816181036, -0.17178037486125627`, 0.49645449735012115`}, { 0.35355339059327373`, -0.35355339059327373`, 0.35355339059327373`}, {0.3146814816181036, 0.17178037486125627`, -0.49645449735012115`}, \ {-0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, { 0.49645449735012115`, 0.3146814816181036, 0.17178037486125627`}, {-0.17178037486125627`, 0.49645449735012115`, 0.3146814816181036}, {-0.35355339059327373`, \ -0.35355339059327373`, -0.35355339059327373`}, {0.17178037486125627`, 0.059438472901300055`, -0.58477223835583}, { 0.059438472901300055`, -0.58477223835583, 0.17178037486125627`}, { 0.58477223835583, -0.17178037486125627`, -0.05943847290130004}, \ {-0.05943847290130004, 0.58477223835583, -0.17178037486125627`}, {-0.58477223835583, 0.17178037486125627`, 0.059438472901300055`}, { 0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.17178037486125627`, \ -0.05943847290130004, 0.58477223835583}, {-0.3146814816181036, -0.17178037486125627`, \ -0.49645449735012115`}, { 0.35355339059327373`, -0.35355339059327373`, \ -0.35355339059327373`}, {-0.17178037486125627`, 0.49645449735012115`, -0.3146814816181036}, {0.49645449735012115`, 0.3146814816181036, -0.17178037486125627`}, { 0.17178037486125627`, -0.49645449735012115`, 0.3146814816181036}, {-0.49645449735012115`, -0.3146814816181036, 0.17178037486125627`}, {0.3146814816181036, 0.17178037486125627`, 0.49645449735012115`}, {-0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.21850801222441055`, \ -0.5720614028176841, 0}, { 0.4497268599869668, -0.3902883870856668, -0.14290110675684736`}, \ {-0.21850801222441055`, -0.13504537836886318`, 0.5558929702514211}, { 0.4497268599869668, 0.04672763736315429, 0.4129918634945738}, { 0.21850801222441055`, 0.1350453783688632, -0.5558929702514211}, {-0.4497268599869668, \ -0.04672763736315429, -0.4129918634945738}, { 0.21850801222441055`, 0.5720614028176843, 0}, {-0.4497268599869668, 0.3902883870856668, 0.14290110675684736`}, {-0.14290110675684736`, \ -0.4497268599869668, -0.3902883870856668}, { 0.4129918634945738, -0.4497268599869668, 0.04672763736315429}, {-0.5558929702514211, -0.21850801222441055`, 0.1350453783688632}, { 0, -0.21850801222441055`, 0.5720614028176843}, { 0.5558929702514211, 0.21850801222441055`, -0.13504537836886318`}, { 0, 0.21850801222441055`, -0.5720614028176841}, { 0.14290110675684736`, 0.4497268599869668, 0.3902883870856668}, {-0.4129918634945738, 0.4497268599869668, -0.04672763736315429}, {-0.4497268599869668, 0.04672763736315429, -0.4129918634945738}, { 0.21850801222441055`, -0.13504537836886318`, \ -0.5558929702514211}, {-0.21850801222441055`, 0.5720614028176843, 0}, { 0.4497268599869668, 0.3902883870856668, -0.14290110675684736`}, { 0.21850801222441055`, -0.5720614028176841, 0}, {-0.4497268599869668, -0.3902883870856668, 0.14290110675684736`}, {0.4497268599869668, -0.04672763736315429, 0.4129918634945738}, {-0.21850801222441055`, 0.1350453783688632, 0.5558929702514211}, {-0.21850801222441055`, \ -0.13504537836886318`, -0.5558929702514211}, {0.4497268599869668, 0.04672763736315429, -0.4129918634945738}, {-0.4497268599869668, 0.3902883870856668, -0.14290110675684736`}, { 0.4497268599869668, -0.3902883870856668, 0.14290110675684736`}, { 0.21850801222441055`, 0.1350453783688632, 0.5558929702514211}, {-0.4497268599869668, -0.04672763736315429, 0.4129918634945738}, {-0.14290110675684736`, -0.4497268599869668, 0.3902883870856668}, { 0.4129918634945738, -0.4497268599869668, -0.04672763736315429}, \ {-0.5558929702514211, -0.21850801222441055`, -0.13504537836886318`}, { 0, -0.21850801222441055`, -0.5720614028176841}, { 0.5558929702514211, 0.21850801222441055`, 0.1350453783688632}, { 0, 0.21850801222441055`, 0.5720614028176843}, { 0.14290110675684736`, 0.4497268599869668, -0.3902883870856668}, {-0.4129918634945738, 0.4497268599869668, 0.04672763736315429}, {-0.4497268599869668, -0.3902883870856668, \ -0.14290110675684736`}, {-0.4497268599869668, 0.04672763736315429, 0.4129918634945738}, {0.21850801222441055`, -0.13504537836886318`, 0.5558929702514211}, { 0.4497268599869668, -0.04672763736315429, -0.4129918634945738}, \ {-0.21850801222441055`, 0.1350453783688632, -0.5558929702514211}, { 0.4497268599869668, 0.3902883870856668, 0.14290110675684736`}, { 0.3146814816181036, -0.17178037486125627`, \ -0.49645449735012115`}, {-0.49645449735012115`, 0.3146814816181036, -0.17178037486125627`}, {0.17178037486125627`, 0.49645449735012115`, -0.3146814816181036}, { 0.49645449735012115`, -0.3146814816181036, 0.17178037486125627`}, {-0.17178037486125627`, \ -0.49645449735012115`, 0.3146814816181036}, {-0.3146814816181036, 0.17178037486125627`, 0.49645449735012115`}, {-0.4129918634945738, -0.4497268599869668, \ -0.04672763736315429}, {0.14290110675684736`, -0.4497268599869668, 0.3902883870856668}, { 0.5558929702514211, -0.21850801222441055`, \ -0.13504537836886318`}, {-0.5558929702514211, 0.21850801222441055`, 0.1350453783688632}, {0.4129918634945738, 0.4497268599869668, 0.04672763736315429}, {-0.14290110675684736`, 0.4497268599869668, -0.3902883870856668}, {-0.17178037486125627`, 0.059438472901300055`, -0.58477223835583}, {-0.58477223835583, \ -0.17178037486125627`, -0.05943847290130004}, {-0.05943847290130004, \ -0.58477223835583, 0.17178037486125627`}, {0.58477223835583, 0.17178037486125627`, 0.059438472901300055`}, { 0.059438472901300055`, 0.58477223835583, -0.17178037486125627`}, { 0.17178037486125627`, -0.05943847290130004, 0.58477223835583}, {-0.17178037486125627`, -0.49645449735012115`, \ -0.3146814816181036}, { 0.49645449735012115`, -0.3146814816181036, \ -0.17178037486125627`}, {0.3146814816181036, -0.17178037486125627`, 0.49645449735012115`}, {-0.3146814816181036, 0.17178037486125627`, -0.49645449735012115`}, { 0.17178037486125627`, 0.49645449735012115`, 0.3146814816181036}, {-0.49645449735012115`, 0.3146814816181036, 0.17178037486125627`}, {-0.4129918634945738, -0.4497268599869668, 0.04672763736315429}, { 0.14290110675684736`, -0.4497268599869668, -0.3902883870856668}, { 0.5558929702514211, -0.21850801222441055`, 0.1350453783688632}, {-0.5558929702514211, 0.21850801222441055`, -0.13504537836886318`}, {0.4129918634945738, 0.4497268599869668, -0.04672763736315429}, \ {-0.14290110675684736`, 0.4497268599869668, 0.3902883870856668}, {-0.58477223835583, -0.17178037486125627`, 0.059438472901300055`}, {-0.05943847290130004, -0.58477223835583, \ -0.17178037486125627`}, {-0.17178037486125627`, 0.059438472901300055`, 0.58477223835583}, { 0.17178037486125627`, -0.05943847290130004, -0.58477223835583}, { 0.58477223835583, 0.17178037486125627`, -0.05943847290130004}, { 0.059438472901300055`, 0.58477223835583, 0.17178037486125627`}, {-0.04672763736315429, \ -0.4129918634945738, -0.4497268599869668}, {-0.3902883870856668, \ -0.14290110675684736`, 0.4497268599869668}, { 0.1350453783688632, -0.5558929702514211, 0.21850801222441055`}, { 0.3902883870856668, 0.14290110675684736`, -0.4497268599869668}, \ {-0.13504537836886318`, 0.5558929702514211, -0.21850801222441055`}, { 0.04672763736315429, 0.4129918634945738, 0.4497268599869668}, {-0.04672763736315429, -0.4129918634945738, 0.4497268599869668}, {-0.3902883870856668, -0.14290110675684736`, \ -0.4497268599869668}, { 0.1350453783688632, -0.5558929702514211, -0.21850801222441055`}, { 0.3902883870856668, 0.14290110675684736`, 0.4497268599869668}, {-0.13504537836886318`, 0.5558929702514211, 0.21850801222441055`}, {0.04672763736315429, 0.4129918634945738, -0.4497268599869668}}], CompressedData[" 1:eJwNwwk7wgAAAFCtJEsH0yFTTRjTsZGmTMVaB0rNnN2FkiNnh5R0SOpH877v IZkimwFGRkYq/wX/+TxAwOOLhABPOMoXjImEorFRATA6Ni6eAMXjUvk4KJFO iOUyuVQiAydkkqlpaHISUiunJpUKaFqlVqpViukphUozp4PnNDNaDTw7o5vT 6mGdflY7M6ufXzAgiGF5ybCALs8jS4tLy+jiwvwiajFhRpMFN2Mm84rFuIob sZVVM766srFG2DZsm6SNWN9c2yCtxJp1ndxctzq3HXZqy+6gHNsu+5bbuUW5 3NtOt8uzu0Pv7DJeesfr3/X4GA/t93kZn38vsE/uB4gQuR8KBvYOiD0yeBAi DoJH3GE4woYPw+zxUeSQO2EjJ8fc0fFJ9II5jZ6e0afM+dlFlI4xF7Fz+uw8 ls4kkEw6haaReCqRQZNIIhlHU/Eke3WZ5a6zl9zlVS57nWevuVz+is3nCjfY 7S1291C4fcCxm/u7h7t7/KaA3z8Xodfis+IRKj4+Pb++KF6hp5dHxcsT9VYq v1HvFapcfS+9VZyV96qzXHJW67UPGP5ofH7UtI06/Nn8bGibtXpT+9Vuydtf HfBL3u202uA32Ol+y1vf3X5P9NPrA7+i3u+g/zMEfoHh4Ec0GP4Bm/J/dw== "]]}}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"second cube 20\[Hyphen]compound\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], {583.2, -418.}, ImageScaled[{0.5, 1}], {360, 377}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ {RGBColor[0, 1, 0], Opacity[0.1], PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, \ -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, { 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]]}, {RGBColor[1, 0, 0], Opacity[0.2], PolyhedronBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, {Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/( 3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/( 3 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.04672763736315429, -0.4129918634945738, -0.4497268599869668}, { 0.5720614028176843, 0, -0.21850801222441055`}, {-0.13504537836886318`, \ -0.5558929702514211, 0.21850801222441055`}, { 0.3902883870856668, -0.14290110675684736`, 0.4497268599869668}, { 0.1350453783688632, 0.5558929702514211, -0.21850801222441055`}, {-0.3902883870856668, 0.14290110675684736`, -0.4497268599869668}, {-0.04672763736315429, 0.4129918634945738, 0.4497268599869668}, {-0.5720614028176841, 0, 0.21850801222441055`}, {0.04672763736315429, -0.4129918634945738, 0.4497268599869668}, { 0.5720614028176843, 0, 0.21850801222441055`}, {-0.13504537836886318`, \ -0.5558929702514211, -0.21850801222441055`}, { 0.3902883870856668, -0.14290110675684736`, -0.4497268599869668}, { 0.1350453783688632, 0.5558929702514211, 0.21850801222441055`}, {-0.3902883870856668, 0.14290110675684736`, 0.4497268599869668}, {-0.04672763736315429, 0.4129918634945738, -0.4497268599869668}, {-0.5720614028176841, 0, -0.21850801222441055`}, { 0.059438472901300055`, -0.58477223835583, -0.17178037486125627`}, \ {0.58477223835583, -0.17178037486125627`, 0.059438472901300055`}, {-0.35355339059327373`, \ -0.35355339059327373`, 0.35355339059327373`}, {0.17178037486125627`, 0.059438472901300055`, 0.58477223835583}, {0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, \ {-0.17178037486125627`, -0.05943847290130004, -0.58477223835583}, \ {-0.05943847290130004, 0.58477223835583, 0.17178037486125627`}, {-0.58477223835583, 0.17178037486125627`, -0.05943847290130004}, \ {-0.49645449735012115`, -0.3146814816181036, -0.17178037486125627`}, { 0.17178037486125627`, -0.49645449735012115`, \ -0.3146814816181036}, {-0.3146814816181036, -0.17178037486125627`, 0.49645449735012115`}, { 0.35355339059327373`, -0.35355339059327373`, 0.35355339059327373`}, {0.3146814816181036, 0.17178037486125627`, -0.49645449735012115`}, \ {-0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, { 0.49645449735012115`, 0.3146814816181036, 0.17178037486125627`}, {-0.17178037486125627`, 0.49645449735012115`, 0.3146814816181036}, {-0.35355339059327373`, \ -0.35355339059327373`, -0.35355339059327373`}, {0.17178037486125627`, 0.059438472901300055`, -0.58477223835583}, { 0.059438472901300055`, -0.58477223835583, 0.17178037486125627`}, { 0.58477223835583, -0.17178037486125627`, -0.05943847290130004}, \ {-0.05943847290130004, 0.58477223835583, -0.17178037486125627`}, {-0.58477223835583, 0.17178037486125627`, 0.059438472901300055`}, { 0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.17178037486125627`, \ -0.05943847290130004, 0.58477223835583}, {-0.3146814816181036, -0.17178037486125627`, \ -0.49645449735012115`}, { 0.35355339059327373`, -0.35355339059327373`, \ -0.35355339059327373`}, {-0.17178037486125627`, 0.49645449735012115`, -0.3146814816181036}, {0.49645449735012115`, 0.3146814816181036, -0.17178037486125627`}, { 0.17178037486125627`, -0.49645449735012115`, 0.3146814816181036}, {-0.49645449735012115`, -0.3146814816181036, 0.17178037486125627`}, {0.3146814816181036, 0.17178037486125627`, 0.49645449735012115`}, {-0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.21850801222441055`, \ -0.5720614028176841, 0}, { 0.4497268599869668, -0.3902883870856668, -0.14290110675684736`}, \ {-0.21850801222441055`, -0.13504537836886318`, 0.5558929702514211}, { 0.4497268599869668, 0.04672763736315429, 0.4129918634945738}, { 0.21850801222441055`, 0.1350453783688632, -0.5558929702514211}, {-0.4497268599869668, \ -0.04672763736315429, -0.4129918634945738}, { 0.21850801222441055`, 0.5720614028176843, 0}, {-0.4497268599869668, 0.3902883870856668, 0.14290110675684736`}, {-0.14290110675684736`, \ -0.4497268599869668, -0.3902883870856668}, { 0.4129918634945738, -0.4497268599869668, 0.04672763736315429}, {-0.5558929702514211, -0.21850801222441055`, 0.1350453783688632}, { 0, -0.21850801222441055`, 0.5720614028176843}, { 0.5558929702514211, 0.21850801222441055`, -0.13504537836886318`}, { 0, 0.21850801222441055`, -0.5720614028176841}, { 0.14290110675684736`, 0.4497268599869668, 0.3902883870856668}, {-0.4129918634945738, 0.4497268599869668, -0.04672763736315429}, {-0.4497268599869668, 0.04672763736315429, -0.4129918634945738}, { 0.21850801222441055`, -0.13504537836886318`, \ -0.5558929702514211}, {-0.21850801222441055`, 0.5720614028176843, 0}, { 0.4497268599869668, 0.3902883870856668, -0.14290110675684736`}, { 0.21850801222441055`, -0.5720614028176841, 0}, {-0.4497268599869668, -0.3902883870856668, 0.14290110675684736`}, {0.4497268599869668, -0.04672763736315429, 0.4129918634945738}, {-0.21850801222441055`, 0.1350453783688632, 0.5558929702514211}, {-0.21850801222441055`, \ -0.13504537836886318`, -0.5558929702514211}, {0.4497268599869668, 0.04672763736315429, -0.4129918634945738}, {-0.4497268599869668, 0.3902883870856668, -0.14290110675684736`}, { 0.4497268599869668, -0.3902883870856668, 0.14290110675684736`}, { 0.21850801222441055`, 0.1350453783688632, 0.5558929702514211}, {-0.4497268599869668, -0.04672763736315429, 0.4129918634945738}, {-0.14290110675684736`, -0.4497268599869668, 0.3902883870856668}, { 0.4129918634945738, -0.4497268599869668, -0.04672763736315429}, \ {-0.5558929702514211, -0.21850801222441055`, -0.13504537836886318`}, { 0, -0.21850801222441055`, -0.5720614028176841}, { 0.5558929702514211, 0.21850801222441055`, 0.1350453783688632}, { 0, 0.21850801222441055`, 0.5720614028176843}, { 0.14290110675684736`, 0.4497268599869668, -0.3902883870856668}, {-0.4129918634945738, 0.4497268599869668, 0.04672763736315429}, {-0.4497268599869668, -0.3902883870856668, \ -0.14290110675684736`}, {-0.4497268599869668, 0.04672763736315429, 0.4129918634945738}, {0.21850801222441055`, -0.13504537836886318`, 0.5558929702514211}, { 0.4497268599869668, -0.04672763736315429, -0.4129918634945738}, \ {-0.21850801222441055`, 0.1350453783688632, -0.5558929702514211}, { 0.4497268599869668, 0.3902883870856668, 0.14290110675684736`}, { 0.3146814816181036, -0.17178037486125627`, \ -0.49645449735012115`}, {-0.49645449735012115`, 0.3146814816181036, -0.17178037486125627`}, {0.17178037486125627`, 0.49645449735012115`, -0.3146814816181036}, { 0.49645449735012115`, -0.3146814816181036, 0.17178037486125627`}, {-0.17178037486125627`, \ -0.49645449735012115`, 0.3146814816181036}, {-0.3146814816181036, 0.17178037486125627`, 0.49645449735012115`}, {-0.4129918634945738, -0.4497268599869668, \ -0.04672763736315429}, {0.14290110675684736`, -0.4497268599869668, 0.3902883870856668}, { 0.5558929702514211, -0.21850801222441055`, \ -0.13504537836886318`}, {-0.5558929702514211, 0.21850801222441055`, 0.1350453783688632}, {0.4129918634945738, 0.4497268599869668, 0.04672763736315429}, {-0.14290110675684736`, 0.4497268599869668, -0.3902883870856668}, {-0.17178037486125627`, 0.059438472901300055`, -0.58477223835583}, {-0.58477223835583, \ -0.17178037486125627`, -0.05943847290130004}, {-0.05943847290130004, \ -0.58477223835583, 0.17178037486125627`}, {0.58477223835583, 0.17178037486125627`, 0.059438472901300055`}, { 0.059438472901300055`, 0.58477223835583, -0.17178037486125627`}, { 0.17178037486125627`, -0.05943847290130004, 0.58477223835583}, {-0.17178037486125627`, -0.49645449735012115`, \ -0.3146814816181036}, { 0.49645449735012115`, -0.3146814816181036, \ -0.17178037486125627`}, {0.3146814816181036, -0.17178037486125627`, 0.49645449735012115`}, {-0.3146814816181036, 0.17178037486125627`, -0.49645449735012115`}, { 0.17178037486125627`, 0.49645449735012115`, 0.3146814816181036}, {-0.49645449735012115`, 0.3146814816181036, 0.17178037486125627`}, {-0.4129918634945738, -0.4497268599869668, 0.04672763736315429}, { 0.14290110675684736`, -0.4497268599869668, -0.3902883870856668}, { 0.5558929702514211, -0.21850801222441055`, 0.1350453783688632}, {-0.5558929702514211, 0.21850801222441055`, -0.13504537836886318`}, {0.4129918634945738, 0.4497268599869668, -0.04672763736315429}, \ {-0.14290110675684736`, 0.4497268599869668, 0.3902883870856668}, {-0.58477223835583, -0.17178037486125627`, 0.059438472901300055`}, {-0.05943847290130004, -0.58477223835583, \ -0.17178037486125627`}, {-0.17178037486125627`, 0.059438472901300055`, 0.58477223835583}, { 0.17178037486125627`, -0.05943847290130004, -0.58477223835583}, { 0.58477223835583, 0.17178037486125627`, -0.05943847290130004}, { 0.059438472901300055`, 0.58477223835583, 0.17178037486125627`}, {-0.04672763736315429, \ -0.4129918634945738, -0.4497268599869668}, {-0.3902883870856668, \ -0.14290110675684736`, 0.4497268599869668}, { 0.1350453783688632, -0.5558929702514211, 0.21850801222441055`}, { 0.3902883870856668, 0.14290110675684736`, -0.4497268599869668}, \ {-0.13504537836886318`, 0.5558929702514211, -0.21850801222441055`}, { 0.04672763736315429, 0.4129918634945738, 0.4497268599869668}, {-0.04672763736315429, -0.4129918634945738, 0.4497268599869668}, {-0.3902883870856668, -0.14290110675684736`, \ -0.4497268599869668}, { 0.1350453783688632, -0.5558929702514211, -0.21850801222441055`}, { 0.3902883870856668, 0.14290110675684736`, 0.4497268599869668}, {-0.13504537836886318`, 0.5558929702514211, 0.21850801222441055`}, {0.04672763736315429, 0.4129918634945738, -0.4497268599869668}}], CompressedData[" 1:eJwNwwk7wgAAAFCtJEsH0yFTTRjTsZGmTMVaB0rNnN2FkiNnh5R0SOpH877v IZkimwFGRkYq/wX/+TxAwOOLhABPOMoXjImEorFRATA6Ni6eAMXjUvk4KJFO iOUyuVQiAydkkqlpaHISUiunJpUKaFqlVqpViukphUozp4PnNDNaDTw7o5vT 6mGdflY7M6ufXzAgiGF5ybCALs8jS4tLy+jiwvwiajFhRpMFN2Mm84rFuIob sZVVM766srFG2DZsm6SNWN9c2yCtxJp1ndxctzq3HXZqy+6gHNsu+5bbuUW5 3NtOt8uzu0Pv7DJeesfr3/X4GA/t93kZn38vsE/uB4gQuR8KBvYOiD0yeBAi DoJH3GE4woYPw+zxUeSQO2EjJ8fc0fFJ9II5jZ6e0afM+dlFlI4xF7Fz+uw8 ls4kkEw6haaReCqRQZNIIhlHU/Eke3WZ5a6zl9zlVS57nWevuVz+is3nCjfY 7S1291C4fcCxm/u7h7t7/KaA3z8Xodfis+IRKj4+Pb++KF6hp5dHxcsT9VYq v1HvFapcfS+9VZyV96qzXHJW67UPGP5ofH7UtI06/Nn8bGibtXpT+9Vuydtf HfBL3u202uA32Ol+y1vf3X5P9NPrA7+i3u+g/zMEfoHh4Ec0GP4Bm/J/dw== "]]}, {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}, NCache[Rational[1, 2], 0.5]]}}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"compound with midsphere\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], {972., -418.}, ImageScaled[{0.5, 1}], {360, 377}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, \ -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, \ {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]], PolyhedronBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) ( 1 - 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) ( 1 - 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) ( 1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) ( 1 - 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) ( 1 - 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] (Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ( Rational[1, 2] (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) ( 1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(3 + 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2], 2^Rational[-1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) ( 1 - 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, { 2^Rational[-1, 2]/(3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 1, 0], (Rational[1, 4] 2^Rational[-1, 2]) ( 1 - 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), 2^Rational[-1, 2] Root[-1 + #^2 + #^4& , 2, 0], (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 4] (1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.04672763736315429, -0.4129918634945738, -0.4497268599869668}, { 0.5720614028176843, 0, -0.21850801222441055`}, {-0.13504537836886318`, \ -0.5558929702514211, 0.21850801222441055`}, { 0.3902883870856668, -0.14290110675684736`, 0.4497268599869668}, { 0.1350453783688632, 0.5558929702514211, -0.21850801222441055`}, {-0.3902883870856668, 0.14290110675684736`, -0.4497268599869668}, {-0.04672763736315429, 0.4129918634945738, 0.4497268599869668}, {-0.5720614028176841, 0, 0.21850801222441055`}, {0.04672763736315429, -0.4129918634945738, 0.4497268599869668}, { 0.5720614028176843, 0, 0.21850801222441055`}, {-0.13504537836886318`, \ -0.5558929702514211, -0.21850801222441055`}, { 0.3902883870856668, -0.14290110675684736`, -0.4497268599869668}, { 0.1350453783688632, 0.5558929702514211, 0.21850801222441055`}, {-0.3902883870856668, 0.14290110675684736`, 0.4497268599869668}, {-0.04672763736315429, 0.4129918634945738, -0.4497268599869668}, {-0.5720614028176841, 0, -0.21850801222441055`}, { 0.059438472901300055`, -0.58477223835583, -0.17178037486125627`}, { 0.58477223835583, -0.17178037486125627`, 0.059438472901300055`}, {-0.35355339059327373`, \ -0.35355339059327373`, 0.35355339059327373`}, {0.17178037486125627`, 0.059438472901300055`, 0.58477223835583}, {0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, \ {-0.17178037486125627`, -0.05943847290130004, -0.58477223835583}, \ {-0.05943847290130004, 0.58477223835583, 0.17178037486125627`}, {-0.58477223835583, 0.17178037486125627`, -0.05943847290130004}, \ {-0.49645449735012115`, -0.3146814816181036, -0.17178037486125627`}, { 0.17178037486125627`, -0.49645449735012115`, -0.3146814816181036}, \ {-0.3146814816181036, -0.17178037486125627`, 0.49645449735012115`}, { 0.35355339059327373`, -0.35355339059327373`, 0.35355339059327373`}, {0.3146814816181036, 0.17178037486125627`, -0.49645449735012115`}, \ {-0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, { 0.49645449735012115`, 0.3146814816181036, 0.17178037486125627`}, {-0.17178037486125627`, 0.49645449735012115`, 0.3146814816181036}, {-0.35355339059327373`, \ -0.35355339059327373`, -0.35355339059327373`}, {0.17178037486125627`, 0.059438472901300055`, -0.58477223835583}, { 0.059438472901300055`, -0.58477223835583, 0.17178037486125627`}, { 0.58477223835583, -0.17178037486125627`, -0.05943847290130004}, \ {-0.05943847290130004, 0.58477223835583, -0.17178037486125627`}, {-0.58477223835583, 0.17178037486125627`, 0.059438472901300055`}, { 0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.17178037486125627`, \ -0.05943847290130004, 0.58477223835583}, {-0.3146814816181036, -0.17178037486125627`, \ -0.49645449735012115`}, { 0.35355339059327373`, -0.35355339059327373`, \ -0.35355339059327373`}, {-0.17178037486125627`, 0.49645449735012115`, -0.3146814816181036}, {0.49645449735012115`, 0.3146814816181036, -0.17178037486125627`}, { 0.17178037486125627`, -0.49645449735012115`, 0.3146814816181036}, {-0.49645449735012115`, -0.3146814816181036, 0.17178037486125627`}, {0.3146814816181036, 0.17178037486125627`, 0.49645449735012115`}, {-0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.21850801222441055`, -0.5720614028176841, 0}, {0.4497268599869668, -0.3902883870856668, \ -0.14290110675684736`}, {-0.21850801222441055`, -0.13504537836886318`, 0.5558929702514211}, {0.4497268599869668, 0.04672763736315429, 0.4129918634945738}, {0.21850801222441055`, 0.1350453783688632, -0.5558929702514211}, {-0.4497268599869668, \ -0.04672763736315429, -0.4129918634945738}, { 0.21850801222441055`, 0.5720614028176843, 0}, {-0.4497268599869668, 0.3902883870856668, 0.14290110675684736`}, {-0.14290110675684736`, \ -0.4497268599869668, -0.3902883870856668}, { 0.4129918634945738, -0.4497268599869668, 0.04672763736315429}, {-0.5558929702514211, -0.21850801222441055`, 0.1350453783688632}, { 0, -0.21850801222441055`, 0.5720614028176843}, {0.5558929702514211, 0.21850801222441055`, -0.13504537836886318`}, { 0, 0.21850801222441055`, -0.5720614028176841}, { 0.14290110675684736`, 0.4497268599869668, 0.3902883870856668}, {-0.4129918634945738, 0.4497268599869668, -0.04672763736315429}, {-0.4497268599869668, 0.04672763736315429, -0.4129918634945738}, { 0.21850801222441055`, -0.13504537836886318`, -0.5558929702514211}, \ {-0.21850801222441055`, 0.5720614028176843, 0}, {0.4497268599869668, 0.3902883870856668, -0.14290110675684736`}, { 0.21850801222441055`, -0.5720614028176841, 0}, {-0.4497268599869668, -0.3902883870856668, 0.14290110675684736`}, {0.4497268599869668, -0.04672763736315429, 0.4129918634945738}, {-0.21850801222441055`, 0.1350453783688632, 0.5558929702514211}, {-0.21850801222441055`, \ -0.13504537836886318`, -0.5558929702514211}, {0.4497268599869668, 0.04672763736315429, -0.4129918634945738}, {-0.4497268599869668, 0.3902883870856668, -0.14290110675684736`}, { 0.4497268599869668, -0.3902883870856668, 0.14290110675684736`}, { 0.21850801222441055`, 0.1350453783688632, 0.5558929702514211}, {-0.4497268599869668, -0.04672763736315429, 0.4129918634945738}, {-0.14290110675684736`, -0.4497268599869668, 0.3902883870856668}, { 0.4129918634945738, -0.4497268599869668, -0.04672763736315429}, \ {-0.5558929702514211, -0.21850801222441055`, -0.13504537836886318`}, { 0, -0.21850801222441055`, -0.5720614028176841}, { 0.5558929702514211, 0.21850801222441055`, 0.1350453783688632}, { 0, 0.21850801222441055`, 0.5720614028176843}, { 0.14290110675684736`, 0.4497268599869668, -0.3902883870856668}, {-0.4129918634945738, 0.4497268599869668, 0.04672763736315429}, {-0.4497268599869668, -0.3902883870856668, \ -0.14290110675684736`}, {-0.4497268599869668, 0.04672763736315429, 0.4129918634945738}, {0.21850801222441055`, -0.13504537836886318`, 0.5558929702514211}, { 0.4497268599869668, -0.04672763736315429, -0.4129918634945738}, \ {-0.21850801222441055`, 0.1350453783688632, -0.5558929702514211}, { 0.4497268599869668, 0.3902883870856668, 0.14290110675684736`}, { 0.3146814816181036, -0.17178037486125627`, -0.49645449735012115`}, \ {-0.49645449735012115`, 0.3146814816181036, -0.17178037486125627`}, { 0.17178037486125627`, 0.49645449735012115`, -0.3146814816181036}, { 0.49645449735012115`, -0.3146814816181036, 0.17178037486125627`}, {-0.17178037486125627`, \ -0.49645449735012115`, 0.3146814816181036}, {-0.3146814816181036, 0.17178037486125627`, 0.49645449735012115`}, {-0.4129918634945738, -0.4497268599869668, \ -0.04672763736315429}, {0.14290110675684736`, -0.4497268599869668, 0.3902883870856668}, { 0.5558929702514211, -0.21850801222441055`, -0.13504537836886318`}, \ {-0.5558929702514211, 0.21850801222441055`, 0.1350453783688632}, { 0.4129918634945738, 0.4497268599869668, 0.04672763736315429}, {-0.14290110675684736`, 0.4497268599869668, -0.3902883870856668}, {-0.17178037486125627`, 0.059438472901300055`, -0.58477223835583}, {-0.58477223835583, \ -0.17178037486125627`, -0.05943847290130004}, {-0.05943847290130004, \ -0.58477223835583, 0.17178037486125627`}, {0.58477223835583, 0.17178037486125627`, 0.059438472901300055`}, { 0.059438472901300055`, 0.58477223835583, -0.17178037486125627`}, { 0.17178037486125627`, -0.05943847290130004, 0.58477223835583}, {-0.17178037486125627`, -0.49645449735012115`, \ -0.3146814816181036}, { 0.49645449735012115`, -0.3146814816181036, -0.17178037486125627`}, \ {0.3146814816181036, -0.17178037486125627`, 0.49645449735012115`}, {-0.3146814816181036, 0.17178037486125627`, -0.49645449735012115`}, { 0.17178037486125627`, 0.49645449735012115`, 0.3146814816181036}, {-0.49645449735012115`, 0.3146814816181036, 0.17178037486125627`}, {-0.4129918634945738, -0.4497268599869668, 0.04672763736315429}, { 0.14290110675684736`, -0.4497268599869668, -0.3902883870856668}, { 0.5558929702514211, -0.21850801222441055`, 0.1350453783688632}, {-0.5558929702514211, 0.21850801222441055`, -0.13504537836886318`}, {0.4129918634945738, 0.4497268599869668, -0.04672763736315429}, {-0.14290110675684736`, 0.4497268599869668, 0.3902883870856668}, {-0.58477223835583, -0.17178037486125627`, 0.059438472901300055`}, {-0.05943847290130004, -0.58477223835583, \ -0.17178037486125627`}, {-0.17178037486125627`, 0.059438472901300055`, 0.58477223835583}, { 0.17178037486125627`, -0.05943847290130004, -0.58477223835583}, { 0.58477223835583, 0.17178037486125627`, -0.05943847290130004}, { 0.059438472901300055`, 0.58477223835583, 0.17178037486125627`}, {-0.04672763736315429, -0.4129918634945738, \ -0.4497268599869668}, {-0.3902883870856668, -0.14290110675684736`, 0.4497268599869668}, {0.1350453783688632, -0.5558929702514211, 0.21850801222441055`}, {0.3902883870856668, 0.14290110675684736`, -0.4497268599869668}, {-0.13504537836886318`, 0.5558929702514211, -0.21850801222441055`}, {0.04672763736315429, 0.4129918634945738, 0.4497268599869668}, {-0.04672763736315429, -0.4129918634945738, 0.4497268599869668}, {-0.3902883870856668, -0.14290110675684736`, \ -0.4497268599869668}, { 0.1350453783688632, -0.5558929702514211, -0.21850801222441055`}, { 0.3902883870856668, 0.14290110675684736`, 0.4497268599869668}, {-0.13504537836886318`, 0.5558929702514211, 0.21850801222441055`}, {0.04672763736315429, 0.4129918634945738, -0.4497268599869668}}], CompressedData[" 1:eJwNwwk7wgAAAFCtJEsH0yFTTRjTsZGmTMVaB0rNnN2FkiNnh5R0SOpH877v IZkimwFGRkYq/wX/+TxAwOOLhABPOMoXjImEorFRATA6Ni6eAMXjUvk4KJFO iOUyuVQiAydkkqlpaHISUiunJpUKaFqlVqpViukphUozp4PnNDNaDTw7o5vT 6mGdflY7M6ufXzAgiGF5ybCALs8jS4tLy+jiwvwiajFhRpMFN2Mm84rFuIob sZVVM766srFG2DZsm6SNWN9c2yCtxJp1ndxctzq3HXZqy+6gHNsu+5bbuUW5 3NtOt8uzu0Pv7DJeesfr3/X4GA/t93kZn38vsE/uB4gQuR8KBvYOiD0yeBAi DoJH3GE4woYPw+zxUeSQO2EjJ8fc0fFJ9II5jZ6e0afM+dlFlI4xF7Fz+uw8 ls4kkEw6haaReCqRQZNIIhlHU/Eke3WZ5a6zl9zlVS57nWevuVz+is3nCjfY 7S1291C4fcCxm/u7h7t7/KaA3z8Xodfis+IRKj4+Pb++KF6hp5dHxcsT9VYq v1HvFapcfS+9VZyV96qzXHJW67UPGP5ofH7UtI06/Nn8bGibtXpT+9Vuydtf HfBL3u202uA32Ol+y1vf3X5P9NPrA7+i3u+g/zMEfoHh4Ec0GP4Bm/J/dw== "]]}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"compound\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], {1360.8000000000002, -418.}, ImageScaled[{0.5, 1}], {360, 377}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True]}}, StyleBox[{{}, {LineBox[{{0, 0}, {0, -405.3333333333333}}], LineBox[{{0, -405.3333333333333}, {0, -810.6666666666666}}], LineBox[{{388.8, 0}, {388.8, -405.3333333333333}}], LineBox[{{388.8, -405.3333333333333}, {388.8, -810.6666666666666}}], LineBox[{{777.6, 0}, {777.6, -405.3333333333333}}], LineBox[{{777.6, -405.3333333333333}, {777.6, -810.6666666666666}}], LineBox[{{1166.4, 0}, {1166.4, -405.3333333333333}}], LineBox[{{1166.4, -405.3333333333333}, {1166.4, -810.6666666666666}}], LineBox[{{1555.2, 0}, {1555.2, -405.3333333333333}}], LineBox[{{1555.2, -405.3333333333333}, {1555.2, -810.6666666666666}}], LineBox[{{0, 0}, {388.8, 0}}], LineBox[{{388.8, 0}, {777.6, 0}}], LineBox[{{777.6, 0}, {1166.4, 0}}], LineBox[{{1166.4, 0}, {1555.2, 0}}], LineBox[{{0, -405.3333333333333}, {388.8, -405.3333333333333}}], LineBox[{{388.8, -405.3333333333333}, {777.6, -405.3333333333333}}], LineBox[{{777.6, -405.3333333333333}, {1166.4, -405.3333333333333}}], LineBox[{{1166.4, -405.3333333333333}, {1555.2, -405.3333333333333}}], LineBox[{{0, -810.6666666666666}, {388.8, -810.6666666666666}}], LineBox[{{388.8, -810.6666666666666}, {777.6, -810.6666666666666}}], LineBox[{{777.6, -810.6666666666666}, {1166.4, -810.6666666666666}}], LineBox[{{1166.4, -810.6666666666666}, {1555.2, -810.6666666666666}}]}}, Antialiasing->False]}, ImageSize->800, PlotRangePadding->{6, 5}]], "Output", CellLabel->"Out[6]=",ExpressionUUID->"0E60BC40-CB9D-4A5E-BCDA-E09BE6C3E60A"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Interior and convex hull", "Subsection",ExpressionUUID->"CE20DE49-9D57-4292-9605-B75739A06D96"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphicsGrid", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"style", "=", RowBox[{"Directive", "[", RowBox[{"Black", ",", "Italic", ",", RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", "16"}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"TextCell", "[", RowBox[{ RowBox[{"Style", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", "style"}], "]"}], ",", RowBox[{"PageWidth", "\[Rule]", "200"}], ",", RowBox[{"TextAlignment", "\[Rule]", "Center"}]}], "]"}]}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"AbsoluteThickness", "[", ".1", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", RowBox[{"Opacity", "[", ".8", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{ "pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "}"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "style"}], "]"}]}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"EdgeForm", "[", "None", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".7", "]"}], ",", RowBox[{"EdgeForm", "[", RowBox[{"Thickness", "[", ".005", "]"}], "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{ "pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "}"}]}], "}"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "style"}], "]"}]}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]}], "\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"pname", ",", "variants"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"Dividers", "\[Rule]", "All"}], ",", RowBox[{"ImageSize", "\[Rule]", "700"}]}], "]"}]], "Input", CellLabel->"In[3]:=",ExpressionUUID->"3E4E1199-2E28-412E-9C1A-71679196038E"], Cell[BoxData[ GraphicsBox[{{}, {{InsetBox[ Graphics3DBox[ PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]], Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox["\"first octahedron 20\[Hyphen]compound\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 16], StripOnInput -> False], TraditionalForm]], PageWidth -> 200, TextAlignment -> Center], TextCell[ Style["first octahedron 20\[Hyphen]compound", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 16]], PageWidth -> 200, TextAlignment -> Center]], TraditionalForm]], {193.5, -203.2}, ImageScaled[{0.5, 0.5}], {360, 381}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[ {AbsoluteThickness[ 0.1], {Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, \ -0.17677669529663687`, 0.639584092002116}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, { 0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, \ -0.06752268918443159, -0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{ Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, \ {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{ Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}}]], Line3DBox[ NCache[{{ Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, { 0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, \ -0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{ Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, { 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{ Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, \ {-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{ Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{ Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, \ {-0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, \ -0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{ Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, { 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}}]], Line3DBox[ NCache[{{ Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}}]], Line3DBox[ NCache[{{ Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, \ {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{ Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, { 0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[ 1, 2])}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}}]], Line3DBox[ NCache[{{ Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.46280739670547905`, \ -0.17677669529663687`, -0.5045387136332526}}]], Line3DBox[ NCache[{{ Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, \ -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, \ -0.06752268918443159, 0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.5303300858899106, \ -0.06752268918443159, 0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, \ -0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, \ {-0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{ Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {-0.46280739670547905`, \ -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{ 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, { 0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, {-0.5303300858899106, \ -0.06752268918443159, -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, \ -0.46280739670547905`, 0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, { 0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, \ {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {-0.06752268918443159, \ -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.5045387136332526, \ -0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{ Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, \ {-0.06752268918443159, -0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{ Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {-0.06752268918443159, \ -0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[ 1, 2])}}, {{-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, \ -0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, \ {-0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, { 0.06752268918443158, -0.46280739670547905`, \ -0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, \ -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, {0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, \ -0.06752268918443159, 0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.5045387136332526, \ -0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, \ {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{ Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{ Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, {-0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}}]], Line3DBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]], Line3DBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, \ -0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{ 0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, { 0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, { 0.06752268918443158, -0.46280739670547905`, \ -0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.06752268918443159, \ -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}}]], Line3DBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.5720614028176843, \ -0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, \ {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, \ {-0.06752268918443159, -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{ 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.46280739670547905`, \ -0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{ 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}, \ {0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{ Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}, \ {-0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, \ {0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, \ {0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]], Line3DBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, \ {-0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{ 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, \ {-0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.24429938448106847`, \ -0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{ Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{ Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.17677669529663687`, \ -0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[ 1, 2])}}, {{-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, { 0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, \ -0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, \ -0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, \ -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, { 0.06752268918443158, -0.46280739670547905`, \ -0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, \ {-0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{ Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, { 0.06752268918443158, -0.46280739670547905`, \ -0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, \ -0.06752268918443159, -0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[ 1, 2])}}, {{-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[ 1, 2])}}, {{-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.639584092002116, \ -0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}, \ {-0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, \ {-0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, \ {-0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}, { 0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, \ {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{ Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, \ {-0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, \ -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}, \ {-0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{ Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}]], Line3DBox[ NCache[{{ Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{ 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, {-0.21850801222441052`, \ -0.5720614028176843, -0.35355339059327373`}}]]}, {Opacity[0.8], PolyhedronBox[{{-0.218508, 0, -0.353553}, {-0.0946325, -0.0946325, -0.40087}, {-0.135045, \ -0.218508, -0.353553}, {-0.247751, -0.153119, -0.306237}, {-0.153119, 0.306237, 0.247751}, {-0.218508, 0.353553, 0.135045}, {-0.306237, 0.247751, 0.153119}, {-0.353553, 0.135045, 0.218508}, {-0.247751, 0.153119, 0.306237}, {-0.135045, 0.218508, 0.353553}, {0.0946325, 0.0946325, 0.40087}, {0.218508, 0, 0.353553}, {0.247751, 0.153119, 0.306237}, {0.135045, 0.218508, 0.353553}, {-0.153119, 0.306237, -0.247751}, {-0.218508, 0.353553, -0.135045}, {-0.0946325, 0.40087, -0.0946325}, { 0, 0.353553, -0.218508}, {0.306237, 0.247751, -0.153119}, { 0.353553, 0.218508, 0}, {0.40087, 0.0946325, -0.0946325}, { 0.353553, 0.135045, -0.218508}, {0.0946325, -0.40087, 0.0946325}, { 0.218508, -0.353553, 0.135045}, {0.153119, -0.306237, 0.247751}, { 0, -0.353553, 0.218508}, {-0.306237, -0.247751, 0.153119}, {-0.353553, -0.135045, 0.218508}, {-0.40087, -0.0946325, 0.0946325}, {-0.353553, -0.218508, 0}, { 0.353553, -0.135045, -0.218508}, { 0.306237, -0.247751, -0.153119}, { 0.218508, -0.353553, -0.135045}, { 0.153119, -0.306237, -0.247751}, { 0.135045, -0.218508, -0.353553}, { 0.247751, -0.153119, -0.306237}, {-0.153119, -0.306237, \ -0.247751}, {-0.218508, -0.353553, -0.135045}, {-0.306237, -0.247751, \ -0.153119}, {-0.353553, -0.135045, -0.218508}, {-0.218508, 0, 0.353553}, {-0.0946325, 0.0946325, 0.40087}, {0.353553, 0.135045, 0.218508}, {0.306237, 0.247751, 0.153119}, {0.218508, 0.353553, 0.135045}, {0.153119, 0.306237, 0.247751}, {-0.306237, 0.247751, -0.153119}, {-0.353553, 0.135045, -0.218508}, {-0.40087, 0.0946325, -0.0946325}, {-0.353553, 0.218508, 0}, {0.0946325, 0.40087, -0.0946325}, {0.218508, 0.353553, -0.135045}, {0.153119, 0.306237, -0.247751}, {0.306237, -0.247751, 0.153119}, { 0.353553, -0.218508, 0}, {0.40087, -0.0946325, 0.0946325}, { 0.353553, -0.135045, 0.218508}, {-0.153119, -0.306237, 0.247751}, {-0.218508, -0.353553, 0.135045}, {-0.0946325, -0.40087, 0.0946325}, {0.0946325, -0.0946325, -0.40087}, { 0.218508, 0, -0.353553}, {-0.247751, -0.342384, 0}, {-0.247751, 0.342384, 0}, {-0.0946325, 0.40087, 0.0946325}, { 0, 0.437016, 0}, {0.247751, 0.342384, 0}, {-0.247751, 0.153119, -0.306237}, {-0.135045, 0.218508, -0.353553}, {-0.0946325, 0.0946325, -0.40087}, { 0.342384, 0, -0.247751}, {0.247751, -0.153119, 0.306237}, { 0.0946325, -0.0946325, 0.40087}, {0.135045, -0.218508, 0.353553}, {-0.342384, 0, 0.247751}, {0, -0.437016, 0}, { 0.0946325, -0.40087, -0.0946325}, { 0.247751, -0.342384, 0}, {-0.342384, 0, -0.247751}, { 0, 0.353553, 0.218508}, {0.342384, 0, 0.247751}, {0.135045, 0.218508, -0.353553}, {0, 0.247751, -0.342384}, {0.437016, 0, 0}, { 0.40087, -0.0946325, -0.0946325}, { 0, -0.247751, 0.342384}, {-0.135045, -0.218508, 0.353553}, {-0.40087, 0.0946325, 0.0946325}, {-0.437016, 0, 0}, { 0, -0.353553, -0.218508}, {-0.0946325, -0.40087, -0.0946325}, { 0.0946325, 0.40087, 0.0946325}, {0.247751, 0.153119, -0.306237}, { 0.0946325, 0.0946325, -0.40087}, {-0.0946325, -0.0946325, 0.40087}, {-0.247751, -0.153119, 0.306237}, {-0.40087, -0.0946325, -0.0946325}, {0.40087, 0.0946325, 0.0946325}, {0, 0, 0.437016}, {0, 0, -0.437016}, { 0, -0.247751, -0.342384}, {0, 0.247751, 0.342384}}, {{79, 40, 97, 89, 49, 48}, {84, 21, 20, 98}, {20, 21, 22, 19}, {98, 20, 44, 43}, {20, 19, 52, 67}, {66, 92, 45, 67, 52, 51}, {44, 20, 67, 45}, {66, 51, 18, 17}, {16, 17, 18, 15}, {83, 69, 15, 18}, {6, 7, 8, 9, 10, 5}, {42, 99, 11, 14, 102, 10}, {11, 99, 73, 12}, {12, 73, 74, 72}, {14, 11, 12, 13}, {81, 43, 13, 12}, {66, 17, 16, 64, 6, 65}, {48, 47, 16, 15, 69, 68}, {79, 48, 68, 1}, {2, 3, 4, 1}, {40, 79, 1, 4}, {100, 2, 1, 70}, {68, 69, 70, 1}, {3, 2, 100, 61, 35, 101}, {3, 101, 90, 37}, {38, 37, 90, 91}, {19, 22, 93, 82, 53, 52}, {82, 83, 18, 53}, {51, 52, 53, 18}, {22, 71, 62, 93}, {42, 10, 9, 41}, {99, 42, 41, 95}, {43, 44, 45, 46, 14, 13}, {89, 97, 30, 29}, {27, 28, 29, 30}, {3, 37, 38, 39, 40, 4}, {97, 40, 39, 30}, { 24, 25, 26, 23}, {88, 8, 7, 50}, {47, 48, 49, 50}, {49, 89, 88, 50}, {7, 6, 64, 50}, {16, 47, 50, 64}, {71, 22, 21, 84, 85, 31}, { 23, 26, 60, 76}, {58, 59, 60, 26}, {38, 91, 76, 60, 59, 63}, {39, 38, 63, 30}, {59, 27, 30, 63}, {69, 83, 82, 94, 100, 70}, {61, 100, 94, 62}, {82, 93, 62, 94}, {8, 88, 89, 29, 28, 75}, {9, 8, 75, 41}, {5, 10, 102, 80}, {66, 65, 80, 92}, {65, 6, 5, 80}, {102, 14, 46, 80}, {45, 92, 80, 46}, {27, 59, 58, 87, 96, 28}, {75, 28, 96, 41}, {95, 41, 96, 87}, {73, 99, 95, 87, 86, 74}, {25, 74, 86, 26}, {87, 58, 26, 86}, {43, 81, 57, 56, 84, 98}, {72, 74, 25, 24, 54, 57}, {81, 12, 72, 57}, {35, 61, 62, 36}, {62, 71, 31, 36}, {76, 91, 90, 77}, {101, 35, 34, 90}, {33, 77, 90, 34}, {23, 76, 77, 33, 78, 24}, {56, 57, 54, 55}, {85, 84, 56, 55}, {54, 24, 78, 55}, { 36, 31, 32, 33, 34, 35}, {31, 85, 55, 32}, {78, 33, 32, 55}}]}}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"interior\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 16], StripOnInput -> False], TraditionalForm]], {580.5, -203.2}, ImageScaled[{0.5, 0.5}], {360, 379}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ {EdgeForm[None], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, {Opacity[0.7], EdgeForm[Thickness[0.005]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], {{6, 18, 8, 2}, {9, 21, 39, 20}, {11, 5, 44, 68}, {12, 25, 4, 1}, {13, 27, 50, 28}, {17, 32, 43, 24}, {22, 42, 72, 41}, {34, 49, 80, 58}, {36, 63, 79, 47}, {40, 67, 109, 114}, {46, 26, 59, 90}, { 51, 29, 107, 116}, {52, 33, 3, 7}, {56, 31, 15, 30}, {65, 87, 16, 10}, {69, 54, 84, 60}, {74, 64, 38, 45}, {75, 19, 35, 101}, {76, 95, 70, 53}, {81, 14, 23, 98}, {82, 99, 73, 100}, {83, 61, 37, 106}, {85, 55, 71, 96}, {89, 57, 88, 66}, {92, 111, 93, 62}, {102, 117, 120, 112}, {108, 86, 97, 115}, {113, 48, 77, 94}, {118, 103, 78, 104}, {119, 110, 91, 105}, {2, 24, 43, 80, 49, 6}, {9, 20, 88, 57, 74, 45}, {12, 33, 52, 87, 65, 25}, {14, 26, 46, 67, 40, 23}, { 18, 81, 98, 68, 44, 8}, {21, 75, 101, 83, 106, 39}, {31, 56, 69, 60, 116, 107}, {35, 19, 10, 16, 29, 51}, {55, 7, 3, 5, 11, 71}, { 63, 93, 111, 118, 104, 79}, {64, 32, 17, 1, 4, 38}, {72, 42, 114, 109, 76, 53}, {86, 108, 119, 105, 84, 54}, {96, 22, 41, 30, 15, 85}, {99, 27, 13, 34, 58, 73}, {100, 89, 66, 36, 47, 82}, {103, 117, 102, 77, 48, 78}, {110, 92, 62, 37, 61, 91}, {112, 120, 115, 97, 70, 95}, {113, 94, 90, 59, 28, 50}, {7, 55, 85, 15, 31, 107, 29, 16, 87, 52}, {25, 65, 10, 19, 75, 21, 9, 45, 38, 4}, {33, 12, 1, 17, 24, 2, 8, 44, 5, 3}, {81, 18, 6, 49, 34, 13, 28, 59, 26, 14}, {82, 47, 79, 104, 78, 48, 113, 50, 27, 99}, {86, 54, 69, 56, 30, 41, 72, 53, 70, 97}, {88, 20, 39, 106, 37, 62, 93, 63, 36, 66}, {90, 94, 77, 102, 112, 95, 76, 109, 67, 46}, {100, 73, 58, 80, 43, 32, 64, 74, 57, 89}, {101, 35, 51, 116, 60, 84, 105, 91, 61, 83}, {108, 115, 120, 117, 103, 118, 111, 92, 110, 119}, {114, 42, 22, 96, 71, 11, 68, 98, 23, 40}}]}}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"convex hull\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 16], StripOnInput -> False], TraditionalForm]], {967.5, -203.2}, ImageScaled[{0.5, 0.5}], {360, 379}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True]}, {InsetBox[ Graphics3DBox[ PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]], Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox["\"second cube 20\[Hyphen]compound\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 16], StripOnInput -> False], TraditionalForm]], PageWidth -> 200, TextAlignment -> Center], TextCell[ Style["second cube 20\[Hyphen]compound", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 16]], PageWidth -> 200, TextAlignment -> Center]], TraditionalForm]], {193.5, -609.5999999999999}, ImageScaled[{0.5, 0.5}], {360, 381}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[ {AbsoluteThickness[ 0.1], {Line3DBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}}]], Line3DBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}}]], Line3DBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[ 1, 2]}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[ 1, 2]}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.2312188477625563, -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.2312188477625563, -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, { 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0, -0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0, 0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, { 0, -0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, { 0, 0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{ 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, \ {-0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {-0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{ 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {0.2312188477625563, 0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.2312188477625563, -0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {0, -0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, { 0, -0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, { 0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0, -0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, { 0, -0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, { 0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{ Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {-0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{ 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {-0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, { 0, 0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, { 0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, 0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.2312188477625563, -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{ 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{ 0, -0.43701602444882104`, -0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{ 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{ 0, -0.43701602444882104`, -0.5558929702514211}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{ 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0, -0.43701602444882104`, -0.5558929702514211}, { 0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{ 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{ 0, -0.43701602444882104`, -0.5558929702514211}, \ {-0.2312188477625563, -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{ 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{ 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{ 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{ 0, 0.43701602444882104`, 0.5558929702514211}, {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{ 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0, 0.43701602444882104`, 0.5558929702514211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{ 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{ 0, 0.43701602444882104`, 0.5558929702514211}, {-0.2312188477625563, -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, -0.43701602444882104`}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, -0.43701602444882104`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, -0.43701602444882104`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, -0.43701602444882104`}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.5558929702514211, 0, 0.43701602444882104`}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.5558929702514211, 0, 0.43701602444882104`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, 0.43701602444882104`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, 0.43701602444882104`}, {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0, -0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{ 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{ 0, -0.43701602444882104`, 0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{ 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{ 0, -0.43701602444882104`, 0.5558929702514211}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{ 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{ 0, 0.43701602444882104`, -0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{ 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{ 0, 0.43701602444882104`, -0.5558929702514211}, \ {-0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, { 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[ 1, 2]}}, {{-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[ 1, 2]}}, {{-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, { 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, 0.43701602444882104`}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, 0.43701602444882104`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, 0.43701602444882104`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, 0.43701602444882104`}, {-0.4129918634945738, \ -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.5558929702514211, 0, -0.43701602444882104`}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.5558929702514211, 0, -0.43701602444882104`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{ Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, -0.43701602444882104`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, -0.43701602444882104`}, {-0.4129918634945738, \ -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.4129918634945738, \ -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{ Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, \ {0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, \ {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{ Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{ Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {-0.43701602444882104`, \ -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.52533376545453, -0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.4129918634945738, \ -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{ Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{ Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {-0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.43701602444882104`, 0.5558929702514211, 0}}]]}, {Opacity[0.8], PolyhedronBox[{{0, -0.22164, -0.352357}, { 0.103631, -0.201565, -0.360025}, {0.13211, -0.213758, -0.345868}, { 0, -0.361827, -0.223621}, {-0.395883, 0.0704264, 0.107688}, {-0.424073, 0, 0.0338865}, {-0.395883, -0.0704264, 0.107688}, {-0.360025, -0.103631, 0.201565}, {-0.352357, 0, 0.22164}, {-0.360025, 0.103631, 0.201565}, {-0.13211, 0.213758, 0.345868}, {-0.103631, 0.201565, 0.360025}, {0, 0.22164, 0.352357}, { 0, 0.361827, 0.223621}, {-0.223621, 0, -0.361827}, {-0.345868, 0.13211, -0.213758}, {-0.326139, 0.15846, -0.222508}, {-0.244669, 0.174243, -0.288195}, {0.107688, 0.395883, -0.0704264}, {0.201565, 0.360025, -0.103631}, {0.213758, 0.345868, -0.13211}, { 0, 0.361827, -0.223621}, {0.244669, -0.174243, 0.288195}, { 0.326139, -0.15846, 0.222508}, {0.345868, -0.13211, 0.213758}, { 0.223621, 0, 0.361827}, {-0.213758, -0.345868, 0.13211}, {-0.201565, -0.360025, 0.103631}, {-0.107688, -0.395883, 0.0704264}, {0, -0.361827, 0.223621}, { 0.360025, -0.103631, -0.201565}, {0.352357, 0, -0.22164}, { 0.360025, 0.103631, -0.201565}, {0.395883, 0.0704264, -0.107688}, { 0.424073, 0, -0.0338865}, {0.395883, -0.0704264, -0.107688}, { 0.13211, -0.213758, 0.345868}, {0.103631, -0.201565, 0.360025}, { 0, -0.22164, 0.352357}, {-0.360025, 0.103631, -0.201565}, {-0.352357, 0, -0.22164}, {-0.360025, -0.103631, -0.201565}, {-0.395883, \ -0.0704264, -0.107688}, {-0.424073, 0, -0.0338865}, {-0.395883, 0.0704264, -0.107688}, {-0.13211, 0.213758, -0.345868}, { 0, 0.22164, -0.352357}, {-0.103631, 0.201565, -0.360025}, {-0.244669, 0.174243, 0.288195}, {-0.326139, 0.15846, 0.222508}, {-0.345868, 0.13211, 0.213758}, {-0.223621, 0, 0.361827}, {0.213758, 0.345868, 0.13211}, {0.201565, 0.360025, 0.103631}, {0.107688, 0.395883, 0.0704264}, {0.223621, 0, -0.361827}, { 0.345868, -0.13211, -0.213758}, {0.326139, -0.15846, -0.222508}, { 0.244669, -0.174243, -0.288195}, {-0.107688, -0.395883, \ -0.0704264}, {-0.201565, -0.360025, -0.103631}, {-0.213758, -0.345868, \ -0.13211}, {0.395883, -0.0704264, 0.107688}, {0.424073, 0, 0.0338865}, { 0.395883, 0.0704264, 0.107688}, {0.360025, 0.103631, 0.201565}, { 0.352357, 0, 0.22164}, {0.360025, -0.103631, 0.201565}, { 0.107688, -0.395883, -0.0704264}, {0.0338865, -0.424073, 0}, { 0, -0.427517, 0}, {-0.427517, 0, 0}, {-0.361827, 0.223621, 0}, { 0, 0.427517, 0}, {-0.0338865, 0.424073, 0}, {-0.107688, 0.395883, 0.0704264}, { 0, -0.0338865, -0.424073}, {-0.0704264, -0.107688, -0.395883}, { 0, 0, -0.427517}, {0.222508, 0.326139, -0.15846}, {0.288195, 0.244669, -0.174243}, {0.326139, 0.15846, -0.222508}, {0.244669, 0.174243, -0.288195}, {0.15846, 0.222508, -0.326139}, {0.174243, 0.288195, -0.244669}, {0.0704264, 0.107688, 0.395883}, { 0, 0.0338865, 0.424073}, {0, 0, 0.427517}, {-0.326139, -0.15846, 0.222508}, {-0.288195, -0.244669, 0.174243}, {-0.222508, -0.326139, 0.15846}, {-0.174243, -0.288195, 0.244669}, {-0.15846, -0.222508, 0.326139}, {-0.244669, -0.174243, 0.288195}, { 0.361827, -0.223621, 0}, { 0.427517, 0, 0}, {-0.361827, -0.223621, 0}, {-0.345868, -0.13211, -0.213758}, {-0.326139, -0.15846, \ -0.222508}, {-0.288195, -0.244669, -0.174243}, {-0.213758, 0.345868, 0.13211}, {-0.222508, 0.326139, 0.15846}, {-0.174243, 0.288195, 0.244669}, {0.288195, 0.244669, 0.174243}, {0.326139, 0.15846, 0.222508}, {0.345868, 0.13211, 0.213758}, { 0.361827, 0.223621, 0}, {-0.288195, 0.244669, -0.174243}, {-0.222508, 0.326139, -0.15846}, {-0.174243, 0.288195, -0.244669}, {-0.15846, 0.222508, -0.326139}, {0.13211, 0.213758, -0.345868}, {0.288195, -0.244669, 0.174243}, { 0.15846, -0.222508, 0.326139}, {0.174243, -0.288195, 0.244669}, { 0.222508, -0.326139, 0.15846}, {-0.13211, -0.213758, 0.345868}, { 0.174243, -0.288195, -0.244669}, {0.222508, -0.326139, -0.15846}, { 0.213758, -0.345868, -0.13211}, {-0.174243, -0.288195, -0.244669}, \ {-0.222508, -0.326139, -0.15846}, {-0.244669, -0.174243, -0.288195}, \ {-0.15846, -0.222508, -0.326139}, { 0, -0.0338865, 0.424073}, {-0.0704264, -0.107688, 0.395883}, { 0.174243, 0.288195, 0.244669}, {0.15846, 0.222508, 0.326139}, { 0.244669, 0.174243, 0.288195}, {0.222508, 0.326139, 0.15846}, {-0.107688, 0.395883, -0.0704264}, {0.107688, -0.395883, 0.0704264}, {0, 0.0338865, -0.424073}, {0.0704264, 0.107688, -0.395883}, {-0.13211, -0.213758, -0.345868}, {-0.288195, 0.244669, 0.174243}, {-0.15846, 0.222508, 0.326139}, {0.13211, 0.213758, 0.345868}, {-0.345868, -0.13211, 0.213758}, { 0.213758, -0.345868, 0.13211}, {0.345868, 0.13211, -0.213758}, {-0.213758, 0.345868, -0.13211}, { 0.15846, -0.222508, -0.326139}, { 0.288195, -0.244669, -0.174243}, {-0.22164, -0.352357, 0}, {-0.0338865, -0.424073, 0}, {0.22164, 0.352357, 0}, { 0.0338865, 0.424073, 0}, {0.103631, 0.201565, -0.360025}, {-0.103631, -0.201565, 0.360025}, {-0.22164, 0.352357, 0}, {-0.201565, 0.360025, -0.103631}, {-0.0704264, 0.107688, -0.395883}, { 0.0704264, -0.107688, 0.395883}, {0.201565, -0.360025, 0.103631}, { 0.22164, -0.352357, 0}, {-0.0704264, 0.107688, 0.395883}, { 0.201565, -0.360025, -0.103631}, {-0.201565, 0.360025, 0.103631}, { 0.0704264, -0.107688, -0.395883}, {-0.103631, -0.201565, \ -0.360025}, {0.103631, 0.201565, 0.360025}}, {{18, 15, 16, 17}, {16, 40, 45, 73}, {16, 15, 41, 40}, {15, 18, 111, 46}, {73, 136, 102, 101}, { 107, 81, 80, 21}, {107, 21, 20, 147}, {41, 15, 98, 42}, {43, 42, 98, 97}, {123, 15, 135, 124}, {15, 46, 48, 153}, {46, 111, 110, 22}, {48, 46, 22, 47}, {45, 40, 41, 42, 43, 44}, {73, 45, 44, 72}, {43, 97, 72, 44}, {136, 73, 51, 50}, {50, 51, 52, 49}, {49, 52, 11, 137}, {73, 101, 159, 151}, {159, 101, 14, 76}, {76, 14, 74, 75}, {75, 74, 22, 131}, {16, 73, 108, 17}, {151, 159, 76, 75, 131, 152}, {73, 151, 152, 142}, {131, 22, 142, 152}, {95, 36, 35, 96}, {96, 35, 34, 107}, {107, 34, 33, 141}, {36, 95, 57, 31}, {135, 15, 78, 161}, {78, 15, 79, 77}, {59, 143, 3, 56}, {21, 80, 85, 22}, {20, 21, 22, 19}, {22, 74, 148, 19}, {54, 147, 20, 19, 148, 55}, {74, 14, 55, 148}, {54, 55, 14, 53}, {127, 130, 53, 14}, {107, 147, 54, 53}, {130, 104, 107, 53}, {66, 65, 107, 106}, {52, 9, 8, 139}, {102, 136, 50, 49, 137, 103}, {101, 102, 103, 14}, {137, 11, 14, 103}, {110, 111, 18, 17, 108, 109}, {22, 110, 109, 142}, {108, 73, 142, 109}, {96, 107, 65, 64}, {95, 96, 64, 63}, {66, 106, 26, 67}, {126, 52, 117, 150}, {52, 126, 125, 88}, {34, 35, 36, 31, 32, 33}, {31, 57, 56, 32}, {141, 33, 32, 56}, {124, 135, 4, 121}, {1, 2, 3, 4}, {135, 161, 1, 4}, {161, 78, 77, 160, 2, 1}, {56, 3, 2, 160}, {77, 79, 56, 160}, {81, 107, 141, 82}, {141, 56, 83, 82}, { 79, 15, 153, 133}, {56, 79, 133, 134}, {48, 47, 149, 134, 133, 153}, {47, 22, 112, 149}, {56, 134, 149, 112}, {80, 81, 82, 83, 84, 85}, {83, 56, 112, 84}, {22, 85, 84, 112}, {107, 104, 105, 106}, { 26, 106, 105, 129}, {90, 97, 27, 91}, {51, 73, 5, 10}, {52, 51, 10, 9}, {139, 8, 7, 97}, {25, 24, 113, 95}, {24, 25, 26, 23}, {4, 69, 70, 71}, {92, 91, 27, 30}, {70, 132, 30, 71}, {150, 117, 30, 39}, { 126, 150, 39, 38, 154, 125}, {88, 125, 154, 26}, {98, 15, 123, 99}, {97, 98, 99, 100}, {123, 124, 121, 122, 100, 99}, {97, 100, 122, 62}, {121, 4, 62, 122}, {97, 62, 61, 145}, {27, 97, 145, 28}, {59, 56, 57, 58}, {3, 143, 118, 4}, {118, 119, 120, 4}, {52, 88, 87, 157}, {11, 52, 157, 12}, {130, 127, 128, 129, 105, 104}, { 127, 14, 138, 128}, {26, 129, 128, 138}, {92, 30, 117, 93}, {117, 52, 94, 93}, {90, 91, 92, 93, 94, 89}, {97, 90, 89, 139}, {52, 139, 89, 94}, {8, 9, 10, 5, 6, 7}, {73, 72, 6, 5}, {72, 97, 7, 6}, {65, 66, 67, 68, 63, 64}, {95, 63, 68, 25}, {67, 26, 25, 68}, {132, 155, 140, 30}, {4, 71, 146, 60}, {62, 4, 60, 61}, {145, 61, 60, 146, 29, 28}, {71, 30, 29, 146}, {30, 27, 28, 29}, {143, 59, 58, 144, 119, 118}, {120, 119, 144, 95}, {57, 95, 144, 58}, {69, 4, 120, 158}, {26, 138, 162, 86}, {88, 26, 86, 87}, {157, 87, 86, 162, 13, 12}, {138, 14, 13, 162}, {14, 11, 12, 13}, {113, 24, 23, 114, 115, 116}, {30, 140, 116, 115}, {95, 113, 116, 140}, {154, 38, 37, 26}, {23, 26, 37, 114}, {38, 39, 30, 37}, {115, 114, 37, 30}, {70, 69, 158, 156, 155, 132}, {140, 155, 156, 95}, {120, 95, 156, 158}}]}}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"interior\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 16], StripOnInput -> False], TraditionalForm]], {580.5, -609.5999999999999}, ImageScaled[{0.5, 0.5}], {360, 379}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ {EdgeForm[None], PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, \ -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, { 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]]}, {Opacity[0.7], EdgeForm[Thickness[0.005]], PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, \ -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, { 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], {{6, 42, 48}, {8, 43, 36}, {13, 58, 20}, {19, 57, 12}, {23, 60, 15}, {25, 37, 32}, { 28, 51, 4}, {30, 39, 18}, {33, 55, 3}, {38, 26, 31}, {40, 29, 17}, {44, 9, 35}, {45, 53, 1}, {47, 41, 7}, {49, 10, 21}, {50, 22, 11}, {52, 27, 5}, {54, 46, 14}, {56, 34, 2}, {59, 24, 16}, {1, 53, 10, 49}, {1, 57, 19, 45}, {3, 60, 23, 33}, {4, 55, 33, 28}, {5, 43, 8, 52}, {6, 59, 16, 42}, {7, 29, 40, 47}, {9, 48, 42, 35}, {11, 54, 14, 50}, {12, 51, 28, 19}, {15, 53, 45, 23}, {17, 58, 13, 40}, {20, 27, 52, 13}, {21, 31, 26, 49}, {25, 17, 29, 37}, {25, 32, 22, 50}, {35, 11, 22, 44}, {36, 41, 47, 8}, {38, 30, 18, 26}, {39, 12, 57, 18}, {41, 15, 60, 7}, {43, 21, 10, 36}, {48, 39, 30, 6}, { 51, 9, 44, 4}, {54, 16, 24, 46}, {55, 32, 37, 3}, {56, 2, 38, 31}, {56, 5, 27, 34}, {58, 14, 46, 20}, {59, 2, 34, 24}, {4, 44, 22, 32, 55}, {11, 35, 42, 16, 54}, {13, 52, 8, 47, 40}, {19, 28, 33, 23, 45}, {26, 18, 57, 1, 49}, {27, 20, 46, 24, 34}, {38, 2, 59, 6, 30}, {39, 48, 9, 51, 12}, {50, 14, 58, 17, 25}, {53, 15, 41, 36, 10}, {56, 31, 21, 43, 5}, {60, 3, 37, 29, 7}}]}}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"convex hull\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 16], StripOnInput -> False], TraditionalForm]], {967.5, -609.5999999999999}, ImageScaled[{0.5, 0.5}], {360, 379}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True]}}, StyleBox[{{}, {LineBox[{{0, 0}, {0, -406.4}}], LineBox[{{0, -406.4}, {0, -812.8}}], LineBox[{{387., 0}, {387., -406.4}}], LineBox[{{387., -406.4}, {387., -812.8}}], LineBox[{{774., 0}, {774., -406.4}}], LineBox[{{774., -406.4}, {774., -812.8}}], LineBox[{{1161., 0}, {1161., -406.4}}], LineBox[{{1161., -406.4}, {1161., -812.8}}], LineBox[{{0, 0}, {387., 0}}], LineBox[{{387., 0}, {774., 0}}], LineBox[{{774., 0}, {1161., 0}}], LineBox[{{0, -406.4}, {387., -406.4}}], LineBox[{{387., -406.4}, {774., -406.4}}], LineBox[{{774., -406.4}, {1161., -406.4}}], LineBox[{{0, -812.8}, {387., -812.8}}], LineBox[{{387., -812.8}, {774., -812.8}}], LineBox[{{774., -812.8}, {1161., -812.8}}]}}, Antialiasing->False]}, ImageSize->700, PlotRangePadding->{6, 5}]], "Output", CellLabel->"Out[3]=",ExpressionUUID->"C889C9FE-A2CC-4E2E-857D-AD494A42B63F"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Polyhedron: {\"OctahedronTwentyCompound\", 1}", "Section",ExpressionUUID->"2578F372-670F-4324-B29B-797C5D0D8731"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "1"}], "}"}], ",", "\"\\""}], "]"}]], "Input",ExpressionUUID->"F7625064-19C1-\ 423A-8CEE-2E5BC170B106"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[8]=",ExpressionUUID->"CED7FCD7-C528-4CE3-BEF5-9BC54A01FE5C"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "1"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input",ExpressionUUID->\ "D7EFFB10-9E0F-40BC-A5C8-9DFA6551BB57"], Cell[BoxData[ Graphics3DBox[ PolyhedronBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]], Boxed->False]], "Output", CellLabel-> "Out[189]=",ExpressionUUID->"03A1C4C8-F30E-417D-AA20-E4EBAC2EDC5D"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "1"}], "}"}], ",", "#"}], "}"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], "&"}], "/@", RowBox[{"PolyhedronData", "[", RowBox[{ "\"\\"", ",", "\"\\""}], "]"}]}]], "Input",ExpressionUUID->"79B6438C-7FDE-415E-8E6E-D282BAC91AE6"], Cell[BoxData[ RowBox[{"Missing", "[", Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], Polygon3DBox[CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]], Boxed->False], "]"}]], "Output", CellLabel->"Out[10]=",ExpressionUUID->"BFB2F990-6F8A-4EB4-A7AB-A757743F59B7"] }, Open ]], Cell[CellGroupData[{ Cell["Polyhedron", "Subsubsection",ExpressionUUID->"FCD0815A-4BB5-4D10-9AC5-AF42985B9048"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"FaceForm", "[", RowBox[{"Green", ",", "Red"}], "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "1"}], "}"}], ",", "\"\\""}], "]"}]}], "}"}], "]"}]], "Input",ExpressionUUID->\ "78336FD0-B933-45CA-B552-74637E20FF1D"], Cell[BoxData[ Graphics3DBox[ {FaceForm[RGBColor[0, 1, 0], RGBColor[1, 0, 0]], PolyhedronBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}]], "Output", CellLabel->"Out[11]=",ExpressionUUID->"36B44491-36D0-471A-BD1B-5BFF01D836F0"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Region", "Subsubsection",ExpressionUUID->"7576BAA1-1EAE-441F-9C86-5309D39D89AA"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "1"}], "}"}], ",", "\"\\""}], "]"}]], "Input",ExpressionUUID->"7B60DB8F-EAC6-49F7-\ A6AD-BC0232125CCA"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[12]=",ExpressionUUID->"EC079773-FA70-4D19-98CE-6D1199319719"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Solid and Dual", "Subsubsection",ExpressionUUID->"CC4F67AD-15F7-4236-B19E-CCD04093BAA6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "1"}], "}"}], ",", "#"}], "]"}], "&"}], "/@", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "}"}]}]], "Input", CellLabel->"In[80]:=",ExpressionUUID->"0E7CBEFD-5F0D-4A06-96EE-65F982F7CF48"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], Polygon3DBox[CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]]], ",", Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {(Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {(Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0}, {(Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2]))}, {((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), 0}, {(Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), 0, ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (3^Rational[-1, 2]/(1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), 0}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2]))}, {((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( 3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0, ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {(Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {(Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, 0, (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 0, (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0}, { 0, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, 0}, {((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0, (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0}, {((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, 0}, {(Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, 0, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2]))}, { 0, ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, ( 3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 0, ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {(Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2])}, {(Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2]))}, { 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2])}, {(Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 0, (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 0, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[ 1, 2])^2}}, {{-0.288675134594813, -0.11026408970826795`, \ -0.535233134659635}, { 0.35682208977309, -0.35682208977309, -0.35682208977309}, \ {-0.535233134659635, -0.288675134594813, 0.11026408970826795`}, { 0.11026408970826795`, -0.535233134659635, 0.288675134594813}, { 0.535233134659635, 0.288675134594813, -0.11026408970826795`}, {-0.11026408970826795`, 0.535233134659635, -0.288675134594813}, {0.288675134594813, 0.11026408970826795`, 0.535233134659635}, {-0.35682208977309, 0.35682208977309, 0.35682208977309}, {-0.35682208977309, -0.35682208977309, \ -0.35682208977309}, { 0.288675134594813, -0.11026408970826795`, -0.535233134659635}, \ {-0.11026408970826795`, -0.535233134659635, 0.288675134594813}, { 0.535233134659635, -0.288675134594813, 0.11026408970826795`}, { 0.11026408970826795`, 0.535233134659635, -0.288675134594813}, {-0.535233134659635, 0.288675134594813, -0.11026408970826795`}, {0.35682208977309, 0.35682208977309, 0.35682208977309}, {-0.288675134594813, 0.11026408970826795`, 0.535233134659635}, {-0.467086179481358, -0.3989392243030808, \ -0.06814695517827705}, { 0.2205281794165359, -0.5773502691896258, 0}, {-0.3989392243030808, 0.06814695517827705, 0.467086179481358}, { 0.288675134594813, -0.11026408970826795`, 0.535233134659635}, { 0.3989392243030808, -0.06814695517827705, -0.467086179481358}, \ {-0.288675134594813, 0.11026408970826795`, -0.535233134659635}, { 0.467086179481358, 0.3989392243030808, 0.06814695517827705}, {-0.2205281794165359, 0.577350269189626, 0}, {-0.3989392243030808, -0.06814695517827705, -0.467086179481358}, { 0.11026408970826795`, -0.535233134659635, -0.288675134594813}, \ {-0.5773502691896258, 0, 0.2205281794165359}, {-0.06814695517827705, -0.467086179481358, 0.3989392243030808}, {0.577350269189626, 0, -0.2205281794165359}, { 0.06814695517827705, 0.467086179481358, -0.3989392243030808}, { 0.3989392243030808, 0.06814695517827705, 0.467086179481358}, {-0.11026408970826795`, 0.535233134659635, 0.288675134594813}, {-0.2205281794165359, -0.5773502691896258, 0}, { 0.467086179481358, -0.3989392243030808, -0.06814695517827705}, \ {-0.288675134594813, -0.11026408970826795`, 0.535233134659635}, { 0.288675134594813, 0.11026408970826795`, -0.535233134659635}, { 0.2205281794165359, 0.577350269189626, 0}, {-0.467086179481358, 0.3989392243030808, 0.06814695517827705}, {-0.11026408970826795`, -0.535233134659635, \ -0.288675134594813}, {0.06814695517827705, -0.467086179481358, 0.3989392243030808}, { 0.577350269189626, 0, 0.2205281794165359}, {-0.06814695517827705, 0.467086179481358, -0.3989392243030808}, {-0.5773502691896258, 0, -0.2205281794165359}, {0.11026408970826795`, 0.535233134659635, 0.288675134594813}, {-0.535233134659635, -0.288675134594813, \ -0.11026408970826795`}, {0.35682208977309, -0.35682208977309, 0.35682208977309}, {-0.35682208977309, 0.35682208977309, -0.35682208977309}, {0.535233134659635, 0.288675134594813, 0.11026408970826795`}, { 0.2205281794165359, 0, -0.5773502691896258}, { 0, -0.5773502691896258, 0.2205281794165359}, { 0.577350269189626, -0.2205281794165359, 0}, { 0, 0.577350269189626, -0.2205281794165359}, {-0.5773502691896258, 0.2205281794165359, 0}, {-0.2205281794165359, 0, 0.577350269189626}, { 0.535233134659635, -0.288675134594813, -0.11026408970826795`}, \ {-0.35682208977309, -0.35682208977309, 0.35682208977309}, {0.35682208977309, 0.35682208977309, -0.35682208977309}, {-0.535233134659635, 0.288675134594813, 0.11026408970826795`}, {-0.2205281794165359, 0, -0.5773502691896258}, {-0.5773502691896258, -0.2205281794165359, 0}, {0.577350269189626, 0.2205281794165359, 0}, { 0.2205281794165359, 0, 0.577350269189626}, {-0.06814695517827705, -0.467086179481358, \ -0.3989392243030808}, {0.467086179481358, -0.3989392243030808, 0.06814695517827705}, {0, -0.2205281794165359, 0.577350269189626}, { 0, 0.2205281794165359, -0.5773502691896258}, {0.06814695517827705, 0.467086179481358, 0.3989392243030808}, {-0.467086179481358, 0.3989392243030808, -0.06814695517827705}, { 0, -0.2205281794165359, -0.5773502691896258}, { 0, 0.2205281794165359, 0.577350269189626}, {-0.3989392243030808, -0.06814695517827705, 0.467086179481358}, {0.3989392243030808, 0.06814695517827705, -0.467086179481358}, {-0.467086179481358, \ -0.3989392243030808, 0.06814695517827705}, { 0.06814695517827705, -0.467086179481358, -0.3989392243030808}, { 0.467086179481358, 0.3989392243030808, -0.06814695517827705}, {-0.06814695517827705, 0.467086179481358, 0.3989392243030808}, { 0.3989392243030808, -0.06814695517827705, 0.467086179481358}, {-0.3989392243030808, 0.06814695517827705, -0.467086179481358}, { 0, -0.5773502691896258, -0.2205281794165359}, { 0, 0.577350269189626, 0.2205281794165359}}], Polygon3DBox[CompressedData[" 1:eJwNw+nWoQAAAFBSRNKGNtpUyNauBSWVssSZR/heYP7O4893z7nyz98/P0Cr 1fr3G/wN9UCg0wZAoN2FOmAPbnfgbg/qwoMh0u8j+AgZYvigP0JHOIYOByhG j8kJMZ2QkylDE+SYmhIUM6YZime52VyccTNR4uccK4hzQWJ5SVjorKwqMquy uiYr4kJRNVFfiNpkvVpSm+WKWq23y40x2VBbYz0xtqq55xY7br/YmxK3O6i7 hXQw1YNkO5jvej7me33bxRzLsfuW51r94zhYLoNoelxOw2C8jabRNhwfw+3J vsBnF77Abnw6X2zAPQOxfYqBDEqTaydJryl0Szp51rnecijLb2Y5U3aFMlMK wdzNSr3Y6UJpCvp9k4DVGkyqZNMF17f7uureNvdbN5XbVa5V7UrrpXlbvmv5 vSenvXsZEaviuCIKIjJWR7o8FgYdlbQxyh718Fo/6utrNHxkz+vw+cpGr+f8 jTz45oE8GnTOI+9Xw7/Q9xx9kXUzYJ6DhmlqfPB8k08Gf9fkG/+cDtb3bB2+ h5Nvnfef89ffnz573/nEofcNYy/+BOH34nycS/D1gst/f29OFQ== "]]]], ",", Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {(Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {(Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0}, {(Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2]))}, {((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), 0}, {(Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), 0, ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (3^Rational[-1, 2]/(1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), 0}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2]))}, {((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( 3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0, ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {(Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {(Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, 0, (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 0, (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0}, { 0, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, 0}, {((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0, (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0}, {((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, 0}, {(Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, 0, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2]))}, { 0, ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, ( 3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 0, ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {(Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2])}, {(Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2]))}, { 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2])}, {(Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 0, (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 0, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}}, {{ 0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, {0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, { 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, { 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, {-0.24429938448106847`, \ -0.17677669529663687`, 0.639584092002116}, {-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, { 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, { 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, { 0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, {-0.5303300858899106, \ -0.06752268918443159, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, {-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, {-0.6813154089298896, \ -0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, \ -0.17677669529663687`, -0.5045387136332526}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, { 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}, { 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, { 0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.639584092002116, \ -0.24429938448106847`, 0.17677669529663687`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, {-0.5045387136332526, \ -0.46280739670547905`, 0.17677669529663687`}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}, {-0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}, {-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, { 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, { 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, {-0.6813154089298896, \ -0.17677669529663687`, -0.06752268918443159}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, \ {-0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}, \ {-0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}, \ {-0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, \ {-0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, \ {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}, \ {-0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}, \ {-0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}, \ {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}, {0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, {-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}, {-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}, \ {-0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}, \ {-0.288675134594813, -0.11026408970826795`, -0.535233134659635}, { 0.35682208977309, -0.35682208977309, -0.35682208977309}, \ {-0.535233134659635, -0.288675134594813, 0.11026408970826795`}, { 0.11026408970826795`, -0.535233134659635, 0.288675134594813}, { 0.535233134659635, 0.288675134594813, -0.11026408970826795`}, {-0.11026408970826795`, 0.535233134659635, -0.288675134594813}, {0.288675134594813, 0.11026408970826795`, 0.535233134659635}, {-0.35682208977309, 0.35682208977309, 0.35682208977309}, {-0.35682208977309, -0.35682208977309, \ -0.35682208977309}, { 0.288675134594813, -0.11026408970826795`, -0.535233134659635}, \ {-0.11026408970826795`, -0.535233134659635, 0.288675134594813}, { 0.535233134659635, -0.288675134594813, 0.11026408970826795`}, { 0.11026408970826795`, 0.535233134659635, -0.288675134594813}, {-0.535233134659635, 0.288675134594813, -0.11026408970826795`}, {0.35682208977309, 0.35682208977309, 0.35682208977309}, {-0.288675134594813, 0.11026408970826795`, 0.535233134659635}, {-0.467086179481358, -0.3989392243030808, \ -0.06814695517827705}, { 0.2205281794165359, -0.5773502691896258, 0}, {-0.3989392243030808, 0.06814695517827705, 0.467086179481358}, { 0.288675134594813, -0.11026408970826795`, 0.535233134659635}, { 0.3989392243030808, -0.06814695517827705, -0.467086179481358}, \ {-0.288675134594813, 0.11026408970826795`, -0.535233134659635}, { 0.467086179481358, 0.3989392243030808, 0.06814695517827705}, {-0.2205281794165359, 0.577350269189626, 0}, {-0.3989392243030808, -0.06814695517827705, -0.467086179481358}, { 0.11026408970826795`, -0.535233134659635, -0.288675134594813}, \ {-0.5773502691896258, 0, 0.2205281794165359}, {-0.06814695517827705, -0.467086179481358, 0.3989392243030808}, {0.577350269189626, 0, -0.2205281794165359}, { 0.06814695517827705, 0.467086179481358, -0.3989392243030808}, { 0.3989392243030808, 0.06814695517827705, 0.467086179481358}, {-0.11026408970826795`, 0.535233134659635, 0.288675134594813}, {-0.2205281794165359, -0.5773502691896258, 0}, { 0.467086179481358, -0.3989392243030808, -0.06814695517827705}, \ {-0.288675134594813, -0.11026408970826795`, 0.535233134659635}, { 0.288675134594813, 0.11026408970826795`, -0.535233134659635}, { 0.2205281794165359, 0.577350269189626, 0}, {-0.467086179481358, 0.3989392243030808, 0.06814695517827705}, {-0.11026408970826795`, -0.535233134659635, \ -0.288675134594813}, {0.06814695517827705, -0.467086179481358, 0.3989392243030808}, { 0.577350269189626, 0, 0.2205281794165359}, {-0.06814695517827705, 0.467086179481358, -0.3989392243030808}, {-0.5773502691896258, 0, -0.2205281794165359}, {0.11026408970826795`, 0.535233134659635, 0.288675134594813}, {-0.535233134659635, -0.288675134594813, \ -0.11026408970826795`}, {0.35682208977309, -0.35682208977309, 0.35682208977309}, {-0.35682208977309, 0.35682208977309, -0.35682208977309}, {0.535233134659635, 0.288675134594813, 0.11026408970826795`}, { 0.2205281794165359, 0, -0.5773502691896258}, { 0, -0.5773502691896258, 0.2205281794165359}, { 0.577350269189626, -0.2205281794165359, 0}, { 0, 0.577350269189626, -0.2205281794165359}, {-0.5773502691896258, 0.2205281794165359, 0}, {-0.2205281794165359, 0, 0.577350269189626}, { 0.535233134659635, -0.288675134594813, -0.11026408970826795`}, \ {-0.35682208977309, -0.35682208977309, 0.35682208977309}, {0.35682208977309, 0.35682208977309, -0.35682208977309}, {-0.535233134659635, 0.288675134594813, 0.11026408970826795`}, {-0.2205281794165359, 0, -0.5773502691896258}, {-0.5773502691896258, -0.2205281794165359, 0}, {0.577350269189626, 0.2205281794165359, 0}, { 0.2205281794165359, 0, 0.577350269189626}, {-0.06814695517827705, -0.467086179481358, \ -0.3989392243030808}, {0.467086179481358, -0.3989392243030808, 0.06814695517827705}, {0, -0.2205281794165359, 0.577350269189626}, { 0, 0.2205281794165359, -0.5773502691896258}, {0.06814695517827705, 0.467086179481358, 0.3989392243030808}, {-0.467086179481358, 0.3989392243030808, -0.06814695517827705}, { 0, -0.2205281794165359, -0.5773502691896258}, { 0, 0.2205281794165359, 0.577350269189626}, {-0.3989392243030808, -0.06814695517827705, 0.467086179481358}, {0.3989392243030808, 0.06814695517827705, -0.467086179481358}, {-0.467086179481358, \ -0.3989392243030808, 0.06814695517827705}, { 0.06814695517827705, -0.467086179481358, -0.3989392243030808}, { 0.467086179481358, 0.3989392243030808, -0.06814695517827705}, {-0.06814695517827705, 0.467086179481358, 0.3989392243030808}, { 0.3989392243030808, -0.06814695517827705, 0.467086179481358}, {-0.3989392243030808, 0.06814695517827705, -0.467086179481358}, { 0, -0.5773502691896258, -0.2205281794165359}, { 0, 0.577350269189626, 0.2205281794165359}}], { Polygon3DBox[CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]], Polygon3DBox[CompressedData[" 1:eJwNw2u2oQAAAGBnzmxktjRLuBuYv1dUohSSUnoglVehl0roKYWWNfc75/vz 9e/v169Go/H98/dPEG4DrSbQBpoQ2GrDnWarA8Eg1OmiPQTpEf0eihNdpI/1 CRxDuxg+IYfjATUejil6MhiSI2owoskJPWKZKTcTuCkniOxsyvDCjBcZVuQX K0ZaziVmyaxkaS4s5ktZWC0EeaypymijqCNV2yqb9Xgz2q618Xq7NPbTxW66 X+wNcbrTl7uFqBtLXTyecNu0bNy2kKOJnw6nI3KwzAPikK6iuB7lKNTZJbce 5W3PpHPeBsewczE7Ycf0g0t4BMwL4B8DH4jA2/Xeut7uNzC+tpKodY8TMEpi I+Pmu3TOzVPe2HHZKt2t+MzgV/nm2n5o7evjuoHaWpxrDyje5DF0k5qPRH40 HzJ8S5pSLic5LN3gPPMGauqog3TgrVVnkjnpeuJlk3U/ehbovXgW96qPPqPy jpZV1K/K2av3ZN/P3vONzdjeq3qzFfaaYdWweHfpsvum3wXRLV/DkiZexfBF fAL9UF8Oeq0H9uGy/1xqex989vbp45+t+uxb/sc91+Hpcwrd2nLD/+xMLyQ= "]]}]]}], "}"}]], "Output", CellLabel->"Out[80]=",ExpressionUUID->"C06BD97F-7FF8-4B1D-89E0-6367BF6413AD"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"Most", "@", "%"}], "]"}]], "Input", CellLabel->"In[2]:=",ExpressionUUID->"234AC0A2-E3A6-4ED1-A227-7C4A0DCA45A2"], Cell[BoxData[ Graphics3DBox[{ GraphicsComplex3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], Polygon3DBox[CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]], GraphicsComplex3DBox[ NCache[{{((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {(Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {(Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0}, {(Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2]))}, {((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), 0}, {(Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), 0, ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (3^Rational[-1, 2]/(1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), 0}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2]))}, {((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( 3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0, ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, (Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {(Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {(Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, 0, (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 0, (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0}, { 0, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, 0}, {((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {(Rational[1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[-1, 4] 3^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2}, {((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0, (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {(3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), 0}, {((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, 0}, {(Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, 0, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2]))}, { 0, ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, ( 3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 0, ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])^2, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2])}, {(Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2])}, {(Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2]))}, { 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2]), (Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2])}, {((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2]), (Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 + 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 8] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (3 + 5^Rational[1, 2])}, {(Rational[-1, 4] Rational[5, 3]^Rational[1, 2]) (-1 + 5^Rational[1, 2]), 3^Rational[-1, 2] ((-1 + 5^Rational[1, 2])/(6 + 2 5^Rational[1, 2])), ((Rational[1, 8] 3^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 0, (3^Rational[-1, 2]/(1 - 5^Rational[1, 2])) (-1 + 5^Rational[1, 2]), ((Rational[1, 4] 3^Rational[-1, 2]) (1 - 5^ Rational[1, 2])) (-1 + 5^Rational[1, 2])}, { 0, ((Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])) (1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[ 1, 2])^2}}, {{-0.288675134594813, -0.11026408970826795`, \ -0.535233134659635}, { 0.35682208977309, -0.35682208977309, -0.35682208977309}, \ {-0.535233134659635, -0.288675134594813, 0.11026408970826795`}, { 0.11026408970826795`, -0.535233134659635, 0.288675134594813}, { 0.535233134659635, 0.288675134594813, -0.11026408970826795`}, {-0.11026408970826795`, 0.535233134659635, -0.288675134594813}, {0.288675134594813, 0.11026408970826795`, 0.535233134659635}, {-0.35682208977309, 0.35682208977309, 0.35682208977309}, {-0.35682208977309, -0.35682208977309, \ -0.35682208977309}, { 0.288675134594813, -0.11026408970826795`, -0.535233134659635}, \ {-0.11026408970826795`, -0.535233134659635, 0.288675134594813}, { 0.535233134659635, -0.288675134594813, 0.11026408970826795`}, { 0.11026408970826795`, 0.535233134659635, -0.288675134594813}, {-0.535233134659635, 0.288675134594813, -0.11026408970826795`}, {0.35682208977309, 0.35682208977309, 0.35682208977309}, {-0.288675134594813, 0.11026408970826795`, 0.535233134659635}, {-0.467086179481358, -0.3989392243030808, \ -0.06814695517827705}, { 0.2205281794165359, -0.5773502691896258, 0}, {-0.3989392243030808, 0.06814695517827705, 0.467086179481358}, { 0.288675134594813, -0.11026408970826795`, 0.535233134659635}, { 0.3989392243030808, -0.06814695517827705, -0.467086179481358}, \ {-0.288675134594813, 0.11026408970826795`, -0.535233134659635}, { 0.467086179481358, 0.3989392243030808, 0.06814695517827705}, {-0.2205281794165359, 0.577350269189626, 0}, {-0.3989392243030808, -0.06814695517827705, -0.467086179481358}, { 0.11026408970826795`, -0.535233134659635, -0.288675134594813}, \ {-0.5773502691896258, 0, 0.2205281794165359}, {-0.06814695517827705, -0.467086179481358, 0.3989392243030808}, {0.577350269189626, 0, -0.2205281794165359}, { 0.06814695517827705, 0.467086179481358, -0.3989392243030808}, { 0.3989392243030808, 0.06814695517827705, 0.467086179481358}, {-0.11026408970826795`, 0.535233134659635, 0.288675134594813}, {-0.2205281794165359, -0.5773502691896258, 0}, { 0.467086179481358, -0.3989392243030808, -0.06814695517827705}, \ {-0.288675134594813, -0.11026408970826795`, 0.535233134659635}, { 0.288675134594813, 0.11026408970826795`, -0.535233134659635}, { 0.2205281794165359, 0.577350269189626, 0}, {-0.467086179481358, 0.3989392243030808, 0.06814695517827705}, {-0.11026408970826795`, -0.535233134659635, \ -0.288675134594813}, {0.06814695517827705, -0.467086179481358, 0.3989392243030808}, { 0.577350269189626, 0, 0.2205281794165359}, {-0.06814695517827705, 0.467086179481358, -0.3989392243030808}, {-0.5773502691896258, 0, -0.2205281794165359}, {0.11026408970826795`, 0.535233134659635, 0.288675134594813}, {-0.535233134659635, -0.288675134594813, \ -0.11026408970826795`}, {0.35682208977309, -0.35682208977309, 0.35682208977309}, {-0.35682208977309, 0.35682208977309, -0.35682208977309}, {0.535233134659635, 0.288675134594813, 0.11026408970826795`}, { 0.2205281794165359, 0, -0.5773502691896258}, { 0, -0.5773502691896258, 0.2205281794165359}, { 0.577350269189626, -0.2205281794165359, 0}, { 0, 0.577350269189626, -0.2205281794165359}, {-0.5773502691896258, 0.2205281794165359, 0}, {-0.2205281794165359, 0, 0.577350269189626}, { 0.535233134659635, -0.288675134594813, -0.11026408970826795`}, \ {-0.35682208977309, -0.35682208977309, 0.35682208977309}, {0.35682208977309, 0.35682208977309, -0.35682208977309}, {-0.535233134659635, 0.288675134594813, 0.11026408970826795`}, {-0.2205281794165359, 0, -0.5773502691896258}, {-0.5773502691896258, -0.2205281794165359, 0}, {0.577350269189626, 0.2205281794165359, 0}, { 0.2205281794165359, 0, 0.577350269189626}, {-0.06814695517827705, -0.467086179481358, \ -0.3989392243030808}, {0.467086179481358, -0.3989392243030808, 0.06814695517827705}, {0, -0.2205281794165359, 0.577350269189626}, { 0, 0.2205281794165359, -0.5773502691896258}, {0.06814695517827705, 0.467086179481358, 0.3989392243030808}, {-0.467086179481358, 0.3989392243030808, -0.06814695517827705}, { 0, -0.2205281794165359, -0.5773502691896258}, { 0, 0.2205281794165359, 0.577350269189626}, {-0.3989392243030808, -0.06814695517827705, 0.467086179481358}, {0.3989392243030808, 0.06814695517827705, -0.467086179481358}, {-0.467086179481358, \ -0.3989392243030808, 0.06814695517827705}, { 0.06814695517827705, -0.467086179481358, -0.3989392243030808}, { 0.467086179481358, 0.3989392243030808, -0.06814695517827705}, {-0.06814695517827705, 0.467086179481358, 0.3989392243030808}, { 0.3989392243030808, -0.06814695517827705, 0.467086179481358}, {-0.3989392243030808, 0.06814695517827705, -0.467086179481358}, { 0, -0.5773502691896258, -0.2205281794165359}, { 0, 0.577350269189626, 0.2205281794165359}}], Polygon3DBox[CompressedData[" 1:eJwNw+nWoQAAAFBSRNKGNtpUyNauBSWVssSZR/heYP7O4893z7nyz98/P0Cr 1fr3G/wN9UCg0wZAoN2FOmAPbnfgbg/qwoMh0u8j+AgZYvigP0JHOIYOByhG j8kJMZ2QkylDE+SYmhIUM6YZime52VyccTNR4uccK4hzQWJ5SVjorKwqMquy uiYr4kJRNVFfiNpkvVpSm+WKWq23y40x2VBbYz0xtqq55xY7br/YmxK3O6i7 hXQw1YNkO5jvej7me33bxRzLsfuW51r94zhYLoNoelxOw2C8jabRNhwfw+3J vsBnF77Abnw6X2zAPQOxfYqBDEqTaydJryl0Szp51rnecijLb2Y5U3aFMlMK wdzNSr3Y6UJpCvp9k4DVGkyqZNMF17f7uureNvdbN5XbVa5V7UrrpXlbvmv5 vSenvXsZEaviuCIKIjJWR7o8FgYdlbQxyh718Fo/6utrNHxkz+vw+cpGr+f8 jTz45oE8GnTOI+9Xw7/Q9xx9kXUzYJ6DhmlqfPB8k08Gf9fkG/+cDtb3bB2+ h5Nvnfef89ffnz573/nEofcNYy/+BOH34nycS/D1gst/f29OFQ== "]]]}, ImageSize->{360., 360.}, ImageSizeRaw->Automatic, ViewAngle->0.47030072394368955`, ViewPoint->{0.11134598521802114`, -3.1987775869101185`, 1.0979180393168284`}, ViewVertical->{-0.30701233678888445`, -0.3294699820162772, 0.8928566267938111}]], "Output", CellLabel->"Out[2]=",ExpressionUUID->"B77B3E4A-0A32-4B82-AF7C-CF900233F25E"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Polyhedron: {\"OctahedronTwentyCompound\", 2}", "Section",ExpressionUUID->"2E526124-F90F-4223-83FF-B3AE7D9067ED"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[1]:=",ExpressionUUID->"352940D5-6667-4A56-A25B-A07D115554AD"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[1]=",ExpressionUUID->"6CFBCA6E-CDEA-4D2B-AB16-3678EA0437E2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "2"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel->"In[2]:=",ExpressionUUID->"256E01C5-703D-4C4D-BA73-343E5E774896"], Cell[BoxData[ Graphics3DBox[ PolyhedronBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D+CkQhO IBSK0ABDCEwgMVHBJBlHSFwgcFHGJYVCACWglGlTlkMjKC0A2nRoy2Y4wPAo 4waM57McyvKAdX3WCzgG5VjAiSEnRTwDeBblxYiXQgEjBJwUKCDQqIjJIq6I XCTyoYQpEi5LXCjxkaoTqkGqSaamuaaTmkFoSa6lma6SukboZqlbhaEShkYa ZmFYpUk5Jm2bemEapUXZFu1YemkZhcv4Lhu4le3WjscEHut7lePVNkxkmCpw mOA4x4kSp3I8zPE4JWqeaFkClSSWUzVLtTyFchorletUnl0dd3VetWvXnlMf V33eTec3fdA8V/PebRe0vd8+d/teXRN0rd8NYTdGfeP3bdAPUT+GA5yHeBq6 aOjDEU5jPI9dOPbRsuXLni3PvLzTumXrnq/PtL7ztmTbmm9HuZ3FvuT7mu1H sZ/lUV1HfR9bcezlWd1nfZ1bee7F09xPez3L9Kzz21xve7/L/K7THyjCO3w= "]], Boxed->False]], "Output", CellLabel->"Out[2]=",ExpressionUUID->"09150B3B-43CB-4AB4-9A2B-C8BD0FB8AE17"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "2"}], "}"}], ",", "#"}], "}"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], "&"}], "/@", RowBox[{"PolyhedronData", "[", RowBox[{ "\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[3]:=",ExpressionUUID->"89786E75-5860-4043-AE39-1A3C12C7388B"], Cell[BoxData[ RowBox[{"Missing", "[", Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], Polygon3DBox[CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D+CkQhO IBSK0ABDCEwgMVHBJBlHSFwgcFHGJYVCACWglGlTlkMjKC0A2nRoy2Y4wPAo 4waM57McyvKAdX3WCzgG5VjAiSEnRTwDeBblxYiXQgEjBJwUKCDQqIjJIq6I XCTyoYQpEi5LXCjxkaoTqkGqSaamuaaTmkFoSa6lma6SukboZqlbhaEShkYa ZmFYpUk5Jm2bemEapUXZFu1YemkZhcv4Lhu4le3WjscEHut7lePVNkxkmCpw mOA4x4kSp3I8zPE4JWqeaFkClSSWUzVLtTyFchorletUnl0dd3VetWvXnlMf V33eTec3fdA8V/PebRe0vd8+d/teXRN0rd8NYTdGfeP3bdAPUT+GA5yHeBq6 aOjDEU5jPI9dOPbRsuXLni3PvLzTumXrnq/PtL7ztmTbmm9HuZ3FvuT7mu1H sZ/lUV1HfR9bcezlWd1nfZ1bee7F09xPez3L9Kzz21xve7/L/K7THyjCO3w= "]]], Boxed->False], "]"}]], "Output", CellLabel->"Out[3]=",ExpressionUUID->"BC697917-18B4-47FA-B9C5-ECF4B5615340"] }, Open ]], Cell[CellGroupData[{ Cell["Polyhedron", "Subsubsection",ExpressionUUID->"C04E01D2-F9E2-4023-BB37-11B0C044512E"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"FaceForm", "[", RowBox[{"Green", ",", "Red"}], "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "}"}], "]"}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"84BFB5B7-D685-4669-8C44-73A8BC39DF93"], Cell[BoxData[ Graphics3DBox[ {FaceForm[RGBColor[0, 1, 0], RGBColor[1, 0, 0]], PolyhedronBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D+CkQhO IBSK0ABDCEwgMVHBJBlHSFwgcFHGJYVCACWglGlTlkMjKC0A2nRoy2Y4wPAo 4waM57McyvKAdX3WCzgG5VjAiSEnRTwDeBblxYiXQgEjBJwUKCDQqIjJIq6I XCTyoYQpEi5LXCjxkaoTqkGqSaamuaaTmkFoSa6lma6SukboZqlbhaEShkYa ZmFYpUk5Jm2bemEapUXZFu1YemkZhcv4Lhu4le3WjscEHut7lePVNkxkmCpw mOA4x4kSp3I8zPE4JWqeaFkClSSWUzVLtTyFchorletUnl0dd3VetWvXnlMf V33eTec3fdA8V/PebRe0vd8+d/teXRN0rd8NYTdGfeP3bdAPUT+GA5yHeBq6 aOjDEU5jPI9dOPbRsuXLni3PvLzTumXrnq/PtL7ztmTbmm9HuZ3FvuT7mu1H sZ/lUV1HfR9bcezlWd1nfZ1bee7F09xPez3L9Kzz21xve7/L/K7THyjCO3w= "]]}]], "Output", CellLabel->"Out[4]=",ExpressionUUID->"D599B9EC-99C6-49E7-A591-4B13B9B997D5"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Region", "Subsubsection",ExpressionUUID->"EED93775-9144-41F9-B476-3AAA0E4F766B"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[5]:=",ExpressionUUID->"5BCA96C5-2EE3-457F-BCB5-E84066CB5B78"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[5]=",ExpressionUUID->"39EA0E16-5BAF-41E8-A7D1-5E1EFB9CA574"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Solid and Dual", "Subsubsection",ExpressionUUID->"E46DF2B2-D774-47B2-A18A-703A447AC5DE"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "2"}], "}"}], ",", "#"}], "]"}], "&"}], "/@", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "}"}]}]], "Input", CellLabel->"In[81]:=",ExpressionUUID->"D1CA62AB-96FD-4E80-9BDC-0FC0195A3C41"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], Polygon3DBox[CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]]]], ",", Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.04715964733388994, -0.41681008784595175`, -0.4538847095720435}, { 0.5773502691896258, 0, -0.22052817941653585`}, {-0.13629391035655408`, \ -0.5610323549787952, 0.22052817941653585`}, { 0.39389671149918176`, -0.14422226713284356`, 0.4538847095720435}, { 0.1362939103565541, 0.5610323549787952, -0.22052817941653585`}, {-0.39389671149918176`, 0.14422226713284356`, -0.4538847095720435}, {-0.04715964733388994, 0.41681008784595175`, 0.4538847095720435}, {-0.5773502691896257, 0, 0.22052817941653585`}, { 0.04715964733388994, -0.41681008784595175`, 0.4538847095720435}, { 0.5773502691896258, 0, 0.22052817941653585`}, {-0.13629391035655408`, -0.5610323549787952, \ -0.22052817941653585`}, { 0.39389671149918176`, -0.14422226713284356`, -0.4538847095720435}, { 0.1362939103565541, 0.5610323549787952, 0.22052817941653585`}, {-0.39389671149918176`, 0.14422226713284356`, 0.4538847095720435}, {-0.04715964733388994, 0.41681008784595175`, -0.4538847095720435}, {-0.5773502691896257, 0, -0.22052817941653585`}, { 0.0599879980728618, -0.5901786199285975, -0.1733685320826459}, { 0.5901786199285975, -0.1733685320826459, 0.0599879980728618}, {-0.35682208977308993`, -0.35682208977308993`, 0.35682208977308993`}, {0.1733685320826459, 0.0599879980728618, 0.5901786199285975}, {0.35682208977308993`, 0.35682208977308993`, -0.35682208977308993`}, {-0.1733685320826459, \ -0.059987998072861794`, -0.5901786199285975}, {-0.059987998072861794`, 0.5901786199285975, 0.1733685320826459}, {-0.5901786199285975, 0.1733685320826459, -0.059987998072861794`}, {-0.5010443569059335, \ -0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, -0.5010443569059335, -0.31759079921548944`}, \ {-0.31759079921548944`, -0.1733685320826459, 0.5010443569059335}, { 0.35682208977308993`, -0.35682208977308993`, 0.35682208977308993`}, { 0.31759079921548944`, 0.1733685320826459, -0.5010443569059335}, {-0.35682208977308993`, 0.35682208977308993`, -0.35682208977308993`}, {0.5010443569059335, 0.31759079921548944`, 0.1733685320826459}, {-0.1733685320826459, 0.5010443569059335, 0.31759079921548944`}, {-0.35682208977308993`, -0.35682208977308993`, \ -0.35682208977308993`}, {0.1733685320826459, 0.0599879980728618, -0.5901786199285975}, { 0.0599879980728618, -0.5901786199285975, 0.1733685320826459}, { 0.5901786199285975, -0.1733685320826459, -0.059987998072861794`}, \ {-0.059987998072861794`, 0.5901786199285975, -0.1733685320826459}, {-0.5901786199285975, 0.1733685320826459, 0.0599879980728618}, {0.35682208977308993`, 0.35682208977308993`, 0.35682208977308993`}, {-0.1733685320826459, -0.059987998072861794`, 0.5901786199285975}, {-0.31759079921548944`, -0.1733685320826459, \ -0.5010443569059335}, { 0.35682208977308993`, -0.35682208977308993`, -0.35682208977308993`}, \ {-0.1733685320826459, 0.5010443569059335, -0.31759079921548944`}, { 0.5010443569059335, 0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, -0.5010443569059335, 0.31759079921548944`}, {-0.5010443569059335, -0.31759079921548944`, 0.1733685320826459}, {0.31759079921548944`, 0.1733685320826459, 0.5010443569059335}, {-0.35682208977308993`, 0.35682208977308993`, 0.35682208977308993`}, {-0.22052817941653585`, -0.5773502691896257, 0}, {0.4538847095720435, -0.39389671149918176`, \ -0.14422226713284356`}, {-0.22052817941653585`, -0.13629391035655408`, 0.5610323549787952}, {0.4538847095720435, 0.04715964733388994, 0.41681008784595175`}, {0.22052817941653585`, 0.1362939103565541, -0.5610323549787952}, {-0.4538847095720435, \ -0.04715964733388994, -0.41681008784595175`}, { 0.22052817941653585`, 0.5773502691896258, 0}, {-0.4538847095720435, 0.39389671149918176`, 0.14422226713284356`}, {-0.14422226713284356`, -0.4538847095720435, \ -0.39389671149918176`}, {0.41681008784595175`, -0.4538847095720435, 0.04715964733388994}, {-0.5610323549787952, -0.22052817941653585`, 0.1362939103565541}, {0, -0.22052817941653585`, 0.5773502691896258}, { 0.5610323549787952, 0.22052817941653585`, -0.13629391035655408`}, { 0, 0.22052817941653585`, -0.5773502691896257}, {0.14422226713284356`, 0.4538847095720435, 0.39389671149918176`}, {-0.41681008784595175`, 0.4538847095720435, -0.04715964733388994}, {-0.4538847095720435, 0.04715964733388994, -0.41681008784595175`}, { 0.22052817941653585`, -0.13629391035655408`, -0.5610323549787952}, \ {-0.22052817941653585`, 0.5773502691896258, 0}, {0.4538847095720435, 0.39389671149918176`, -0.14422226713284356`}, { 0.22052817941653585`, -0.5773502691896257, 0}, {-0.4538847095720435, -0.39389671149918176`, 0.14422226713284356`}, {0.4538847095720435, -0.04715964733388994, 0.41681008784595175`}, {-0.22052817941653585`, 0.1362939103565541, 0.5610323549787952}, {-0.22052817941653585`, -0.13629391035655408`, \ -0.5610323549787952}, {0.4538847095720435, 0.04715964733388994, -0.41681008784595175`}, {-0.4538847095720435, 0.39389671149918176`, -0.14422226713284356`}, { 0.4538847095720435, -0.39389671149918176`, 0.14422226713284356`}, { 0.22052817941653585`, 0.1362939103565541, 0.5610323549787952}, {-0.4538847095720435, -0.04715964733388994, 0.41681008784595175`}, {-0.14422226713284356`, -0.4538847095720435, 0.39389671149918176`}, { 0.41681008784595175`, -0.4538847095720435, -0.04715964733388994}, \ {-0.5610323549787952, -0.22052817941653585`, -0.13629391035655408`}, { 0, -0.22052817941653585`, -0.5773502691896257}, {0.5610323549787952, 0.22052817941653585`, 0.1362939103565541}, { 0, 0.22052817941653585`, 0.5773502691896258}, {0.14422226713284356`, 0.4538847095720435, -0.39389671149918176`}, {-0.41681008784595175`, 0.4538847095720435, 0.04715964733388994}, {-0.4538847095720435, -0.39389671149918176`, \ -0.14422226713284356`}, {-0.4538847095720435, 0.04715964733388994, 0.41681008784595175`}, {0.22052817941653585`, -0.13629391035655408`, 0.5610323549787952}, { 0.4538847095720435, -0.04715964733388994, -0.41681008784595175`}, \ {-0.22052817941653585`, 0.1362939103565541, -0.5610323549787952}, { 0.4538847095720435, 0.39389671149918176`, 0.14422226713284356`}, { 0.31759079921548944`, -0.1733685320826459, -0.5010443569059335}, \ {-0.5010443569059335, 0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, 0.5010443569059335, -0.31759079921548944`}, { 0.5010443569059335, -0.31759079921548944`, 0.1733685320826459}, {-0.1733685320826459, -0.5010443569059335, 0.31759079921548944`}, {-0.31759079921548944`, 0.1733685320826459, 0.5010443569059335}, {-0.41681008784595175`, -0.4538847095720435, \ -0.04715964733388994}, {0.14422226713284356`, -0.4538847095720435, 0.39389671149918176`}, { 0.5610323549787952, -0.22052817941653585`, -0.13629391035655408`}, \ {-0.5610323549787952, 0.22052817941653585`, 0.1362939103565541}, { 0.41681008784595175`, 0.4538847095720435, 0.04715964733388994}, {-0.14422226713284356`, 0.4538847095720435, -0.39389671149918176`}, {-0.1733685320826459, 0.0599879980728618, -0.5901786199285975}, {-0.5901786199285975, \ -0.1733685320826459, -0.059987998072861794`}, {-0.059987998072861794`, \ -0.5901786199285975, 0.1733685320826459}, {0.5901786199285975, 0.1733685320826459, 0.0599879980728618}, {0.0599879980728618, 0.5901786199285975, -0.1733685320826459}, { 0.1733685320826459, -0.059987998072861794`, 0.5901786199285975}, {-0.1733685320826459, -0.5010443569059335, \ -0.31759079921548944`}, { 0.5010443569059335, -0.31759079921548944`, -0.1733685320826459}, { 0.31759079921548944`, -0.1733685320826459, 0.5010443569059335}, {-0.31759079921548944`, 0.1733685320826459, -0.5010443569059335}, {0.1733685320826459, 0.5010443569059335, 0.31759079921548944`}, {-0.5010443569059335, 0.31759079921548944`, 0.1733685320826459}, {-0.41681008784595175`, -0.4538847095720435, 0.04715964733388994}, { 0.14422226713284356`, -0.4538847095720435, -0.39389671149918176`}, { 0.5610323549787952, -0.22052817941653585`, 0.1362939103565541}, {-0.5610323549787952, 0.22052817941653585`, -0.13629391035655408`}, {0.41681008784595175`, 0.4538847095720435, -0.04715964733388994}, {-0.14422226713284356`, 0.4538847095720435, 0.39389671149918176`}, {-0.5901786199285975, -0.1733685320826459, 0.0599879980728618}, {-0.059987998072861794`, -0.5901786199285975, \ -0.1733685320826459}, {-0.1733685320826459, 0.0599879980728618, 0.5901786199285975}, { 0.1733685320826459, -0.059987998072861794`, -0.5901786199285975}, { 0.5901786199285975, 0.1733685320826459, -0.059987998072861794`}, { 0.0599879980728618, 0.5901786199285975, 0.1733685320826459}, {-0.04715964733388994, -0.41681008784595175`, \ -0.4538847095720435}, {-0.39389671149918176`, -0.14422226713284356`, 0.4538847095720435}, {0.1362939103565541, -0.5610323549787952, 0.22052817941653585`}, {0.39389671149918176`, 0.14422226713284356`, -0.4538847095720435}, {-0.13629391035655408`, 0.5610323549787952, -0.22052817941653585`}, {0.04715964733388994, 0.41681008784595175`, 0.4538847095720435}, {-0.04715964733388994, -0.41681008784595175`, 0.4538847095720435}, {-0.39389671149918176`, -0.14422226713284356`, \ -0.4538847095720435}, { 0.1362939103565541, -0.5610323549787952, -0.22052817941653585`}, { 0.39389671149918176`, 0.14422226713284356`, 0.4538847095720435}, {-0.13629391035655408`, 0.5610323549787952, 0.22052817941653585`}, {0.04715964733388994, 0.41681008784595175`, -0.4538847095720435}}], Polygon3DBox[CompressedData[" 1:eJwNwwk7wgAAAFCtJEsH0yFTTRjTsZGmTMVaB0rNnN2FkiNnh5R0SOpH877v IZkimwFGRkYq/wX/+TxAwOOLhABPOMoXjImEorFRATA6Ni6eAMXjUvk4KJFO iOUyuVQiAydkkqlpaHISUiunJpUKaFqlVqpViukphUozp4PnNDNaDTw7o5vT 6mGdflY7M6ufXzAgiGF5ybCALs8jS4tLy+jiwvwiajFhRpMFN2Mm84rFuIob sZVVM766srFG2DZsm6SNWN9c2yCtxJp1ndxctzq3HXZqy+6gHNsu+5bbuUW5 3NtOt8uzu0Pv7DJeesfr3/X4GA/t93kZn38vsE/uB4gQuR8KBvYOiD0yeBAi DoJH3GE4woYPw+zxUeSQO2EjJ8fc0fFJ9II5jZ6e0afM+dlFlI4xF7Fz+uw8 ls4kkEw6haaReCqRQZNIIhlHU/Eke3WZ5a6zl9zlVS57nWevuVz+is3nCjfY 7S1291C4fcCxm/u7h7t7/KaA3z8Xodfis+IRKj4+Pb++KF6hp5dHxcsT9VYq v1HvFapcfS+9VZyV96qzXHJW67UPGP5ofH7UtI06/Nn8bGibtXpT+9Vuydtf HfBL3u202uA32Ol+y1vf3X5P9NPrA7+i3u+g/zMEfoHh4Ec0GP4Bm/J/dw== "]]]], ",", Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}, { 0.04715964733388994, -0.41681008784595175`, -0.4538847095720435}, { 0.5773502691896258, 0, -0.22052817941653585`}, {-0.13629391035655408`, \ -0.5610323549787952, 0.22052817941653585`}, { 0.39389671149918176`, -0.14422226713284356`, 0.4538847095720435}, { 0.1362939103565541, 0.5610323549787952, -0.22052817941653585`}, {-0.39389671149918176`, 0.14422226713284356`, -0.4538847095720435}, {-0.04715964733388994, 0.41681008784595175`, 0.4538847095720435}, {-0.5773502691896257, 0, 0.22052817941653585`}, { 0.04715964733388994, -0.41681008784595175`, 0.4538847095720435}, { 0.5773502691896258, 0, 0.22052817941653585`}, {-0.13629391035655408`, -0.5610323549787952, \ -0.22052817941653585`}, { 0.39389671149918176`, -0.14422226713284356`, -0.4538847095720435}, { 0.1362939103565541, 0.5610323549787952, 0.22052817941653585`}, {-0.39389671149918176`, 0.14422226713284356`, 0.4538847095720435}, {-0.04715964733388994, 0.41681008784595175`, -0.4538847095720435}, {-0.5773502691896257, 0, -0.22052817941653585`}, { 0.0599879980728618, -0.5901786199285975, -0.1733685320826459}, { 0.5901786199285975, -0.1733685320826459, 0.0599879980728618}, {-0.35682208977308993`, -0.35682208977308993`, 0.35682208977308993`}, {0.1733685320826459, 0.0599879980728618, 0.5901786199285975}, {0.35682208977308993`, 0.35682208977308993`, -0.35682208977308993`}, {-0.1733685320826459, \ -0.059987998072861794`, -0.5901786199285975}, {-0.059987998072861794`, 0.5901786199285975, 0.1733685320826459}, {-0.5901786199285975, 0.1733685320826459, -0.059987998072861794`}, {-0.5010443569059335, \ -0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, -0.5010443569059335, -0.31759079921548944`}, \ {-0.31759079921548944`, -0.1733685320826459, 0.5010443569059335}, { 0.35682208977308993`, -0.35682208977308993`, 0.35682208977308993`}, { 0.31759079921548944`, 0.1733685320826459, -0.5010443569059335}, {-0.35682208977308993`, 0.35682208977308993`, -0.35682208977308993`}, {0.5010443569059335, 0.31759079921548944`, 0.1733685320826459}, {-0.1733685320826459, 0.5010443569059335, 0.31759079921548944`}, {-0.35682208977308993`, -0.35682208977308993`, \ -0.35682208977308993`}, {0.1733685320826459, 0.0599879980728618, -0.5901786199285975}, { 0.0599879980728618, -0.5901786199285975, 0.1733685320826459}, { 0.5901786199285975, -0.1733685320826459, -0.059987998072861794`}, \ {-0.059987998072861794`, 0.5901786199285975, -0.1733685320826459}, {-0.5901786199285975, 0.1733685320826459, 0.0599879980728618}, {0.35682208977308993`, 0.35682208977308993`, 0.35682208977308993`}, {-0.1733685320826459, -0.059987998072861794`, 0.5901786199285975}, {-0.31759079921548944`, -0.1733685320826459, \ -0.5010443569059335}, { 0.35682208977308993`, -0.35682208977308993`, -0.35682208977308993`}, \ {-0.1733685320826459, 0.5010443569059335, -0.31759079921548944`}, { 0.5010443569059335, 0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, -0.5010443569059335, 0.31759079921548944`}, {-0.5010443569059335, -0.31759079921548944`, 0.1733685320826459}, {0.31759079921548944`, 0.1733685320826459, 0.5010443569059335}, {-0.35682208977308993`, 0.35682208977308993`, 0.35682208977308993`}, {-0.22052817941653585`, -0.5773502691896257, 0}, {0.4538847095720435, -0.39389671149918176`, \ -0.14422226713284356`}, {-0.22052817941653585`, -0.13629391035655408`, 0.5610323549787952}, {0.4538847095720435, 0.04715964733388994, 0.41681008784595175`}, {0.22052817941653585`, 0.1362939103565541, -0.5610323549787952}, {-0.4538847095720435, \ -0.04715964733388994, -0.41681008784595175`}, { 0.22052817941653585`, 0.5773502691896258, 0}, {-0.4538847095720435, 0.39389671149918176`, 0.14422226713284356`}, {-0.14422226713284356`, -0.4538847095720435, \ -0.39389671149918176`}, {0.41681008784595175`, -0.4538847095720435, 0.04715964733388994}, {-0.5610323549787952, -0.22052817941653585`, 0.1362939103565541}, {0, -0.22052817941653585`, 0.5773502691896258}, { 0.5610323549787952, 0.22052817941653585`, -0.13629391035655408`}, { 0, 0.22052817941653585`, -0.5773502691896257}, {0.14422226713284356`, 0.4538847095720435, 0.39389671149918176`}, {-0.41681008784595175`, 0.4538847095720435, -0.04715964733388994}, {-0.4538847095720435, 0.04715964733388994, -0.41681008784595175`}, { 0.22052817941653585`, -0.13629391035655408`, -0.5610323549787952}, \ {-0.22052817941653585`, 0.5773502691896258, 0}, {0.4538847095720435, 0.39389671149918176`, -0.14422226713284356`}, { 0.22052817941653585`, -0.5773502691896257, 0}, {-0.4538847095720435, -0.39389671149918176`, 0.14422226713284356`}, {0.4538847095720435, -0.04715964733388994, 0.41681008784595175`}, {-0.22052817941653585`, 0.1362939103565541, 0.5610323549787952}, {-0.22052817941653585`, -0.13629391035655408`, \ -0.5610323549787952}, {0.4538847095720435, 0.04715964733388994, -0.41681008784595175`}, {-0.4538847095720435, 0.39389671149918176`, -0.14422226713284356`}, { 0.4538847095720435, -0.39389671149918176`, 0.14422226713284356`}, { 0.22052817941653585`, 0.1362939103565541, 0.5610323549787952}, {-0.4538847095720435, -0.04715964733388994, 0.41681008784595175`}, {-0.14422226713284356`, -0.4538847095720435, 0.39389671149918176`}, { 0.41681008784595175`, -0.4538847095720435, -0.04715964733388994}, \ {-0.5610323549787952, -0.22052817941653585`, -0.13629391035655408`}, { 0, -0.22052817941653585`, -0.5773502691896257}, {0.5610323549787952, 0.22052817941653585`, 0.1362939103565541}, { 0, 0.22052817941653585`, 0.5773502691896258}, {0.14422226713284356`, 0.4538847095720435, -0.39389671149918176`}, {-0.41681008784595175`, 0.4538847095720435, 0.04715964733388994}, {-0.4538847095720435, -0.39389671149918176`, \ -0.14422226713284356`}, {-0.4538847095720435, 0.04715964733388994, 0.41681008784595175`}, {0.22052817941653585`, -0.13629391035655408`, 0.5610323549787952}, { 0.4538847095720435, -0.04715964733388994, -0.41681008784595175`}, \ {-0.22052817941653585`, 0.1362939103565541, -0.5610323549787952}, { 0.4538847095720435, 0.39389671149918176`, 0.14422226713284356`}, { 0.31759079921548944`, -0.1733685320826459, -0.5010443569059335}, \ {-0.5010443569059335, 0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, 0.5010443569059335, -0.31759079921548944`}, { 0.5010443569059335, -0.31759079921548944`, 0.1733685320826459}, {-0.1733685320826459, -0.5010443569059335, 0.31759079921548944`}, {-0.31759079921548944`, 0.1733685320826459, 0.5010443569059335}, {-0.41681008784595175`, -0.4538847095720435, \ -0.04715964733388994}, {0.14422226713284356`, -0.4538847095720435, 0.39389671149918176`}, { 0.5610323549787952, -0.22052817941653585`, -0.13629391035655408`}, \ {-0.5610323549787952, 0.22052817941653585`, 0.1362939103565541}, { 0.41681008784595175`, 0.4538847095720435, 0.04715964733388994}, {-0.14422226713284356`, 0.4538847095720435, -0.39389671149918176`}, {-0.1733685320826459, 0.0599879980728618, -0.5901786199285975}, {-0.5901786199285975, \ -0.1733685320826459, -0.059987998072861794`}, {-0.059987998072861794`, \ -0.5901786199285975, 0.1733685320826459}, {0.5901786199285975, 0.1733685320826459, 0.0599879980728618}, {0.0599879980728618, 0.5901786199285975, -0.1733685320826459}, { 0.1733685320826459, -0.059987998072861794`, 0.5901786199285975}, {-0.1733685320826459, -0.5010443569059335, \ -0.31759079921548944`}, { 0.5010443569059335, -0.31759079921548944`, -0.1733685320826459}, { 0.31759079921548944`, -0.1733685320826459, 0.5010443569059335}, {-0.31759079921548944`, 0.1733685320826459, -0.5010443569059335}, {0.1733685320826459, 0.5010443569059335, 0.31759079921548944`}, {-0.5010443569059335, 0.31759079921548944`, 0.1733685320826459}, {-0.41681008784595175`, -0.4538847095720435, 0.04715964733388994}, { 0.14422226713284356`, -0.4538847095720435, -0.39389671149918176`}, { 0.5610323549787952, -0.22052817941653585`, 0.1362939103565541}, {-0.5610323549787952, 0.22052817941653585`, -0.13629391035655408`}, {0.41681008784595175`, 0.4538847095720435, -0.04715964733388994}, {-0.14422226713284356`, 0.4538847095720435, 0.39389671149918176`}, {-0.5901786199285975, -0.1733685320826459, 0.0599879980728618}, {-0.059987998072861794`, -0.5901786199285975, \ -0.1733685320826459}, {-0.1733685320826459, 0.0599879980728618, 0.5901786199285975}, { 0.1733685320826459, -0.059987998072861794`, -0.5901786199285975}, { 0.5901786199285975, 0.1733685320826459, -0.059987998072861794`}, { 0.0599879980728618, 0.5901786199285975, 0.1733685320826459}, {-0.04715964733388994, -0.41681008784595175`, \ -0.4538847095720435}, {-0.39389671149918176`, -0.14422226713284356`, 0.4538847095720435}, {0.1362939103565541, -0.5610323549787952, 0.22052817941653585`}, {0.39389671149918176`, 0.14422226713284356`, -0.4538847095720435}, {-0.13629391035655408`, 0.5610323549787952, -0.22052817941653585`}, {0.04715964733388994, 0.41681008784595175`, 0.4538847095720435}, {-0.04715964733388994, -0.41681008784595175`, 0.4538847095720435}, {-0.39389671149918176`, -0.14422226713284356`, \ -0.4538847095720435}, { 0.1362939103565541, -0.5610323549787952, -0.22052817941653585`}, { 0.39389671149918176`, 0.14422226713284356`, 0.4538847095720435}, {-0.13629391035655408`, 0.5610323549787952, 0.22052817941653585`}, {0.04715964733388994, 0.41681008784595175`, -0.4538847095720435}}], { Polygon3DBox[CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]], Polygon3DBox[CompressedData[" 1:eJwNwwtX6QAAAODOPfeP3B/SotYi05CY1SjTVCxqylpYU4oesxR6qPSiJCHy SCh6/Kzbd873z+zQmP/09PQwv//+7usFJL19YD/Q2y/tkwyA/eCAVAJIBwaH ZNDQ4DA8CMmHZUOwAh6WKyCZQj6iQpRKRKsZUWrUiGpUq9GOqlUj6lGdYRw1 6MYwHaofGzdgE+j4hB4b008YJ004brKYTZOExYibp8wWYmrSOEXYZsmZWZt9 jpydm7bNWO0z5LR1zm6dXpinFhcWXfQi5XDNL9BOat7poF0OJ7uyvMS4l5aZ 5ZXVJbeHdTOrnhXWs7rm83JeH+/nvP4N39o6v8ZtrPv59Y3NwBa9FaC26a3t UGAzSG3SoeA2FQyFxZ3dPWF3Z1fYD+/tiBFhL7Ivhvcj8Rh/ED845A746GEs zh3xsaModxg9Ojs/wc/PEsQZfpw4OSdO8ZPTYyJxfCpcJi/Eq4ukmLy8vri6 Ea7E65tL4eY6dUum0+RdJpXO2Mnb+7vM3b39NmW/zz0g+YecOos8ZB9z+Sd1 Hnl8yqqfHplC8bnAvJSY5/JLsVBiSy9l9rnIlmuVKopW66/VClavoa+N1zrW qNQa2FurCbfe2tAb/N5utqAPqP3+ATc/3j87YLfzCXyBna/vz+4P8AX8fHfB 75//Umjv9w== "]]}]]}], "}"}]], "Output", CellLabel->"Out[81]=",ExpressionUUID->"B05B444B-0668-42D3-945A-D7B24B30ECAA"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"Most", "@", "%"}], "]"}]], "Input", CellLabel->"In[82]:=",ExpressionUUID->"8C245EB2-E2B7-44D7-9C03-017A21C03C4F"], Cell[BoxData[ Graphics3DBox[{ GraphicsComplex3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], Polygon3DBox[CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]]], GraphicsComplex3DBox[ NCache[{{( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.04715964733388994, -0.41681008784595175`, -0.4538847095720435}, { 0.5773502691896258, 0, -0.22052817941653585`}, {-0.13629391035655408`, -0.5610323549787952, 0.22052817941653585`}, {0.39389671149918176`, -0.14422226713284356`, 0.4538847095720435}, {0.1362939103565541, 0.5610323549787952, -0.22052817941653585`}, {-0.39389671149918176`, 0.14422226713284356`, -0.4538847095720435}, {-0.04715964733388994, 0.41681008784595175`, 0.4538847095720435}, {-0.5773502691896257, 0, 0.22052817941653585`}, { 0.04715964733388994, -0.41681008784595175`, 0.4538847095720435}, { 0.5773502691896258, 0, 0.22052817941653585`}, {-0.13629391035655408`, -0.5610323549787952, \ -0.22052817941653585`}, { 0.39389671149918176`, -0.14422226713284356`, -0.4538847095720435}, { 0.1362939103565541, 0.5610323549787952, 0.22052817941653585`}, {-0.39389671149918176`, 0.14422226713284356`, 0.4538847095720435}, {-0.04715964733388994, 0.41681008784595175`, -0.4538847095720435}, {-0.5773502691896257, 0, -0.22052817941653585`}, { 0.0599879980728618, -0.5901786199285975, -0.1733685320826459}, { 0.5901786199285975, -0.1733685320826459, 0.0599879980728618}, {-0.35682208977308993`, -0.35682208977308993`, 0.35682208977308993`}, {0.1733685320826459, 0.0599879980728618, 0.5901786199285975}, {0.35682208977308993`, 0.35682208977308993`, -0.35682208977308993`}, {-0.1733685320826459, \ -0.059987998072861794`, -0.5901786199285975}, {-0.059987998072861794`, 0.5901786199285975, 0.1733685320826459}, {-0.5901786199285975, 0.1733685320826459, -0.059987998072861794`}, {-0.5010443569059335, \ -0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, -0.5010443569059335, -0.31759079921548944`}, \ {-0.31759079921548944`, -0.1733685320826459, 0.5010443569059335}, { 0.35682208977308993`, -0.35682208977308993`, 0.35682208977308993`}, { 0.31759079921548944`, 0.1733685320826459, -0.5010443569059335}, {-0.35682208977308993`, 0.35682208977308993`, -0.35682208977308993`}, {0.5010443569059335, 0.31759079921548944`, 0.1733685320826459}, {-0.1733685320826459, 0.5010443569059335, 0.31759079921548944`}, {-0.35682208977308993`, -0.35682208977308993`, \ -0.35682208977308993`}, {0.1733685320826459, 0.0599879980728618, -0.5901786199285975}, { 0.0599879980728618, -0.5901786199285975, 0.1733685320826459}, { 0.5901786199285975, -0.1733685320826459, -0.059987998072861794`}, \ {-0.059987998072861794`, 0.5901786199285975, -0.1733685320826459}, {-0.5901786199285975, 0.1733685320826459, 0.0599879980728618}, {0.35682208977308993`, 0.35682208977308993`, 0.35682208977308993`}, {-0.1733685320826459, -0.059987998072861794`, 0.5901786199285975}, {-0.31759079921548944`, -0.1733685320826459, \ -0.5010443569059335}, { 0.35682208977308993`, -0.35682208977308993`, -0.35682208977308993`}, \ {-0.1733685320826459, 0.5010443569059335, -0.31759079921548944`}, { 0.5010443569059335, 0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, -0.5010443569059335, 0.31759079921548944`}, {-0.5010443569059335, -0.31759079921548944`, 0.1733685320826459}, {0.31759079921548944`, 0.1733685320826459, 0.5010443569059335}, {-0.35682208977308993`, 0.35682208977308993`, 0.35682208977308993`}, {-0.22052817941653585`, -0.5773502691896257, 0}, {0.4538847095720435, -0.39389671149918176`, \ -0.14422226713284356`}, {-0.22052817941653585`, -0.13629391035655408`, 0.5610323549787952}, {0.4538847095720435, 0.04715964733388994, 0.41681008784595175`}, {0.22052817941653585`, 0.1362939103565541, -0.5610323549787952}, {-0.4538847095720435, \ -0.04715964733388994, -0.41681008784595175`}, { 0.22052817941653585`, 0.5773502691896258, 0}, {-0.4538847095720435, 0.39389671149918176`, 0.14422226713284356`}, {-0.14422226713284356`, -0.4538847095720435, \ -0.39389671149918176`}, {0.41681008784595175`, -0.4538847095720435, 0.04715964733388994}, {-0.5610323549787952, -0.22052817941653585`, 0.1362939103565541}, {0, -0.22052817941653585`, 0.5773502691896258}, { 0.5610323549787952, 0.22052817941653585`, -0.13629391035655408`}, { 0, 0.22052817941653585`, -0.5773502691896257}, {0.14422226713284356`, 0.4538847095720435, 0.39389671149918176`}, {-0.41681008784595175`, 0.4538847095720435, -0.04715964733388994}, {-0.4538847095720435, 0.04715964733388994, -0.41681008784595175`}, { 0.22052817941653585`, -0.13629391035655408`, -0.5610323549787952}, \ {-0.22052817941653585`, 0.5773502691896258, 0}, {0.4538847095720435, 0.39389671149918176`, -0.14422226713284356`}, { 0.22052817941653585`, -0.5773502691896257, 0}, {-0.4538847095720435, -0.39389671149918176`, 0.14422226713284356`}, {0.4538847095720435, -0.04715964733388994, 0.41681008784595175`}, {-0.22052817941653585`, 0.1362939103565541, 0.5610323549787952}, {-0.22052817941653585`, -0.13629391035655408`, \ -0.5610323549787952}, {0.4538847095720435, 0.04715964733388994, -0.41681008784595175`}, {-0.4538847095720435, 0.39389671149918176`, -0.14422226713284356`}, { 0.4538847095720435, -0.39389671149918176`, 0.14422226713284356`}, { 0.22052817941653585`, 0.1362939103565541, 0.5610323549787952}, {-0.4538847095720435, -0.04715964733388994, 0.41681008784595175`}, {-0.14422226713284356`, -0.4538847095720435, 0.39389671149918176`}, { 0.41681008784595175`, -0.4538847095720435, -0.04715964733388994}, \ {-0.5610323549787952, -0.22052817941653585`, -0.13629391035655408`}, { 0, -0.22052817941653585`, -0.5773502691896257}, {0.5610323549787952, 0.22052817941653585`, 0.1362939103565541}, { 0, 0.22052817941653585`, 0.5773502691896258}, {0.14422226713284356`, 0.4538847095720435, -0.39389671149918176`}, {-0.41681008784595175`, 0.4538847095720435, 0.04715964733388994}, {-0.4538847095720435, -0.39389671149918176`, \ -0.14422226713284356`}, {-0.4538847095720435, 0.04715964733388994, 0.41681008784595175`}, {0.22052817941653585`, -0.13629391035655408`, 0.5610323549787952}, { 0.4538847095720435, -0.04715964733388994, -0.41681008784595175`}, \ {-0.22052817941653585`, 0.1362939103565541, -0.5610323549787952}, { 0.4538847095720435, 0.39389671149918176`, 0.14422226713284356`}, { 0.31759079921548944`, -0.1733685320826459, -0.5010443569059335}, \ {-0.5010443569059335, 0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, 0.5010443569059335, -0.31759079921548944`}, { 0.5010443569059335, -0.31759079921548944`, 0.1733685320826459}, {-0.1733685320826459, -0.5010443569059335, 0.31759079921548944`}, {-0.31759079921548944`, 0.1733685320826459, 0.5010443569059335}, {-0.41681008784595175`, -0.4538847095720435, \ -0.04715964733388994}, {0.14422226713284356`, -0.4538847095720435, 0.39389671149918176`}, { 0.5610323549787952, -0.22052817941653585`, -0.13629391035655408`}, \ {-0.5610323549787952, 0.22052817941653585`, 0.1362939103565541}, { 0.41681008784595175`, 0.4538847095720435, 0.04715964733388994}, {-0.14422226713284356`, 0.4538847095720435, -0.39389671149918176`}, {-0.1733685320826459, 0.0599879980728618, -0.5901786199285975}, {-0.5901786199285975, \ -0.1733685320826459, -0.059987998072861794`}, {-0.059987998072861794`, \ -0.5901786199285975, 0.1733685320826459}, {0.5901786199285975, 0.1733685320826459, 0.0599879980728618}, {0.0599879980728618, 0.5901786199285975, -0.1733685320826459}, { 0.1733685320826459, -0.059987998072861794`, 0.5901786199285975}, {-0.1733685320826459, -0.5010443569059335, \ -0.31759079921548944`}, { 0.5010443569059335, -0.31759079921548944`, -0.1733685320826459}, { 0.31759079921548944`, -0.1733685320826459, 0.5010443569059335}, {-0.31759079921548944`, 0.1733685320826459, -0.5010443569059335}, {0.1733685320826459, 0.5010443569059335, 0.31759079921548944`}, {-0.5010443569059335, 0.31759079921548944`, 0.1733685320826459}, {-0.41681008784595175`, -0.4538847095720435, 0.04715964733388994}, { 0.14422226713284356`, -0.4538847095720435, -0.39389671149918176`}, { 0.5610323549787952, -0.22052817941653585`, 0.1362939103565541}, {-0.5610323549787952, 0.22052817941653585`, -0.13629391035655408`}, {0.41681008784595175`, 0.4538847095720435, -0.04715964733388994}, {-0.14422226713284356`, 0.4538847095720435, 0.39389671149918176`}, {-0.5901786199285975, -0.1733685320826459, 0.0599879980728618}, {-0.059987998072861794`, -0.5901786199285975, \ -0.1733685320826459}, {-0.1733685320826459, 0.0599879980728618, 0.5901786199285975}, { 0.1733685320826459, -0.059987998072861794`, -0.5901786199285975}, { 0.5901786199285975, 0.1733685320826459, -0.059987998072861794`}, { 0.0599879980728618, 0.5901786199285975, 0.1733685320826459}, {-0.04715964733388994, -0.41681008784595175`, \ -0.4538847095720435}, {-0.39389671149918176`, -0.14422226713284356`, 0.4538847095720435}, {0.1362939103565541, -0.5610323549787952, 0.22052817941653585`}, {0.39389671149918176`, 0.14422226713284356`, -0.4538847095720435}, {-0.13629391035655408`, 0.5610323549787952, -0.22052817941653585`}, {0.04715964733388994, 0.41681008784595175`, 0.4538847095720435}, {-0.04715964733388994, -0.41681008784595175`, 0.4538847095720435}, {-0.39389671149918176`, -0.14422226713284356`, \ -0.4538847095720435}, { 0.1362939103565541, -0.5610323549787952, -0.22052817941653585`}, { 0.39389671149918176`, 0.14422226713284356`, 0.4538847095720435}, {-0.13629391035655408`, 0.5610323549787952, 0.22052817941653585`}, {0.04715964733388994, 0.41681008784595175`, -0.4538847095720435}}], Polygon3DBox[CompressedData[" 1:eJwNwwk7wgAAAFCtJEsH0yFTTRjTsZGmTMVaB0rNnN2FkiNnh5R0SOpH877v IZkimwFGRkYq/wX/+TxAwOOLhABPOMoXjImEorFRATA6Ni6eAMXjUvk4KJFO iOUyuVQiAydkkqlpaHISUiunJpUKaFqlVqpViukphUozp4PnNDNaDTw7o5vT 6mGdflY7M6ufXzAgiGF5ybCALs8jS4tLy+jiwvwiajFhRpMFN2Mm84rFuIob sZVVM766srFG2DZsm6SNWN9c2yCtxJp1ndxctzq3HXZqy+6gHNsu+5bbuUW5 3NtOt8uzu0Pv7DJeesfr3/X4GA/t93kZn38vsE/uB4gQuR8KBvYOiD0yeBAi DoJH3GE4woYPw+zxUeSQO2EjJ8fc0fFJ9II5jZ6e0afM+dlFlI4xF7Fz+uw8 ls4kkEw6haaReCqRQZNIIhlHU/Eke3WZ5a6zl9zlVS57nWevuVz+is3nCjfY 7S1291C4fcCxm/u7h7t7/KaA3z8Xodfis+IRKj4+Pb++KF6hp5dHxcsT9VYq v1HvFapcfS+9VZyV96qzXHJW67UPGP5ofH7UtI06/Nn8bGibtXpT+9Vuydtf HfBL3u202uA32Ol+y1vf3X5P9NPrA7+i3u+g/zMEfoHh4Ec0GP4Bm/J/dw== "]]]}]], "Output", CellLabel->"Out[82]=",ExpressionUUID->"19523EF2-2202-4220-8F38-FBCE08212561"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Properties: {\"OctahedronTwentyCompound\", 1}", "Section",ExpressionUUID->"532DEF44-BC62-4459-8F36-BF1B1A6D891E"], Cell[CellGroupData[{ Cell["Initialization", "Subsection",ExpressionUUID->"15433E0A-71C0-4DB6-BF95-971C596BB2CA"], Cell[BoxData[ RowBox[{"<<", "MathWorld`Polyhedra`"}]], "Input", CellLabel->"In[1]:=",ExpressionUUID->"7A1CA69C-0E7D-49C9-B3B0-B3C2E638914F"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"p", "=", RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"pname", "=", RowBox[{"{", RowBox[{"\"\\"", ",", "1"}], "}"}]}], ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[2]:=",ExpressionUUID->"E5712EE2-B2DA-4FBC-B1C5-A80E138E74AD"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["120", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["120", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel->"Out[2]=",ExpressionUUID->"0B27DDA0-5B18-411C-8649-CF485DFBA64A"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["AdjacentFaceIndices", "Subsection",ExpressionUUID->"E4914A68-EA0E-48BE-B0C1-56C339DF62D2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"adj1", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[14]:=",ExpressionUUID->"4417E4DA-B091-4E73-8373-A2F1EB1847A8"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"20", ",", "23"}], "}"}], ",", RowBox[{"{", RowBox[{"21", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{"21", ",", "23"}], "}"}], ",", RowBox[{"{", RowBox[{"22", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"23", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "26"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "27"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"26", ",", "28"}], "}"}], ",", RowBox[{"{", RowBox[{"26", ",", "29"}], "}"}], ",", RowBox[{"{", RowBox[{"27", ",", "28"}], "}"}], ",", RowBox[{"{", RowBox[{"27", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"28", ",", "31"}], "}"}], ",", RowBox[{"{", RowBox[{"29", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"29", ",", "31"}], "}"}], ",", RowBox[{"{", RowBox[{"30", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"31", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "34"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "35"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "38"}], "}"}], ",", RowBox[{"{", RowBox[{"34", ",", "36"}], "}"}], ",", RowBox[{"{", RowBox[{"34", ",", "37"}], "}"}], ",", RowBox[{"{", RowBox[{"35", ",", "36"}], "}"}], ",", RowBox[{"{", RowBox[{"35", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"36", ",", "39"}], "}"}], ",", RowBox[{"{", RowBox[{"37", ",", "38"}], "}"}], ",", RowBox[{"{", RowBox[{"37", ",", "39"}], "}"}], ",", RowBox[{"{", RowBox[{"38", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"39", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"41", ",", "42"}], "}"}], ",", RowBox[{"{", RowBox[{"41", ",", "43"}], "}"}], ",", RowBox[{"{", RowBox[{"41", ",", "46"}], "}"}], ",", RowBox[{"{", RowBox[{"42", ",", "44"}], "}"}], ",", RowBox[{"{", RowBox[{"42", ",", "45"}], "}"}], ",", RowBox[{"{", RowBox[{"43", ",", "44"}], "}"}], ",", RowBox[{"{", RowBox[{"43", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{"44", ",", "47"}], "}"}], ",", RowBox[{"{", RowBox[{"45", ",", "46"}], "}"}], ",", RowBox[{"{", RowBox[{"45", ",", "47"}], "}"}], ",", RowBox[{"{", RowBox[{"46", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{"47", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "50"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "51"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "54"}], "}"}], ",", RowBox[{"{", RowBox[{"50", ",", "52"}], "}"}], ",", RowBox[{"{", RowBox[{"50", ",", "53"}], "}"}], ",", RowBox[{"{", RowBox[{"51", ",", "52"}], "}"}], ",", RowBox[{"{", RowBox[{"51", ",", "56"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "55"}], "}"}], ",", RowBox[{"{", RowBox[{"53", ",", "54"}], "}"}], ",", RowBox[{"{", RowBox[{"53", ",", "55"}], "}"}], ",", RowBox[{"{", RowBox[{"54", ",", "56"}], "}"}], ",", RowBox[{"{", RowBox[{"55", ",", "56"}], "}"}], ",", RowBox[{"{", RowBox[{"57", ",", "58"}], "}"}], ",", RowBox[{"{", RowBox[{"57", ",", "59"}], "}"}], ",", RowBox[{"{", RowBox[{"57", ",", "62"}], "}"}], ",", RowBox[{"{", RowBox[{"58", ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{"58", ",", "61"}], "}"}], ",", RowBox[{"{", RowBox[{"59", ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{"59", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"60", ",", "63"}], "}"}], ",", RowBox[{"{", RowBox[{"61", ",", "62"}], "}"}], ",", RowBox[{"{", RowBox[{"61", ",", "63"}], "}"}], ",", RowBox[{"{", RowBox[{"62", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"63", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "66"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "67"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "70"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "68"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "69"}], "}"}], ",", RowBox[{"{", RowBox[{"67", ",", "68"}], "}"}], ",", RowBox[{"{", RowBox[{"67", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"68", ",", "71"}], "}"}], ",", RowBox[{"{", RowBox[{"69", ",", "70"}], "}"}], ",", RowBox[{"{", RowBox[{"69", ",", "71"}], "}"}], ",", RowBox[{"{", RowBox[{"70", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"71", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "74"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "75"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "78"}], "}"}], ",", RowBox[{"{", RowBox[{"74", ",", "76"}], "}"}], ",", RowBox[{"{", RowBox[{"74", ",", "77"}], "}"}], ",", RowBox[{"{", RowBox[{"75", ",", "76"}], "}"}], ",", RowBox[{"{", RowBox[{"75", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"76", ",", "79"}], "}"}], ",", RowBox[{"{", RowBox[{"77", ",", "78"}], "}"}], ",", RowBox[{"{", RowBox[{"77", ",", "79"}], "}"}], ",", RowBox[{"{", RowBox[{"78", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"79", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "82"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "83"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "86"}], "}"}], ",", RowBox[{"{", RowBox[{"82", ",", "84"}], "}"}], ",", RowBox[{"{", RowBox[{"82", ",", "85"}], "}"}], ",", RowBox[{"{", RowBox[{"83", ",", "84"}], "}"}], ",", RowBox[{"{", RowBox[{"83", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"84", ",", "87"}], "}"}], ",", RowBox[{"{", RowBox[{"85", ",", "86"}], "}"}], ",", RowBox[{"{", RowBox[{"85", ",", "87"}], "}"}], ",", RowBox[{"{", RowBox[{"86", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"87", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"89", ",", "90"}], "}"}], ",", RowBox[{"{", RowBox[{"89", ",", "91"}], "}"}], ",", RowBox[{"{", RowBox[{"89", ",", "94"}], "}"}], ",", RowBox[{"{", RowBox[{"90", ",", "92"}], "}"}], ",", RowBox[{"{", RowBox[{"90", ",", "93"}], "}"}], ",", RowBox[{"{", RowBox[{"91", ",", "92"}], "}"}], ",", RowBox[{"{", RowBox[{"91", ",", "96"}], "}"}], ",", RowBox[{"{", RowBox[{"92", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{"93", ",", "94"}], "}"}], ",", RowBox[{"{", RowBox[{"93", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{"94", ",", "96"}], "}"}], ",", RowBox[{"{", RowBox[{"95", ",", "96"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "98"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "99"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "102"}], "}"}], ",", RowBox[{"{", RowBox[{"98", ",", "100"}], "}"}], ",", RowBox[{"{", RowBox[{"98", ",", "101"}], "}"}], ",", RowBox[{"{", RowBox[{"99", ",", "100"}], "}"}], ",", RowBox[{"{", RowBox[{"99", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"100", ",", "103"}], "}"}], ",", RowBox[{"{", RowBox[{"101", ",", "102"}], "}"}], ",", RowBox[{"{", RowBox[{"101", ",", "103"}], "}"}], ",", RowBox[{"{", RowBox[{"102", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"103", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"105", ",", "106"}], "}"}], ",", RowBox[{"{", RowBox[{"105", ",", "107"}], "}"}], ",", RowBox[{"{", RowBox[{"105", ",", "110"}], "}"}], ",", RowBox[{"{", RowBox[{"106", ",", "108"}], "}"}], ",", RowBox[{"{", RowBox[{"106", ",", "109"}], "}"}], ",", RowBox[{"{", RowBox[{"107", ",", "108"}], "}"}], ",", RowBox[{"{", RowBox[{"107", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"108", ",", "111"}], "}"}], ",", RowBox[{"{", RowBox[{"109", ",", "110"}], "}"}], ",", RowBox[{"{", RowBox[{"109", ",", "111"}], "}"}], ",", RowBox[{"{", RowBox[{"110", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"111", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"113", ",", "114"}], "}"}], ",", RowBox[{"{", RowBox[{"113", ",", "115"}], "}"}], ",", RowBox[{"{", RowBox[{"113", ",", "118"}], "}"}], ",", RowBox[{"{", RowBox[{"114", ",", "116"}], "}"}], ",", RowBox[{"{", RowBox[{"114", ",", "117"}], "}"}], ",", RowBox[{"{", RowBox[{"115", ",", "116"}], "}"}], ",", RowBox[{"{", RowBox[{"115", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"116", ",", "119"}], "}"}], ",", RowBox[{"{", RowBox[{"117", ",", "118"}], "}"}], ",", RowBox[{"{", RowBox[{"117", ",", "119"}], "}"}], ",", RowBox[{"{", RowBox[{"118", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"119", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"121", ",", "122"}], "}"}], ",", RowBox[{"{", RowBox[{"121", ",", "123"}], "}"}], ",", RowBox[{"{", RowBox[{"121", ",", "126"}], "}"}], ",", RowBox[{"{", RowBox[{"122", ",", "124"}], "}"}], ",", RowBox[{"{", RowBox[{"122", ",", "125"}], "}"}], ",", RowBox[{"{", RowBox[{"123", ",", "124"}], "}"}], ",", RowBox[{"{", RowBox[{"123", ",", "128"}], "}"}], ",", RowBox[{"{", RowBox[{"124", ",", "127"}], "}"}], ",", RowBox[{"{", RowBox[{"125", ",", "126"}], "}"}], ",", RowBox[{"{", RowBox[{"125", ",", "127"}], "}"}], ",", RowBox[{"{", RowBox[{"126", ",", "128"}], "}"}], ",", RowBox[{"{", RowBox[{"127", ",", "128"}], "}"}], ",", RowBox[{"{", RowBox[{"129", ",", "130"}], "}"}], ",", RowBox[{"{", RowBox[{"129", ",", "131"}], "}"}], ",", RowBox[{"{", RowBox[{"129", ",", "134"}], "}"}], ",", RowBox[{"{", RowBox[{"130", ",", "132"}], "}"}], ",", RowBox[{"{", RowBox[{"130", ",", "133"}], "}"}], ",", RowBox[{"{", RowBox[{"131", ",", "132"}], "}"}], ",", RowBox[{"{", RowBox[{"131", ",", "136"}], "}"}], ",", RowBox[{"{", RowBox[{"132", ",", "135"}], "}"}], ",", RowBox[{"{", RowBox[{"133", ",", "134"}], "}"}], ",", RowBox[{"{", RowBox[{"133", ",", "135"}], "}"}], ",", RowBox[{"{", RowBox[{"134", ",", "136"}], "}"}], ",", RowBox[{"{", RowBox[{"135", ",", "136"}], "}"}], ",", RowBox[{"{", RowBox[{"137", ",", "138"}], "}"}], ",", RowBox[{"{", RowBox[{"137", ",", "139"}], "}"}], ",", RowBox[{"{", RowBox[{"137", ",", "142"}], "}"}], ",", RowBox[{"{", RowBox[{"138", ",", "140"}], "}"}], ",", RowBox[{"{", RowBox[{"138", ",", "141"}], "}"}], ",", RowBox[{"{", RowBox[{"139", ",", "140"}], "}"}], ",", RowBox[{"{", RowBox[{"139", ",", "144"}], "}"}], ",", RowBox[{"{", RowBox[{"140", ",", "143"}], "}"}], ",", RowBox[{"{", RowBox[{"141", ",", "142"}], "}"}], ",", RowBox[{"{", RowBox[{"141", ",", "143"}], "}"}], ",", RowBox[{"{", RowBox[{"142", ",", "144"}], "}"}], ",", RowBox[{"{", RowBox[{"143", ",", "144"}], "}"}], ",", RowBox[{"{", RowBox[{"145", ",", "146"}], "}"}], ",", RowBox[{"{", RowBox[{"145", ",", "147"}], "}"}], ",", RowBox[{"{", RowBox[{"145", ",", "150"}], "}"}], ",", RowBox[{"{", RowBox[{"146", ",", "148"}], "}"}], ",", RowBox[{"{", RowBox[{"146", ",", "149"}], "}"}], ",", RowBox[{"{", RowBox[{"147", ",", "148"}], "}"}], ",", RowBox[{"{", RowBox[{"147", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{"148", ",", "151"}], "}"}], ",", RowBox[{"{", RowBox[{"149", ",", "150"}], "}"}], ",", RowBox[{"{", RowBox[{"149", ",", "151"}], "}"}], ",", RowBox[{"{", RowBox[{"150", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{"151", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{"153", ",", "154"}], "}"}], ",", RowBox[{"{", RowBox[{"153", ",", "155"}], "}"}], ",", RowBox[{"{", RowBox[{"153", ",", "158"}], "}"}], ",", RowBox[{"{", RowBox[{"154", ",", "156"}], "}"}], ",", RowBox[{"{", RowBox[{"154", ",", "157"}], "}"}], ",", RowBox[{"{", RowBox[{"155", ",", "156"}], "}"}], ",", RowBox[{"{", RowBox[{"155", ",", "160"}], "}"}], ",", RowBox[{"{", RowBox[{"156", ",", "159"}], "}"}], ",", RowBox[{"{", RowBox[{"157", ",", "158"}], "}"}], ",", RowBox[{"{", RowBox[{"157", ",", "159"}], "}"}], ",", RowBox[{"{", RowBox[{"158", ",", "160"}], "}"}], ",", RowBox[{"{", RowBox[{"159", ",", "160"}], "}"}]}], "}"}]], "Output", CellLabel->"Out[14]=",ExpressionUUID->"BD726781-30A0-41A1-8424-022B9F49F164"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"adj2", "=", RowBox[{"AdjacentFaceIndices", "[", "p", "]"}]}]], "Input", CellLabel->"In[15]:=",ExpressionUUID->"87ECD488-4F93-404F-A356-6E9D5E2402B3"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"20", ",", "23"}], "}"}], ",", RowBox[{"{", RowBox[{"21", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{"21", ",", "23"}], "}"}], ",", RowBox[{"{", RowBox[{"22", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"23", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "26"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "27"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"26", ",", "28"}], "}"}], ",", RowBox[{"{", RowBox[{"26", ",", "29"}], "}"}], ",", RowBox[{"{", RowBox[{"27", ",", "28"}], "}"}], ",", RowBox[{"{", RowBox[{"27", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"28", ",", "31"}], "}"}], ",", RowBox[{"{", RowBox[{"29", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"29", ",", "31"}], "}"}], ",", RowBox[{"{", RowBox[{"30", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"31", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "34"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "35"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "38"}], "}"}], ",", RowBox[{"{", RowBox[{"34", ",", "36"}], "}"}], ",", RowBox[{"{", RowBox[{"34", ",", "37"}], "}"}], ",", RowBox[{"{", RowBox[{"35", ",", "36"}], "}"}], ",", RowBox[{"{", RowBox[{"35", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"36", ",", "39"}], "}"}], ",", RowBox[{"{", RowBox[{"37", ",", "38"}], "}"}], ",", RowBox[{"{", RowBox[{"37", ",", "39"}], "}"}], ",", RowBox[{"{", RowBox[{"38", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"39", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"41", ",", "42"}], "}"}], ",", RowBox[{"{", RowBox[{"41", ",", "43"}], "}"}], ",", RowBox[{"{", RowBox[{"41", ",", "46"}], "}"}], ",", RowBox[{"{", RowBox[{"42", ",", "44"}], "}"}], ",", RowBox[{"{", RowBox[{"42", ",", "45"}], "}"}], ",", RowBox[{"{", RowBox[{"43", ",", "44"}], "}"}], ",", RowBox[{"{", RowBox[{"43", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{"44", ",", "47"}], "}"}], ",", RowBox[{"{", RowBox[{"45", ",", "46"}], "}"}], ",", RowBox[{"{", RowBox[{"45", ",", "47"}], "}"}], ",", RowBox[{"{", RowBox[{"46", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{"47", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "50"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "51"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "54"}], "}"}], ",", RowBox[{"{", RowBox[{"50", ",", "52"}], "}"}], ",", RowBox[{"{", RowBox[{"50", ",", "53"}], "}"}], ",", RowBox[{"{", RowBox[{"51", ",", "52"}], "}"}], ",", RowBox[{"{", RowBox[{"51", ",", "56"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "55"}], "}"}], ",", RowBox[{"{", RowBox[{"53", ",", "54"}], "}"}], ",", RowBox[{"{", RowBox[{"53", ",", "55"}], "}"}], ",", RowBox[{"{", RowBox[{"54", ",", "56"}], "}"}], ",", RowBox[{"{", RowBox[{"55", ",", "56"}], "}"}], ",", RowBox[{"{", RowBox[{"57", ",", "58"}], "}"}], ",", RowBox[{"{", RowBox[{"57", ",", "59"}], "}"}], ",", RowBox[{"{", RowBox[{"57", ",", "62"}], "}"}], ",", RowBox[{"{", RowBox[{"58", ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{"58", ",", "61"}], "}"}], ",", RowBox[{"{", RowBox[{"59", ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{"59", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"60", ",", "63"}], "}"}], ",", RowBox[{"{", RowBox[{"61", ",", "62"}], "}"}], ",", RowBox[{"{", RowBox[{"61", ",", "63"}], "}"}], ",", RowBox[{"{", RowBox[{"62", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"63", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "66"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "67"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "70"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "68"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "69"}], "}"}], ",", RowBox[{"{", RowBox[{"67", ",", "68"}], "}"}], ",", RowBox[{"{", RowBox[{"67", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"68", ",", "71"}], "}"}], ",", RowBox[{"{", RowBox[{"69", ",", "70"}], "}"}], ",", RowBox[{"{", RowBox[{"69", ",", "71"}], "}"}], ",", RowBox[{"{", RowBox[{"70", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"71", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "74"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "75"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "78"}], "}"}], ",", RowBox[{"{", RowBox[{"74", ",", "76"}], "}"}], ",", RowBox[{"{", RowBox[{"74", ",", "77"}], "}"}], ",", RowBox[{"{", RowBox[{"75", ",", "76"}], "}"}], ",", RowBox[{"{", RowBox[{"75", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"76", ",", "79"}], "}"}], ",", RowBox[{"{", RowBox[{"77", ",", "78"}], "}"}], ",", RowBox[{"{", RowBox[{"77", ",", "79"}], "}"}], ",", RowBox[{"{", RowBox[{"78", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"79", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "82"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "83"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "86"}], "}"}], ",", RowBox[{"{", RowBox[{"82", ",", "84"}], "}"}], ",", RowBox[{"{", RowBox[{"82", ",", "85"}], "}"}], ",", RowBox[{"{", RowBox[{"83", ",", "84"}], "}"}], ",", RowBox[{"{", RowBox[{"83", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"84", ",", "87"}], "}"}], ",", RowBox[{"{", RowBox[{"85", ",", "86"}], "}"}], ",", RowBox[{"{", RowBox[{"85", ",", "87"}], "}"}], ",", RowBox[{"{", RowBox[{"86", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"87", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"89", ",", "90"}], "}"}], ",", RowBox[{"{", RowBox[{"89", ",", "91"}], "}"}], ",", RowBox[{"{", RowBox[{"89", ",", "94"}], "}"}], ",", RowBox[{"{", RowBox[{"90", ",", "92"}], "}"}], ",", RowBox[{"{", RowBox[{"90", ",", "93"}], "}"}], ",", RowBox[{"{", RowBox[{"91", ",", "92"}], "}"}], ",", RowBox[{"{", RowBox[{"91", ",", "96"}], "}"}], ",", RowBox[{"{", RowBox[{"92", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{"93", ",", "94"}], "}"}], ",", RowBox[{"{", RowBox[{"93", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{"94", ",", "96"}], "}"}], ",", RowBox[{"{", RowBox[{"95", ",", "96"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "98"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "99"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "102"}], "}"}], ",", RowBox[{"{", RowBox[{"98", ",", "100"}], "}"}], ",", RowBox[{"{", RowBox[{"98", ",", "101"}], "}"}], ",", RowBox[{"{", RowBox[{"99", ",", "100"}], "}"}], ",", RowBox[{"{", RowBox[{"99", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"100", ",", "103"}], "}"}], ",", RowBox[{"{", RowBox[{"101", ",", "102"}], "}"}], ",", RowBox[{"{", RowBox[{"101", ",", "103"}], "}"}], ",", RowBox[{"{", RowBox[{"102", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"103", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"105", ",", "106"}], "}"}], ",", RowBox[{"{", RowBox[{"105", ",", "107"}], "}"}], ",", RowBox[{"{", RowBox[{"105", ",", "110"}], "}"}], ",", RowBox[{"{", RowBox[{"106", ",", "108"}], "}"}], ",", RowBox[{"{", RowBox[{"106", ",", "109"}], "}"}], ",", RowBox[{"{", RowBox[{"107", ",", "108"}], "}"}], ",", RowBox[{"{", RowBox[{"107", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"108", ",", "111"}], "}"}], ",", RowBox[{"{", RowBox[{"109", ",", "110"}], "}"}], ",", RowBox[{"{", RowBox[{"109", ",", "111"}], "}"}], ",", RowBox[{"{", RowBox[{"110", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"111", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"113", ",", "114"}], "}"}], ",", RowBox[{"{", RowBox[{"113", ",", "115"}], "}"}], ",", RowBox[{"{", RowBox[{"113", ",", "118"}], "}"}], ",", RowBox[{"{", RowBox[{"114", ",", "116"}], "}"}], ",", RowBox[{"{", RowBox[{"114", ",", "117"}], "}"}], ",", RowBox[{"{", RowBox[{"115", ",", "116"}], "}"}], ",", RowBox[{"{", RowBox[{"115", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"116", ",", "119"}], "}"}], ",", RowBox[{"{", RowBox[{"117", ",", "118"}], "}"}], ",", RowBox[{"{", RowBox[{"117", ",", "119"}], "}"}], ",", RowBox[{"{", RowBox[{"118", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"119", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"121", ",", "122"}], "}"}], ",", RowBox[{"{", RowBox[{"121", ",", "123"}], "}"}], ",", RowBox[{"{", RowBox[{"121", ",", "126"}], "}"}], ",", RowBox[{"{", RowBox[{"122", ",", "124"}], "}"}], ",", RowBox[{"{", RowBox[{"122", ",", "125"}], "}"}], ",", RowBox[{"{", RowBox[{"123", ",", "124"}], "}"}], ",", RowBox[{"{", RowBox[{"123", ",", "128"}], "}"}], ",", RowBox[{"{", RowBox[{"124", ",", "127"}], "}"}], ",", RowBox[{"{", RowBox[{"125", ",", "126"}], "}"}], ",", RowBox[{"{", RowBox[{"125", ",", "127"}], "}"}], ",", RowBox[{"{", RowBox[{"126", ",", "128"}], "}"}], ",", RowBox[{"{", RowBox[{"127", ",", "128"}], "}"}], ",", RowBox[{"{", RowBox[{"129", ",", "130"}], "}"}], ",", RowBox[{"{", RowBox[{"129", ",", "131"}], "}"}], ",", RowBox[{"{", RowBox[{"129", ",", "134"}], "}"}], ",", RowBox[{"{", RowBox[{"130", ",", "132"}], "}"}], ",", RowBox[{"{", RowBox[{"130", ",", "133"}], "}"}], ",", RowBox[{"{", RowBox[{"131", ",", "132"}], "}"}], ",", RowBox[{"{", RowBox[{"131", ",", "136"}], "}"}], ",", RowBox[{"{", RowBox[{"132", ",", "135"}], "}"}], ",", RowBox[{"{", RowBox[{"133", ",", "134"}], "}"}], ",", RowBox[{"{", RowBox[{"133", ",", "135"}], "}"}], ",", RowBox[{"{", RowBox[{"134", ",", "136"}], "}"}], ",", RowBox[{"{", RowBox[{"135", ",", "136"}], "}"}], ",", RowBox[{"{", RowBox[{"137", ",", "138"}], "}"}], ",", RowBox[{"{", RowBox[{"137", ",", "139"}], "}"}], ",", RowBox[{"{", RowBox[{"137", ",", "142"}], "}"}], ",", RowBox[{"{", RowBox[{"138", ",", "140"}], "}"}], ",", RowBox[{"{", RowBox[{"138", ",", "141"}], "}"}], ",", RowBox[{"{", RowBox[{"139", ",", "140"}], "}"}], ",", RowBox[{"{", RowBox[{"139", ",", "144"}], "}"}], ",", RowBox[{"{", RowBox[{"140", ",", "143"}], "}"}], ",", RowBox[{"{", RowBox[{"141", ",", "142"}], "}"}], ",", RowBox[{"{", RowBox[{"141", ",", "143"}], "}"}], ",", RowBox[{"{", RowBox[{"142", ",", "144"}], "}"}], ",", RowBox[{"{", RowBox[{"143", ",", "144"}], "}"}], ",", RowBox[{"{", RowBox[{"145", ",", "146"}], "}"}], ",", RowBox[{"{", RowBox[{"145", ",", "147"}], "}"}], ",", RowBox[{"{", RowBox[{"145", ",", "150"}], "}"}], ",", RowBox[{"{", RowBox[{"146", ",", "148"}], "}"}], ",", RowBox[{"{", RowBox[{"146", ",", "149"}], "}"}], ",", RowBox[{"{", RowBox[{"147", ",", "148"}], "}"}], ",", RowBox[{"{", RowBox[{"147", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{"148", ",", "151"}], "}"}], ",", RowBox[{"{", RowBox[{"149", ",", "150"}], "}"}], ",", RowBox[{"{", RowBox[{"149", ",", "151"}], "}"}], ",", RowBox[{"{", RowBox[{"150", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{"151", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{"153", ",", "154"}], "}"}], ",", RowBox[{"{", RowBox[{"153", ",", "155"}], "}"}], ",", RowBox[{"{", RowBox[{"153", ",", "158"}], "}"}], ",", RowBox[{"{", RowBox[{"154", ",", "156"}], "}"}], ",", RowBox[{"{", RowBox[{"154", ",", "157"}], "}"}], ",", RowBox[{"{", RowBox[{"155", ",", "156"}], "}"}], ",", RowBox[{"{", RowBox[{"155", ",", "160"}], "}"}], ",", RowBox[{"{", RowBox[{"156", ",", "159"}], "}"}], ",", RowBox[{"{", RowBox[{"157", ",", "158"}], "}"}], ",", RowBox[{"{", RowBox[{"157", ",", "159"}], "}"}], ",", RowBox[{"{", RowBox[{"158", ",", "160"}], "}"}], ",", RowBox[{"{", RowBox[{"159", ",", "160"}], "}"}]}], "}"}]], "Output", CellLabel->"Out[15]=",ExpressionUUID->"E8D7A852-0891-44A1-946B-9B912AC1A2D0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"adj1", "===", "adj2"}]], "Input", CellLabel->"In[16]:=",ExpressionUUID->"E4EBB8B6-7699-418B-94FA-9DBDC5997341"], Cell[BoxData["True"], "Output", CellLabel->"Out[16]=",ExpressionUUID->"0164A45D-134F-4332-98F8-C79AD7401E90"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Centroid", "Subsection",ExpressionUUID->"8CA021CA-08AC-4A7F-BB1C-F3A6E25DDEC4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[17]:=",ExpressionUUID->"B93EFB4D-0E7D-40BD-AAB8-9B0C4C787530"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[17]=",ExpressionUUID->"5F1D49D5-0001-4C8F-9C4D-07EF413A2AEC"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Circumsphere", "Subsection",ExpressionUUID->"126C56DE-FF87-4EA6-BC0E-CE7E8F10EB08"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"sphere", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[18]:=",ExpressionUUID->"FFF2F669-B62E-4544-AB5E-2307F1CFC16B"], Cell[BoxData[ RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", FractionBox["1", SqrtBox["2"]]}], "]"}]], "Output", CellLabel->"Out[18]=",ExpressionUUID->"CDB9B7BB-1C3A-4331-B806-A23A573E1603"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"sphere", "=", RowBox[{"Circumsphere", "[", "p", "]"}]}]], "Input", CellLabel->"In[19]:=",ExpressionUUID->"1E9DEEC6-B6AA-4F95-9E6D-28668C3B77AE"], Cell[BoxData[ TemplateBox[{ "Circumsphere", "indep", "\"Circumsphere does not exist for \\!\\(\\*RowBox[{\\\"Polyhedron\\\", \\\ \"[\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", \ RowBox[{FractionBox[\\\"1\\\", RowBox[{\\\"4\\\", \\\" \\\", \ SqrtBox[\\\"2\\\"]}]], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \ \\\" \\\", SqrtBox[RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{\\\"3\\\", \\\"+\\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\ \")\\\"}]}]]}], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\ \", SqrtBox[RowBox[{\\\"15\\\", \\\"-\\\", RowBox[{\\\"5\\\", \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", RowBox[{\ \\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]]}], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\ \", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"15\\\", \\\"-\\\", RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\ \\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\ \", SqrtBox[RowBox[{\\\"7\\\", \\\"-\\\", RowBox[{\\\"3\\\", \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"7\\\ \", \\\"+\\\", RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"3\\\", \ RowBox[{\\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{FractionBox[\\\"1\\\", \ \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"7\\\", \\\"+\\\", \ RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \ \\\"]\\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"3\\\", RowBox[{\\\"4\\\", \\\" \ \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"7\\\", \\\"-\\\", \ RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \ \\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{FractionBox[RowBox[{RowBox[{\\\"-\\\", \\\"3\\\"}], \\\"+\\\", \ SqrtBox[\\\"5\\\"]}], RowBox[{\\\"8\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]], \\\ \",\\\", RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"7\\\", \\\"+\\\", RowBox[{\\\"3\\\", \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", \ FractionBox[\\\"3\\\", RowBox[{\\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]]}], \ \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{RowBox[{\\\"-\\\", \ FractionBox[\\\"1\\\", \\\"8\\\"]}], \\\" \\\", SqrtBox[RowBox[{\\\"7\\\", \\\ \"+\\\", RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"3\\\", RowBox[{\\\"4\\\", \\\" \ \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"7\\\", \\\"-\\\", \ RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \ \\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"15\\\", \\\"-\\\", RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\ \\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"1\\\", \ RowBox[{\\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\ \", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\ \\\"1\\\", \\\"4\\\"]}], \\\" \\\", SqrtBox[RowBox[{\\\"3\\\", \\\"-\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], \\\",\\\", \ FractionBox[SqrtBox[RowBox[{\\\"3\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}]], \ \\\"4\\\"], \\\",\\\", FractionBox[\\\"1\\\", RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"2\\\"]}]]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{FractionBox[SqrtBox[RowBox[{\\\"3\\\", \\\"+\\\", \ SqrtBox[\\\"5\\\"]}]], \\\"4\\\"], \\\",\\\", FractionBox[\\\"1\\\", RowBox[{\ \\\"2\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", RowBox[{RowBox[{\\\"-\ \\\", FractionBox[\\\"1\\\", \\\"4\\\"]}], \\\" \\\", SqrtBox[RowBox[{\\\"3\\\ \", \\\"-\\\", RowBox[{\\\"Power\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \ \\\"+\\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}], \\\",\ \\\", RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"15\\\", \\\"-\\\", RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\ \\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"1\\\", \ RowBox[{\\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"110\\\", \\\"\[RightSkeleton]\ \\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"66\\\", \\\",\\\", \\\"120\\\", \ \\\",\\\", \\\"28\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{\\\"120\\\", \\\",\\\", \\\"66\\\", \\\",\\\", \\\"51\\\"}], \ \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"120\\\", \\\",\\\", \\\ \"22\\\", \\\",\\\", \\\"28\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{\\\"22\\\", \\\",\\\", \\\"120\\\", \\\",\\\", \\\"51\\\"}], \ \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"66\\\", \\\",\\\", \ \\\"1\\\", \\\",\\\", \\\"51\\\"}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"66\\\", \\\",\\\", \ \\\"28\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \ \\\",\\\", \\\"22\\\", \\\",\\\", \\\"51\\\"}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"22\\\", \\\",\\\", \\\"1\\\", \\\",\\\", \ \\\"28\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"82\\\", \ \\\",\\\", \\\"119\\\", \\\",\\\", \\\"67\\\"}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"119\\\", \\\",\\\", \\\"82\\\", \\\",\\\", \ \\\"21\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"150\\\", \\\"\[RightSkeleton]\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]\\).\"", 2, 19, 1, 21663204854482869440, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[19]:=",ExpressionUUID->"4002938B-A7BB-4971-9A56-0FC67EE39244"], Cell[BoxData[ RowBox[{"Circumsphere", "[", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["120", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["120", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]], Editable->False, SelectWithContents->True, Selectable->False], "]"}]], "Output", CellLabel->"Out[19]=",ExpressionUUID->"B07B6644-1CC3-4D01-A447-C53A8EB8216D"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"sphere", "=", RowBox[{"MyCircumsphere", "[", "p", "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel->"In[20]:=",ExpressionUUID->"DB7F5934-EB72-41EB-AB17-5294232D0A55"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.066477`", ",", RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", FractionBox["1", SqrtBox["2"]]}], "]"}]}], "}"}]], "Output", CellLabel->"Out[20]=",ExpressionUUID->"D015AF44-3DE1-4EF4-B3CC-11449737DABB"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".2", "]"}], ",", "Yellow", ",", "sphere"}], "}"}], ",", "p"}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel->"In[21]:=",ExpressionUUID->"DE1405B6-8670-4979-83E4-4DBBFA63FA7A"], Cell[BoxData[ Graphics3DBox[{ {RGBColor[1, 1, 0], Opacity[0.2], SphereBox[{0, 0, 0}, NCache[2^Rational[-1, 2], 0.7071067811865475]]}, PolyhedronBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, Boxed->False]], "Output", CellLabel->"Out[21]=",ExpressionUUID->"3D7463B9-3058-45D7-AABC-525756EF122E"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Classes", "Subsection",ExpressionUUID->"0F888D4D-B7F0-4A35-99D5-07C8C41C344D"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[22]:=",ExpressionUUID->"AE3BD2A4-49D8-42F5-9A30-6113971F0980"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"Amphichiral\"\>", ",", "\<\"Compound\"\>", ",", "\<\"Equilateral\"\>"}], "}"}]], "Output", CellLabel->"Out[22]=",ExpressionUUID->"A13630D5-2CF2-4CE0-83B5-9E3F99B162D8"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Compound", "Subsection",ExpressionUUID->"7C788B3D-F06D-4D7E-899E-A025B77C2517"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[23]:=",ExpressionUUID->"CA66BD70-DD69-4529-A6E8-72F0449C5D2A"], Cell[BoxData["True"], "Output", CellLabel->"Out[23]=",ExpressionUUID->"EF205B5D-7F61-4118-9DCC-13150852AF34"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["CompoundInterior", "Subsection",ExpressionUUID->"CACC9D68-5E10-414B-AD71-4F68C08F7B45"], Cell[CellGroupData[{ Cell["Interior", "Subsubsection",ExpressionUUID->"20571037-F86B-4390-BBCB-48BC59B67147"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"intname", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[3]:=",ExpressionUUID->"25F4B7AD-2261-4680-B896-54E4C15A89D2"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[3]=",ExpressionUUID->"840F2BBB-3718-45EA-9D7D-6A971DD102CE"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"28CC1E4D-85E0-4E07-8ECC-99E5C29796F8"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[4]=",ExpressionUUID->"A60C0EBC-C744-4609-A16A-FB98F95C3634"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{ "pname", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[5]:=",ExpressionUUID->"89173AF6-4C21-4BF1-B879-A87401E1C151"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[5]=",ExpressionUUID->"6E17F3A1-A9A3-42ED-BBB7-F997550AC38B"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"D9C6891E-8D7C-4FC9-84A4-F5FBEFD2AD49"], Cell[BoxData[ Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{0, 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { 0, 0, Root[1 - 6 #^2 + 4 #^4& , 3, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 2, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 2, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0]}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0}, { 0, Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0}, { 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, {Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0], 0}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, {Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0], 0}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0, 0}, { Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0, 0}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0}, {Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0}, {Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}}, {{0, 0, -0.43701602444882104`}, { 0, 0, 0.4370160244488211}, { 0, -0.35355339059327373`, -0.21850801222441052`}, { 0, -0.35355339059327373`, 0.21850801222441055`}, { 0, 0.35355339059327373`, -0.21850801222441052`}, { 0, 0.35355339059327373`, 0.21850801222441055`}, { 0, -0.43701602444882104`, 0}, {0, 0.4370160244488211, 0}, { 0, -0.2477510577926871, -0.3423835411207541}, { 0, -0.2477510577926871, 0.3423835411207541}, { 0, 0.2477510577926871, -0.3423835411207541}, { 0, 0.2477510577926871, 0.3423835411207541}, {-0.35355339059327373`, -0.1350453783688632, \ -0.21850801222441052`}, {-0.35355339059327373`, -0.1350453783688632, 0.21850801222441055`}, {-0.35355339059327373`, 0.13504537836886324`, -0.21850801222441052`}, {-0.35355339059327373`, 0.13504537836886324`, 0.21850801222441055`}, {-0.35355339059327373`, -0.21850801222441052`, 0}, {-0.35355339059327373`, 0.21850801222441055`, 0}, { 0.35355339059327373`, -0.1350453783688632, -0.21850801222441052`}, { 0.35355339059327373`, -0.1350453783688632, 0.21850801222441055`}, { 0.35355339059327373`, 0.13504537836886324`, -0.21850801222441052`}, { 0.35355339059327373`, 0.13504537836886324`, 0.21850801222441055`}, { 0.35355339059327373`, -0.21850801222441052`, 0}, { 0.35355339059327373`, 0.21850801222441055`, 0}, {-0.43701602444882104`, 0, 0}, {0.4370160244488211, 0, 0}, {-0.1350453783688632, -0.21850801222441052`, \ -0.35355339059327373`}, {-0.1350453783688632, -0.21850801222441052`, 0.35355339059327373`}, {-0.1350453783688632, 0.21850801222441055`, -0.35355339059327373`}, {-0.1350453783688632, 0.21850801222441055`, 0.35355339059327373`}, { 0.13504537836886324`, -0.21850801222441052`, -0.35355339059327373`}, { 0.13504537836886324`, -0.21850801222441052`, 0.35355339059327373`}, { 0.13504537836886324`, 0.21850801222441055`, -0.35355339059327373`}, { 0.13504537836886324`, 0.21850801222441055`, 0.35355339059327373`}, {-0.21850801222441052`, 0, -0.35355339059327373`}, {-0.21850801222441052`, 0, 0.35355339059327373`}, {-0.21850801222441052`, -0.35355339059327373`, \ -0.1350453783688632}, {-0.21850801222441052`, -0.35355339059327373`, 0.13504537836886324`}, {-0.21850801222441052`, 0.35355339059327373`, -0.1350453783688632}, {-0.21850801222441052`, 0.35355339059327373`, 0.13504537836886324`}, { 0.21850801222441055`, 0, -0.35355339059327373`}, { 0.21850801222441055`, 0, 0.35355339059327373`}, { 0.21850801222441055`, -0.35355339059327373`, -0.1350453783688632}, { 0.21850801222441055`, -0.35355339059327373`, 0.13504537836886324`}, { 0.21850801222441055`, 0.35355339059327373`, -0.1350453783688632}, { 0.21850801222441055`, 0.35355339059327373`, 0.13504537836886324`}, {-0.3062371489292403, -0.2477510577926871, \ -0.15311857446462016`}, {-0.3062371489292403, -0.2477510577926871, 0.15311857446462016`}, {-0.3062371489292403, 0.2477510577926871, -0.15311857446462016`}, {-0.3062371489292403, 0.2477510577926871, 0.15311857446462016`}, { 0.3062371489292403, -0.2477510577926871, -0.15311857446462016`}, { 0.3062371489292403, -0.2477510577926871, 0.15311857446462016`}, { 0.3062371489292403, 0.2477510577926871, -0.15311857446462016`}, { 0.3062371489292403, 0.2477510577926871, 0.15311857446462016`}, {-0.3423835411207541, 0, -0.2477510577926871}, {-0.3423835411207541, 0, 0.2477510577926871}, { 0.3423835411207541, 0, -0.2477510577926871}, { 0.3423835411207541, 0, 0.2477510577926871}, {-0.09463248332806698, -0.09463248332806698, \ -0.40086963225730726`}, {-0.09463248332806698, -0.09463248332806698, 0.40086963225730726`}, {-0.09463248332806698, 0.09463248332806698, -0.40086963225730726`}, {-0.09463248332806698, 0.09463248332806698, 0.40086963225730726`}, {-0.09463248332806698, -0.40086963225730726`, \ -0.09463248332806698}, {-0.09463248332806698, -0.40086963225730726`, 0.09463248332806698}, {-0.09463248332806698, 0.40086963225730726`, -0.09463248332806698}, {-0.09463248332806698, 0.40086963225730726`, 0.09463248332806698}, { 0.09463248332806698, -0.09463248332806698, -0.40086963225730726`}, { 0.09463248332806698, -0.09463248332806698, 0.40086963225730726`}, { 0.09463248332806698, 0.09463248332806698, -0.40086963225730726`}, { 0.09463248332806698, 0.09463248332806698, 0.40086963225730726`}, { 0.09463248332806698, -0.40086963225730726`, -0.09463248332806698}, { 0.09463248332806698, -0.40086963225730726`, 0.09463248332806698}, { 0.09463248332806698, 0.40086963225730726`, -0.09463248332806698}, { 0.09463248332806698, 0.40086963225730726`, 0.09463248332806698}, {-0.40086963225730726`, -0.09463248332806698, \ -0.09463248332806698}, {-0.40086963225730726`, -0.09463248332806698, 0.09463248332806698}, {-0.40086963225730726`, 0.09463248332806698, -0.09463248332806698}, {-0.40086963225730726`, 0.09463248332806698, 0.09463248332806698}, { 0.40086963225730726`, -0.09463248332806698, -0.09463248332806698}, { 0.40086963225730726`, -0.09463248332806698, 0.09463248332806698}, { 0.40086963225730726`, 0.09463248332806698, -0.09463248332806698}, { 0.40086963225730726`, 0.09463248332806698, 0.09463248332806698}, {-0.15311857446462016`, -0.3062371489292403, \ -0.2477510577926871}, {-0.15311857446462016`, -0.3062371489292403, 0.2477510577926871}, {-0.15311857446462016`, 0.3062371489292403, -0.2477510577926871}, {-0.15311857446462016`, 0.3062371489292403, 0.2477510577926871}, { 0.15311857446462016`, -0.3062371489292403, -0.2477510577926871}, { 0.15311857446462016`, -0.3062371489292403, 0.2477510577926871}, { 0.15311857446462016`, 0.3062371489292403, -0.2477510577926871}, { 0.15311857446462016`, 0.3062371489292403, 0.2477510577926871}, {-0.2477510577926871, -0.3423835411207541, 0}, {-0.2477510577926871, 0.3423835411207541, 0}, {-0.2477510577926871, -0.15311857446462016`, -0.3062371489292403}, \ {-0.2477510577926871, -0.15311857446462016`, 0.3062371489292403}, {-0.2477510577926871, 0.15311857446462016`, -0.3062371489292403}, {-0.2477510577926871, 0.15311857446462016`, 0.3062371489292403}, { 0.2477510577926871, -0.3423835411207541, 0}, { 0.2477510577926871, 0.3423835411207541, 0}, { 0.2477510577926871, -0.15311857446462016`, -0.3062371489292403}, { 0.2477510577926871, -0.15311857446462016`, 0.3062371489292403}, { 0.2477510577926871, 0.15311857446462016`, -0.3062371489292403}, { 0.2477510577926871, 0.15311857446462016`, 0.3062371489292403}}], Polygon3DBox[{{2, 68, 42, 70}, {7, 63, 3, 71}, {8, 66, 6, 74}, {8, 73, 5, 65}, {9, 31, 87, 3}, {10, 28, 84, 4}, {17, 75, 13, 47}, {18, 50, 40, 92}, {20, 58, 42, 100}, {21, 57, 41, 101}, {22, 82, 24, 54}, {23, 80, 20, 52}, {25, 75, 17, 76}, {27, 9, 3, 83}, {27, 93, 35, 59}, {28, 60, 36, 94}, {29, 85, 5, 11}, {31, 67, 41, 99}, {32, 10, 4, 88}, {33, 101, 41, 69}, {34, 90, 6, 12}, {35, 55, 15, 95}, {35, 95, 29, 61}, {36, 60, 2, 62}, {38, 48, 17, 91}, {43, 51, 23, 97}, {44, 88, 4, 72}, {45, 89, 5, 73}, {46, 54, 24, 98}, {46, 74, 6, 90}, {47, 37, 91, 17}, {49, 18, 92, 39}, {52, 44, 97, 23}, {53, 45, 98, 24}, {56, 36, 96, 16}, {57, 19, 99, 41}, {58, 22, 102, 42}, {59, 35, 61, 1}, {62, 30, 96, 36}, {63, 37, 83, 3}, {64, 7, 72, 4}, {66, 40, 86, 6}, {67, 1, 69, 41}, {68, 32, 100, 42}, {76, 17, 48, 14}, {77, 18, 49, 15}, {77, 25, 78, 18}, {78, 16, 50, 18}, {79, 23, 51, 19}, {79, 26, 80, 23}, {81, 21, 53, 24}, {82, 26, 81, 24}, {84, 38, 64, 4}, {85, 39, 65, 5}, {86, 30, 12, 6}, {87, 43, 71, 3}, {89, 33, 11, 5}, {93, 13, 55, 35}, {94, 36, 56, 14}, {102, 34, 70, 42}, {1, 61, 29, 11, 33, 69}, {1, 67, 31, 9, 27, 59}, {2, 60, 28, 10, 32, 68}, {7, 71, 43, 97, 44, 72}, {8, 65, 39, 92, 40, 66}, {13, 93, 27, 83, 37, 47}, {26, 82, 22, 58, 20, 80}, {29, 95, 15, 49, 39, 85}, {33, 89, 45, 53, 21, 101}, {50, 16, 96, 30, 86, 40}, {52, 20, 100, 32, 88, 44}, {62, 2, 70, 34, 12, 30}, {63, 7, 64, 38, 91, 37}, {73, 8, 74, 46, 98, 45}, { 75, 25, 77, 15, 55, 13}, {78, 25, 76, 14, 56, 16}, {81, 26, 79, 19, 57, 21}, {94, 14, 48, 38, 84, 28}, {99, 19, 51, 43, 87, 31}, {102, 22, 54, 46, 90, 34}}]]]], "Output", CellLabel->"Out[6]=",ExpressionUUID->"531BB8F2-6BEE-4119-B94C-B24DF060A0A5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"AbsoluteThickness", "[", "1", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Opacity", "[", ".8", "]"}], ",", RowBox[{"interior", "=", RowBox[{"PolyhedronData", "[", RowBox[{ "pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel->"In[7]:=",ExpressionUUID->"2D3131CC-1707-4DF0-8D67-ADCC6E0301EC"], Cell[BoxData[ Graphics3DBox[ {AbsoluteThickness[ 1], {Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, { 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {-0.35355339059327373`, \ -0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {-0.21850801222441052`, \ -0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, { 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.5303300858899106, \ -0.06752268918443159, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, \ -0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, {0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, {-0.17677669529663687`, \ -0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, {-0.5303300858899106, \ -0.06752268918443159, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, {-0.46280739670547905`, \ -0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.5045387136332526, \ -0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, {-0.06752268918443159, \ -0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {-0.46280739670547905`, \ -0.17677669529663687`, -0.5045387136332526}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, {-0.17677669529663687`, \ -0.06752268918443159, -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, \ -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, {0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, \ -0.06752268918443159, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.5045387136332526, \ -0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, {-0.46280739670547905`, \ -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, {-0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.06752268918443159, \ -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.5720614028176843, \ -0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, {-0.17677669529663687`, \ -0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, {-0.06752268918443159, \ -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{ 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}, { 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}, \ {-0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, \ {-0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{ 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, \ {-0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.24429938448106847`, \ -0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, {0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.17677669529663687`, \ -0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.35355339059327373`, \ -0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[ 1, 2])}}, {{-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.639584092002116, \ -0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}, \ {-0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.21850801222441052`, \ -0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, {-0.17677669529663687`, \ -0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, \ {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, \ {-0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, \ -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}, \ {-0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{ 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, {-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}]]}, {Opacity[0.8], PolyhedronBox[ NCache[{{0, 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { 0, 0, Root[1 - 6 #^2 + 4 #^4& , 3, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 2, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 2, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0]}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0}, { 0, Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0}, { 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, {Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0], 0}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, {Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0], 0}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0, 0}, { Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0, 0}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}}, {{ 0, 0, -0.43701602444882104`}, {0, 0, 0.4370160244488211}, { 0, -0.35355339059327373`, -0.21850801222441052`}, { 0, -0.35355339059327373`, 0.21850801222441055`}, { 0, 0.35355339059327373`, -0.21850801222441052`}, { 0, 0.35355339059327373`, 0.21850801222441055`}, { 0, -0.43701602444882104`, 0}, {0, 0.4370160244488211, 0}, { 0, -0.2477510577926871, -0.3423835411207541}, { 0, -0.2477510577926871, 0.3423835411207541}, { 0, 0.2477510577926871, -0.3423835411207541}, { 0, 0.2477510577926871, 0.3423835411207541}, {-0.35355339059327373`, -0.1350453783688632, \ -0.21850801222441052`}, {-0.35355339059327373`, -0.1350453783688632, 0.21850801222441055`}, {-0.35355339059327373`, 0.13504537836886324`, -0.21850801222441052`}, {-0.35355339059327373`, 0.13504537836886324`, 0.21850801222441055`}, {-0.35355339059327373`, -0.21850801222441052`, 0}, {-0.35355339059327373`, 0.21850801222441055`, 0}, { 0.35355339059327373`, -0.1350453783688632, -0.21850801222441052`}, { 0.35355339059327373`, -0.1350453783688632, 0.21850801222441055`}, { 0.35355339059327373`, 0.13504537836886324`, -0.21850801222441052`}, { 0.35355339059327373`, 0.13504537836886324`, 0.21850801222441055`}, { 0.35355339059327373`, -0.21850801222441052`, 0}, { 0.35355339059327373`, 0.21850801222441055`, 0}, {-0.43701602444882104`, 0, 0}, { 0.4370160244488211, 0, 0}, {-0.1350453783688632, -0.21850801222441052`, \ -0.35355339059327373`}, {-0.1350453783688632, -0.21850801222441052`, 0.35355339059327373`}, {-0.1350453783688632, 0.21850801222441055`, -0.35355339059327373`}, {-0.1350453783688632, 0.21850801222441055`, 0.35355339059327373`}, { 0.13504537836886324`, -0.21850801222441052`, -0.35355339059327373`}, { 0.13504537836886324`, -0.21850801222441052`, 0.35355339059327373`}, { 0.13504537836886324`, 0.21850801222441055`, -0.35355339059327373`}, { 0.13504537836886324`, 0.21850801222441055`, 0.35355339059327373`}, {-0.21850801222441052`, 0, -0.35355339059327373`}, {-0.21850801222441052`, 0, 0.35355339059327373`}, {-0.21850801222441052`, -0.35355339059327373`, \ -0.1350453783688632}, {-0.21850801222441052`, -0.35355339059327373`, 0.13504537836886324`}, {-0.21850801222441052`, 0.35355339059327373`, -0.1350453783688632}, {-0.21850801222441052`, 0.35355339059327373`, 0.13504537836886324`}, { 0.21850801222441055`, 0, -0.35355339059327373`}, { 0.21850801222441055`, 0, 0.35355339059327373`}, { 0.21850801222441055`, -0.35355339059327373`, -0.1350453783688632}, { 0.21850801222441055`, -0.35355339059327373`, 0.13504537836886324`}, { 0.21850801222441055`, 0.35355339059327373`, -0.1350453783688632}, { 0.21850801222441055`, 0.35355339059327373`, 0.13504537836886324`}, {-0.3062371489292403, -0.2477510577926871, \ -0.15311857446462016`}, {-0.3062371489292403, -0.2477510577926871, 0.15311857446462016`}, {-0.3062371489292403, 0.2477510577926871, -0.15311857446462016`}, {-0.3062371489292403, 0.2477510577926871, 0.15311857446462016`}, { 0.3062371489292403, -0.2477510577926871, -0.15311857446462016`}, { 0.3062371489292403, -0.2477510577926871, 0.15311857446462016`}, { 0.3062371489292403, 0.2477510577926871, -0.15311857446462016`}, { 0.3062371489292403, 0.2477510577926871, 0.15311857446462016`}, {-0.3423835411207541, 0, -0.2477510577926871}, {-0.3423835411207541, 0, 0.2477510577926871}, {0.3423835411207541, 0, -0.2477510577926871}, { 0.3423835411207541, 0, 0.2477510577926871}, {-0.09463248332806698, -0.09463248332806698, \ -0.40086963225730726`}, {-0.09463248332806698, -0.09463248332806698, 0.40086963225730726`}, {-0.09463248332806698, 0.09463248332806698, -0.40086963225730726`}, {-0.09463248332806698, 0.09463248332806698, 0.40086963225730726`}, {-0.09463248332806698, -0.40086963225730726`, \ -0.09463248332806698}, {-0.09463248332806698, -0.40086963225730726`, 0.09463248332806698}, {-0.09463248332806698, 0.40086963225730726`, -0.09463248332806698}, {-0.09463248332806698, 0.40086963225730726`, 0.09463248332806698}, { 0.09463248332806698, -0.09463248332806698, -0.40086963225730726`}, { 0.09463248332806698, -0.09463248332806698, 0.40086963225730726`}, { 0.09463248332806698, 0.09463248332806698, -0.40086963225730726`}, { 0.09463248332806698, 0.09463248332806698, 0.40086963225730726`}, { 0.09463248332806698, -0.40086963225730726`, -0.09463248332806698}, { 0.09463248332806698, -0.40086963225730726`, 0.09463248332806698}, { 0.09463248332806698, 0.40086963225730726`, -0.09463248332806698}, { 0.09463248332806698, 0.40086963225730726`, 0.09463248332806698}, {-0.40086963225730726`, -0.09463248332806698, \ -0.09463248332806698}, {-0.40086963225730726`, -0.09463248332806698, 0.09463248332806698}, {-0.40086963225730726`, 0.09463248332806698, -0.09463248332806698}, {-0.40086963225730726`, 0.09463248332806698, 0.09463248332806698}, { 0.40086963225730726`, -0.09463248332806698, -0.09463248332806698}, { 0.40086963225730726`, -0.09463248332806698, 0.09463248332806698}, { 0.40086963225730726`, 0.09463248332806698, -0.09463248332806698}, { 0.40086963225730726`, 0.09463248332806698, 0.09463248332806698}, {-0.15311857446462016`, -0.3062371489292403, \ -0.2477510577926871}, {-0.15311857446462016`, -0.3062371489292403, 0.2477510577926871}, {-0.15311857446462016`, 0.3062371489292403, -0.2477510577926871}, {-0.15311857446462016`, 0.3062371489292403, 0.2477510577926871}, { 0.15311857446462016`, -0.3062371489292403, -0.2477510577926871}, { 0.15311857446462016`, -0.3062371489292403, 0.2477510577926871}, { 0.15311857446462016`, 0.3062371489292403, -0.2477510577926871}, { 0.15311857446462016`, 0.3062371489292403, 0.2477510577926871}, {-0.2477510577926871, -0.3423835411207541, 0}, {-0.2477510577926871, 0.3423835411207541, 0}, {-0.2477510577926871, -0.15311857446462016`, \ -0.3062371489292403}, {-0.2477510577926871, -0.15311857446462016`, 0.3062371489292403}, {-0.2477510577926871, 0.15311857446462016`, -0.3062371489292403}, {-0.2477510577926871, 0.15311857446462016`, 0.3062371489292403}, { 0.2477510577926871, -0.3423835411207541, 0}, { 0.2477510577926871, 0.3423835411207541, 0}, { 0.2477510577926871, -0.15311857446462016`, -0.3062371489292403}, { 0.2477510577926871, -0.15311857446462016`, 0.3062371489292403}, { 0.2477510577926871, 0.15311857446462016`, -0.3062371489292403}, { 0.2477510577926871, 0.15311857446462016`, 0.3062371489292403}}], {{2, 68, 42, 70}, {7, 63, 3, 71}, {8, 66, 6, 74}, {8, 73, 5, 65}, {9, 31, 87, 3}, {10, 28, 84, 4}, {17, 75, 13, 47}, {18, 50, 40, 92}, {20, 58, 42, 100}, {21, 57, 41, 101}, {22, 82, 24, 54}, {23, 80, 20, 52}, {25, 75, 17, 76}, {27, 9, 3, 83}, {27, 93, 35, 59}, {28, 60, 36, 94}, {29, 85, 5, 11}, {31, 67, 41, 99}, {32, 10, 4, 88}, {33, 101, 41, 69}, {34, 90, 6, 12}, {35, 55, 15, 95}, {35, 95, 29, 61}, {36, 60, 2, 62}, {38, 48, 17, 91}, {43, 51, 23, 97}, {44, 88, 4, 72}, {45, 89, 5, 73}, {46, 54, 24, 98}, {46, 74, 6, 90}, {47, 37, 91, 17}, {49, 18, 92, 39}, {52, 44, 97, 23}, {53, 45, 98, 24}, {56, 36, 96, 16}, {57, 19, 99, 41}, {58, 22, 102, 42}, {59, 35, 61, 1}, {62, 30, 96, 36}, {63, 37, 83, 3}, {64, 7, 72, 4}, {66, 40, 86, 6}, {67, 1, 69, 41}, {68, 32, 100, 42}, {76, 17, 48, 14}, {77, 18, 49, 15}, {77, 25, 78, 18}, {78, 16, 50, 18}, {79, 23, 51, 19}, {79, 26, 80, 23}, {81, 21, 53, 24}, {82, 26, 81, 24}, {84, 38, 64, 4}, {85, 39, 65, 5}, {86, 30, 12, 6}, {87, 43, 71, 3}, {89, 33, 11, 5}, {93, 13, 55, 35}, {94, 36, 56, 14}, {102, 34, 70, 42}, {1, 61, 29, 11, 33, 69}, {1, 67, 31, 9, 27, 59}, {2, 60, 28, 10, 32, 68}, {7, 71, 43, 97, 44, 72}, {8, 65, 39, 92, 40, 66}, {13, 93, 27, 83, 37, 47}, {26, 82, 22, 58, 20, 80}, {29, 95, 15, 49, 39, 85}, {33, 89, 45, 53, 21, 101}, {50, 16, 96, 30, 86, 40}, {52, 20, 100, 32, 88, 44}, {62, 2, 70, 34, 12, 30}, {63, 7, 64, 38, 91, 37}, {73, 8, 74, 46, 98, 45}, {75, 25, 77, 15, 55, 13}, {78, 25, 76, 14, 56, 16}, {81, 26, 79, 19, 57, 21}, { 94, 14, 48, 38, 84, 28}, {99, 19, 51, 43, 87, 31}, {102, 22, 54, 46, 90, 34}}]}}, Boxed->False]], "Output", CellLabel->"Out[7]=",ExpressionUUID->"5F11B16C-7B1B-4628-B038-FB81DF4526E9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", "0", "]"}], ",", "p"}], "}"}], ",", "Red", ",", "interior"}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel->"In[12]:=",ExpressionUUID->"FD27987C-BDDB-4A76-93DF-E6E15D8FC23D"], Cell[BoxData[ Graphics3DBox[{ {Opacity[0], PolyhedronBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, {RGBColor[1, 0, 0], PolyhedronBox[ NCache[{{0, 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { 0, 0, Root[1 - 6 #^2 + 4 #^4& , 3, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 2, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 2, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0]}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0}, { 0, Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0}, { 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, {Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0], 0}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, {Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0], 0}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0, 0}, { Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0, 0}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}}, {{0, 0, -0.4370160244488211}, { 0, 0, 0.4370160244488211}, { 0, -0.35355339059327373`, -0.21850801222441055`}, { 0, -0.35355339059327373`, 0.21850801222441055`}, { 0, 0.35355339059327373`, -0.21850801222441055`}, { 0, 0.35355339059327373`, 0.21850801222441055`}, { 0, -0.4370160244488211, 0}, {0, 0.4370160244488211, 0}, { 0, -0.2477510577926871, -0.3423835411207541}, { 0, -0.2477510577926871, 0.3423835411207541}, { 0, 0.2477510577926871, -0.3423835411207541}, { 0, 0.2477510577926871, 0.3423835411207541}, {-0.35355339059327373`, -0.13504537836886324`, \ -0.21850801222441055`}, {-0.35355339059327373`, -0.13504537836886324`, 0.21850801222441055`}, {-0.35355339059327373`, 0.13504537836886324`, -0.21850801222441055`}, {-0.35355339059327373`, 0.13504537836886324`, 0.21850801222441055`}, {-0.35355339059327373`, -0.21850801222441055`, 0}, {-0.35355339059327373`, 0.21850801222441055`, 0}, { 0.35355339059327373`, -0.13504537836886324`, -0.21850801222441055`}, { 0.35355339059327373`, -0.13504537836886324`, 0.21850801222441055`}, { 0.35355339059327373`, 0.13504537836886324`, -0.21850801222441055`}, { 0.35355339059327373`, 0.13504537836886324`, 0.21850801222441055`}, { 0.35355339059327373`, -0.21850801222441055`, 0}, { 0.35355339059327373`, 0.21850801222441055`, 0}, {-0.4370160244488211, 0, 0}, {0.4370160244488211, 0, 0}, {-0.13504537836886324`, -0.21850801222441055`, \ -0.35355339059327373`}, {-0.13504537836886324`, -0.21850801222441055`, 0.35355339059327373`}, {-0.13504537836886324`, 0.21850801222441055`, -0.35355339059327373`}, {-0.13504537836886324`, 0.21850801222441055`, 0.35355339059327373`}, { 0.13504537836886324`, -0.21850801222441055`, -0.35355339059327373`}, { 0.13504537836886324`, -0.21850801222441055`, 0.35355339059327373`}, { 0.13504537836886324`, 0.21850801222441055`, -0.35355339059327373`}, { 0.13504537836886324`, 0.21850801222441055`, 0.35355339059327373`}, {-0.21850801222441055`, 0, -0.35355339059327373`}, {-0.21850801222441055`, 0, 0.35355339059327373`}, {-0.21850801222441055`, -0.35355339059327373`, \ -0.13504537836886324`}, {-0.21850801222441055`, -0.35355339059327373`, 0.13504537836886324`}, {-0.21850801222441055`, 0.35355339059327373`, -0.13504537836886324`}, {-0.21850801222441055`, 0.35355339059327373`, 0.13504537836886324`}, { 0.21850801222441055`, 0, -0.35355339059327373`}, { 0.21850801222441055`, 0, 0.35355339059327373`}, { 0.21850801222441055`, -0.35355339059327373`, -0.13504537836886324`}, { 0.21850801222441055`, -0.35355339059327373`, 0.13504537836886324`}, { 0.21850801222441055`, 0.35355339059327373`, -0.13504537836886324`}, { 0.21850801222441055`, 0.35355339059327373`, 0.13504537836886324`}, {-0.30623714892924025`, -0.2477510577926871, \ -0.15311857446462013`}, {-0.30623714892924025`, -0.2477510577926871, 0.15311857446462013`}, {-0.30623714892924025`, 0.2477510577926871, -0.15311857446462013`}, {-0.30623714892924025`, 0.2477510577926871, 0.15311857446462013`}, { 0.30623714892924025`, -0.2477510577926871, -0.15311857446462013`}, { 0.30623714892924025`, -0.2477510577926871, 0.15311857446462013`}, { 0.30623714892924025`, 0.2477510577926871, -0.15311857446462013`}, { 0.30623714892924025`, 0.2477510577926871, 0.15311857446462013`}, {-0.3423835411207541, 0, -0.2477510577926871}, {-0.3423835411207541, 0, 0.2477510577926871}, {0.3423835411207541, 0, -0.2477510577926871}, { 0.3423835411207541, 0, 0.2477510577926871}, {-0.09463248332806698, -0.09463248332806698, \ -0.40086963225730726`}, {-0.09463248332806698, -0.09463248332806698, 0.40086963225730726`}, {-0.09463248332806698, 0.09463248332806698, -0.40086963225730726`}, {-0.09463248332806698, 0.09463248332806698, 0.40086963225730726`}, {-0.09463248332806698, -0.40086963225730726`, \ -0.09463248332806698}, {-0.09463248332806698, -0.40086963225730726`, 0.09463248332806698}, {-0.09463248332806698, 0.40086963225730726`, -0.09463248332806698}, {-0.09463248332806698, 0.40086963225730726`, 0.09463248332806698}, { 0.09463248332806698, -0.09463248332806698, -0.40086963225730726`}, { 0.09463248332806698, -0.09463248332806698, 0.40086963225730726`}, { 0.09463248332806698, 0.09463248332806698, -0.40086963225730726`}, { 0.09463248332806698, 0.09463248332806698, 0.40086963225730726`}, { 0.09463248332806698, -0.40086963225730726`, -0.09463248332806698}, { 0.09463248332806698, -0.40086963225730726`, 0.09463248332806698}, { 0.09463248332806698, 0.40086963225730726`, -0.09463248332806698}, { 0.09463248332806698, 0.40086963225730726`, 0.09463248332806698}, {-0.40086963225730726`, -0.09463248332806698, \ -0.09463248332806698}, {-0.40086963225730726`, -0.09463248332806698, 0.09463248332806698}, {-0.40086963225730726`, 0.09463248332806698, -0.09463248332806698}, {-0.40086963225730726`, 0.09463248332806698, 0.09463248332806698}, { 0.40086963225730726`, -0.09463248332806698, -0.09463248332806698}, { 0.40086963225730726`, -0.09463248332806698, 0.09463248332806698}, { 0.40086963225730726`, 0.09463248332806698, -0.09463248332806698}, { 0.40086963225730726`, 0.09463248332806698, 0.09463248332806698}, {-0.15311857446462013`, -0.30623714892924025`, \ -0.2477510577926871}, {-0.15311857446462013`, -0.30623714892924025`, 0.2477510577926871}, {-0.15311857446462013`, 0.30623714892924025`, -0.2477510577926871}, {-0.15311857446462013`, 0.30623714892924025`, 0.2477510577926871}, { 0.15311857446462013`, -0.30623714892924025`, -0.2477510577926871}, { 0.15311857446462013`, -0.30623714892924025`, 0.2477510577926871}, { 0.15311857446462013`, 0.30623714892924025`, -0.2477510577926871}, { 0.15311857446462013`, 0.30623714892924025`, 0.2477510577926871}, {-0.2477510577926871, -0.3423835411207541, 0}, {-0.2477510577926871, 0.3423835411207541, 0}, {-0.2477510577926871, -0.15311857446462013`, \ -0.30623714892924025`}, {-0.2477510577926871, -0.15311857446462013`, 0.30623714892924025`}, {-0.2477510577926871, 0.15311857446462013`, -0.30623714892924025`}, {-0.2477510577926871, 0.15311857446462013`, 0.30623714892924025`}, { 0.2477510577926871, -0.3423835411207541, 0}, { 0.2477510577926871, 0.3423835411207541, 0}, { 0.2477510577926871, -0.15311857446462013`, -0.30623714892924025`}, { 0.2477510577926871, -0.15311857446462013`, 0.30623714892924025`}, { 0.2477510577926871, 0.15311857446462013`, -0.30623714892924025`}, { 0.2477510577926871, 0.15311857446462013`, 0.30623714892924025`}}], {{2, 68, 42, 70}, {7, 63, 3, 71}, {8, 66, 6, 74}, {8, 73, 5, 65}, {9, 31, 87, 3}, {10, 28, 84, 4}, {17, 75, 13, 47}, {18, 50, 40, 92}, {20, 58, 42, 100}, {21, 57, 41, 101}, {22, 82, 24, 54}, {23, 80, 20, 52}, {25, 75, 17, 76}, {27, 9, 3, 83}, {27, 93, 35, 59}, {28, 60, 36, 94}, {29, 85, 5, 11}, {31, 67, 41, 99}, {32, 10, 4, 88}, {33, 101, 41, 69}, {34, 90, 6, 12}, {35, 55, 15, 95}, {35, 95, 29, 61}, {36, 60, 2, 62}, {38, 48, 17, 91}, {43, 51, 23, 97}, {44, 88, 4, 72}, {45, 89, 5, 73}, {46, 54, 24, 98}, {46, 74, 6, 90}, {47, 37, 91, 17}, {49, 18, 92, 39}, {52, 44, 97, 23}, {53, 45, 98, 24}, {56, 36, 96, 16}, {57, 19, 99, 41}, {58, 22, 102, 42}, {59, 35, 61, 1}, {62, 30, 96, 36}, {63, 37, 83, 3}, {64, 7, 72, 4}, {66, 40, 86, 6}, {67, 1, 69, 41}, {68, 32, 100, 42}, {76, 17, 48, 14}, {77, 18, 49, 15}, {77, 25, 78, 18}, {78, 16, 50, 18}, {79, 23, 51, 19}, {79, 26, 80, 23}, {81, 21, 53, 24}, {82, 26, 81, 24}, {84, 38, 64, 4}, {85, 39, 65, 5}, {86, 30, 12, 6}, {87, 43, 71, 3}, {89, 33, 11, 5}, {93, 13, 55, 35}, {94, 36, 56, 14}, {102, 34, 70, 42}, {1, 61, 29, 11, 33, 69}, {1, 67, 31, 9, 27, 59}, {2, 60, 28, 10, 32, 68}, {7, 71, 43, 97, 44, 72}, {8, 65, 39, 92, 40, 66}, {13, 93, 27, 83, 37, 47}, {26, 82, 22, 58, 20, 80}, {29, 95, 15, 49, 39, 85}, {33, 89, 45, 53, 21, 101}, {50, 16, 96, 30, 86, 40}, {52, 20, 100, 32, 88, 44}, {62, 2, 70, 34, 12, 30}, {63, 7, 64, 38, 91, 37}, {73, 8, 74, 46, 98, 45}, {75, 25, 77, 15, 55, 13}, {78, 25, 76, 14, 56, 16}, {81, 26, 79, 19, 57, 21}, { 94, 14, 48, 38, 84, 28}, {99, 19, 51, 43, 87, 31}, {102, 22, 54, 46, 90, 34}}]}}, Boxed->False]], "Output", CellLabel->"Out[12]=",ExpressionUUID->"A191B7C7-FEE6-4947-BC1D-70F4DC1A8D2D"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MyCircumsphere", "[", "interior", "]"}], "//", "Quiet"}]], "Input",\ CellLabel->"In[9]:=",ExpressionUUID->"7CB52016-3ABA-4688-A303-6A76AC6EBBD3"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel->"Out[9]=",ExpressionUUID->"8582BB4E-C2EF-41AF-AFD0-D596D393E90A"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Insphere", "[", "interior", "]"}], "/.", RowBox[{ RowBox[{"x_", "?", "NumericQ"}], "\[RuleDelayed]", RowBox[{"RootReduce", "[", "x", "]"}]}]}], "//", "Quiet"}], "//", "Timing"}]], "Input", CellLabel->"In[10]:=",ExpressionUUID->"E0822083-FA33-470A-A981-3537A89F1366"], Cell[BoxData[ RowBox[{"{", RowBox[{"11.001729`", ",", RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", FractionBox["1", SqrtBox["6"]]}], "]"}]}], "}"}]], "Output", CellLabel->"Out[10]=",ExpressionUUID->"EE750AC6-BD4D-47C2-A595-03C69EB6AF82"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Midsphere", "[", RowBox[{"interior", "//", "N"}], "]"}]], "Input", CellLabel->"In[11]:=",ExpressionUUID->"422D4757-FB8E-43F6-9FA7-0D049DAA982C"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel->"Out[11]=",ExpressionUUID->"68F460AF-83B7-496B-ADD0-41CE7B0CEE1E"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Construction", "Subsubsection",ExpressionUUID->"7179CF95-EECD-4108-8393-D5B3DD8C7C1B"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"int", "=", RowBox[{"RegionIntersection", "[", RowBox[{ RowBox[{"Sequence", "@@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], ",", RowBox[{"PerformanceGoal", "->", "\"\\""}]}], "]"}]}]], "Input",\ CellLabel-> "(V14.0.0-Devel (3)) \ In[3]:=",ExpressionUUID->"FD67B7C7-60D2-47F5-9C3F-B845DF8E5D4C"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[CompressedData[" 1:eJx1V2lslUUUfUIigmwxagKJEYzBBAgEUpRlyBRBA7EBxdQNfwBSQoixGBVE CzygFIgom8tjf2JZig2UFqSWKSNUSgsU6ELpDmlFaStBUowaMYjvO2f0TutL Xibf++6dOffcc++d139m8tSkTqFQKO/ut/Pdb80HI3o98PsZ2/exjF0vvp9h zo5ZMnt7tNJOXHnftoujcu2zWLMS+vWt3lNtT9wuyh846bi9BL9zsF/x1syl k785b38Y2JD9xqYC+2NsLcdaYK8Gzzo1sNMN8C8J/LUJ9tVN8PsYdo2Bvyau 47CrDfz1JziXdo04B/tZnKN5zoggHj0aa3YQl66DXWZ955spj75NHnQYOBAH 1nKdBxz0Aw+a8f8Eu8XAV+PFewz4xoPfg8AxEs+9m/pV7Rn9muG+lfDn+SnA dR3nnYddGfCEYp9Mg7xp5FPHY/8zsD+FOJjPKbA7gHxPxnMV9mUeCuH3M3i5 hrx9CFzRW19sWdC0VJXTHv7gxZKXZvhTR8wb+GJ+LPJmJwEP8NsrwB3Em65O Iy7qFPmxreBtHs4lb+VSHxZ8OD0xruXwK0bcFdiXfCyROmH+bQueW/A8H/uU wv+C5NPVDfaz4Ned850XV4OIP1Mxr2PAVwL4or74Hvto8uzrCrj1Ra9+TsKv 0auHNPgxbtbNVeBnfvPhDz1Z5nc4cLLvMN4aoeewGenVLerYevrU34OnVplH vRC87oY+WV+I09LuPcm/pq6k3vIVeVXAMRb4fBzEB71D9+V2AXiqkv3BFoCn sbI/WNSvPvrwhaLeo95UpbA/g/15PuuF/Po8lkjd2h6vtu3Z2nzR1RHrq07E O08thX33wB775RkPp+uvbXf++axXQXy1sN+tqKcqgWu3QV/Qcv+w4Xy5InVH Pbn4qLNhwOP1edvKuXVz0bLE1yPmVIc6iyjqr5vAka0wv+wG4LyMfHLu1GOf +HdTdkx/6GXXj4bJucO86CI5R1xfbvL6WjF+7/7fPIUL1TLgiI/xnEye4bfO TJD1b6nTRZJn1z96iuccg35gKwSeqMG8sa05kbHjnvyIPOpmxH+/4O2YIc5K wXO6m2+cJ5zXxZwHp+fcOzV5pfOXePe6Oc0+WC10tlXdjvGy1lCX4xD/01gl zqPk03r4GL++NXfOiOsnlxnwZ8GXPgodck5zHvt1Rd79en5GzFnmL2L+An7m k7rE/cc+593PeF8L+ttqI/dbZTCfbS8R9+F2caLenX6oV/ZpzokeYp8sc+jw PUmPz083NSIP2SpN1ourX9Z/4q+7rjbm7HR9ife0QVhzEF8c4huCFb/ry+Bj zaq0lQUDtro5yHptlPdSjT6mu4n8RJxfrdD7QbVofJ8Fr8Slsp4tz/tj8Owp 60o+V4Xwu4F4fJ1SV8w75zPvf9UiT/tNT/Tb9LlD2qb1n6HCHep/HfnS1cAj 9XzCLBfzpdb1U6yKeQWvbu3WM6luRmlE+TrnudQL65n3mHPAMbF56FM3Cpeb MuArgt3C3w4e2jT3M9Uo+N3v+mSn2PNmRf2zniU/UYfftwuep7N/u7nKfiB5 iBjmHe+pW9hn872bE7+I+phFHK7OGrz+Rr1Q13LehRV402eBMzHxQtm16RtM rOzvbMf+UXUJ+7eIeLIM++SDsedMxJFrYM854urztOCFPPz7IW9yHoZCkv8D OCe1XT+CPvA+k3PeVov32WoVdNUFevbsNOMm/+EO7wXzjHcvw+97/XsEzt0I Pne0m5PMl+Rln1os70e6pENdRXkv4tzD70eAP/9/7jWf4txU1XF9hkISZ9TN J57D+8nz0TtDtry0kfVuZX3ltbs/DPqqz8T8+lzXV1JknduCL9eMGdw3190D 68V+Oer20G1d/xzwjptncg5EXf3xf7qfv6+/PZu8YsI+//+tyx/ze17OJTsr Ka5zxpFphn29K/BWCnw7XX/i/K1YndCl/EYG8+D65AtPDH8kwa51+Sv1dM/6 ZL48fQBnlpsLkvf13vzdrP4GpaUY1g== "], {{1, 2, 3, 4}, {11, 12, 13, 14}, {15, 16, 17, 18}, {19, 20, 21, 22}, {23, 24, 25, 26}, {27, 28, 29, 30}, {41, 42, 10, 9}, {47, 48, 49, 50}, {51, 52, 53, 54}, {55, 56, 57, 58}, {59, 60, 61, 62}, {63, 64, 36, 35}, {65, 30, 39, 38}, {20, 71, 45, 44}, {72, 73, 74, 75}, {64, 77, 31, 36}, {78, 12, 80, 81}, {41, 9, 8, 83}, {87, 1, 4, 40}, {89, 68, 6, 5}, {90, 43, 13, 12}, {92, 93, 54, 53}, {59, 62, 99, 100}, {34, 33, 85, 104}, {67, 108, 7, 6}, {92, 112, 64, 114}, {115, 41, 117, 100}, {86, 33, 32, 56}, {104, 105, 38, 37}, {46, 45, 109, 89}, {93, 73, 15, 18}, { 99, 62, 25, 81}, {30, 123, 40, 39}, {129, 20, 44, 43}, {42, 41, 115, 135}, {103, 102, 50, 49}, {51, 54, 17, 69}, {57, 56, 96, 95}, {61, 84, 23, 62}, {142, 114, 64, 63}, {108, 102, 8, 7}, {96, 56, 32, 31}, {74, 142, 2, 75}, {135, 80, 12, 11}, {129, 95, 21, 20}, {124, 123, 30, 29}, {104, 37, 3, 155}, {47, 108, 67, 16}, {157, 14, 46, 89}, {56, 55, 24, 86}, {77, 64, 112, 22}, {117, 41, 83, 28}, {65, 60, 27, 30}, {157, 89, 5, 10}, {71, 20, 19, 52}, {35, 34, 104, 155}, {72, 1, 87, 48}, {58, 90, 12, 78}, {89, 109, 69, 68}, {104, 85, 84, 105}, {5, 6, 7, 8, 9, 10}, {31, 32, 33, 34, 35, 36}, {37, 38, 39, 40, 4, 3}, {43, 44, 45, 46, 14, 13}, {67, 6, 68, 69, 17, 16}, {84, 85, 33, 86, 24, 23}, {95, 96, 31, 77, 22, 21}, {83, 8, 102, 103, 29, 28}, {61, 60, 65, 38, 105, 84}, {109, 45, 71, 52, 51, 69}, {87, 40, 123, 124, 49, 48}, {90, 58, 57, 95, 129, 43}, {73, 72, 48, 47, 16, 15}, {55, 58, 78, 81, 25, 24}, { 112, 92, 53, 52, 19, 22}, {100, 117, 28, 27, 60, 59}, {93, 92, 114, 142, 74, 73}, {81, 80, 135, 115, 100, 99}, {157, 10, 42, 135, 11, 14}, {142, 63, 35, 155, 3, 2}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[CompressedData[" 1:eJx1V2lslUUUfUIigmwxagKJEYzBBAgEUpRlyBRBA7EBxdQNfwBSQoixGBVE CzygFIgom8tjf2JZig2UFqSWKSNUSgsU6ELpDmlFaStBUowaMYjvO2f0TutL Xibf++6dOffcc++d139m8tSkTqFQKO/ut/Pdb80HI3o98PsZ2/exjF0vvp9h zo5ZMnt7tNJOXHnftoujcu2zWLMS+vWt3lNtT9wuyh846bi9BL9zsF/x1syl k785b38Y2JD9xqYC+2NsLcdaYK8Gzzo1sNMN8C8J/LUJ9tVN8PsYdo2Bvyau 47CrDfz1JziXdo04B/tZnKN5zoggHj0aa3YQl66DXWZ955spj75NHnQYOBAH 1nKdBxz0Aw+a8f8Eu8XAV+PFewz4xoPfg8AxEs+9m/pV7Rn9muG+lfDn+SnA dR3nnYddGfCEYp9Mg7xp5FPHY/8zsD+FOJjPKbA7gHxPxnMV9mUeCuH3M3i5 hrx9CFzRW19sWdC0VJXTHv7gxZKXZvhTR8wb+GJ+LPJmJwEP8NsrwB3Em65O Iy7qFPmxreBtHs4lb+VSHxZ8OD0xruXwK0bcFdiXfCyROmH+bQueW/A8H/uU wv+C5NPVDfaz4Ned850XV4OIP1Mxr2PAVwL4or74Hvto8uzrCrj1Ra9+TsKv 0auHNPgxbtbNVeBnfvPhDz1Z5nc4cLLvMN4aoeewGenVLerYevrU34OnVplH vRC87oY+WV+I09LuPcm/pq6k3vIVeVXAMRb4fBzEB71D9+V2AXiqkv3BFoCn sbI/WNSvPvrwhaLeo95UpbA/g/15PuuF/Po8lkjd2h6vtu3Z2nzR1RHrq07E O08thX33wB775RkPp+uvbXf++axXQXy1sN+tqKcqgWu3QV/Qcv+w4Xy5InVH Pbn4qLNhwOP1edvKuXVz0bLE1yPmVIc6iyjqr5vAka0wv+wG4LyMfHLu1GOf +HdTdkx/6GXXj4bJucO86CI5R1xfbvL6WjF+7/7fPIUL1TLgiI/xnEye4bfO TJD1b6nTRZJn1z96iuccg35gKwSeqMG8sa05kbHjnvyIPOpmxH+/4O2YIc5K wXO6m2+cJ5zXxZwHp+fcOzV5pfOXePe6Oc0+WC10tlXdjvGy1lCX4xD/01gl zqPk03r4GL++NXfOiOsnlxnwZ8GXPgodck5zHvt1Rd79en5GzFnmL2L+An7m k7rE/cc+593PeF8L+ttqI/dbZTCfbS8R9+F2caLenX6oV/ZpzokeYp8sc+jw PUmPz083NSIP2SpN1ourX9Z/4q+7rjbm7HR9ife0QVhzEF8c4huCFb/ry+Bj zaq0lQUDtro5yHptlPdSjT6mu4n8RJxfrdD7QbVofJ8Fr8Slsp4tz/tj8Owp 60o+V4Xwu4F4fJ1SV8w75zPvf9UiT/tNT/Tb9LlD2qb1n6HCHep/HfnS1cAj 9XzCLBfzpdb1U6yKeQWvbu3WM6luRmlE+TrnudQL65n3mHPAMbF56FM3Cpeb MuArgt3C3w4e2jT3M9Uo+N3v+mSn2PNmRf2zniU/UYfftwuep7N/u7nKfiB5 iBjmHe+pW9hn872bE7+I+phFHK7OGrz+Rr1Q13LehRV402eBMzHxQtm16RtM rOzvbMf+UXUJ+7eIeLIM++SDsedMxJFrYM854urztOCFPPz7IW9yHoZCkv8D OCe1XT+CPvA+k3PeVov32WoVdNUFevbsNOMm/+EO7wXzjHcvw+97/XsEzt0I Pne0m5PMl+Rln1os70e6pENdRXkv4tzD70eAP/9/7jWf4txU1XF9hkISZ9TN J57D+8nz0TtDtry0kfVuZX3ltbs/DPqqz8T8+lzXV1JknduCL9eMGdw3190D 68V+Oer20G1d/xzwjptncg5EXf3xf7qfv6+/PZu8YsI+//+tyx/ze17OJTsr Ka5zxpFphn29K/BWCnw7XX/i/K1YndCl/EYG8+D65AtPDH8kwa51+Sv1dM/6 ZL48fQBnlpsLkvf13vzdrP4GpaUY1g== "], {{1, 2, 3, 4}, {11, 12, 13, 14}, {15, 16, 17, 18}, {19, 20, 21, 22}, {23, 24, 25, 26}, {27, 28, 29, 30}, {41, 42, 10, 9}, {47, 48, 49, 50}, {51, 52, 53, 54}, {55, 56, 57, 58}, {59, 60, 61, 62}, {63, 64, 36, 35}, {65, 30, 39, 38}, {20, 71, 45, 44}, {72, 73, 74, 75}, {64, 77, 31, 36}, {78, 12, 80, 81}, { 41, 9, 8, 83}, {87, 1, 4, 40}, {89, 68, 6, 5}, {90, 43, 13, 12}, {92, 93, 54, 53}, {59, 62, 99, 100}, {34, 33, 85, 104}, { 67, 108, 7, 6}, {92, 112, 64, 114}, {115, 41, 117, 100}, {86, 33, 32, 56}, {104, 105, 38, 37}, {46, 45, 109, 89}, {93, 73, 15, 18}, {99, 62, 25, 81}, {30, 123, 40, 39}, {129, 20, 44, 43}, {42, 41, 115, 135}, {103, 102, 50, 49}, {51, 54, 17, 69}, {57, 56, 96, 95}, {61, 84, 23, 62}, {142, 114, 64, 63}, { 108, 102, 8, 7}, {96, 56, 32, 31}, {74, 142, 2, 75}, {135, 80, 12, 11}, {129, 95, 21, 20}, {124, 123, 30, 29}, {104, 37, 3, 155}, {47, 108, 67, 16}, {157, 14, 46, 89}, {56, 55, 24, 86}, {77, 64, 112, 22}, {117, 41, 83, 28}, {65, 60, 27, 30}, { 157, 89, 5, 10}, {71, 20, 19, 52}, {35, 34, 104, 155}, {72, 1, 87, 48}, {58, 90, 12, 78}, {89, 109, 69, 68}, {104, 85, 84, 105}, {5, 6, 7, 8, 9, 10}, {31, 32, 33, 34, 35, 36}, {37, 38, 39, 40, 4, 3}, {43, 44, 45, 46, 14, 13}, {67, 6, 68, 69, 17, 16}, {84, 85, 33, 86, 24, 23}, {95, 96, 31, 77, 22, 21}, {83, 8, 102, 103, 29, 28}, {61, 60, 65, 38, 105, 84}, {109, 45, 71, 52, 51, 69}, {87, 40, 123, 124, 49, 48}, {90, 58, 57, 95, 129, 43}, {73, 72, 48, 47, 16, 15}, {55, 58, 78, 81, 25, 24}, {112, 92, 53, 52, 19, 22}, {100, 117, 28, 27, 60, 59}, { 93, 92, 114, 142, 74, 73}, {81, 80, 135, 115, 100, 99}, {157, 10, 42, 135, 11, 14}, {142, 63, 35, 155, 3, 2}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["186", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["80", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[CompressedData[" 1:eJx1V2lslUUUfUIigmwxagKJEYzBBAgEUpRlyBRBA7EBxdQNfwBSQoixGBVE CzygFIgom8tjf2JZig2UFqSWKSNUSgsU6ELpDmlFaStBUowaMYjvO2f0TutL Xibf++6dOffcc++d139m8tSkTqFQKO/ut/Pdb80HI3o98PsZ2/exjF0vvp9h zo5ZMnt7tNJOXHnftoujcu2zWLMS+vWt3lNtT9wuyh846bi9BL9zsF/x1syl k785b38Y2JD9xqYC+2NsLcdaYK8Gzzo1sNMN8C8J/LUJ9tVN8PsYdo2Bvyau 47CrDfz1JziXdo04B/tZnKN5zoggHj0aa3YQl66DXWZ955spj75NHnQYOBAH 1nKdBxz0Aw+a8f8Eu8XAV+PFewz4xoPfg8AxEs+9m/pV7Rn9muG+lfDn+SnA dR3nnYddGfCEYp9Mg7xp5FPHY/8zsD+FOJjPKbA7gHxPxnMV9mUeCuH3M3i5 hrx9CFzRW19sWdC0VJXTHv7gxZKXZvhTR8wb+GJ+LPJmJwEP8NsrwB3Em65O Iy7qFPmxreBtHs4lb+VSHxZ8OD0xruXwK0bcFdiXfCyROmH+bQueW/A8H/uU wv+C5NPVDfaz4Ned850XV4OIP1Mxr2PAVwL4or74Hvto8uzrCrj1Ra9+TsKv 0auHNPgxbtbNVeBnfvPhDz1Z5nc4cLLvMN4aoeewGenVLerYevrU34OnVplH vRC87oY+WV+I09LuPcm/pq6k3vIVeVXAMRb4fBzEB71D9+V2AXiqkv3BFoCn sbI/WNSvPvrwhaLeo95UpbA/g/15PuuF/Po8lkjd2h6vtu3Z2nzR1RHrq07E O08thX33wB775RkPp+uvbXf++axXQXy1sN+tqKcqgWu3QV/Qcv+w4Xy5InVH Pbn4qLNhwOP1edvKuXVz0bLE1yPmVIc6iyjqr5vAka0wv+wG4LyMfHLu1GOf +HdTdkx/6GXXj4bJucO86CI5R1xfbvL6WjF+7/7fPIUL1TLgiI/xnEye4bfO TJD1b6nTRZJn1z96iuccg35gKwSeqMG8sa05kbHjnvyIPOpmxH+/4O2YIc5K wXO6m2+cJ5zXxZwHp+fcOzV5pfOXePe6Oc0+WC10tlXdjvGy1lCX4xD/01gl zqPk03r4GL++NXfOiOsnlxnwZ8GXPgodck5zHvt1Rd79en5GzFnmL2L+An7m k7rE/cc+593PeF8L+ttqI/dbZTCfbS8R9+F2caLenX6oV/ZpzokeYp8sc+jw PUmPz083NSIP2SpN1ourX9Z/4q+7rjbm7HR9ife0QVhzEF8c4huCFb/ry+Bj zaq0lQUDtro5yHptlPdSjT6mu4n8RJxfrdD7QbVofJ8Fr8Slsp4tz/tj8Owp 60o+V4Xwu4F4fJ1SV8w75zPvf9UiT/tNT/Tb9LlD2qb1n6HCHep/HfnS1cAj 9XzCLBfzpdb1U6yKeQWvbu3WM6luRmlE+TrnudQL65n3mHPAMbF56FM3Cpeb MuArgt3C3w4e2jT3M9Uo+N3v+mSn2PNmRf2zniU/UYfftwuep7N/u7nKfiB5 iBjmHe+pW9hn872bE7+I+phFHK7OGrz+Rr1Q13LehRV402eBMzHxQtm16RtM rOzvbMf+UXUJ+7eIeLIM++SDsedMxJFrYM854urztOCFPPz7IW9yHoZCkv8D OCe1XT+CPvA+k3PeVov32WoVdNUFevbsNOMm/+EO7wXzjHcvw+97/XsEzt0I Pne0m5PMl+Rln1os70e6pENdRXkv4tzD70eAP/9/7jWf4txU1XF9hkISZ9TN J57D+8nz0TtDtry0kfVuZX3ltbs/DPqqz8T8+lzXV1JknduCL9eMGdw3190D 68V+Oer20G1d/xzwjptncg5EXf3xf7qfv6+/PZu8YsI+//+tyx/ze17OJTsr Ka5zxpFphn29K/BWCnw7XX/i/K1YndCl/EYG8+D65AtPDH8kwa51+Sv1dM/6 ZL48fQBnlpsLkvf13vzdrP4GpaUY1g== "], {{1, 2, 3, 4}, {11, 12, 13, 14}, {15, 16, 17, 18}, {19, 20, 21, 22}, {23, 24, 25, 26}, {27, 28, 29, 30}, {41, 42, 10, 9}, {47, 48, 49, 50}, {51, 52, 53, 54}, {55, 56, 57, 58}, {59, 60, 61, 62}, {63, 64, 36, 35}, {65, 30, 39, 38}, {20, 71, 45, 44}, {72, 73, 74, 75}, {64, 77, 31, 36}, {78, 12, 80, 81}, { 41, 9, 8, 83}, {87, 1, 4, 40}, {89, 68, 6, 5}, {90, 43, 13, 12}, {92, 93, 54, 53}, {59, 62, 99, 100}, {34, 33, 85, 104}, { 67, 108, 7, 6}, {92, 112, 64, 114}, {115, 41, 117, 100}, {86, 33, 32, 56}, {104, 105, 38, 37}, {46, 45, 109, 89}, {93, 73, 15, 18}, {99, 62, 25, 81}, {30, 123, 40, 39}, {129, 20, 44, 43}, {42, 41, 115, 135}, {103, 102, 50, 49}, {51, 54, 17, 69}, {57, 56, 96, 95}, {61, 84, 23, 62}, {142, 114, 64, 63}, { 108, 102, 8, 7}, {96, 56, 32, 31}, {74, 142, 2, 75}, {135, 80, 12, 11}, {129, 95, 21, 20}, {124, 123, 30, 29}, {104, 37, 3, 155}, {47, 108, 67, 16}, {157, 14, 46, 89}, {56, 55, 24, 86}, {77, 64, 112, 22}, {117, 41, 83, 28}, {65, 60, 27, 30}, { 157, 89, 5, 10}, {71, 20, 19, 52}, {35, 34, 104, 155}, {72, 1, 87, 48}, {58, 90, 12, 78}, {89, 109, 69, 68}, {104, 85, 84, 105}, {5, 6, 7, 8, 9, 10}, {31, 32, 33, 34, 35, 36}, {37, 38, 39, 40, 4, 3}, {43, 44, 45, 46, 14, 13}, {67, 6, 68, 69, 17, 16}, {84, 85, 33, 86, 24, 23}, {95, 96, 31, 77, 22, 21}, {83, 8, 102, 103, 29, 28}, {61, 60, 65, 38, 105, 84}, {109, 45, 71, 52, 51, 69}, {87, 40, 123, 124, 49, 48}, {90, 58, 57, 95, 129, 43}, {73, 72, 48, 47, 16, 15}, {55, 58, 78, 81, 25, 24}, {112, 92, 53, 52, 19, 22}, {100, 117, 28, 27, 60, 59}, { 93, 92, 114, 142, 74, 73}, {81, 80, 135, 115, 100, 99}, {157, 10, 42, 135, 11, 14}, {142, 63, 35, 155, 3, 2}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["186", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["80", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[CompressedData[" 1:eJx1V2lslUUUfUIigmwxagKJEYzBBAgEUpRlyBRBA7EBxdQNfwBSQoixGBVE CzygFIgom8tjf2JZig2UFqSWKSNUSgsU6ELpDmlFaStBUowaMYjvO2f0TutL Xibf++6dOffcc++d139m8tSkTqFQKO/ut/Pdb80HI3o98PsZ2/exjF0vvp9h zo5ZMnt7tNJOXHnftoujcu2zWLMS+vWt3lNtT9wuyh846bi9BL9zsF/x1syl k785b38Y2JD9xqYC+2NsLcdaYK8Gzzo1sNMN8C8J/LUJ9tVN8PsYdo2Bvyau 47CrDfz1JziXdo04B/tZnKN5zoggHj0aa3YQl66DXWZ955spj75NHnQYOBAH 1nKdBxz0Aw+a8f8Eu8XAV+PFewz4xoPfg8AxEs+9m/pV7Rn9muG+lfDn+SnA dR3nnYddGfCEYp9Mg7xp5FPHY/8zsD+FOJjPKbA7gHxPxnMV9mUeCuH3M3i5 hrx9CFzRW19sWdC0VJXTHv7gxZKXZvhTR8wb+GJ+LPJmJwEP8NsrwB3Em65O Iy7qFPmxreBtHs4lb+VSHxZ8OD0xruXwK0bcFdiXfCyROmH+bQueW/A8H/uU wv+C5NPVDfaz4Ned850XV4OIP1Mxr2PAVwL4or74Hvto8uzrCrj1Ra9+TsKv 0auHNPgxbtbNVeBnfvPhDz1Z5nc4cLLvMN4aoeewGenVLerYevrU34OnVplH vRC87oY+WV+I09LuPcm/pq6k3vIVeVXAMRb4fBzEB71D9+V2AXiqkv3BFoCn sbI/WNSvPvrwhaLeo95UpbA/g/15PuuF/Po8lkjd2h6vtu3Z2nzR1RHrq07E O08thX33wB775RkPp+uvbXf++axXQXy1sN+tqKcqgWu3QV/Qcv+w4Xy5InVH Pbn4qLNhwOP1edvKuXVz0bLE1yPmVIc6iyjqr5vAka0wv+wG4LyMfHLu1GOf +HdTdkx/6GXXj4bJucO86CI5R1xfbvL6WjF+7/7fPIUL1TLgiI/xnEye4bfO TJD1b6nTRZJn1z96iuccg35gKwSeqMG8sa05kbHjnvyIPOpmxH+/4O2YIc5K wXO6m2+cJ5zXxZwHp+fcOzV5pfOXePe6Oc0+WC10tlXdjvGy1lCX4xD/01gl zqPk03r4GL++NXfOiOsnlxnwZ8GXPgodck5zHvt1Rd79en5GzFnmL2L+An7m k7rE/cc+593PeF8L+ttqI/dbZTCfbS8R9+F2caLenX6oV/ZpzokeYp8sc+jw PUmPz083NSIP2SpN1ourX9Z/4q+7rjbm7HR9ife0QVhzEF8c4huCFb/ry+Bj zaq0lQUDtro5yHptlPdSjT6mu4n8RJxfrdD7QbVofJ8Fr8Slsp4tz/tj8Owp 60o+V4Xwu4F4fJ1SV8w75zPvf9UiT/tNT/Tb9LlD2qb1n6HCHep/HfnS1cAj 9XzCLBfzpdb1U6yKeQWvbu3WM6luRmlE+TrnudQL65n3mHPAMbF56FM3Cpeb MuArgt3C3w4e2jT3M9Uo+N3v+mSn2PNmRf2zniU/UYfftwuep7N/u7nKfiB5 iBjmHe+pW9hn872bE7+I+phFHK7OGrz+Rr1Q13LehRV402eBMzHxQtm16RtM rOzvbMf+UXUJ+7eIeLIM++SDsedMxJFrYM854urztOCFPPz7IW9yHoZCkv8D OCe1XT+CPvA+k3PeVov32WoVdNUFevbsNOMm/+EO7wXzjHcvw+97/XsEzt0I Pne0m5PMl+Rln1os70e6pENdRXkv4tzD70eAP/9/7jWf4txU1XF9hkISZ9TN J57D+8nz0TtDtry0kfVuZX3ltbs/DPqqz8T8+lzXV1JknduCL9eMGdw3190D 68V+Oer20G1d/xzwjptncg5EXf3xf7qfv6+/PZu8YsI+//+tyx/ze17OJTsr Ka5zxpFphn29K/BWCnw7XX/i/K1YndCl/EYG8+D65AtPDH8kwa51+Sv1dM/6 ZL48fQBnlpsLkvf13vzdrP4GpaUY1g== "], {{1, 2, 3, 4}, {11, 12, 13, 14}, {15, 16, 17, 18}, {19, 20, 21, 22}, { 23, 24, 25, 26}, {27, 28, 29, 30}, {41, 42, 10, 9}, {47, 48, 49, 50}, {51, 52, 53, 54}, {55, 56, 57, 58}, {59, 60, 61, 62}, {63, 64, 36, 35}, {65, 30, 39, 38}, {20, 71, 45, 44}, {72, 73, 74, 75}, {64, 77, 31, 36}, {78, 12, 80, 81}, {41, 9, 8, 83}, {87, 1, 4, 40}, {89, 68, 6, 5}, {90, 43, 13, 12}, {92, 93, 54, 53}, {59, 62, 99, 100}, {34, 33, 85, 104}, {67, 108, 7, 6}, {92, 112, 64, 114}, {115, 41, 117, 100}, {86, 33, 32, 56}, {104, 105, 38, 37}, {46, 45, 109, 89}, {93, 73, 15, 18}, {99, 62, 25, 81}, {30, 123, 40, 39}, {129, 20, 44, 43}, {42, 41, 115, 135}, {103, 102, 50, 49}, {51, 54, 17, 69}, {57, 56, 96, 95}, {61, 84, 23, 62}, {142, 114, 64, 63}, {108, 102, 8, 7}, {96, 56, 32, 31}, {74, 142, 2, 75}, {135, 80, 12, 11}, {129, 95, 21, 20}, {124, 123, 30, 29}, {104, 37, 3, 155}, {47, 108, 67, 16}, { 157, 14, 46, 89}, {56, 55, 24, 86}, {77, 64, 112, 22}, {117, 41, 83, 28}, {65, 60, 27, 30}, {157, 89, 5, 10}, {71, 20, 19, 52}, {35, 34, 104, 155}, {72, 1, 87, 48}, {58, 90, 12, 78}, {89, 109, 69, 68}, {104, 85, 84, 105}, {5, 6, 7, 8, 9, 10}, {31, 32, 33, 34, 35, 36}, {37, 38, 39, 40, 4, 3}, {43, 44, 45, 46, 14, 13}, {67, 6, 68, 69, 17, 16}, {84, 85, 33, 86, 24, 23}, {95, 96, 31, 77, 22, 21}, {83, 8, 102, 103, 29, 28}, {61, 60, 65, 38, 105, 84}, {109, 45, 71, 52, 51, 69}, {87, 40, 123, 124, 49, 48}, {90, 58, 57, 95, 129, 43}, {73, 72, 48, 47, 16, 15}, {55, 58, 78, 81, 25, 24}, {112, 92, 53, 52, 19, 22}, {100, 117, 28, 27, 60, 59}, {93, 92, 114, 142, 74, 73}, {81, 80, 135, 115, 100, 99}, {157, 10, 42, 135, 11, 14}, { 142, 63, 35, 155, 3, 2}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[3]=",ExpressionUUID->"376AA610-93DC-437F-ADD8-857319498698"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", "int", "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[4]:=",ExpressionUUID->"B3F06198-CC9F-4909-A14E-A80D2D7B4D51"], Cell[BoxData[ Graphics3DBox[PolyhedronBox[CompressedData[" 1:eJx1V2lslUUUfUIigmwxagKJEYzBBAgEUpRlyBRBA7EBxdQNfwBSQoixGBVE CzygFIgom8tjf2JZig2UFqSWKSNUSgsU6ELpDmlFaStBUowaMYjvO2f0TutL Xibf++6dOffcc++d139m8tSkTqFQKO/ut/Pdb80HI3o98PsZ2/exjF0vvp9h zo5ZMnt7tNJOXHnftoujcu2zWLMS+vWt3lNtT9wuyh846bi9BL9zsF/x1syl k785b38Y2JD9xqYC+2NsLcdaYK8Gzzo1sNMN8C8J/LUJ9tVN8PsYdo2Bvyau 47CrDfz1JziXdo04B/tZnKN5zoggHj0aa3YQl66DXWZ955spj75NHnQYOBAH 1nKdBxz0Aw+a8f8Eu8XAV+PFewz4xoPfg8AxEs+9m/pV7Rn9muG+lfDn+SnA dR3nnYddGfCEYp9Mg7xp5FPHY/8zsD+FOJjPKbA7gHxPxnMV9mUeCuH3M3i5 hrx9CFzRW19sWdC0VJXTHv7gxZKXZvhTR8wb+GJ+LPJmJwEP8NsrwB3Em65O Iy7qFPmxreBtHs4lb+VSHxZ8OD0xruXwK0bcFdiXfCyROmH+bQueW/A8H/uU wv+C5NPVDfaz4Ned850XV4OIP1Mxr2PAVwL4or74Hvto8uzrCrj1Ra9+TsKv 0auHNPgxbtbNVeBnfvPhDz1Z5nc4cLLvMN4aoeewGenVLerYevrU34OnVplH vRC87oY+WV+I09LuPcm/pq6k3vIVeVXAMRb4fBzEB71D9+V2AXiqkv3BFoCn sbI/WNSvPvrwhaLeo95UpbA/g/15PuuF/Po8lkjd2h6vtu3Z2nzR1RHrq07E O08thX33wB775RkPp+uvbXf++axXQXy1sN+tqKcqgWu3QV/Qcv+w4Xy5InVH Pbn4qLNhwOP1edvKuXVz0bLE1yPmVIc6iyjqr5vAka0wv+wG4LyMfHLu1GOf +HdTdkx/6GXXj4bJucO86CI5R1xfbvL6WjF+7/7fPIUL1TLgiI/xnEye4bfO TJD1b6nTRZJn1z96iuccg35gKwSeqMG8sa05kbHjnvyIPOpmxH+/4O2YIc5K wXO6m2+cJ5zXxZwHp+fcOzV5pfOXePe6Oc0+WC10tlXdjvGy1lCX4xD/01gl zqPk03r4GL++NXfOiOsnlxnwZ8GXPgodck5zHvt1Rd79en5GzFnmL2L+An7m k7rE/cc+593PeF8L+ttqI/dbZTCfbS8R9+F2caLenX6oV/ZpzokeYp8sc+jw PUmPz083NSIP2SpN1ourX9Z/4q+7rjbm7HR9ife0QVhzEF8c4huCFb/ry+Bj zaq0lQUDtro5yHptlPdSjT6mu4n8RJxfrdD7QbVofJ8Fr8Slsp4tz/tj8Owp 60o+V4Xwu4F4fJ1SV8w75zPvf9UiT/tNT/Tb9LlD2qb1n6HCHep/HfnS1cAj 9XzCLBfzpdb1U6yKeQWvbu3WM6luRmlE+TrnudQL65n3mHPAMbF56FM3Cpeb MuArgt3C3w4e2jT3M9Uo+N3v+mSn2PNmRf2zniU/UYfftwuep7N/u7nKfiB5 iBjmHe+pW9hn872bE7+I+phFHK7OGrz+Rr1Q13LehRV402eBMzHxQtm16RtM rOzvbMf+UXUJ+7eIeLIM++SDsedMxJFrYM854urztOCFPPz7IW9yHoZCkv8D OCe1XT+CPvA+k3PeVov32WoVdNUFevbsNOMm/+EO7wXzjHcvw+97/XsEzt0I Pne0m5PMl+Rln1os70e6pENdRXkv4tzD70eAP/9/7jWf4txU1XF9hkISZ9TN J57D+8nz0TtDtry0kfVuZX3ltbs/DPqqz8T8+lzXV1JknduCL9eMGdw3190D 68V+Oer20G1d/xzwjptncg5EXf3xf7qfv6+/PZu8YsI+//+tyx/ze17OJTsr Ka5zxpFphn29K/BWCnw7XX/i/K1YndCl/EYG8+D65AtPDH8kwa51+Sv1dM/6 ZL48fQBnlpsLkvf13vzdrP4GpaUY1g== "], {{1, 2, 3, 4}, {11, 12, 13, 14}, {15, 16, 17, 18}, {19, 20, 21, 22}, { 23, 24, 25, 26}, {27, 28, 29, 30}, {41, 42, 10, 9}, {47, 48, 49, 50}, {51, 52, 53, 54}, {55, 56, 57, 58}, {59, 60, 61, 62}, {63, 64, 36, 35}, {65, 30, 39, 38}, {20, 71, 45, 44}, {72, 73, 74, 75}, {64, 77, 31, 36}, {78, 12, 80, 81}, {41, 9, 8, 83}, {87, 1, 4, 40}, {89, 68, 6, 5}, {90, 43, 13, 12}, {92, 93, 54, 53}, {59, 62, 99, 100}, {34, 33, 85, 104}, {67, 108, 7, 6}, {92, 112, 64, 114}, {115, 41, 117, 100}, {86, 33, 32, 56}, {104, 105, 38, 37}, {46, 45, 109, 89}, {93, 73, 15, 18}, {99, 62, 25, 81}, {30, 123, 40, 39}, {129, 20, 44, 43}, {42, 41, 115, 135}, {103, 102, 50, 49}, {51, 54, 17, 69}, {57, 56, 96, 95}, {61, 84, 23, 62}, {142, 114, 64, 63}, {108, 102, 8, 7}, {96, 56, 32, 31}, {74, 142, 2, 75}, {135, 80, 12, 11}, {129, 95, 21, 20}, {124, 123, 30, 29}, {104, 37, 3, 155}, {47, 108, 67, 16}, { 157, 14, 46, 89}, {56, 55, 24, 86}, {77, 64, 112, 22}, {117, 41, 83, 28}, {65, 60, 27, 30}, {157, 89, 5, 10}, {71, 20, 19, 52}, {35, 34, 104, 155}, {72, 1, 87, 48}, {58, 90, 12, 78}, {89, 109, 69, 68}, {104, 85, 84, 105}, {5, 6, 7, 8, 9, 10}, {31, 32, 33, 34, 35, 36}, {37, 38, 39, 40, 4, 3}, {43, 44, 45, 46, 14, 13}, {67, 6, 68, 69, 17, 16}, {84, 85, 33, 86, 24, 23}, {95, 96, 31, 77, 22, 21}, {83, 8, 102, 103, 29, 28}, {61, 60, 65, 38, 105, 84}, {109, 45, 71, 52, 51, 69}, {87, 40, 123, 124, 49, 48}, {90, 58, 57, 95, 129, 43}, {73, 72, 48, 47, 16, 15}, {55, 58, 78, 81, 25, 24}, {112, 92, 53, 52, 19, 22}, {100, 117, 28, 27, 60, 59}, {93, 92, 114, 142, 74, 73}, {81, 80, 135, 115, 100, 99}, {157, 10, 42, 135, 11, 14}, { 142, 63, 35, 155, 3, 2}}]]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[4]=",ExpressionUUID->"E19902E9-75E3-4FD5-9D1A-660A29A5E9E1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".1", "]"}], ",", "p"}], "}"}], ",", "Red", ",", "int"}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[5]:=",ExpressionUUID->"29AED51F-9A2B-4030-BF81-FC1F28279C26"], Cell[BoxData[ Graphics3DBox[{ {Opacity[0.1], PolyhedronBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, {RGBColor[1, 0, 0], PolyhedronBox[CompressedData[" 1:eJx1V2lslUUUfUIigmwxagKJEYzBBAgEUpRlyBRBA7EBxdQNfwBSQoixGBVE CzygFIgom8tjf2JZig2UFqSWKSNUSgsU6ELpDmlFaStBUowaMYjvO2f0TutL Xibf++6dOffcc++d139m8tSkTqFQKO/ut/Pdb80HI3o98PsZ2/exjF0vvp9h zo5ZMnt7tNJOXHnftoujcu2zWLMS+vWt3lNtT9wuyh846bi9BL9zsF/x1syl k785b38Y2JD9xqYC+2NsLcdaYK8Gzzo1sNMN8C8J/LUJ9tVN8PsYdo2Bvyau 47CrDfz1JziXdo04B/tZnKN5zoggHj0aa3YQl66DXWZ955spj75NHnQYOBAH 1nKdBxz0Aw+a8f8Eu8XAV+PFewz4xoPfg8AxEs+9m/pV7Rn9muG+lfDn+SnA dR3nnYddGfCEYp9Mg7xp5FPHY/8zsD+FOJjPKbA7gHxPxnMV9mUeCuH3M3i5 hrx9CFzRW19sWdC0VJXTHv7gxZKXZvhTR8wb+GJ+LPJmJwEP8NsrwB3Em65O Iy7qFPmxreBtHs4lb+VSHxZ8OD0xruXwK0bcFdiXfCyROmH+bQueW/A8H/uU wv+C5NPVDfaz4Ned850XV4OIP1Mxr2PAVwL4or74Hvto8uzrCrj1Ra9+TsKv 0auHNPgxbtbNVeBnfvPhDz1Z5nc4cLLvMN4aoeewGenVLerYevrU34OnVplH vRC87oY+WV+I09LuPcm/pq6k3vIVeVXAMRb4fBzEB71D9+V2AXiqkv3BFoCn sbI/WNSvPvrwhaLeo95UpbA/g/15PuuF/Po8lkjd2h6vtu3Z2nzR1RHrq07E O08thX33wB775RkPp+uvbXf++axXQXy1sN+tqKcqgWu3QV/Qcv+w4Xy5InVH Pbn4qLNhwOP1edvKuXVz0bLE1yPmVIc6iyjqr5vAka0wv+wG4LyMfHLu1GOf +HdTdkx/6GXXj4bJucO86CI5R1xfbvL6WjF+7/7fPIUL1TLgiI/xnEye4bfO TJD1b6nTRZJn1z96iuccg35gKwSeqMG8sa05kbHjnvyIPOpmxH+/4O2YIc5K wXO6m2+cJ5zXxZwHp+fcOzV5pfOXePe6Oc0+WC10tlXdjvGy1lCX4xD/01gl zqPk03r4GL++NXfOiOsnlxnwZ8GXPgodck5zHvt1Rd79en5GzFnmL2L+An7m k7rE/cc+593PeF8L+ttqI/dbZTCfbS8R9+F2caLenX6oV/ZpzokeYp8sc+jw PUmPz083NSIP2SpN1ourX9Z/4q+7rjbm7HR9ife0QVhzEF8c4huCFb/ry+Bj zaq0lQUDtro5yHptlPdSjT6mu4n8RJxfrdD7QbVofJ8Fr8Slsp4tz/tj8Owp 60o+V4Xwu4F4fJ1SV8w75zPvf9UiT/tNT/Tb9LlD2qb1n6HCHep/HfnS1cAj 9XzCLBfzpdb1U6yKeQWvbu3WM6luRmlE+TrnudQL65n3mHPAMbF56FM3Cpeb MuArgt3C3w4e2jT3M9Uo+N3v+mSn2PNmRf2zniU/UYfftwuep7N/u7nKfiB5 iBjmHe+pW9hn872bE7+I+phFHK7OGrz+Rr1Q13LehRV402eBMzHxQtm16RtM rOzvbMf+UXUJ+7eIeLIM++SDsedMxJFrYM854urztOCFPPz7IW9yHoZCkv8D OCe1XT+CPvA+k3PeVov32WoVdNUFevbsNOMm/+EO7wXzjHcvw+97/XsEzt0I Pne0m5PMl+Rln1os70e6pENdRXkv4tzD70eAP/9/7jWf4txU1XF9hkISZ9TN J57D+8nz0TtDtry0kfVuZX3ltbs/DPqqz8T8+lzXV1JknduCL9eMGdw3190D 68V+Oer20G1d/xzwjptncg5EXf3xf7qfv6+/PZu8YsI+//+tyx/ze17OJTsr Ka5zxpFphn29K/BWCnw7XX/i/K1YndCl/EYG8+D65AtPDH8kwa51+Sv1dM/6 ZL48fQBnlpsLkvf13vzdrP4GpaUY1g== "], {{1, 2, 3, 4}, {11, 12, 13, 14}, {15, 16, 17, 18}, {19, 20, 21, 22}, {23, 24, 25, 26}, {27, 28, 29, 30}, {41, 42, 10, 9}, {47, 48, 49, 50}, {51, 52, 53, 54}, {55, 56, 57, 58}, {59, 60, 61, 62}, {63, 64, 36, 35}, {65, 30, 39, 38}, {20, 71, 45, 44}, {72, 73, 74, 75}, {64, 77, 31, 36}, {78, 12, 80, 81}, {41, 9, 8, 83}, {87, 1, 4, 40}, {89, 68, 6, 5}, { 90, 43, 13, 12}, {92, 93, 54, 53}, {59, 62, 99, 100}, {34, 33, 85, 104}, {67, 108, 7, 6}, {92, 112, 64, 114}, {115, 41, 117, 100}, {86, 33, 32, 56}, {104, 105, 38, 37}, {46, 45, 109, 89}, {93, 73, 15, 18}, {99, 62, 25, 81}, {30, 123, 40, 39}, {129, 20, 44, 43}, {42, 41, 115, 135}, { 103, 102, 50, 49}, {51, 54, 17, 69}, {57, 56, 96, 95}, {61, 84, 23, 62}, {142, 114, 64, 63}, {108, 102, 8, 7}, {96, 56, 32, 31}, {74, 142, 2, 75}, {135, 80, 12, 11}, {129, 95, 21, 20}, {124, 123, 30, 29}, {104, 37, 3, 155}, {47, 108, 67, 16}, {157, 14, 46, 89}, {56, 55, 24, 86}, { 77, 64, 112, 22}, {117, 41, 83, 28}, {65, 60, 27, 30}, {157, 89, 5, 10}, {71, 20, 19, 52}, {35, 34, 104, 155}, {72, 1, 87, 48}, {58, 90, 12, 78}, {89, 109, 69, 68}, {104, 85, 84, 105}, {5, 6, 7, 8, 9, 10}, {31, 32, 33, 34, 35, 36}, {37, 38, 39, 40, 4, 3}, {43, 44, 45, 46, 14, 13}, { 67, 6, 68, 69, 17, 16}, {84, 85, 33, 86, 24, 23}, {95, 96, 31, 77, 22, 21}, {83, 8, 102, 103, 29, 28}, {61, 60, 65, 38, 105, 84}, {109, 45, 71, 52, 51, 69}, {87, 40, 123, 124, 49, 48}, {90, 58, 57, 95, 129, 43}, { 73, 72, 48, 47, 16, 15}, {55, 58, 78, 81, 25, 24}, {112, 92, 53, 52, 19, 22}, {100, 117, 28, 27, 60, 59}, {93, 92, 114, 142, 74, 73}, {81, 80, 135, 115, 100, 99}, {157, 10, 42, 135, 11, 14}, {142, 63, 35, 155, 3, 2}}]}}, Boxed->False]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[5]=",ExpressionUUID->"61FEC8B1-6381-422B-8848-08B94B89197B"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Numerically group", "Subsubsection",ExpressionUUID->"D31E20C1-700D-4C96-8D9D-C9AA2000855C"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Union", "[", RowBox[{"Chop", "@", RowBox[{"int", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], "//", "Length"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[6]:=",ExpressionUUID->"8513EEF0-95B9-4C84-B1CC-F5997A605FAA"], Cell[BoxData["175"], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[6]=",ExpressionUUID->"42543CE0-F04F-4E24-A304-557BCEB9FA89"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", RowBox[{"grouped", "=", RowBox[{ RowBox[{"SplitBy", "[", RowBox[{ RowBox[{"SortBy", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"#", ",", RowBox[{"Round", "[", RowBox[{"1*^12", "#"}], "]"}]}], "}"}], "&"}], "/@", RowBox[{"Chop", "[", RowBox[{"int", "[", RowBox[{"[", "1", "]"}], "]"}], "]"}]}], ",", "Last"}], "]"}], ",", "Last"}], "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "All", ",", "1"}], "]"}], "]"}]}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[7]:=",ExpressionUUID->"8B339D08-9843-4C33-AF6A-2E3CF574AA5C"], Cell[BoxData["102"], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[7]=",ExpressionUUID->"E009A6FD-3ED7-4156-8B2E-6B0A21EFE02F"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Max", "[", RowBox[{"EuclideanDistance", "@@@", RowBox[{"Flatten", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Subsets", "[", RowBox[{"#", ",", RowBox[{"{", "2", "}"}]}], "]"}], "&"}], "/@", "grouped"}], ",", "1"}], "]"}]}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[8]:=",ExpressionUUID->"B91D1388-7884-4B4E-82AD-CC90B4DFFD65"], Cell[BoxData["1.3426356273935429`*^-15"], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[8]=",ExpressionUUID->"58B5EE4A-B5A9-4363-96D1-1B6A43A4601F"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"grouped", "//", "Column"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[9]:=",ExpressionUUID->"1657C88A-A0CC-404C-9C3C-A16025BEB74B"], Cell[BoxData[ TagBox[GridBox[{ { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.4370160244488211`"}], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.4370160244488211`"}], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.4370160244488211`"}], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.43701602444882104`"}], ",", "0", ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.40086963225730715`"}], ",", RowBox[{"-", "0.0946324833280671`"}], ",", RowBox[{"-", "0.09463248332806722`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.4008696322573072`"}], ",", RowBox[{"-", "0.09463248332806702`"}], ",", "0.0946324833280673`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.4008696322573072`"}], ",", "0.09463248332806698`", ",", RowBox[{"-", "0.09463248332806729`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.40086963225730715`"}], ",", "0.09463248332806717`", ",", "0.09463248332806724`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.35355339059327395`"}], ",", RowBox[{"-", "0.21850801222441024`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.35355339059327373`"}], ",", RowBox[{"-", "0.2185080122244106`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3535533905932737`"}], ",", RowBox[{"-", "0.21850801222441074`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3535533905932737`"}], ",", RowBox[{"-", "0.21850801222441066`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3535533905932737`"}], ",", RowBox[{"-", "0.21850801222441063`"}], ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.35355339059327373`"}], ",", RowBox[{"-", "0.1350453783688632`"}], ",", RowBox[{"-", "0.21850801222441063`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.35355339059327384`"}], ",", RowBox[{"-", "0.1350453783688631`"}], ",", "0.21850801222441057`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.35355339059327384`"}], ",", "0.13504537836886313`", ",", RowBox[{"-", "0.21850801222441052`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.35355339059327373`"}], ",", "0.13504537836886324`", ",", "0.2185080122244106`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.35355339059327384`"}], ",", "0.2185080122244104`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3535533905932738`"}], ",", "0.21850801222441052`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3535533905932738`"}], ",", "0.21850801222441055`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.35355339059327373`"}], ",", "0.21850801222441057`", ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.3423835411207542`"}], ",", "0", ",", RowBox[{"-", "0.24775105779268702`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.34238354112075414`"}], ",", "0", ",", RowBox[{"-", "0.24775105779268708`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3423835411207541`"}], ",", "0", ",", RowBox[{"-", "0.2477510577926872`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.34238354112075414`"}], ",", "0", ",", "0.24775105779268705`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3423835411207541`"}], ",", "0", ",", "0.24775105779268713`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3423835411207541`"}], ",", "0", ",", "0.2477510577926872`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.30623714892924025`"}], ",", RowBox[{"-", "0.2477510577926871`"}], ",", RowBox[{"-", "0.1531185744646203`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3062371489292403`"}], ",", RowBox[{"-", "0.24775105779268708`"}], ",", "0.1531185744646202`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3062371489292403`"}], ",", "0.24775105779268713`", ",", RowBox[{"-", "0.1531185744646201`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3062371489292401`"}], ",", "0.2477510577926875`", ",", "0.15311857446462002`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.2477510577926871`"}], ",", RowBox[{"-", "0.34238354112075414`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24775105779268702`"}], ",", RowBox[{"-", "0.3423835411207542`"}], ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24775105779268727`"}], ",", RowBox[{"-", "0.15311857446462007`"}], ",", RowBox[{"-", "0.30623714892924025`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24775105779268725`"}], ",", RowBox[{"-", "0.15311857446462002`"}], ",", "0.30623714892924025`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24775105779268727`"}], ",", "0.15311857446461996`", ",", RowBox[{"-", "0.30623714892924025`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24775105779268752`"}], ",", "0.15311857446462002`", ",", "0.30623714892924003`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.24775105779268716`"}], ",", "0.3423835411207541`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.247751057792687`"}], ",", "0.34238354112075425`", ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441033`"}], ",", RowBox[{"-", "0.35355339059327395`"}], ",", RowBox[{"-", "0.13504537836886338`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441052`"}], ",", RowBox[{"-", "0.3535533905932738`"}], ",", "0.1350453783688633`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441105`"}], ",", "0", ",", RowBox[{"-", "0.35355339059327345`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441102`"}], ",", "0", ",", RowBox[{"-", "0.35355339059327356`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441057`"}], ",", "0", ",", RowBox[{"-", "0.35355339059327373`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441046`"}], ",", "0", ",", RowBox[{"-", "0.35355339059327384`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2185080122244104`"}], ",", "0", ",", RowBox[{"-", "0.3535533905932739`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441082`"}], ",", "0", ",", "0.35355339059327356`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2185080122244108`"}], ",", "0", ",", "0.35355339059327356`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2185080122244108`"}], ",", "0", ",", "0.3535533905932736`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2185080122244107`"}], ",", "0", ",", "0.3535533905932737`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441069`"}], ",", "0", ",", "0.3535533905932737`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441057`"}], ",", "0.3535533905932738`", ",", RowBox[{"-", "0.13504537836886316`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441069`"}], ",", "0.3535533905932738`", ",", "0.1350453783688631`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.15311857446462024`"}], ",", RowBox[{"-", "0.3062371489292405`"}], ",", RowBox[{"-", "0.24775105779268686`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.1531185744646202`"}], ",", RowBox[{"-", "0.3062371489292404`"}], ",", "0.24775105779268689`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.15311857446462007`"}], ",", "0.3062371489292403`", ",", RowBox[{"-", "0.24775105779268708`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.15311857446462013`"}], ",", "0.3062371489292402`", ",", "0.24775105779268725`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.13504537836886327`"}], ",", RowBox[{"-", "0.2185080122244105`"}], ",", RowBox[{"-", "0.35355339059327384`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.13504537836886307`"}], ",", RowBox[{"-", "0.21850801222441046`"}], ",", "0.3535533905932739`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.13504537836886313`"}], ",", "0.21850801222441057`", ",", RowBox[{"-", "0.35355339059327384`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.1350453783688631`"}], ",", "0.21850801222441069`", ",", "0.3535533905932738`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.09463248332806733`"}], ",", RowBox[{"-", "0.4008696322573071`"}], ",", RowBox[{"-", "0.09463248332806726`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.09463248332806713`"}], ",", RowBox[{"-", "0.40086963225730715`"}], ",", "0.09463248332806717`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.09463248332806729`"}], ",", RowBox[{"-", "0.09463248332806726`"}], ",", RowBox[{"-", "0.4008696322573071`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.09463248332806701`"}], ",", RowBox[{"-", "0.09463248332806692`"}], ",", "0.40086963225730726`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.09463248332806697`"}], ",", "0.09463248332806709`", ",", RowBox[{"-", "0.4008696322573072`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.0946324833280671`"}], ",", "0.09463248332806734`", ",", "0.40086963225730715`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.09463248332806722`"}], ",", "0.40086963225730715`", ",", RowBox[{"-", "0.09463248332806706`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.09463248332806713`"}], ",", "0.40086963225730715`", ",", "0.09463248332806709`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.43701602444882115`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.43701602444882104`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.43701602444882104`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.43701602444882104`"}], ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3535533905932739`"}], ",", RowBox[{"-", "0.2185080122244104`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3535533905932738`"}], ",", RowBox[{"-", "0.21850801222441055`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.35355339059327373`"}], ",", RowBox[{"-", "0.2185080122244106`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3535533905932736`"}], ",", RowBox[{"-", "0.2185080122244108`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3535533905932736`"}], ",", RowBox[{"-", "0.2185080122244107`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3535533905932741`"}], ",", "0.21850801222441002`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.353553390593274`"}], ",", "0.21850801222441016`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.35355339059327384`"}], ",", "0.2185080122244104`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.35355339059327384`"}], ",", "0.21850801222441046`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.35355339059327345`"}], ",", "0.21850801222441119`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.24775105779268736`"}], ",", RowBox[{"-", "0.3423835411207538`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.24775105779268725`"}], ",", RowBox[{"-", "0.3423835411207539`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.2477510577926872`"}], ",", RowBox[{"-", "0.34238354112075403`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.24775105779268708`"}], ",", "0.34238354112075414`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.24775105779268705`"}], ",", "0.3423835411207542`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.24775105779268705`"}], ",", "0.3423835411207542`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "0.43701602444882104`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "0.43701602444882104`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "0.43701602444882104`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "0.437016024448821`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0.437016024448821`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0.43701602444882104`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0.43701602444882104`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0.4370160244488211`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0.24775105779268708`", ",", RowBox[{"-", "0.3423835411207541`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.24775105779268713`", ",", RowBox[{"-", "0.3423835411207541`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.2477510577926872`", ",", RowBox[{"-", "0.3423835411207541`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0", ",", "0.24775105779268705`", ",", "0.34238354112075414`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0", ",", "0.24775105779268708`", ",", "0.3423835411207541`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0", ",", "0.24775105779268713`", ",", "0.3423835411207541`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0.35355339059327373`", ",", RowBox[{"-", "0.21850801222441069`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.3535533905932738`", ",", RowBox[{"-", "0.21850801222441055`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.35355339059327384`", ",", RowBox[{"-", "0.21850801222441046`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.35355339059327384`", ",", RowBox[{"-", "0.21850801222441044`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0", ",", "0.3535533905932734`", ",", "0.21850801222441116`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.35355339059327345`", ",", "0.218508012224411`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0", ",", "0.3535533905932736`", ",", "0.21850801222441074`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0", ",", "0.35355339059327373`", ",", "0.2185080122244106`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0.43701602444882104`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.43701602444882104`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.4370160244488211`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.43701602444882115`", ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.09463248332806723`", ",", RowBox[{"-", "0.40086963225730715`"}], ",", RowBox[{"-", "0.09463248332806712`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.09463248332806738`", ",", RowBox[{"-", "0.40086963225730704`"}], ",", "0.09463248332806737`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.09463248332806713`", ",", RowBox[{"-", "0.09463248332806702`"}], ",", RowBox[{"-", "0.4008696322573072`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.09463248332806697`", ",", RowBox[{"-", "0.09463248332806709`"}], ",", "0.4008696322573072`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.09463248332806702`", ",", "0.09463248332806688`", ",", RowBox[{"-", "0.40086963225730726`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.09463248332806702`", ",", "0.09463248332806709`", ",", "0.4008696322573072`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.09463248332806706`", ",", "0.4008696322573072`", ",", RowBox[{"-", "0.09463248332806709`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.09463248332806723`", ",", "0.4008696322573072`", ",", "0.09463248332806698`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.13504537836886346`", ",", RowBox[{"-", "0.2185080122244104`"}], ",", RowBox[{"-", "0.35355339059327373`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.13504537836886343`", ",", RowBox[{"-", "0.21850801222441063`"}], ",", "0.3535533905932737`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.13504537836886338`", ",", "0.21850801222441069`", ",", RowBox[{"-", "0.35355339059327356`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.13504537836886304`", ",", "0.21850801222441063`", ",", "0.35355339059327384`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.15311857446462002`", ",", RowBox[{"-", "0.30623714892924037`"}], ",", RowBox[{"-", "0.24775105779268722`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.1531185744646203`", ",", RowBox[{"-", "0.30623714892924037`"}], ",", "0.247751057792687`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.15311857446462027`", ",", "0.30623714892924037`", ",", RowBox[{"-", "0.24775105779268694`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.15311857446462002`", ",", "0.30623714892924025`", ",", "0.2477510577926873`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.21850801222441038`", ",", RowBox[{"-", "0.3535533905932738`"}], ",", RowBox[{"-", "0.1350453783688634`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.21850801222441052`", ",", RowBox[{"-", "0.35355339059327373`"}], ",", "0.13504537836886338`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.21850801222441052`", ",", "0", ",", RowBox[{"-", "0.3535533905932738`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.21850801222441057`", ",", "0", ",", RowBox[{"-", "0.3535533905932738`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.21850801222441057`", ",", "0", ",", RowBox[{"-", "0.35355339059327373`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.21850801222441069`", ",", "0", ",", RowBox[{"-", "0.3535533905932736`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0.21850801222441033`", ",", "0", ",", "0.35355339059327395`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.21850801222441046`", ",", "0", ",", "0.35355339059327384`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.21850801222441063`", ",", "0", ",", "0.35355339059327373`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.21850801222441066`", ",", "0", ",", "0.3535533905932736`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.21850801222441082`", ",", "0", ",", "0.3535533905932736`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.21850801222441052`", ",", "0.35355339059327373`", ",", RowBox[{"-", "0.13504537836886332`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.21850801222441044`", ",", "0.3535533905932738`", ",", "0.13504537836886335`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.24775105779268705`", ",", RowBox[{"-", "0.3423835411207541`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.24775105779268716`", ",", RowBox[{"-", "0.34238354112075403`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.24775105779268716`", ",", RowBox[{"-", "0.342383541120754`"}], ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.2477510577926871`", ",", RowBox[{"-", "0.15311857446462013`"}], ",", RowBox[{"-", "0.3062371489292403`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.24775105779268763`", ",", RowBox[{"-", "0.15311857446461993`"}], ",", "0.30623714892924003`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.2477510577926873`", ",", "0.15311857446461993`", ",", RowBox[{"-", "0.30623714892924025`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.24775105779268713`", ",", "0.15311857446462013`", ",", "0.30623714892924025`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0.24775105779268702`", ",", "0.34238354112075414`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.24775105779268708`", ",", "0.3423835411207541`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.24775105779268713`", ",", "0.3423835411207541`", ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.30623714892924053`", ",", RowBox[{"-", "0.2477510577926867`"}], ",", RowBox[{"-", "0.15311857446462032`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.30623714892924037`", ",", RowBox[{"-", "0.24775105779268683`"}], ",", "0.1531185744646203`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.30623714892924025`", ",", "0.24775105779268702`", ",", RowBox[{"-", "0.15311857446462032`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.30623714892924025`", ",", "0.24775105779268702`", ",", "0.15311857446462024`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.342383541120754`", ",", "0", ",", RowBox[{"-", "0.24775105779268725`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.342383541120754`", ",", "0", ",", RowBox[{"-", "0.24775105779268722`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.34238354112075403`", ",", "0", ",", RowBox[{"-", "0.2477510577926872`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0.34238354112075403`", ",", "0", ",", "0.24775105779268716`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.34238354112075403`", ",", "0", ",", "0.2477510577926872`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.34238354112075403`", ",", "0", ",", "0.24775105779268722`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.3535533905932736`", ",", RowBox[{"-", "0.21850801222441074`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.3535533905932737`", ",", RowBox[{"-", "0.2185080122244106`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.35355339059327373`", ",", RowBox[{"-", "0.21850801222441052`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.3535533905932738`", ",", RowBox[{"-", "0.21850801222441052`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.35355339059327395`", ",", RowBox[{"-", "0.2185080122244102`"}], ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.3535533905932736`", ",", RowBox[{"-", "0.13504537836886327`"}], ",", RowBox[{"-", "0.21850801222441063`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.35355339059327373`", ",", RowBox[{"-", "0.13504537836886332`"}], ",", "0.21850801222441052`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.3535533905932737`", ",", "0.1350453783688634`", ",", RowBox[{"-", "0.2185080122244105`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.3535533905932737`", ",", "0.1350453783688632`", ",", "0.21850801222441057`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0.35355339059327373`", ",", "0.21850801222441057`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.3535533905932738`", ",", "0.21850801222441052`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.35355339059327384`", ",", "0.21850801222441046`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.3535533905932739`", ",", "0.21850801222441035`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.35355339059327406`", ",", "0.21850801222441008`", ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.40086963225730715`", ",", RowBox[{"-", "0.09463248332806719`"}], ",", RowBox[{"-", "0.0946324833280672`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.40086963225730715`", ",", RowBox[{"-", "0.09463248332806712`"}], ",", "0.09463248332806713`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.4008696322573071`", ",", "0.09463248332806729`", ",", RowBox[{"-", "0.09463248332806717`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.4008696322573072`", ",", "0.09463248332806701`", ",", "0.09463248332806701`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.43701602444882104`", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.43701602444882104`", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.43701602444882104`", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.4370160244488211`", ",", "0", ",", "0"}], "}"}]}], "}"}]} }, DefaultBaseStyle->"Column", GridBoxAlignment->{"Columns" -> {{Left}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[9]=",ExpressionUUID->"517B94A4-ACBE-4ACC-A2EB-F2B0EDC829D8"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"rules", "=", RowBox[{"Flatten", "[", RowBox[{ RowBox[{ RowBox[{"Function", "[", RowBox[{"l", ",", RowBox[{ RowBox[{ RowBox[{"Rule", "[", RowBox[{"#", ",", RowBox[{"Mean", "[", "l", "]"}]}], "]"}], "&"}], "/@", "l"}]}], "]"}], "/@", "grouped"}], ",", "1"}], "]"}]}], ";"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[10]:=",ExpressionUUID->"4AA8CBC6-87B8-4CD9-B862-C9AE4EF5F9B6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"newi", "=", RowBox[{"ConvexHullRegion", "[", RowBox[{"DeleteDuplicates", "[", RowBox[{ RowBox[{"Chop", "[", RowBox[{"int", "[", RowBox[{"[", "1", "]"}], "]"}], "]"}], "/.", "rules"}], "]"}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[11]:=",ExpressionUUID->"68F11A1F-33E9-49F5-A721-8E92749F1A6F"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{-0.21850801222441069`, 0, -0.3535533905932737}, {-0.09463248332806729, -0.09463248332806726, \ -0.4008696322573071}, {-0.13504537836886327`, -0.2185080122244105, \ -0.35355339059327384`}, {-0.24775105779268727`, -0.15311857446462007`, \ -0.30623714892924025`}, {-0.15311857446462013`, 0.3062371489292402, 0.24775105779268725`}, {-0.21850801222441069`, 0.3535533905932738, 0.1350453783688631}, {-0.3062371489292401, 0.2477510577926875, 0.15311857446462002`}, {-0.35355339059327373`, 0.13504537836886324`, 0.2185080122244106}, {-0.24775105779268752`, 0.15311857446462002`, 0.30623714892924003`}, {-0.1350453783688631, 0.21850801222441069`, 0.3535533905932738}, {0.09463248332806702, 0.09463248332806709, 0.4008696322573072}, {0.21850801222441057`, 0, 0.35355339059327373`}, { 0.24775105779268713`, 0.15311857446462013`, 0.30623714892924025`}, { 0.13504537836886304`, 0.21850801222441063`, 0.35355339059327384`}, {-0.15311857446462007`, 0.3062371489292403, -0.24775105779268708`}, {-0.21850801222441057`, 0.3535533905932738, -0.13504537836886316`}, {-0.09463248332806722, 0.40086963225730715`, -0.09463248332806706}, { 0, 0.3535533905932738, -0.21850801222441055`}, {0.30623714892924025`, 0.24775105779268702`, -0.15311857446462032`}, { 0.35355339059327384`, 0.21850801222441038`, 0}, {0.4008696322573071, 0.09463248332806729, -0.09463248332806717}, {0.3535533905932737, 0.1350453783688634, -0.2185080122244105}, { 0.09463248332806738, -0.40086963225730704`, 0.09463248332806737}, { 0.21850801222441052`, -0.35355339059327373`, 0.13504537836886338`}, { 0.1531185744646203, -0.30623714892924037`, 0.247751057792687}, { 0, -0.35355339059327384`, 0.21850801222441044`}, {-0.3062371489292403, -0.24775105779268708`, 0.1531185744646202}, {-0.35355339059327384`, -0.1350453783688631, 0.21850801222441057`}, {-0.4008696322573072, -0.09463248332806702, 0.0946324833280673}, {-0.3535533905932738, -0.21850801222441057`, 0}, { 0.3535533905932736, -0.13504537836886327`, -0.21850801222441063`}, { 0.30623714892924053`, -0.2477510577926867, -0.15311857446462032`}, { 0.21850801222441038`, -0.3535533905932738, -0.1350453783688634}, { 0.15311857446462002`, -0.30623714892924037`, -0.24775105779268722`}, { 0.13504537836886346`, -0.2185080122244104, -0.35355339059327373`}, { 0.2477510577926871, -0.15311857446462013`, -0.3062371489292403}, \ {-0.15311857446462024`, -0.3062371489292405, -0.24775105779268686`}, \ {-0.21850801222441033`, -0.35355339059327395`, -0.13504537836886338`}, \ {-0.30623714892924025`, -0.2477510577926871, -0.1531185744646203}, \ {-0.35355339059327373`, -0.1350453783688632, -0.21850801222441063`}, \ {-0.21850801222441074`, 0, 0.3535533905932736}, {-0.0946324833280671, 0.09463248332806734, 0.40086963225730715`}, {0.3535533905932737, 0.1350453783688632, 0.21850801222441057`}, {0.30623714892924025`, 0.24775105779268702`, 0.15311857446462024`}, {0.21850801222441044`, 0.3535533905932738, 0.13504537836886335`}, {0.15311857446462002`, 0.30623714892924025`, 0.2477510577926873}, {-0.3062371489292403, 0.24775105779268713`, -0.1531185744646201}, {-0.35355339059327384`, 0.13504537836886313`, -0.21850801222441052`}, {-0.4008696322573072, 0.09463248332806698, -0.09463248332806729}, {-0.3535533905932738, 0.21850801222441052`, 0}, {0.09463248332806706, 0.4008696322573072, -0.09463248332806709}, {0.21850801222441052`, 0.35355339059327373`, -0.13504537836886332`}, {0.15311857446462027`, 0.30623714892924037`, -0.24775105779268694`}, { 0.30623714892924037`, -0.24775105779268683`, 0.1531185744646203}, { 0.35355339059327373`, -0.21850801222441052`, 0}, { 0.40086963225730715`, -0.09463248332806712, 0.09463248332806713}, { 0.35355339059327373`, -0.13504537836886332`, 0.21850801222441052`}, {-0.1531185744646202, -0.3062371489292404, 0.24775105779268689`}, {-0.21850801222441052`, -0.3535533905932738, 0.1350453783688633}, {-0.09463248332806713, -0.40086963225730715`, 0.09463248332806717}, { 0.09463248332806713, -0.09463248332806702, -0.4008696322573072}, { 0.21850801222441057`, 0, -0.35355339059327373`}, {-0.24775105779268708`, \ -0.3423835411207542, 0}, {-0.24775105779268708`, 0.3423835411207542, 0}, {-0.09463248332806713, 0.40086963225730715`, 0.09463248332806709}, {0, 0.4370160244488211, 0}, { 0.24775105779268705`, 0.3423835411207541, 0}, {-0.24775105779268727`, 0.15311857446461996`, -0.30623714892924025`}, {-0.13504537836886313`, 0.21850801222441057`, -0.35355339059327384`}, {-0.09463248332806697, 0.09463248332806709, -0.4008696322573072}, { 0.34238354112075403`, 0, -0.24775105779268722`}, { 0.24775105779268763`, -0.15311857446461993`, 0.30623714892924003`}, { 0.09463248332806697, -0.09463248332806709, 0.4008696322573072}, { 0.13504537836886343`, -0.21850801222441063`, 0.3535533905932737}, {-0.3423835411207541, 0, 0.24775105779268713`}, { 0, -0.43701602444882104`, 0}, { 0.09463248332806723, -0.40086963225730715`, -0.09463248332806712}, { 0.24775105779268713`, -0.34238354112075403`, 0}, {-0.34238354112075414`, 0, -0.2477510577926871}, { 0, 0.3535533905932735, 0.21850801222441088`}, { 0.34238354112075403`, 0, 0.24775105779268722`}, {0.13504537836886338`, 0.21850801222441069`, -0.35355339059327356`}, { 0, 0.24775105779268713`, -0.3423835411207541}, { 0.43701602444882104`, 0, 0}, { 0.40086963225730715`, -0.09463248332806719, -0.0946324833280672}, { 0, -0.24775105779268705`, 0.34238354112075414`}, {-0.13504537836886307`, -0.21850801222441046`, 0.3535533905932739}, {-0.40086963225730715`, 0.09463248332806717, 0.09463248332806724}, {-0.43701602444882104`, 0, 0}, { 0, -0.35355339059327373`, -0.2185080122244106}, {-0.09463248332806733, \ -0.4008696322573071, -0.09463248332806726}, {0.09463248332806723, 0.4008696322573072, 0.09463248332806698}, {0.2477510577926873, 0.15311857446461993`, -0.30623714892924025`}, {0.09463248332806702, 0.09463248332806688, -0.40086963225730726`}, {-0.09463248332806701, \ -0.09463248332806692, 0.40086963225730726`}, {-0.24775105779268725`, -0.15311857446462002`, 0.30623714892924025`}, {-0.40086963225730715`, -0.0946324833280671, \ -0.09463248332806722}, {0.4008696322573072, 0.09463248332806701, 0.09463248332806701}, {0, 0, 0.43701602444882104`}, { 0, 0, -0.43701602444882104`}, { 0, -0.24775105779268727`, -0.3423835411207539}, { 0, 0.2477510577926871, 0.3423835411207541}}, {{79, 40, 97, 89, 49, 48}, {84, 21, 20, 98}, {20, 21, 22, 19}, {98, 20, 44, 43}, {20, 19, 52, 67}, {66, 92, 45, 67, 52, 51}, {44, 20, 67, 45}, {66, 51, 18, 17}, { 16, 17, 18, 15}, {83, 69, 15, 18}, {6, 7, 8, 9, 10, 5}, {42, 99, 11, 14, 102, 10}, {11, 99, 73, 12}, {12, 73, 74, 72}, {14, 11, 12, 13}, { 81, 43, 13, 12}, {66, 17, 16, 64, 6, 65}, {48, 47, 16, 15, 69, 68}, { 79, 48, 68, 1}, {2, 3, 4, 1}, {40, 79, 1, 4}, {100, 2, 1, 70}, {68, 69, 70, 1}, {3, 2, 100, 61, 35, 101}, {3, 101, 90, 37}, {38, 37, 90, 91}, {19, 22, 93, 82, 53, 52}, {82, 83, 18, 53}, {51, 52, 53, 18}, {22, 71, 62, 93}, {42, 10, 9, 41}, {99, 42, 41, 95}, {43, 44, 45, 46, 14, 13}, {89, 97, 30, 29}, {27, 28, 29, 30}, {3, 37, 38, 39, 40, 4}, {97, 40, 39, 30}, {24, 25, 26, 23}, {88, 8, 7, 50}, {47, 48, 49, 50}, {49, 89, 88, 50}, {7, 6, 64, 50}, {16, 47, 50, 64}, {71, 22, 21, 84, 85, 31}, {23, 26, 60, 76}, {58, 59, 60, 26}, {38, 91, 76, 60, 59, 63}, {39, 38, 63, 30}, {59, 27, 30, 63}, {69, 83, 82, 94, 100, 70}, {61, 100, 94, 62}, {82, 93, 62, 94}, {8, 88, 89, 29, 28, 75}, {9, 8, 75, 41}, {5, 10, 102, 80}, {66, 65, 80, 92}, {65, 6, 5, 80}, {102, 14, 46, 80}, { 45, 92, 80, 46}, {27, 59, 58, 87, 96, 28}, {75, 28, 96, 41}, {95, 41, 96, 87}, {73, 99, 95, 87, 86, 74}, {25, 74, 86, 26}, {87, 58, 26, 86}, {43, 81, 57, 56, 84, 98}, {72, 74, 25, 24, 54, 57}, {81, 12, 72, 57}, {35, 61, 62, 36}, {62, 71, 31, 36}, {76, 91, 90, 77}, {101, 35, 34, 90}, {33, 77, 90, 34}, {23, 76, 77, 33, 78, 24}, {56, 57, 54, 55}, {85, 84, 56, 55}, {54, 24, 78, 55}, {36, 31, 32, 33, 34, 35}, {31, 85, 55, 32}, {78, 33, 32, 55}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[{{-0.21850801222441069`, 0, -0.3535533905932737}, {-0.09463248332806729, \ -0.09463248332806726, -0.4008696322573071}, {-0.13504537836886327`, \ -0.2185080122244105, -0.35355339059327384`}, {-0.24775105779268727`, \ -0.15311857446462007`, -0.30623714892924025`}, {-0.15311857446462013`, 0.3062371489292402, 0.24775105779268725`}, {-0.21850801222441069`, 0.3535533905932738, 0.1350453783688631}, {-0.3062371489292401, 0.2477510577926875, 0.15311857446462002`}, {-0.35355339059327373`, 0.13504537836886324`, 0.2185080122244106}, {-0.24775105779268752`, 0.15311857446462002`, 0.30623714892924003`}, {-0.1350453783688631, 0.21850801222441069`, 0.3535533905932738}, { 0.09463248332806702, 0.09463248332806709, 0.4008696322573072}, { 0.21850801222441057`, 0, 0.35355339059327373`}, { 0.24775105779268713`, 0.15311857446462013`, 0.30623714892924025`}, {0.13504537836886304`, 0.21850801222441063`, 0.35355339059327384`}, {-0.15311857446462007`, 0.3062371489292403, -0.24775105779268708`}, \ {-0.21850801222441057`, 0.3535533905932738, -0.13504537836886316`}, \ {-0.09463248332806722, 0.40086963225730715`, -0.09463248332806706}, { 0, 0.3535533905932738, -0.21850801222441055`}, { 0.30623714892924025`, 0.24775105779268702`, -0.15311857446462032`}, { 0.35355339059327384`, 0.21850801222441038`, 0}, { 0.4008696322573071, 0.09463248332806729, -0.09463248332806717}, { 0.3535533905932737, 0.1350453783688634, -0.2185080122244105}, { 0.09463248332806738, -0.40086963225730704`, 0.09463248332806737}, { 0.21850801222441052`, -0.35355339059327373`, 0.13504537836886338`}, { 0.1531185744646203, -0.30623714892924037`, 0.247751057792687}, { 0, -0.35355339059327384`, 0.21850801222441044`}, {-0.3062371489292403, \ -0.24775105779268708`, 0.1531185744646202}, {-0.35355339059327384`, \ -0.1350453783688631, 0.21850801222441057`}, {-0.4008696322573072, \ -0.09463248332806702, 0.0946324833280673}, {-0.3535533905932738, \ -0.21850801222441057`, 0}, { 0.3535533905932736, -0.13504537836886327`, \ -0.21850801222441063`}, { 0.30623714892924053`, -0.2477510577926867, \ -0.15311857446462032`}, { 0.21850801222441038`, -0.3535533905932738, \ -0.1350453783688634}, { 0.15311857446462002`, -0.30623714892924037`, \ -0.24775105779268722`}, { 0.13504537836886346`, -0.2185080122244104, \ -0.35355339059327373`}, { 0.2477510577926871, -0.15311857446462013`, \ -0.3062371489292403}, {-0.15311857446462024`, -0.3062371489292405, \ -0.24775105779268686`}, {-0.21850801222441033`, -0.35355339059327395`, \ -0.13504537836886338`}, {-0.30623714892924025`, -0.2477510577926871, \ -0.1531185744646203}, {-0.35355339059327373`, -0.1350453783688632, \ -0.21850801222441063`}, {-0.21850801222441074`, 0, 0.3535533905932736}, {-0.0946324833280671, 0.09463248332806734, 0.40086963225730715`}, { 0.3535533905932737, 0.1350453783688632, 0.21850801222441057`}, {0.30623714892924025`, 0.24775105779268702`, 0.15311857446462024`}, { 0.21850801222441044`, 0.3535533905932738, 0.13504537836886335`}, {0.15311857446462002`, 0.30623714892924025`, 0.2477510577926873}, {-0.3062371489292403, 0.24775105779268713`, -0.1531185744646201}, \ {-0.35355339059327384`, 0.13504537836886313`, -0.21850801222441052`}, \ {-0.4008696322573072, 0.09463248332806698, -0.09463248332806729}, \ {-0.3535533905932738, 0.21850801222441052`, 0}, {0.09463248332806706, 0.4008696322573072, -0.09463248332806709}, { 0.21850801222441052`, 0.35355339059327373`, -0.13504537836886332`}, { 0.15311857446462027`, 0.30623714892924037`, -0.24775105779268694`}, { 0.30623714892924037`, -0.24775105779268683`, 0.1531185744646203}, { 0.35355339059327373`, -0.21850801222441052`, 0}, { 0.40086963225730715`, -0.09463248332806712, 0.09463248332806713}, { 0.35355339059327373`, -0.13504537836886332`, 0.21850801222441052`}, {-0.1531185744646202, \ -0.3062371489292404, 0.24775105779268689`}, {-0.21850801222441052`, \ -0.3535533905932738, 0.1350453783688633}, {-0.09463248332806713, \ -0.40086963225730715`, 0.09463248332806717}, { 0.09463248332806713, -0.09463248332806702, \ -0.4008696322573072}, { 0.21850801222441057`, 0, -0.35355339059327373`}, {-0.24775105779268708`, \ -0.3423835411207542, 0}, {-0.24775105779268708`, 0.3423835411207542, 0}, {-0.09463248332806713, 0.40086963225730715`, 0.09463248332806709}, {0, 0.4370160244488211, 0}, { 0.24775105779268705`, 0.3423835411207541, 0}, {-0.24775105779268727`, 0.15311857446461996`, -0.30623714892924025`}, \ {-0.13504537836886313`, 0.21850801222441057`, -0.35355339059327384`}, \ {-0.09463248332806697, 0.09463248332806709, -0.4008696322573072}, { 0.34238354112075403`, 0, -0.24775105779268722`}, { 0.24775105779268763`, -0.15311857446461993`, 0.30623714892924003`}, { 0.09463248332806697, -0.09463248332806709, 0.4008696322573072}, { 0.13504537836886343`, -0.21850801222441063`, 0.3535533905932737}, {-0.3423835411207541, 0, 0.24775105779268713`}, {0, -0.43701602444882104`, 0}, { 0.09463248332806723, -0.40086963225730715`, \ -0.09463248332806712}, { 0.24775105779268713`, -0.34238354112075403`, 0}, {-0.34238354112075414`, 0, -0.2477510577926871}, { 0, 0.3535533905932735, 0.21850801222441088`}, { 0.34238354112075403`, 0, 0.24775105779268722`}, { 0.13504537836886338`, 0.21850801222441069`, -0.35355339059327356`}, { 0, 0.24775105779268713`, -0.3423835411207541}, { 0.43701602444882104`, 0, 0}, { 0.40086963225730715`, -0.09463248332806719, \ -0.0946324833280672}, { 0, -0.24775105779268705`, 0.34238354112075414`}, {-0.13504537836886307`, \ -0.21850801222441046`, 0.3535533905932739}, {-0.40086963225730715`, 0.09463248332806717, 0.09463248332806724}, {-0.43701602444882104`, 0, 0}, { 0, -0.35355339059327373`, -0.2185080122244106}, \ {-0.09463248332806733, -0.4008696322573071, -0.09463248332806726}, { 0.09463248332806723, 0.4008696322573072, 0.09463248332806698}, {0.2477510577926873, 0.15311857446461993`, -0.30623714892924025`}, { 0.09463248332806702, 0.09463248332806688, -0.40086963225730726`}, \ {-0.09463248332806701, -0.09463248332806692, 0.40086963225730726`}, {-0.24775105779268725`, \ -0.15311857446462002`, 0.30623714892924025`}, {-0.40086963225730715`, \ -0.0946324833280671, -0.09463248332806722}, {0.4008696322573072, 0.09463248332806701, 0.09463248332806701}, { 0, 0, 0.43701602444882104`}, {0, 0, -0.43701602444882104`}, { 0, -0.24775105779268727`, -0.3423835411207539}, { 0, 0.2477510577926871, 0.3423835411207541}}, {{79, 40, 97, 89, 49, 48}, {84, 21, 20, 98}, {20, 21, 22, 19}, {98, 20, 44, 43}, {20, 19, 52, 67}, {66, 92, 45, 67, 52, 51}, {44, 20, 67, 45}, {66, 51, 18, 17}, {16, 17, 18, 15}, {83, 69, 15, 18}, {6, 7, 8, 9, 10, 5}, {42, 99, 11, 14, 102, 10}, {11, 99, 73, 12}, {12, 73, 74, 72}, {14, 11, 12, 13}, {81, 43, 13, 12}, { 66, 17, 16, 64, 6, 65}, {48, 47, 16, 15, 69, 68}, {79, 48, 68, 1}, {2, 3, 4, 1}, {40, 79, 1, 4}, {100, 2, 1, 70}, {68, 69, 70, 1}, {3, 2, 100, 61, 35, 101}, {3, 101, 90, 37}, {38, 37, 90, 91}, {19, 22, 93, 82, 53, 52}, {82, 83, 18, 53}, {51, 52, 53, 18}, {22, 71, 62, 93}, {42, 10, 9, 41}, {99, 42, 41, 95}, {43, 44, 45, 46, 14, 13}, {89, 97, 30, 29}, {27, 28, 29, 30}, {3, 37, 38, 39, 40, 4}, {97, 40, 39, 30}, {24, 25, 26, 23}, {88, 8, 7, 50}, {47, 48, 49, 50}, {49, 89, 88, 50}, {7, 6, 64, 50}, {16, 47, 50, 64}, {71, 22, 21, 84, 85, 31}, {23, 26, 60, 76}, {58, 59, 60, 26}, {38, 91, 76, 60, 59, 63}, {39, 38, 63, 30}, {59, 27, 30, 63}, {69, 83, 82, 94, 100, 70}, {61, 100, 94, 62}, {82, 93, 62, 94}, {8, 88, 89, 29, 28, 75}, {9, 8, 75, 41}, {5, 10, 102, 80}, {66, 65, 80, 92}, {65, 6, 5, 80}, {102, 14, 46, 80}, {45, 92, 80, 46}, {27, 59, 58, 87, 96, 28}, {75, 28, 96, 41}, {95, 41, 96, 87}, {73, 99, 95, 87, 86, 74}, {25, 74, 86, 26}, {87, 58, 26, 86}, {43, 81, 57, 56, 84, 98}, {72, 74, 25, 24, 54, 57}, {81, 12, 72, 57}, {35, 61, 62, 36}, {62, 71, 31, 36}, {76, 91, 90, 77}, {101, 35, 34, 90}, { 33, 77, 90, 34}, {23, 76, 77, 33, 78, 24}, {56, 57, 54, 55}, { 85, 84, 56, 55}, {54, 24, 78, 55}, {36, 31, 32, 33, 34, 35}, { 31, 85, 55, 32}, {78, 33, 32, 55}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["102", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["80", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[{{-0.21850801222441069`, 0, -0.3535533905932737}, {-0.09463248332806729, \ -0.09463248332806726, -0.4008696322573071}, {-0.13504537836886327`, \ -0.2185080122244105, -0.35355339059327384`}, {-0.24775105779268727`, \ -0.15311857446462007`, -0.30623714892924025`}, {-0.15311857446462013`, 0.3062371489292402, 0.24775105779268725`}, {-0.21850801222441069`, 0.3535533905932738, 0.1350453783688631}, {-0.3062371489292401, 0.2477510577926875, 0.15311857446462002`}, {-0.35355339059327373`, 0.13504537836886324`, 0.2185080122244106}, {-0.24775105779268752`, 0.15311857446462002`, 0.30623714892924003`}, {-0.1350453783688631, 0.21850801222441069`, 0.3535533905932738}, { 0.09463248332806702, 0.09463248332806709, 0.4008696322573072}, { 0.21850801222441057`, 0, 0.35355339059327373`}, { 0.24775105779268713`, 0.15311857446462013`, 0.30623714892924025`}, {0.13504537836886304`, 0.21850801222441063`, 0.35355339059327384`}, {-0.15311857446462007`, 0.3062371489292403, -0.24775105779268708`}, \ {-0.21850801222441057`, 0.3535533905932738, -0.13504537836886316`}, \ {-0.09463248332806722, 0.40086963225730715`, -0.09463248332806706}, { 0, 0.3535533905932738, -0.21850801222441055`}, { 0.30623714892924025`, 0.24775105779268702`, -0.15311857446462032`}, { 0.35355339059327384`, 0.21850801222441038`, 0}, { 0.4008696322573071, 0.09463248332806729, -0.09463248332806717}, { 0.3535533905932737, 0.1350453783688634, -0.2185080122244105}, { 0.09463248332806738, -0.40086963225730704`, 0.09463248332806737}, { 0.21850801222441052`, -0.35355339059327373`, 0.13504537836886338`}, { 0.1531185744646203, -0.30623714892924037`, 0.247751057792687}, { 0, -0.35355339059327384`, 0.21850801222441044`}, {-0.3062371489292403, \ -0.24775105779268708`, 0.1531185744646202}, {-0.35355339059327384`, \ -0.1350453783688631, 0.21850801222441057`}, {-0.4008696322573072, \ -0.09463248332806702, 0.0946324833280673}, {-0.3535533905932738, \ -0.21850801222441057`, 0}, { 0.3535533905932736, -0.13504537836886327`, \ -0.21850801222441063`}, { 0.30623714892924053`, -0.2477510577926867, \ -0.15311857446462032`}, { 0.21850801222441038`, -0.3535533905932738, \ -0.1350453783688634}, { 0.15311857446462002`, -0.30623714892924037`, \ -0.24775105779268722`}, { 0.13504537836886346`, -0.2185080122244104, \ -0.35355339059327373`}, { 0.2477510577926871, -0.15311857446462013`, \ -0.3062371489292403}, {-0.15311857446462024`, -0.3062371489292405, \ -0.24775105779268686`}, {-0.21850801222441033`, -0.35355339059327395`, \ -0.13504537836886338`}, {-0.30623714892924025`, -0.2477510577926871, \ -0.1531185744646203}, {-0.35355339059327373`, -0.1350453783688632, \ -0.21850801222441063`}, {-0.21850801222441074`, 0, 0.3535533905932736}, {-0.0946324833280671, 0.09463248332806734, 0.40086963225730715`}, { 0.3535533905932737, 0.1350453783688632, 0.21850801222441057`}, {0.30623714892924025`, 0.24775105779268702`, 0.15311857446462024`}, { 0.21850801222441044`, 0.3535533905932738, 0.13504537836886335`}, {0.15311857446462002`, 0.30623714892924025`, 0.2477510577926873}, {-0.3062371489292403, 0.24775105779268713`, -0.1531185744646201}, \ {-0.35355339059327384`, 0.13504537836886313`, -0.21850801222441052`}, \ {-0.4008696322573072, 0.09463248332806698, -0.09463248332806729}, \ {-0.3535533905932738, 0.21850801222441052`, 0}, {0.09463248332806706, 0.4008696322573072, -0.09463248332806709}, { 0.21850801222441052`, 0.35355339059327373`, -0.13504537836886332`}, { 0.15311857446462027`, 0.30623714892924037`, -0.24775105779268694`}, { 0.30623714892924037`, -0.24775105779268683`, 0.1531185744646203}, { 0.35355339059327373`, -0.21850801222441052`, 0}, { 0.40086963225730715`, -0.09463248332806712, 0.09463248332806713}, { 0.35355339059327373`, -0.13504537836886332`, 0.21850801222441052`}, {-0.1531185744646202, \ -0.3062371489292404, 0.24775105779268689`}, {-0.21850801222441052`, \ -0.3535533905932738, 0.1350453783688633}, {-0.09463248332806713, \ -0.40086963225730715`, 0.09463248332806717}, { 0.09463248332806713, -0.09463248332806702, \ -0.4008696322573072}, { 0.21850801222441057`, 0, -0.35355339059327373`}, {-0.24775105779268708`, \ -0.3423835411207542, 0}, {-0.24775105779268708`, 0.3423835411207542, 0}, {-0.09463248332806713, 0.40086963225730715`, 0.09463248332806709}, {0, 0.4370160244488211, 0}, { 0.24775105779268705`, 0.3423835411207541, 0}, {-0.24775105779268727`, 0.15311857446461996`, -0.30623714892924025`}, \ {-0.13504537836886313`, 0.21850801222441057`, -0.35355339059327384`}, \ {-0.09463248332806697, 0.09463248332806709, -0.4008696322573072}, { 0.34238354112075403`, 0, -0.24775105779268722`}, { 0.24775105779268763`, -0.15311857446461993`, 0.30623714892924003`}, { 0.09463248332806697, -0.09463248332806709, 0.4008696322573072}, { 0.13504537836886343`, -0.21850801222441063`, 0.3535533905932737}, {-0.3423835411207541, 0, 0.24775105779268713`}, {0, -0.43701602444882104`, 0}, { 0.09463248332806723, -0.40086963225730715`, \ -0.09463248332806712}, { 0.24775105779268713`, -0.34238354112075403`, 0}, {-0.34238354112075414`, 0, -0.2477510577926871}, { 0, 0.3535533905932735, 0.21850801222441088`}, { 0.34238354112075403`, 0, 0.24775105779268722`}, { 0.13504537836886338`, 0.21850801222441069`, -0.35355339059327356`}, { 0, 0.24775105779268713`, -0.3423835411207541}, { 0.43701602444882104`, 0, 0}, { 0.40086963225730715`, -0.09463248332806719, \ -0.0946324833280672}, { 0, -0.24775105779268705`, 0.34238354112075414`}, {-0.13504537836886307`, \ -0.21850801222441046`, 0.3535533905932739}, {-0.40086963225730715`, 0.09463248332806717, 0.09463248332806724}, {-0.43701602444882104`, 0, 0}, { 0, -0.35355339059327373`, -0.2185080122244106}, \ {-0.09463248332806733, -0.4008696322573071, -0.09463248332806726}, { 0.09463248332806723, 0.4008696322573072, 0.09463248332806698}, {0.2477510577926873, 0.15311857446461993`, -0.30623714892924025`}, { 0.09463248332806702, 0.09463248332806688, -0.40086963225730726`}, \ {-0.09463248332806701, -0.09463248332806692, 0.40086963225730726`}, {-0.24775105779268725`, \ -0.15311857446462002`, 0.30623714892924025`}, {-0.40086963225730715`, \ -0.0946324833280671, -0.09463248332806722}, {0.4008696322573072, 0.09463248332806701, 0.09463248332806701}, { 0, 0, 0.43701602444882104`}, {0, 0, -0.43701602444882104`}, { 0, -0.24775105779268727`, -0.3423835411207539}, { 0, 0.2477510577926871, 0.3423835411207541}}, {{79, 40, 97, 89, 49, 48}, {84, 21, 20, 98}, {20, 21, 22, 19}, {98, 20, 44, 43}, {20, 19, 52, 67}, {66, 92, 45, 67, 52, 51}, {44, 20, 67, 45}, {66, 51, 18, 17}, {16, 17, 18, 15}, {83, 69, 15, 18}, {6, 7, 8, 9, 10, 5}, {42, 99, 11, 14, 102, 10}, {11, 99, 73, 12}, {12, 73, 74, 72}, {14, 11, 12, 13}, {81, 43, 13, 12}, { 66, 17, 16, 64, 6, 65}, {48, 47, 16, 15, 69, 68}, {79, 48, 68, 1}, {2, 3, 4, 1}, {40, 79, 1, 4}, {100, 2, 1, 70}, {68, 69, 70, 1}, {3, 2, 100, 61, 35, 101}, {3, 101, 90, 37}, {38, 37, 90, 91}, {19, 22, 93, 82, 53, 52}, {82, 83, 18, 53}, {51, 52, 53, 18}, {22, 71, 62, 93}, {42, 10, 9, 41}, {99, 42, 41, 95}, {43, 44, 45, 46, 14, 13}, {89, 97, 30, 29}, {27, 28, 29, 30}, {3, 37, 38, 39, 40, 4}, {97, 40, 39, 30}, {24, 25, 26, 23}, {88, 8, 7, 50}, {47, 48, 49, 50}, {49, 89, 88, 50}, {7, 6, 64, 50}, {16, 47, 50, 64}, {71, 22, 21, 84, 85, 31}, {23, 26, 60, 76}, {58, 59, 60, 26}, {38, 91, 76, 60, 59, 63}, {39, 38, 63, 30}, {59, 27, 30, 63}, {69, 83, 82, 94, 100, 70}, {61, 100, 94, 62}, {82, 93, 62, 94}, {8, 88, 89, 29, 28, 75}, {9, 8, 75, 41}, {5, 10, 102, 80}, {66, 65, 80, 92}, {65, 6, 5, 80}, {102, 14, 46, 80}, {45, 92, 80, 46}, {27, 59, 58, 87, 96, 28}, {75, 28, 96, 41}, {95, 41, 96, 87}, {73, 99, 95, 87, 86, 74}, {25, 74, 86, 26}, {87, 58, 26, 86}, {43, 81, 57, 56, 84, 98}, {72, 74, 25, 24, 54, 57}, {81, 12, 72, 57}, {35, 61, 62, 36}, {62, 71, 31, 36}, {76, 91, 90, 77}, {101, 35, 34, 90}, { 33, 77, 90, 34}, {23, 76, 77, 33, 78, 24}, {56, 57, 54, 55}, { 85, 84, 56, 55}, {54, 24, 78, 55}, {36, 31, 32, 33, 34, 35}, { 31, 85, 55, 32}, {78, 33, 32, 55}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["102", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["80", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{-0.21850801222441069`, 0, -0.3535533905932737}, {-0.09463248332806729, -0.09463248332806726, \ -0.4008696322573071}, {-0.13504537836886327`, -0.2185080122244105, \ -0.35355339059327384`}, {-0.24775105779268727`, -0.15311857446462007`, \ -0.30623714892924025`}, {-0.15311857446462013`, 0.3062371489292402, 0.24775105779268725`}, {-0.21850801222441069`, 0.3535533905932738, 0.1350453783688631}, {-0.3062371489292401, 0.2477510577926875, 0.15311857446462002`}, {-0.35355339059327373`, 0.13504537836886324`, 0.2185080122244106}, {-0.24775105779268752`, 0.15311857446462002`, 0.30623714892924003`}, {-0.1350453783688631, 0.21850801222441069`, 0.3535533905932738}, {0.09463248332806702, 0.09463248332806709, 0.4008696322573072}, {0.21850801222441057`, 0, 0.35355339059327373`}, { 0.24775105779268713`, 0.15311857446462013`, 0.30623714892924025`}, { 0.13504537836886304`, 0.21850801222441063`, 0.35355339059327384`}, {-0.15311857446462007`, 0.3062371489292403, -0.24775105779268708`}, {-0.21850801222441057`, 0.3535533905932738, -0.13504537836886316`}, {-0.09463248332806722, 0.40086963225730715`, -0.09463248332806706}, { 0, 0.3535533905932738, -0.21850801222441055`}, {0.30623714892924025`, 0.24775105779268702`, -0.15311857446462032`}, { 0.35355339059327384`, 0.21850801222441038`, 0}, {0.4008696322573071, 0.09463248332806729, -0.09463248332806717}, {0.3535533905932737, 0.1350453783688634, -0.2185080122244105}, { 0.09463248332806738, -0.40086963225730704`, 0.09463248332806737}, { 0.21850801222441052`, -0.35355339059327373`, 0.13504537836886338`}, { 0.1531185744646203, -0.30623714892924037`, 0.247751057792687}, { 0, -0.35355339059327384`, 0.21850801222441044`}, {-0.3062371489292403, -0.24775105779268708`, 0.1531185744646202}, {-0.35355339059327384`, -0.1350453783688631, 0.21850801222441057`}, {-0.4008696322573072, -0.09463248332806702, 0.0946324833280673}, {-0.3535533905932738, -0.21850801222441057`, 0}, { 0.3535533905932736, -0.13504537836886327`, -0.21850801222441063`}, { 0.30623714892924053`, -0.2477510577926867, -0.15311857446462032`}, { 0.21850801222441038`, -0.3535533905932738, -0.1350453783688634}, { 0.15311857446462002`, -0.30623714892924037`, -0.24775105779268722`}, { 0.13504537836886346`, -0.2185080122244104, -0.35355339059327373`}, { 0.2477510577926871, -0.15311857446462013`, -0.3062371489292403}, \ {-0.15311857446462024`, -0.3062371489292405, -0.24775105779268686`}, \ {-0.21850801222441033`, -0.35355339059327395`, -0.13504537836886338`}, \ {-0.30623714892924025`, -0.2477510577926871, -0.1531185744646203}, \ {-0.35355339059327373`, -0.1350453783688632, -0.21850801222441063`}, \ {-0.21850801222441074`, 0, 0.3535533905932736}, {-0.0946324833280671, 0.09463248332806734, 0.40086963225730715`}, {0.3535533905932737, 0.1350453783688632, 0.21850801222441057`}, {0.30623714892924025`, 0.24775105779268702`, 0.15311857446462024`}, {0.21850801222441044`, 0.3535533905932738, 0.13504537836886335`}, {0.15311857446462002`, 0.30623714892924025`, 0.2477510577926873}, {-0.3062371489292403, 0.24775105779268713`, -0.1531185744646201}, {-0.35355339059327384`, 0.13504537836886313`, -0.21850801222441052`}, {-0.4008696322573072, 0.09463248332806698, -0.09463248332806729}, {-0.3535533905932738, 0.21850801222441052`, 0}, {0.09463248332806706, 0.4008696322573072, -0.09463248332806709}, {0.21850801222441052`, 0.35355339059327373`, -0.13504537836886332`}, {0.15311857446462027`, 0.30623714892924037`, -0.24775105779268694`}, { 0.30623714892924037`, -0.24775105779268683`, 0.1531185744646203}, { 0.35355339059327373`, -0.21850801222441052`, 0}, { 0.40086963225730715`, -0.09463248332806712, 0.09463248332806713}, { 0.35355339059327373`, -0.13504537836886332`, 0.21850801222441052`}, {-0.1531185744646202, -0.3062371489292404, 0.24775105779268689`}, {-0.21850801222441052`, -0.3535533905932738, 0.1350453783688633}, {-0.09463248332806713, -0.40086963225730715`, 0.09463248332806717}, { 0.09463248332806713, -0.09463248332806702, -0.4008696322573072}, { 0.21850801222441057`, 0, -0.35355339059327373`}, {-0.24775105779268708`, -0.3423835411207542, 0}, {-0.24775105779268708`, 0.3423835411207542, 0}, {-0.09463248332806713, 0.40086963225730715`, 0.09463248332806709}, { 0, 0.4370160244488211, 0}, { 0.24775105779268705`, 0.3423835411207541, 0}, {-0.24775105779268727`, 0.15311857446461996`, -0.30623714892924025`}, {-0.13504537836886313`, 0.21850801222441057`, -0.35355339059327384`}, {-0.09463248332806697, 0.09463248332806709, -0.4008696322573072}, { 0.34238354112075403`, 0, -0.24775105779268722`}, { 0.24775105779268763`, -0.15311857446461993`, 0.30623714892924003`}, { 0.09463248332806697, -0.09463248332806709, 0.4008696322573072}, { 0.13504537836886343`, -0.21850801222441063`, 0.3535533905932737}, {-0.3423835411207541, 0, 0.24775105779268713`}, { 0, -0.43701602444882104`, 0}, { 0.09463248332806723, -0.40086963225730715`, -0.09463248332806712}, { 0.24775105779268713`, -0.34238354112075403`, 0}, {-0.34238354112075414`, 0, -0.2477510577926871}, {0, 0.3535533905932735, 0.21850801222441088`}, { 0.34238354112075403`, 0, 0.24775105779268722`}, {0.13504537836886338`, 0.21850801222441069`, -0.35355339059327356`}, { 0, 0.24775105779268713`, -0.3423835411207541}, { 0.43701602444882104`, 0, 0}, { 0.40086963225730715`, -0.09463248332806719, -0.0946324833280672}, { 0, -0.24775105779268705`, 0.34238354112075414`}, {-0.13504537836886307`, -0.21850801222441046`, 0.3535533905932739}, {-0.40086963225730715`, 0.09463248332806717, 0.09463248332806724}, {-0.43701602444882104`, 0, 0}, { 0, -0.35355339059327373`, -0.2185080122244106}, {-0.09463248332806733, \ -0.4008696322573071, -0.09463248332806726}, {0.09463248332806723, 0.4008696322573072, 0.09463248332806698}, {0.2477510577926873, 0.15311857446461993`, -0.30623714892924025`}, {0.09463248332806702, 0.09463248332806688, -0.40086963225730726`}, {-0.09463248332806701, \ -0.09463248332806692, 0.40086963225730726`}, {-0.24775105779268725`, -0.15311857446462002`, 0.30623714892924025`}, {-0.40086963225730715`, -0.0946324833280671, \ -0.09463248332806722}, {0.4008696322573072, 0.09463248332806701, 0.09463248332806701}, {0, 0, 0.43701602444882104`}, { 0, 0, -0.43701602444882104`}, { 0, -0.24775105779268727`, -0.3423835411207539}, { 0, 0.2477510577926871, 0.3423835411207541}}, {{79, 40, 97, 89, 49, 48}, { 84, 21, 20, 98}, {20, 21, 22, 19}, {98, 20, 44, 43}, {20, 19, 52, 67}, { 66, 92, 45, 67, 52, 51}, {44, 20, 67, 45}, {66, 51, 18, 17}, {16, 17, 18, 15}, {83, 69, 15, 18}, {6, 7, 8, 9, 10, 5}, {42, 99, 11, 14, 102, 10}, { 11, 99, 73, 12}, {12, 73, 74, 72}, {14, 11, 12, 13}, {81, 43, 13, 12}, { 66, 17, 16, 64, 6, 65}, {48, 47, 16, 15, 69, 68}, {79, 48, 68, 1}, {2, 3, 4, 1}, {40, 79, 1, 4}, {100, 2, 1, 70}, {68, 69, 70, 1}, {3, 2, 100, 61, 35, 101}, {3, 101, 90, 37}, {38, 37, 90, 91}, {19, 22, 93, 82, 53, 52}, { 82, 83, 18, 53}, {51, 52, 53, 18}, {22, 71, 62, 93}, {42, 10, 9, 41}, {99, 42, 41, 95}, {43, 44, 45, 46, 14, 13}, {89, 97, 30, 29}, {27, 28, 29, 30}, {3, 37, 38, 39, 40, 4}, {97, 40, 39, 30}, {24, 25, 26, 23}, {88, 8, 7, 50}, {47, 48, 49, 50}, {49, 89, 88, 50}, {7, 6, 64, 50}, {16, 47, 50, 64}, {71, 22, 21, 84, 85, 31}, {23, 26, 60, 76}, {58, 59, 60, 26}, {38, 91, 76, 60, 59, 63}, {39, 38, 63, 30}, {59, 27, 30, 63}, {69, 83, 82, 94, 100, 70}, {61, 100, 94, 62}, {82, 93, 62, 94}, {8, 88, 89, 29, 28, 75}, { 9, 8, 75, 41}, {5, 10, 102, 80}, {66, 65, 80, 92}, {65, 6, 5, 80}, {102, 14, 46, 80}, {45, 92, 80, 46}, {27, 59, 58, 87, 96, 28}, {75, 28, 96, 41}, {95, 41, 96, 87}, {73, 99, 95, 87, 86, 74}, {25, 74, 86, 26}, {87, 58, 26, 86}, {43, 81, 57, 56, 84, 98}, {72, 74, 25, 24, 54, 57}, {81, 12, 72, 57}, {35, 61, 62, 36}, {62, 71, 31, 36}, {76, 91, 90, 77}, {101, 35, 34, 90}, {33, 77, 90, 34}, {23, 76, 77, 33, 78, 24}, {56, 57, 54, 55}, { 85, 84, 56, 55}, {54, 24, 78, 55}, {36, 31, 32, 33, 34, 35}, {31, 85, 55, 32}, {78, 33, 32, 55}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[11]=",ExpressionUUID->"2599086D-A921-4E7C-9157-53A2CE48064F"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"LabelPolyhedron", "@", "newi"}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[12]:=",ExpressionUUID->"0F05C3D0-90E8-475B-A9C1-66F68990DB04"], Cell[BoxData[ Graphics3DBox[{ PolyhedronBox[{{-0.21850801222441069`, 0, -0.3535533905932737}, {-0.09463248332806729, -0.09463248332806726, \ -0.4008696322573071}, {-0.13504537836886327`, -0.2185080122244105, \ -0.35355339059327384`}, {-0.24775105779268727`, -0.15311857446462007`, \ -0.30623714892924025`}, {-0.15311857446462013`, 0.3062371489292402, 0.24775105779268725`}, {-0.21850801222441069`, 0.3535533905932738, 0.1350453783688631}, {-0.3062371489292401, 0.2477510577926875, 0.15311857446462002`}, {-0.35355339059327373`, 0.13504537836886324`, 0.2185080122244106}, {-0.24775105779268752`, 0.15311857446462002`, 0.30623714892924003`}, {-0.1350453783688631, 0.21850801222441069`, 0.3535533905932738}, {0.09463248332806702, 0.09463248332806709, 0.4008696322573072}, {0.21850801222441057`, 0, 0.35355339059327373`}, { 0.24775105779268713`, 0.15311857446462013`, 0.30623714892924025`}, { 0.13504537836886304`, 0.21850801222441063`, 0.35355339059327384`}, {-0.15311857446462007`, 0.3062371489292403, -0.24775105779268708`}, {-0.21850801222441057`, 0.3535533905932738, -0.13504537836886316`}, {-0.09463248332806722, 0.40086963225730715`, -0.09463248332806706}, { 0, 0.3535533905932738, -0.21850801222441055`}, {0.30623714892924025`, 0.24775105779268702`, -0.15311857446462032`}, { 0.35355339059327384`, 0.21850801222441038`, 0}, {0.4008696322573071, 0.09463248332806729, -0.09463248332806717}, {0.3535533905932737, 0.1350453783688634, -0.2185080122244105}, { 0.09463248332806738, -0.40086963225730704`, 0.09463248332806737}, { 0.21850801222441052`, -0.35355339059327373`, 0.13504537836886338`}, { 0.1531185744646203, -0.30623714892924037`, 0.247751057792687}, { 0, -0.35355339059327384`, 0.21850801222441044`}, {-0.3062371489292403, -0.24775105779268708`, 0.1531185744646202}, {-0.35355339059327384`, -0.1350453783688631, 0.21850801222441057`}, {-0.4008696322573072, -0.09463248332806702, 0.0946324833280673}, {-0.3535533905932738, -0.21850801222441057`, 0}, { 0.3535533905932736, -0.13504537836886327`, -0.21850801222441063`}, { 0.30623714892924053`, -0.2477510577926867, -0.15311857446462032`}, { 0.21850801222441038`, -0.3535533905932738, -0.1350453783688634}, { 0.15311857446462002`, -0.30623714892924037`, -0.24775105779268722`}, { 0.13504537836886346`, -0.2185080122244104, -0.35355339059327373`}, { 0.2477510577926871, -0.15311857446462013`, -0.3062371489292403}, \ {-0.15311857446462024`, -0.3062371489292405, -0.24775105779268686`}, \ {-0.21850801222441033`, -0.35355339059327395`, -0.13504537836886338`}, \ {-0.30623714892924025`, -0.2477510577926871, -0.1531185744646203}, \ {-0.35355339059327373`, -0.1350453783688632, -0.21850801222441063`}, \ {-0.21850801222441074`, 0, 0.3535533905932736}, {-0.0946324833280671, 0.09463248332806734, 0.40086963225730715`}, {0.3535533905932737, 0.1350453783688632, 0.21850801222441057`}, {0.30623714892924025`, 0.24775105779268702`, 0.15311857446462024`}, {0.21850801222441044`, 0.3535533905932738, 0.13504537836886335`}, {0.15311857446462002`, 0.30623714892924025`, 0.2477510577926873}, {-0.3062371489292403, 0.24775105779268713`, -0.1531185744646201}, {-0.35355339059327384`, 0.13504537836886313`, -0.21850801222441052`}, {-0.4008696322573072, 0.09463248332806698, -0.09463248332806729}, {-0.3535533905932738, 0.21850801222441052`, 0}, {0.09463248332806706, 0.4008696322573072, -0.09463248332806709}, {0.21850801222441052`, 0.35355339059327373`, -0.13504537836886332`}, {0.15311857446462027`, 0.30623714892924037`, -0.24775105779268694`}, { 0.30623714892924037`, -0.24775105779268683`, 0.1531185744646203}, { 0.35355339059327373`, -0.21850801222441052`, 0}, { 0.40086963225730715`, -0.09463248332806712, 0.09463248332806713}, { 0.35355339059327373`, -0.13504537836886332`, 0.21850801222441052`}, {-0.1531185744646202, -0.3062371489292404, 0.24775105779268689`}, {-0.21850801222441052`, -0.3535533905932738, 0.1350453783688633}, {-0.09463248332806713, -0.40086963225730715`, 0.09463248332806717}, { 0.09463248332806713, -0.09463248332806702, -0.4008696322573072}, { 0.21850801222441057`, 0, -0.35355339059327373`}, {-0.24775105779268708`, -0.3423835411207542, 0}, {-0.24775105779268708`, 0.3423835411207542, 0}, {-0.09463248332806713, 0.40086963225730715`, 0.09463248332806709}, { 0, 0.4370160244488211, 0}, { 0.24775105779268705`, 0.3423835411207541, 0}, {-0.24775105779268727`, 0.15311857446461996`, -0.30623714892924025`}, {-0.13504537836886313`, 0.21850801222441057`, -0.35355339059327384`}, {-0.09463248332806697, 0.09463248332806709, -0.4008696322573072}, { 0.34238354112075403`, 0, -0.24775105779268722`}, { 0.24775105779268763`, -0.15311857446461993`, 0.30623714892924003`}, { 0.09463248332806697, -0.09463248332806709, 0.4008696322573072}, { 0.13504537836886343`, -0.21850801222441063`, 0.3535533905932737}, {-0.3423835411207541, 0, 0.24775105779268713`}, { 0, -0.43701602444882104`, 0}, { 0.09463248332806723, -0.40086963225730715`, -0.09463248332806712}, { 0.24775105779268713`, -0.34238354112075403`, 0}, {-0.34238354112075414`, 0, -0.2477510577926871}, { 0, 0.3535533905932735, 0.21850801222441088`}, { 0.34238354112075403`, 0, 0.24775105779268722`}, {0.13504537836886338`, 0.21850801222441069`, -0.35355339059327356`}, { 0, 0.24775105779268713`, -0.3423835411207541}, { 0.43701602444882104`, 0, 0}, { 0.40086963225730715`, -0.09463248332806719, -0.0946324833280672}, { 0, -0.24775105779268705`, 0.34238354112075414`}, {-0.13504537836886307`, -0.21850801222441046`, 0.3535533905932739}, {-0.40086963225730715`, 0.09463248332806717, 0.09463248332806724}, {-0.43701602444882104`, 0, 0}, { 0, -0.35355339059327373`, -0.2185080122244106}, {-0.09463248332806733, \ -0.4008696322573071, -0.09463248332806726}, {0.09463248332806723, 0.4008696322573072, 0.09463248332806698}, {0.2477510577926873, 0.15311857446461993`, -0.30623714892924025`}, {0.09463248332806702, 0.09463248332806688, -0.40086963225730726`}, {-0.09463248332806701, \ -0.09463248332806692, 0.40086963225730726`}, {-0.24775105779268725`, -0.15311857446462002`, 0.30623714892924025`}, {-0.40086963225730715`, -0.0946324833280671, \ -0.09463248332806722}, {0.4008696322573072, 0.09463248332806701, 0.09463248332806701}, {0, 0, 0.43701602444882104`}, { 0, 0, -0.43701602444882104`}, { 0, -0.24775105779268727`, -0.3423835411207539}, { 0, 0.2477510577926871, 0.3423835411207541}}, {{79, 40, 97, 89, 49, 48}, { 84, 21, 20, 98}, {20, 21, 22, 19}, {98, 20, 44, 43}, {20, 19, 52, 67}, { 66, 92, 45, 67, 52, 51}, {44, 20, 67, 45}, {66, 51, 18, 17}, {16, 17, 18, 15}, {83, 69, 15, 18}, {6, 7, 8, 9, 10, 5}, {42, 99, 11, 14, 102, 10}, { 11, 99, 73, 12}, {12, 73, 74, 72}, {14, 11, 12, 13}, {81, 43, 13, 12}, { 66, 17, 16, 64, 6, 65}, {48, 47, 16, 15, 69, 68}, {79, 48, 68, 1}, {2, 3, 4, 1}, {40, 79, 1, 4}, {100, 2, 1, 70}, {68, 69, 70, 1}, {3, 2, 100, 61, 35, 101}, {3, 101, 90, 37}, {38, 37, 90, 91}, {19, 22, 93, 82, 53, 52}, {82, 83, 18, 53}, {51, 52, 53, 18}, {22, 71, 62, 93}, {42, 10, 9, 41}, {99, 42, 41, 95}, {43, 44, 45, 46, 14, 13}, {89, 97, 30, 29}, {27, 28, 29, 30}, {3, 37, 38, 39, 40, 4}, {97, 40, 39, 30}, {24, 25, 26, 23}, {88, 8, 7, 50}, {47, 48, 49, 50}, {49, 89, 88, 50}, {7, 6, 64, 50}, {16, 47, 50, 64}, {71, 22, 21, 84, 85, 31}, {23, 26, 60, 76}, {58, 59, 60, 26}, {38, 91, 76, 60, 59, 63}, {39, 38, 63, 30}, {59, 27, 30, 63}, {69, 83, 82, 94, 100, 70}, {61, 100, 94, 62}, {82, 93, 62, 94}, {8, 88, 89, 29, 28, 75}, {9, 8, 75, 41}, {5, 10, 102, 80}, {66, 65, 80, 92}, {65, 6, 5, 80}, {102, 14, 46, 80}, {45, 92, 80, 46}, {27, 59, 58, 87, 96, 28}, {75, 28, 96, 41}, {95, 41, 96, 87}, {73, 99, 95, 87, 86, 74}, {25, 74, 86, 26}, {87, 58, 26, 86}, {43, 81, 57, 56, 84, 98}, {72, 74, 25, 24, 54, 57}, {81, 12, 72, 57}, {35, 61, 62, 36}, {62, 71, 31, 36}, {76, 91, 90, 77}, {101, 35, 34, 90}, {33, 77, 90, 34}, {23, 76, 77, 33, 78, 24}, {56, 57, 54, 55}, {85, 84, 56, 55}, {54, 24, 78, 55}, {36, 31, 32, 33, 34, 35}, {31, 85, 55, 32}, {78, 33, 32, 55}}], {Text3DBox[ FormBox[ "1", StandardForm], {-0.21850801222441069`, 0, -0.3535533905932737}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "2", StandardForm], {-0.09463248332806729, -0.09463248332806726, \ -0.4008696322573071}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "3", StandardForm], {-0.13504537836886327`, -0.2185080122244105, \ -0.35355339059327384`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "4", StandardForm], {-0.24775105779268727`, -0.15311857446462007`, \ -0.30623714892924025`}, Background->GrayLevel[1]], Text3DBox[ FormBox["5", StandardForm], {-0.15311857446462013`, 0.3062371489292402, 0.24775105779268725`}, Background->GrayLevel[1]], Text3DBox[ FormBox["6", StandardForm], {-0.21850801222441069`, 0.3535533905932738, 0.1350453783688631}, Background->GrayLevel[1]], Text3DBox[ FormBox["7", StandardForm], {-0.3062371489292401, 0.2477510577926875, 0.15311857446462002`}, Background->GrayLevel[1]], Text3DBox[ FormBox["8", StandardForm], {-0.35355339059327373`, 0.13504537836886324`, 0.2185080122244106}, Background->GrayLevel[1]], Text3DBox[ FormBox["9", StandardForm], {-0.24775105779268752`, 0.15311857446462002`, 0.30623714892924003`}, Background->GrayLevel[1]], Text3DBox[ FormBox["10", StandardForm], {-0.1350453783688631, 0.21850801222441069`, 0.3535533905932738}, Background->GrayLevel[1]], Text3DBox[ FormBox["11", StandardForm], {0.09463248332806702, 0.09463248332806709, 0.4008696322573072}, Background->GrayLevel[1]], Text3DBox[ FormBox["12", StandardForm], { 0.21850801222441057`, 0, 0.35355339059327373`}, Background->GrayLevel[1]], Text3DBox[ FormBox["13", StandardForm], {0.24775105779268713`, 0.15311857446462013`, 0.30623714892924025`}, Background->GrayLevel[1]], Text3DBox[ FormBox["14", StandardForm], {0.13504537836886304`, 0.21850801222441063`, 0.35355339059327384`}, Background->GrayLevel[1]], Text3DBox[ FormBox["15", StandardForm], {-0.15311857446462007`, 0.3062371489292403, -0.24775105779268708`}, Background->GrayLevel[1]], Text3DBox[ FormBox["16", StandardForm], {-0.21850801222441057`, 0.3535533905932738, -0.13504537836886316`}, Background->GrayLevel[1]], Text3DBox[ FormBox["17", StandardForm], {-0.09463248332806722, 0.40086963225730715`, -0.09463248332806706}, Background->GrayLevel[1]], Text3DBox[ FormBox["18", StandardForm], { 0, 0.3535533905932738, -0.21850801222441055`}, Background->GrayLevel[1]], Text3DBox[ FormBox["19", StandardForm], {0.30623714892924025`, 0.24775105779268702`, -0.15311857446462032`}, Background->GrayLevel[1]], Text3DBox[ FormBox["20", StandardForm], { 0.35355339059327384`, 0.21850801222441038`, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["21", StandardForm], {0.4008696322573071, 0.09463248332806729, -0.09463248332806717}, Background->GrayLevel[1]], Text3DBox[ FormBox["22", StandardForm], {0.3535533905932737, 0.1350453783688634, -0.2185080122244105}, Background->GrayLevel[1]], Text3DBox[ FormBox["23", StandardForm], {0.09463248332806738, -0.40086963225730704`, 0.09463248332806737}, Background->GrayLevel[1]], Text3DBox[ FormBox["24", StandardForm], { 0.21850801222441052`, -0.35355339059327373`, 0.13504537836886338`}, Background->GrayLevel[1]], Text3DBox[ FormBox["25", StandardForm], {0.1531185744646203, -0.30623714892924037`, 0.247751057792687}, Background->GrayLevel[1]], Text3DBox[ FormBox["26", StandardForm], { 0, -0.35355339059327384`, 0.21850801222441044`}, Background->GrayLevel[1]], Text3DBox[ FormBox["27", StandardForm], {-0.3062371489292403, -0.24775105779268708`, 0.1531185744646202}, Background->GrayLevel[1]], Text3DBox[ FormBox["28", StandardForm], {-0.35355339059327384`, -0.1350453783688631, 0.21850801222441057`}, Background->GrayLevel[1]], Text3DBox[ FormBox["29", StandardForm], {-0.4008696322573072, -0.09463248332806702, 0.0946324833280673}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "30", StandardForm], {-0.3535533905932738, -0.21850801222441057`, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["31", StandardForm], { 0.3535533905932736, -0.13504537836886327`, -0.21850801222441063`}, Background->GrayLevel[1]], Text3DBox[ FormBox["32", StandardForm], { 0.30623714892924053`, -0.2477510577926867, -0.15311857446462032`}, Background->GrayLevel[1]], Text3DBox[ FormBox["33", StandardForm], { 0.21850801222441038`, -0.3535533905932738, -0.1350453783688634}, Background->GrayLevel[1]], Text3DBox[ FormBox["34", StandardForm], { 0.15311857446462002`, -0.30623714892924037`, -0.24775105779268722`}, Background->GrayLevel[1]], Text3DBox[ FormBox["35", StandardForm], { 0.13504537836886346`, -0.2185080122244104, -0.35355339059327373`}, Background->GrayLevel[1]], Text3DBox[ FormBox["36", StandardForm], { 0.2477510577926871, -0.15311857446462013`, -0.3062371489292403}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "37", StandardForm], {-0.15311857446462024`, -0.3062371489292405, \ -0.24775105779268686`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "38", StandardForm], {-0.21850801222441033`, -0.35355339059327395`, \ -0.13504537836886338`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "39", StandardForm], {-0.30623714892924025`, -0.2477510577926871, \ -0.1531185744646203}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "40", StandardForm], {-0.35355339059327373`, -0.1350453783688632, \ -0.21850801222441063`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "41", StandardForm], {-0.21850801222441074`, 0, 0.3535533905932736}, Background->GrayLevel[1]], Text3DBox[ FormBox["42", StandardForm], {-0.0946324833280671, 0.09463248332806734, 0.40086963225730715`}, Background->GrayLevel[1]], Text3DBox[ FormBox["43", StandardForm], {0.3535533905932737, 0.1350453783688632, 0.21850801222441057`}, Background->GrayLevel[1]], Text3DBox[ FormBox["44", StandardForm], {0.30623714892924025`, 0.24775105779268702`, 0.15311857446462024`}, Background->GrayLevel[1]], Text3DBox[ FormBox["45", StandardForm], {0.21850801222441044`, 0.3535533905932738, 0.13504537836886335`}, Background->GrayLevel[1]], Text3DBox[ FormBox["46", StandardForm], {0.15311857446462002`, 0.30623714892924025`, 0.2477510577926873}, Background->GrayLevel[1]], Text3DBox[ FormBox["47", StandardForm], {-0.3062371489292403, 0.24775105779268713`, -0.1531185744646201}, Background->GrayLevel[1]], Text3DBox[ FormBox["48", StandardForm], {-0.35355339059327384`, 0.13504537836886313`, -0.21850801222441052`}, Background->GrayLevel[1]], Text3DBox[ FormBox["49", StandardForm], {-0.4008696322573072, 0.09463248332806698, -0.09463248332806729}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "50", StandardForm], {-0.3535533905932738, 0.21850801222441052`, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["51", StandardForm], {0.09463248332806706, 0.4008696322573072, -0.09463248332806709}, Background->GrayLevel[1]], Text3DBox[ FormBox["52", StandardForm], {0.21850801222441052`, 0.35355339059327373`, -0.13504537836886332`}, Background->GrayLevel[1]], Text3DBox[ FormBox["53", StandardForm], {0.15311857446462027`, 0.30623714892924037`, -0.24775105779268694`}, Background->GrayLevel[1]], Text3DBox[ FormBox["54", StandardForm], { 0.30623714892924037`, -0.24775105779268683`, 0.1531185744646203}, Background->GrayLevel[1]], Text3DBox[ FormBox["55", StandardForm], { 0.35355339059327373`, -0.21850801222441052`, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["56", StandardForm], {0.40086963225730715`, -0.09463248332806712, 0.09463248332806713}, Background->GrayLevel[1]], Text3DBox[ FormBox["57", StandardForm], { 0.35355339059327373`, -0.13504537836886332`, 0.21850801222441052`}, Background->GrayLevel[1]], Text3DBox[ FormBox["58", StandardForm], {-0.1531185744646202, -0.3062371489292404, 0.24775105779268689`}, Background->GrayLevel[1]], Text3DBox[ FormBox["59", StandardForm], {-0.21850801222441052`, -0.3535533905932738, 0.1350453783688633}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "60", StandardForm], {-0.09463248332806713, -0.40086963225730715`, 0.09463248332806717}, Background->GrayLevel[1]], Text3DBox[ FormBox["61", StandardForm], { 0.09463248332806713, -0.09463248332806702, -0.4008696322573072}, Background->GrayLevel[1]], Text3DBox[ FormBox["62", StandardForm], { 0.21850801222441057`, 0, -0.35355339059327373`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "63", StandardForm], {-0.24775105779268708`, -0.3423835411207542, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "64", StandardForm], {-0.24775105779268708`, 0.3423835411207542, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["65", StandardForm], {-0.09463248332806713, 0.40086963225730715`, 0.09463248332806709}, Background->GrayLevel[1]], Text3DBox[ FormBox["66", StandardForm], {0, 0.4370160244488211, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["67", StandardForm], { 0.24775105779268705`, 0.3423835411207541, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["68", StandardForm], {-0.24775105779268727`, 0.15311857446461996`, -0.30623714892924025`}, Background->GrayLevel[1]], Text3DBox[ FormBox["69", StandardForm], {-0.13504537836886313`, 0.21850801222441057`, -0.35355339059327384`}, Background->GrayLevel[1]], Text3DBox[ FormBox["70", StandardForm], {-0.09463248332806697, 0.09463248332806709, -0.4008696322573072}, Background->GrayLevel[1]], Text3DBox[ FormBox["71", StandardForm], { 0.34238354112075403`, 0, -0.24775105779268722`}, Background->GrayLevel[1]], Text3DBox[ FormBox["72", StandardForm], { 0.24775105779268763`, -0.15311857446461993`, 0.30623714892924003`}, Background->GrayLevel[1]], Text3DBox[ FormBox["73", StandardForm], {0.09463248332806697, -0.09463248332806709, 0.4008696322573072}, Background->GrayLevel[1]], Text3DBox[ FormBox["74", StandardForm], { 0.13504537836886343`, -0.21850801222441063`, 0.3535533905932737}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "75", StandardForm], {-0.3423835411207541, 0, 0.24775105779268713`}, Background->GrayLevel[1]], Text3DBox[ FormBox["76", StandardForm], {0, -0.43701602444882104`, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["77", StandardForm], { 0.09463248332806723, -0.40086963225730715`, -0.09463248332806712}, Background->GrayLevel[1]], Text3DBox[ FormBox["78", StandardForm], { 0.24775105779268713`, -0.34238354112075403`, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "79", StandardForm], {-0.34238354112075414`, 0, -0.2477510577926871}, Background->GrayLevel[1]], Text3DBox[ FormBox["80", StandardForm], { 0, 0.3535533905932735, 0.21850801222441088`}, Background->GrayLevel[1]], Text3DBox[ FormBox["81", StandardForm], { 0.34238354112075403`, 0, 0.24775105779268722`}, Background->GrayLevel[1]], Text3DBox[ FormBox["82", StandardForm], {0.13504537836886338`, 0.21850801222441069`, -0.35355339059327356`}, Background->GrayLevel[1]], Text3DBox[ FormBox["83", StandardForm], { 0, 0.24775105779268713`, -0.3423835411207541}, Background->GrayLevel[1]], Text3DBox[ FormBox["84", StandardForm], {0.43701602444882104`, 0, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["85", StandardForm], { 0.40086963225730715`, -0.09463248332806719, -0.0946324833280672}, Background->GrayLevel[1]], Text3DBox[ FormBox["86", StandardForm], { 0, -0.24775105779268705`, 0.34238354112075414`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "87", StandardForm], {-0.13504537836886307`, -0.21850801222441046`, 0.3535533905932739}, Background->GrayLevel[1]], Text3DBox[ FormBox["88", StandardForm], {-0.40086963225730715`, 0.09463248332806717, 0.09463248332806724}, Background->GrayLevel[1]], Text3DBox[ FormBox["89", StandardForm], {-0.43701602444882104`, 0, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["90", StandardForm], { 0, -0.35355339059327373`, -0.2185080122244106}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "91", StandardForm], {-0.09463248332806733, -0.4008696322573071, \ -0.09463248332806726}, Background->GrayLevel[1]], Text3DBox[ FormBox["92", StandardForm], {0.09463248332806723, 0.4008696322573072, 0.09463248332806698}, Background->GrayLevel[1]], Text3DBox[ FormBox["93", StandardForm], {0.2477510577926873, 0.15311857446461993`, -0.30623714892924025`}, Background->GrayLevel[1]], Text3DBox[ FormBox["94", StandardForm], {0.09463248332806702, 0.09463248332806688, -0.40086963225730726`}, Background->GrayLevel[1]], Text3DBox[ FormBox["95", StandardForm], {-0.09463248332806701, -0.09463248332806692, 0.40086963225730726`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "96", StandardForm], {-0.24775105779268725`, -0.15311857446462002`, 0.30623714892924025`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "97", StandardForm], {-0.40086963225730715`, -0.0946324833280671, \ -0.09463248332806722}, Background->GrayLevel[1]], Text3DBox[ FormBox["98", StandardForm], {0.4008696322573072, 0.09463248332806701, 0.09463248332806701}, Background->GrayLevel[1]], Text3DBox[ FormBox["99", StandardForm], {0, 0, 0.43701602444882104`}, Background->GrayLevel[1]], Text3DBox[ FormBox["100", StandardForm], {0, 0, -0.43701602444882104`}, Background->GrayLevel[1]], Text3DBox[ FormBox["101", StandardForm], { 0, -0.24775105779268727`, -0.3423835411207539}, Background->GrayLevel[1]], Text3DBox[ FormBox["102", StandardForm], {0, 0.2477510577926871, 0.3423835411207541}, Background->GrayLevel[1]]}}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[12]=",ExpressionUUID->"EEACB834-D221-4302-9A0E-FD6FD30F73DF"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Midsphere", "[", "newi", "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[13]:=",ExpressionUUID->"34470A3E-D210-4601-A66B-53B6260E65E5"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[13]=",ExpressionUUID->"46D03304-820E-43CB-B4B4-490F1AC78B86"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "@", RowBox[{"PolyhedronGraph", "@", "newi"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[14]:=",ExpressionUUID->"0B5C8514-CABA-418A-A54C-3163EE9C2E2D"], Cell[CellGroupData[{ Cell[BoxData["\<\"Reading CanonicalForms from raw GraphData file cache (first \ time only)...\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (3)) \ In[14]:=",ExpressionUUID->"EDDF2422-EAFA-45AE-859C-A3E9BC8E3701"], Cell[BoxData["\<\"Reading GraphData standard names from raw GraphData file \ cache (first time only)...\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (3)) \ In[14]:=",ExpressionUUID->"931ACC1D-116A-4669-8BE7-7A6135E2F3EB"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Building default Association of length \"\>", "\[InvisibleSpace]", "12476", "\[InvisibleSpace]", "\<\"...\"\>"}], SequenceForm["Building default Association of length ", 12476, "..."], Editable->False]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (3)) \ In[14]:=",ExpressionUUID->"D0494F54-3E03-4C0B-B821-AB723416CD8E"] }, Open ]], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[14]=",ExpressionUUID->"6E1EC905-D1CC-4DDF-8EE5-DFE661C82A47"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"lengths", "=", RowBox[{"PolyhedronEdgeLengths", "[", "newi", "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[15]:=",ExpressionUUID->"96F0EEC2-7C7D-466A-9F06-ADCB94288061"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0.1629088097230931`", ",", "0.16290880972309327`", ",", "0.16290880972309293`", ",", "0.13862602739073338`", ",", "0.13862602739073396`", ",", "0.1386260273907339`", ",", "0.162908809723093`", ",", "0.1386260273907336`", ",", "0.1386260273907336`", ",", "0.13862602739073412`", ",", "0.13862602739073362`", ",", "0.13862602739073332`", ",", "0.1629088097230931`", ",", "0.13862602739073426`", ",", "0.13862602739073382`", ",", "0.13862602739073326`", ",", "0.16290880972309302`", ",", "0.13862602739073446`", ",", "0.13862602739073365`", ",", "0.1386260273907339`", ",", "0.16290880972309313`", ",", "0.16290880972309305`", ",", "0.1629088097230929`", ",", "0.13862602739073404`", ",", "0.13862602739073368`", ",", "0.13862602739073365`", ",", "0.13862602739073387`", ",", "0.13862602739073354`", ",", "0.13862602739073382`", ",", "0.13862602739073407`", ",", "0.162908809723093`", ",", "0.1629088097230931`", ",", "0.16290880972309313`", ",", "0.16290880972309305`", ",", "0.16290880972309327`", ",", "0.13862602739073387`", ",", "0.16290880972309318`", ",", "0.1629088097230929`", ",", "0.16290880972309277`", ",", "0.13862602739073354`", ",", "0.13862602739073346`", ",", "0.138626027390734`", ",", "0.1386260273907333`", ",", "0.13862602739073346`", ",", "0.13862602739073399`", ",", "0.1629088097230932`", ",", "0.13862602739073385`", ",", "0.16290880972309285`", ",", "0.1629088097230931`", ",", "0.16290880972309288`", ",", "0.13862602739073387`", ",", "0.13862602739073346`", ",", "0.13862602739073374`", ",", "0.13862602739073407`", ",", "0.16290880972309313`", ",", "0.16290880972309324`", ",", "0.13862602739073365`", ",", "0.13862602739073365`", ",", "0.13862602739073324`", ",", "0.1386260273907344`", ",", "0.1386260273907334`", ",", "0.1386260273907337`", ",", "0.16290880972309293`", ",", "0.1386260273907338`", ",", "0.13862602739073368`", ",", "0.13862602739073354`", ",", "0.13862602739073424`", ",", "0.13862602739073332`", ",", "0.138626027390734`", ",", "0.1629088097230932`", ",", "0.13862602739073407`", ",", "0.13862602739073376`", ",", "0.13862602739073376`", ",", "0.16290880972309335`", ",", "0.1629088097230932`", ",", "0.1386260273907335`", ",", "0.1386260273907337`", ",", "0.13862602739073382`", ",", "0.13862602739073368`", ",", "0.13862602739073396`", ",", "0.1386260273907335`", ",", "0.13862602739073387`", ",", "0.16290880972309285`", ",", "0.13862602739073393`", ",", "0.13862602739073346`", ",", "0.13862602739073374`", ",", "0.1629088097230932`", ",", "0.138626027390734`", ",", "0.16290880972309302`", ",", "0.16290880972309302`", ",", "0.16290880972309302`", ",", "0.1386260273907337`", ",", "0.13862602739073349`", ",", "0.13862602739073387`", ",", "0.13862602739073376`", ",", "0.13862602739073407`", ",", "0.16290880972309313`", ",", "0.16290880972309307`", ",", "0.162908809723093`", ",", "0.162908809723093`", ",", "0.13862602739073362`", ",", "0.13862602739073338`", ",", "0.13862602739073393`", ",", "0.13862602739073349`", ",", "0.13862602739073387`", ",", "0.13862602739073357`", ",", "0.13862602739073407`", ",", "0.13862602739073393`", ",", "0.16290880972309302`", ",", "0.162908809723093`", ",", "0.1629088097230929`", ",", "0.16290880972309316`", ",", "0.13862602739073387`", ",", "0.1386260273907337`", ",", "0.16290880972309318`", ",", "0.1386260273907337`", ",", "0.16290880972309338`", ",", "0.13862602739073396`", ",", "0.138626027390734`", ",", "0.16290880972309327`", ",", "0.13862602739073393`", ",", "0.16290880972309288`", ",", "0.13862602739073415`", ",", "0.1386260273907339`", ",", "0.13862602739073368`", ",", "0.13862602739073387`", ",", "0.13862602739073385`", ",", "0.1629088097230929`", ",", "0.16290880972309302`", ",", "0.1386260273907332`", ",", "0.16290880972309318`", ",", "0.13862602739073387`", ",", "0.13862602739073426`", ",", "0.13862602739073396`", ",", "0.13862602739073368`", ",", "0.1629088097230928`", ",", "0.1386260273907344`", ",", "0.13862602739073426`", ",", "0.1386260273907341`", ",", "0.138626027390734`", ",", "0.162908809723093`", ",", "0.1386260273907337`", ",", "0.16290880972309296`", ",", "0.16290880972309355`", ",", "0.13862602739073382`", ",", "0.1386260273907339`", ",", "0.13862602739073396`", ",", "0.1386260273907337`", ",", "0.13862602739073418`", ",", "0.138626027390734`", ",", "0.13862602739073412`", ",", "0.16290880972309327`", ",", "0.13862602739073365`", ",", "0.13862602739073426`", ",", "0.1386260273907337`", ",", "0.13862602739073354`", ",", "0.13862602739073412`", ",", "0.13862602739073407`", ",", "0.16290880972309305`", ",", "0.16290880972309313`", ",", "0.16290880972309307`", ",", "0.13862602739073315`", ",", "0.138626027390734`", ",", "0.13862602739073357`", ",", "0.16290880972309302`", ",", "0.13862602739073412`", ",", "0.1386260273907338`", ",", "0.1629088097230929`", ",", "0.13862602739073412`", ",", "0.1629088097230931`", ",", "0.13862602739073362`", ",", "0.13862602739073387`", ",", "0.13862602739073415`", ",", "0.13862602739073387`", ",", "0.13862602739073424`", ",", "0.13862602739073376`", ",", "0.13862602739073412`", ",", "0.16290880972309277`", ",", "0.13862602739073362`", ",", "0.16290880972309263`"}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[15]=",ExpressionUUID->"842F8EC6-B268-4EFE-80F7-60503C63A551"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Divide", "@@", RowBox[{"MinMax", "[", RowBox[{"%", "lengths"}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[16]:=",ExpressionUUID->"CD0EA4F9-377F-40F7-87EC-22F0AB6915C4"], Cell[BoxData["0.7241031129510981`"], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[16]=",ExpressionUUID->"AEE16776-71A3-430D-AA60-6DEA978B2F61"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Round", "[", RowBox[{ RowBox[{"10", "^", "12"}], "lengths"}], "]"}], "/", RowBox[{"10", "^", "12."}]}], "//", "Counts"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[17]:=",ExpressionUUID->"547AA129-FEF3-4C8B-BE77-70B2CDA19CBA"], Cell[BoxData[ RowBox[{"\[LeftAssociation]", RowBox[{ RowBox[{"0.162908809723`", "\[Rule]", "60"}], ",", RowBox[{"0.138626027391`", "\[Rule]", "120"}]}], "\[RightAssociation]"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[17]=",ExpressionUUID->"C7E780D4-EEA7-4126-859B-03D333749659"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"newi", "[", RowBox[{"[", "1", "]"}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[18]:=",ExpressionUUID->"EC15A5CF-9BDF-4728-9F2C-117C4EDE1174"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441069`"}], ",", "0", ",", RowBox[{"-", "0.3535533905932737`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.09463248332806729`"}], ",", RowBox[{"-", "0.09463248332806726`"}], ",", RowBox[{"-", "0.4008696322573071`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.13504537836886327`"}], ",", RowBox[{"-", "0.2185080122244105`"}], ",", RowBox[{"-", "0.35355339059327384`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24775105779268727`"}], ",", RowBox[{"-", "0.15311857446462007`"}], ",", RowBox[{"-", "0.30623714892924025`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.15311857446462013`"}], ",", "0.3062371489292402`", ",", "0.24775105779268725`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441069`"}], ",", "0.3535533905932738`", ",", "0.1350453783688631`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3062371489292401`"}], ",", "0.2477510577926875`", ",", "0.15311857446462002`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.35355339059327373`"}], ",", "0.13504537836886324`", ",", "0.2185080122244106`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24775105779268752`"}], ",", "0.15311857446462002`", ",", "0.30623714892924003`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.1350453783688631`"}], ",", "0.21850801222441069`", ",", "0.3535533905932738`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.09463248332806702`", ",", "0.09463248332806709`", ",", "0.4008696322573072`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.21850801222441057`", ",", "0", ",", "0.35355339059327373`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.24775105779268713`", ",", "0.15311857446462013`", ",", "0.30623714892924025`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.13504537836886304`", ",", "0.21850801222441063`", ",", "0.35355339059327384`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.15311857446462007`"}], ",", "0.3062371489292403`", ",", RowBox[{"-", "0.24775105779268708`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441057`"}], ",", "0.3535533905932738`", ",", RowBox[{"-", "0.13504537836886316`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.09463248332806722`"}], ",", "0.40086963225730715`", ",", RowBox[{"-", "0.09463248332806706`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.3535533905932738`", ",", RowBox[{"-", "0.21850801222441055`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.30623714892924025`", ",", "0.24775105779268702`", ",", RowBox[{"-", "0.15311857446462032`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.35355339059327384`", ",", "0.21850801222441038`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.4008696322573071`", ",", "0.09463248332806729`", ",", RowBox[{"-", "0.09463248332806717`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3535533905932737`", ",", "0.1350453783688634`", ",", RowBox[{"-", "0.2185080122244105`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.09463248332806738`", ",", RowBox[{"-", "0.40086963225730704`"}], ",", "0.09463248332806737`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.21850801222441052`", ",", RowBox[{"-", "0.35355339059327373`"}], ",", "0.13504537836886338`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.1531185744646203`", ",", RowBox[{"-", "0.30623714892924037`"}], ",", "0.247751057792687`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.35355339059327384`"}], ",", "0.21850801222441044`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3062371489292403`"}], ",", RowBox[{"-", "0.24775105779268708`"}], ",", "0.1531185744646202`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.35355339059327384`"}], ",", RowBox[{"-", "0.1350453783688631`"}], ",", "0.21850801222441057`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.4008696322573072`"}], ",", RowBox[{"-", "0.09463248332806702`"}], ",", "0.0946324833280673`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3535533905932738`"}], ",", RowBox[{"-", "0.21850801222441057`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.3535533905932736`", ",", RowBox[{"-", "0.13504537836886327`"}], ",", RowBox[{"-", "0.21850801222441063`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.30623714892924053`", ",", RowBox[{"-", "0.2477510577926867`"}], ",", RowBox[{"-", "0.15311857446462032`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.21850801222441038`", ",", RowBox[{"-", "0.3535533905932738`"}], ",", RowBox[{"-", "0.1350453783688634`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.15311857446462002`", ",", RowBox[{"-", "0.30623714892924037`"}], ",", RowBox[{"-", "0.24775105779268722`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.13504537836886346`", ",", RowBox[{"-", "0.2185080122244104`"}], ",", RowBox[{"-", "0.35355339059327373`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.2477510577926871`", ",", RowBox[{"-", "0.15311857446462013`"}], ",", RowBox[{"-", "0.3062371489292403`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.15311857446462024`"}], ",", RowBox[{"-", "0.3062371489292405`"}], ",", RowBox[{"-", "0.24775105779268686`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441033`"}], ",", RowBox[{"-", "0.35355339059327395`"}], ",", RowBox[{"-", "0.13504537836886338`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.30623714892924025`"}], ",", RowBox[{"-", "0.2477510577926871`"}], ",", RowBox[{"-", "0.1531185744646203`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.35355339059327373`"}], ",", RowBox[{"-", "0.1350453783688632`"}], ",", RowBox[{"-", "0.21850801222441063`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441074`"}], ",", "0", ",", "0.3535533905932736`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.0946324833280671`"}], ",", "0.09463248332806734`", ",", "0.40086963225730715`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.3535533905932737`", ",", "0.1350453783688632`", ",", "0.21850801222441057`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.30623714892924025`", ",", "0.24775105779268702`", ",", "0.15311857446462024`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.21850801222441044`", ",", "0.3535533905932738`", ",", "0.13504537836886335`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.15311857446462002`", ",", "0.30623714892924025`", ",", "0.2477510577926873`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3062371489292403`"}], ",", "0.24775105779268713`", ",", RowBox[{"-", "0.1531185744646201`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.35355339059327384`"}], ",", "0.13504537836886313`", ",", RowBox[{"-", "0.21850801222441052`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.4008696322573072`"}], ",", "0.09463248332806698`", ",", RowBox[{"-", "0.09463248332806729`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3535533905932738`"}], ",", "0.21850801222441052`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.09463248332806706`", ",", "0.4008696322573072`", ",", RowBox[{"-", "0.09463248332806709`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.21850801222441052`", ",", "0.35355339059327373`", ",", RowBox[{"-", "0.13504537836886332`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.15311857446462027`", ",", "0.30623714892924037`", ",", RowBox[{"-", "0.24775105779268694`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.30623714892924037`", ",", RowBox[{"-", "0.24775105779268683`"}], ",", "0.1531185744646203`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.35355339059327373`", ",", RowBox[{"-", "0.21850801222441052`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.40086963225730715`", ",", RowBox[{"-", "0.09463248332806712`"}], ",", "0.09463248332806713`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.35355339059327373`", ",", RowBox[{"-", "0.13504537836886332`"}], ",", "0.21850801222441052`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.1531185744646202`"}], ",", RowBox[{"-", "0.3062371489292404`"}], ",", "0.24775105779268689`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21850801222441052`"}], ",", RowBox[{"-", "0.3535533905932738`"}], ",", "0.1350453783688633`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.09463248332806713`"}], ",", RowBox[{"-", "0.40086963225730715`"}], ",", "0.09463248332806717`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.09463248332806713`", ",", RowBox[{"-", "0.09463248332806702`"}], ",", RowBox[{"-", "0.4008696322573072`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.21850801222441057`", ",", "0", ",", RowBox[{"-", "0.35355339059327373`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24775105779268708`"}], ",", RowBox[{"-", "0.3423835411207542`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24775105779268708`"}], ",", "0.3423835411207542`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.09463248332806713`"}], ",", "0.40086963225730715`", ",", "0.09463248332806709`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.4370160244488211`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.24775105779268705`", ",", "0.3423835411207541`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24775105779268727`"}], ",", "0.15311857446461996`", ",", RowBox[{"-", "0.30623714892924025`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.13504537836886313`"}], ",", "0.21850801222441057`", ",", RowBox[{"-", "0.35355339059327384`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.09463248332806697`"}], ",", "0.09463248332806709`", ",", RowBox[{"-", "0.4008696322573072`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.34238354112075403`", ",", "0", ",", RowBox[{"-", "0.24775105779268722`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.24775105779268763`", ",", RowBox[{"-", "0.15311857446461993`"}], ",", "0.30623714892924003`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.09463248332806697`", ",", RowBox[{"-", "0.09463248332806709`"}], ",", "0.4008696322573072`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.13504537836886343`", ",", RowBox[{"-", "0.21850801222441063`"}], ",", "0.3535533905932737`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3423835411207541`"}], ",", "0", ",", "0.24775105779268713`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.43701602444882104`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.09463248332806723`", ",", RowBox[{"-", "0.40086963225730715`"}], ",", RowBox[{"-", "0.09463248332806712`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.24775105779268713`", ",", RowBox[{"-", "0.34238354112075403`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.34238354112075414`"}], ",", "0", ",", RowBox[{"-", "0.2477510577926871`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.3535533905932735`", ",", "0.21850801222441088`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.34238354112075403`", ",", "0", ",", "0.24775105779268722`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.13504537836886338`", ",", "0.21850801222441069`", ",", RowBox[{"-", "0.35355339059327356`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.24775105779268713`", ",", RowBox[{"-", "0.3423835411207541`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.43701602444882104`", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.40086963225730715`", ",", RowBox[{"-", "0.09463248332806719`"}], ",", RowBox[{"-", "0.0946324833280672`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.24775105779268705`"}], ",", "0.34238354112075414`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.13504537836886307`"}], ",", RowBox[{"-", "0.21850801222441046`"}], ",", "0.3535533905932739`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.40086963225730715`"}], ",", "0.09463248332806717`", ",", "0.09463248332806724`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.43701602444882104`"}], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.35355339059327373`"}], ",", RowBox[{"-", "0.2185080122244106`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.09463248332806733`"}], ",", RowBox[{"-", "0.4008696322573071`"}], ",", RowBox[{"-", "0.09463248332806726`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.09463248332806723`", ",", "0.4008696322573072`", ",", "0.09463248332806698`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.2477510577926873`", ",", "0.15311857446461993`", ",", RowBox[{"-", "0.30623714892924025`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.09463248332806702`", ",", "0.09463248332806688`", ",", RowBox[{"-", "0.40086963225730726`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.09463248332806701`"}], ",", RowBox[{"-", "0.09463248332806692`"}], ",", "0.40086963225730726`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24775105779268725`"}], ",", RowBox[{"-", "0.15311857446462002`"}], ",", "0.30623714892924025`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.40086963225730715`"}], ",", RowBox[{"-", "0.0946324833280671`"}], ",", RowBox[{"-", "0.09463248332806722`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.4008696322573072`", ",", "0.09463248332806701`", ",", "0.09463248332806701`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0.43701602444882104`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "0.43701602444882104`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.24775105779268727`"}], ",", RowBox[{"-", "0.3423835411207539`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.2477510577926871`", ",", "0.3423835411207541`"}], "}"}]}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[18]=",ExpressionUUID->"BF0A1A8A-55E3-445C-966D-0A192E37FC71"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Sort", "[", RowBox[{"newi", "[", RowBox[{"[", "2", "]"}], "]"}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[19]:=",ExpressionUUID->"227F9E8D-81D7-4422-BFCA-87BE714624F0"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3", ",", "4", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "101", ",", "90", ",", "37"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "10", ",", "102", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "6", ",", "64", ",", "50"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "8", ",", "75", ",", "41"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "99", ",", "73", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "73", ",", "74", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "11", ",", "12", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "17", ",", "18", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "47", ",", "50", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"20", ",", "19", ",", "52", ",", "67"}], "}"}], ",", RowBox[{"{", RowBox[{"20", ",", "21", ",", "22", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"22", ",", "71", ",", "62", ",", "93"}], "}"}], ",", RowBox[{"{", RowBox[{"23", ",", "26", ",", "60", ",", "76"}], "}"}], ",", RowBox[{"{", RowBox[{"24", ",", "25", ",", "26", ",", "23"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "74", ",", "86", ",", "26"}], "}"}], ",", RowBox[{"{", RowBox[{"27", ",", "28", ",", "29", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"31", ",", "85", ",", "55", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "77", ",", "90", ",", "34"}], "}"}], ",", RowBox[{"{", RowBox[{"35", ",", "61", ",", "62", ",", "36"}], "}"}], ",", RowBox[{"{", RowBox[{"38", ",", "37", ",", "90", ",", "91"}], "}"}], ",", RowBox[{"{", RowBox[{"39", ",", "38", ",", "63", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"40", ",", "79", ",", "1", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"42", ",", "10", ",", "9", ",", "41"}], "}"}], ",", RowBox[{"{", RowBox[{"44", ",", "20", ",", "67", ",", "45"}], "}"}], ",", RowBox[{"{", RowBox[{"45", ",", "92", ",", "80", ",", "46"}], "}"}], ",", RowBox[{"{", RowBox[{"47", ",", "48", ",", "49", ",", "50"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "89", ",", "88", ",", "50"}], "}"}], ",", RowBox[{"{", RowBox[{"51", ",", "52", ",", "53", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"54", ",", "24", ",", "78", ",", "55"}], "}"}], ",", RowBox[{"{", RowBox[{"56", ",", "57", ",", "54", ",", "55"}], "}"}], ",", RowBox[{"{", RowBox[{"58", ",", "59", ",", "60", ",", "26"}], "}"}], ",", RowBox[{"{", RowBox[{"59", ",", "27", ",", "30", ",", "63"}], "}"}], ",", RowBox[{"{", RowBox[{"61", ",", "100", ",", "94", ",", "62"}], "}"}], ",", RowBox[{"{", RowBox[{"62", ",", "71", ",", "31", ",", "36"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "6", ",", "5", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "51", ",", "18", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "65", ",", "80", ",", "92"}], "}"}], ",", RowBox[{"{", RowBox[{"68", ",", "69", ",", "70", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"75", ",", "28", ",", "96", ",", "41"}], "}"}], ",", RowBox[{"{", RowBox[{"76", ",", "91", ",", "90", ",", "77"}], "}"}], ",", RowBox[{"{", RowBox[{"78", ",", "33", ",", "32", ",", "55"}], "}"}], ",", RowBox[{"{", RowBox[{"79", ",", "48", ",", "68", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "12", ",", "72", ",", "57"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "43", ",", "13", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"82", ",", "83", ",", "18", ",", "53"}], "}"}], ",", RowBox[{"{", RowBox[{"82", ",", "93", ",", "62", ",", "94"}], "}"}], ",", RowBox[{"{", RowBox[{"83", ",", "69", ",", "15", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"84", ",", "21", ",", "20", ",", "98"}], "}"}], ",", RowBox[{"{", RowBox[{"85", ",", "84", ",", "56", ",", "55"}], "}"}], ",", RowBox[{"{", RowBox[{"87", ",", "58", ",", "26", ",", "86"}], "}"}], ",", RowBox[{"{", RowBox[{"88", ",", "8", ",", "7", ",", "50"}], "}"}], ",", RowBox[{"{", RowBox[{"89", ",", "97", ",", "30", ",", "29"}], "}"}], ",", RowBox[{"{", RowBox[{"95", ",", "41", ",", "96", ",", "87"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "40", ",", "39", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"98", ",", "20", ",", "44", ",", "43"}], "}"}], ",", RowBox[{"{", RowBox[{"99", ",", "42", ",", "41", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{"100", ",", "2", ",", "1", ",", "70"}], "}"}], ",", RowBox[{"{", RowBox[{"101", ",", "35", ",", "34", ",", "90"}], "}"}], ",", RowBox[{"{", RowBox[{"102", ",", "14", ",", "46", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "2", ",", "100", ",", "61", ",", "35", ",", "101"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "37", ",", "38", ",", "39", ",", "40", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "88", ",", "89", ",", "29", ",", "28", ",", "75"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "22", ",", "93", ",", "82", ",", "53", ",", "52"}], "}"}], ",", RowBox[{"{", RowBox[{"23", ",", "76", ",", "77", ",", "33", ",", "78", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"27", ",", "59", ",", "58", ",", "87", ",", "96", ",", "28"}], "}"}], ",", RowBox[{"{", RowBox[{"36", ",", "31", ",", "32", ",", "33", ",", "34", ",", "35"}], "}"}], ",", RowBox[{"{", RowBox[{"38", ",", "91", ",", "76", ",", "60", ",", "59", ",", "63"}], "}"}], ",", RowBox[{"{", RowBox[{"42", ",", "99", ",", "11", ",", "14", ",", "102", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"43", ",", "44", ",", "45", ",", "46", ",", "14", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"43", ",", "81", ",", "57", ",", "56", ",", "84", ",", "98"}], "}"}], ",", RowBox[{"{", RowBox[{"48", ",", "47", ",", "16", ",", "15", ",", "69", ",", "68"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "17", ",", "16", ",", "64", ",", "6", ",", "65"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "92", ",", "45", ",", "67", ",", "52", ",", "51"}], "}"}], ",", RowBox[{"{", RowBox[{"69", ",", "83", ",", "82", ",", "94", ",", "100", ",", "70"}], "}"}], ",", RowBox[{"{", RowBox[{"71", ",", "22", ",", "21", ",", "84", ",", "85", ",", "31"}], "}"}], ",", RowBox[{"{", RowBox[{"72", ",", "74", ",", "25", ",", "24", ",", "54", ",", "57"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "99", ",", "95", ",", "87", ",", "86", ",", "74"}], "}"}], ",", RowBox[{"{", RowBox[{"79", ",", "40", ",", "97", ",", "89", ",", "49", ",", "48"}], "}"}]}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[19]=",ExpressionUUID->"348367CE-F23F-4845-B991-ADB7AC269156"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"AbsoluteThickness", "[", ".1", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Opacity", "[", ".8", "]"}], ",", "newi"}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[20]:=",ExpressionUUID->"DE999705-9A59-4783-8BF3-D8F5FFF1F92A"], Cell[BoxData[ Graphics3DBox[ {AbsoluteThickness[ 0.1], {Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, { 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {-0.35355339059327373`, \ -0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {-0.21850801222441052`, \ -0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, { 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.5303300858899106, \ -0.06752268918443159, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, \ -0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, {0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, {-0.17677669529663687`, \ -0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, {-0.5303300858899106, \ -0.06752268918443159, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, {-0.46280739670547905`, \ -0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.5045387136332526, \ -0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, {-0.06752268918443159, \ -0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {-0.46280739670547905`, \ -0.17677669529663687`, -0.5045387136332526}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, {-0.17677669529663687`, \ -0.06752268918443159, -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, \ -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, {0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, \ -0.06752268918443159, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.5045387136332526, \ -0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, {-0.46280739670547905`, \ -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, {-0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.06752268918443159, \ -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.5720614028176843, \ -0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, {-0.17677669529663687`, \ -0.5045387136332526, 0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, {-0.06752268918443159, \ -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{ 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}, { 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}, \ {-0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, \ {-0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{ 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, \ {-0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.24429938448106847`, \ -0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, {0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.17677669529663687`, \ -0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.35355339059327373`, \ -0.21850801222441052`, -0.5720614028176843}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[ 1, 2])}}, {{-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.639584092002116, \ -0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}]], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}, \ {-0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.21850801222441052`, \ -0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, {-0.17677669529663687`, \ -0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, \ {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, \ {-0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, \ -0.35355339059327373`, 0.21850801222441052`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}, \ {-0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}}]], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]], Line3DBox[ NCache[{{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}]], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{ 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, {-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}]]}, {Opacity[0.8], PolyhedronBox[{{-0.21850801222441069`, 0, -0.3535533905932737}, {-0.09463248332806729, -0.09463248332806726, \ -0.4008696322573071}, {-0.13504537836886327`, -0.2185080122244105, \ -0.35355339059327384`}, {-0.24775105779268727`, -0.15311857446462007`, \ -0.30623714892924025`}, {-0.15311857446462013`, 0.3062371489292402, 0.24775105779268725`}, {-0.21850801222441069`, 0.3535533905932738, 0.1350453783688631}, {-0.3062371489292401, 0.2477510577926875, 0.15311857446462002`}, {-0.35355339059327373`, 0.13504537836886324`, 0.2185080122244106}, {-0.24775105779268752`, 0.15311857446462002`, 0.30623714892924003`}, {-0.1350453783688631, 0.21850801222441069`, 0.3535533905932738}, {0.09463248332806702, 0.09463248332806709, 0.4008696322573072}, {0.21850801222441057`, 0, 0.35355339059327373`}, { 0.24775105779268713`, 0.15311857446462013`, 0.30623714892924025`}, { 0.13504537836886304`, 0.21850801222441063`, 0.35355339059327384`}, {-0.15311857446462007`, 0.3062371489292403, -0.24775105779268708`}, {-0.21850801222441057`, 0.3535533905932738, -0.13504537836886316`}, {-0.09463248332806722, 0.40086963225730715`, -0.09463248332806706}, { 0, 0.3535533905932738, -0.21850801222441055`}, {0.30623714892924025`, 0.24775105779268702`, -0.15311857446462032`}, { 0.35355339059327384`, 0.21850801222441038`, 0}, {0.4008696322573071, 0.09463248332806729, -0.09463248332806717}, {0.3535533905932737, 0.1350453783688634, -0.2185080122244105}, { 0.09463248332806738, -0.40086963225730704`, 0.09463248332806737}, { 0.21850801222441052`, -0.35355339059327373`, 0.13504537836886338`}, { 0.1531185744646203, -0.30623714892924037`, 0.247751057792687}, { 0, -0.35355339059327384`, 0.21850801222441044`}, {-0.3062371489292403, -0.24775105779268708`, 0.1531185744646202}, {-0.35355339059327384`, -0.1350453783688631, 0.21850801222441057`}, {-0.4008696322573072, -0.09463248332806702, 0.0946324833280673}, {-0.3535533905932738, -0.21850801222441057`, 0}, { 0.3535533905932736, -0.13504537836886327`, -0.21850801222441063`}, { 0.30623714892924053`, -0.2477510577926867, -0.15311857446462032`}, { 0.21850801222441038`, -0.3535533905932738, -0.1350453783688634}, { 0.15311857446462002`, -0.30623714892924037`, -0.24775105779268722`}, { 0.13504537836886346`, -0.2185080122244104, -0.35355339059327373`}, { 0.2477510577926871, -0.15311857446462013`, -0.3062371489292403}, \ {-0.15311857446462024`, -0.3062371489292405, -0.24775105779268686`}, \ {-0.21850801222441033`, -0.35355339059327395`, -0.13504537836886338`}, \ {-0.30623714892924025`, -0.2477510577926871, -0.1531185744646203}, \ {-0.35355339059327373`, -0.1350453783688632, -0.21850801222441063`}, \ {-0.21850801222441074`, 0, 0.3535533905932736}, {-0.0946324833280671, 0.09463248332806734, 0.40086963225730715`}, {0.3535533905932737, 0.1350453783688632, 0.21850801222441057`}, {0.30623714892924025`, 0.24775105779268702`, 0.15311857446462024`}, {0.21850801222441044`, 0.3535533905932738, 0.13504537836886335`}, {0.15311857446462002`, 0.30623714892924025`, 0.2477510577926873}, {-0.3062371489292403, 0.24775105779268713`, -0.1531185744646201}, {-0.35355339059327384`, 0.13504537836886313`, -0.21850801222441052`}, {-0.4008696322573072, 0.09463248332806698, -0.09463248332806729}, {-0.3535533905932738, 0.21850801222441052`, 0}, {0.09463248332806706, 0.4008696322573072, -0.09463248332806709}, {0.21850801222441052`, 0.35355339059327373`, -0.13504537836886332`}, {0.15311857446462027`, 0.30623714892924037`, -0.24775105779268694`}, { 0.30623714892924037`, -0.24775105779268683`, 0.1531185744646203}, { 0.35355339059327373`, -0.21850801222441052`, 0}, { 0.40086963225730715`, -0.09463248332806712, 0.09463248332806713}, { 0.35355339059327373`, -0.13504537836886332`, 0.21850801222441052`}, {-0.1531185744646202, -0.3062371489292404, 0.24775105779268689`}, {-0.21850801222441052`, -0.3535533905932738, 0.1350453783688633}, {-0.09463248332806713, -0.40086963225730715`, 0.09463248332806717}, { 0.09463248332806713, -0.09463248332806702, -0.4008696322573072}, { 0.21850801222441057`, 0, -0.35355339059327373`}, {-0.24775105779268708`, -0.3423835411207542, 0}, {-0.24775105779268708`, 0.3423835411207542, 0}, {-0.09463248332806713, 0.40086963225730715`, 0.09463248332806709}, {0, 0.4370160244488211, 0}, { 0.24775105779268705`, 0.3423835411207541, 0}, {-0.24775105779268727`, 0.15311857446461996`, -0.30623714892924025`}, {-0.13504537836886313`, 0.21850801222441057`, -0.35355339059327384`}, {-0.09463248332806697, 0.09463248332806709, -0.4008696322573072}, { 0.34238354112075403`, 0, -0.24775105779268722`}, { 0.24775105779268763`, -0.15311857446461993`, 0.30623714892924003`}, { 0.09463248332806697, -0.09463248332806709, 0.4008696322573072}, { 0.13504537836886343`, -0.21850801222441063`, 0.3535533905932737}, {-0.3423835411207541, 0, 0.24775105779268713`}, { 0, -0.43701602444882104`, 0}, { 0.09463248332806723, -0.40086963225730715`, -0.09463248332806712}, { 0.24775105779268713`, -0.34238354112075403`, 0}, {-0.34238354112075414`, 0, -0.2477510577926871}, { 0, 0.3535533905932735, 0.21850801222441088`}, { 0.34238354112075403`, 0, 0.24775105779268722`}, {0.13504537836886338`, 0.21850801222441069`, -0.35355339059327356`}, { 0, 0.24775105779268713`, -0.3423835411207541}, { 0.43701602444882104`, 0, 0}, { 0.40086963225730715`, -0.09463248332806719, -0.0946324833280672}, { 0, -0.24775105779268705`, 0.34238354112075414`}, {-0.13504537836886307`, -0.21850801222441046`, 0.3535533905932739}, {-0.40086963225730715`, 0.09463248332806717, 0.09463248332806724}, {-0.43701602444882104`, 0, 0}, { 0, -0.35355339059327373`, -0.2185080122244106}, {-0.09463248332806733, \ -0.4008696322573071, -0.09463248332806726}, {0.09463248332806723, 0.4008696322573072, 0.09463248332806698}, {0.2477510577926873, 0.15311857446461993`, -0.30623714892924025`}, {0.09463248332806702, 0.09463248332806688, -0.40086963225730726`}, {-0.09463248332806701, \ -0.09463248332806692, 0.40086963225730726`}, {-0.24775105779268725`, -0.15311857446462002`, 0.30623714892924025`}, {-0.40086963225730715`, -0.0946324833280671, \ -0.09463248332806722}, {0.4008696322573072, 0.09463248332806701, 0.09463248332806701}, {0, 0, 0.43701602444882104`}, { 0, 0, -0.43701602444882104`}, { 0, -0.24775105779268727`, -0.3423835411207539}, { 0, 0.2477510577926871, 0.3423835411207541}}, {{79, 40, 97, 89, 49, 48}, {84, 21, 20, 98}, {20, 21, 22, 19}, {98, 20, 44, 43}, {20, 19, 52, 67}, {66, 92, 45, 67, 52, 51}, {44, 20, 67, 45}, {66, 51, 18, 17}, {16, 17, 18, 15}, {83, 69, 15, 18}, {6, 7, 8, 9, 10, 5}, {42, 99, 11, 14, 102, 10}, {11, 99, 73, 12}, {12, 73, 74, 72}, {14, 11, 12, 13}, {81, 43, 13, 12}, {66, 17, 16, 64, 6, 65}, {48, 47, 16, 15, 69, 68}, {79, 48, 68, 1}, {2, 3, 4, 1}, {40, 79, 1, 4}, {100, 2, 1, 70}, {68, 69, 70, 1}, {3, 2, 100, 61, 35, 101}, {3, 101, 90, 37}, {38, 37, 90, 91}, {19, 22, 93, 82, 53, 52}, {82, 83, 18, 53}, {51, 52, 53, 18}, {22, 71, 62, 93}, {42, 10, 9, 41}, {99, 42, 41, 95}, {43, 44, 45, 46, 14, 13}, {89, 97, 30, 29}, {27, 28, 29, 30}, {3, 37, 38, 39, 40, 4}, {97, 40, 39, 30}, {24, 25, 26, 23}, {88, 8, 7, 50}, {47, 48, 49, 50}, {49, 89, 88, 50}, {7, 6, 64, 50}, {16, 47, 50, 64}, {71, 22, 21, 84, 85, 31}, {23, 26, 60, 76}, {58, 59, 60, 26}, {38, 91, 76, 60, 59, 63}, {39, 38, 63, 30}, {59, 27, 30, 63}, {69, 83, 82, 94, 100, 70}, {61, 100, 94, 62}, { 82, 93, 62, 94}, {8, 88, 89, 29, 28, 75}, {9, 8, 75, 41}, {5, 10, 102, 80}, {66, 65, 80, 92}, {65, 6, 5, 80}, {102, 14, 46, 80}, {45, 92, 80, 46}, {27, 59, 58, 87, 96, 28}, {75, 28, 96, 41}, {95, 41, 96, 87}, {73, 99, 95, 87, 86, 74}, {25, 74, 86, 26}, {87, 58, 26, 86}, {43, 81, 57, 56, 84, 98}, {72, 74, 25, 24, 54, 57}, {81, 12, 72, 57}, {35, 61, 62, 36}, {62, 71, 31, 36}, {76, 91, 90, 77}, {101, 35, 34, 90}, {33, 77, 90, 34}, {23, 76, 77, 33, 78, 24}, {56, 57, 54, 55}, {85, 84, 56, 55}, {54, 24, 78, 55}, {36, 31, 32, 33, 34, 35}, {31, 85, 55, 32}, {78, 33, 32, 55}}]}}, Boxed->False]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[20]=",ExpressionUUID->"942C4272-B6E1-4B21-9BE5-0058FC04EC34"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Plane intersections numerically", "Subsubsection",ExpressionUUID->"F2CFA50C-8B87-4042-AACE-AF35073F018C"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", RowBox[{"polygons", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[21]:=",ExpressionUUID->"0B1B2CC7-26EE-49C6-9B05-0EAB0B78E0F7"], Cell[BoxData["160"], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[21]=",ExpressionUUID->"2E88BE63-C5D5-4898-A723-A3BBE714E30A"] }, Closed]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Binomial", "[", RowBox[{"%", ",", "3"}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[22]:=",ExpressionUUID->"0FF5C70E-25F7-40A3-B313-3EE65822A4E5"], Cell[BoxData["669920"], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[22]=",ExpressionUUID->"F3157A33-3706-4C81-814D-75F870535BB6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Length", "[", RowBox[{"nintersections", "=", RowBox[{"ThreePlaneIntersection", "/@", RowBox[{"Subsets", "[", RowBox[{ RowBox[{"N", "[", RowBox[{"polygons", ",", "20"}], "]"}], ",", RowBox[{"{", "3", "}"}]}], "]"}]}]}], "]"}], "//", "Timing"}]], "Input",\ CellLabel-> "(V14.0.0-Devel (3)) \ In[23]:=",ExpressionUUID->"29F5CE60-5E83-4F56-86DA-4310D72DDE28"], Cell[BoxData[ RowBox[{"{", RowBox[{"549.884514`", ",", "669920"}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[23]=",ExpressionUUID->"C1E6B7A1-5836-453C-9C57-C09B31457719"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"groupednorms", "=", RowBox[{"Mean", "/@", RowBox[{ RowBox[{"SplitBy", "[", RowBox[{ RowBox[{"SortBy", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"#", ",", RowBox[{"Round", "[", RowBox[{"1*^12", "#"}], "]"}]}], "}"}], "&"}], "/@", RowBox[{"Chop", "[", RowBox[{"Norm", "/@", RowBox[{"int", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], ",", "Last"}], "]"}], ",", "Last"}], "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "All", ",", "1"}], "]"}], "]"}]}]}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[24]:=",ExpressionUUID->"2F5DCFB7-FB22-4DBD-9464-C05B12C8F5CE"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0.41562693777745346`", ",", "0.42261930370935774`", ",", "0.437016024448821`"}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[24]=",ExpressionUUID->"1D214806-C41D-4D68-8BE8-9BD959518E15"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"normineqs", "[", RowBox[{"l_", ",", RowBox[{"dx_", ":", "1.*^-6"}]}], "]"}], ":=", RowBox[{"Function", "[", RowBox[{"Evaluate", "[", RowBox[{"Or", "@@", RowBox[{"(", RowBox[{ RowBox[{"Function", "[", RowBox[{"f", ",", RowBox[{ RowBox[{"f", "-", "dx"}], "<=", RowBox[{"Norm", "[", "#", "]"}], "<=", RowBox[{"f", "+", "dx"}]}]}], "]"}], "/@", "l"}], ")"}]}], "]"}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[25]:=",ExpressionUUID->"7D7C43B9-815B-410E-8456-070F64BDF848"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Length", "[", RowBox[{"pos", "=", RowBox[{ RowBox[{"Position", "[", RowBox[{"nintersections", ",", RowBox[{ RowBox[{"Point", "[", "x_", "]"}], "/;", RowBox[{ RowBox[{"normineqs", "[", "groupednorms", "]"}], "[", "x", "]"}]}]}], "]"}], "//", "Flatten"}]}], "]"}], "//", "Quiet"}], "//", "Timing"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[26]:=",ExpressionUUID->"672376BC-877C-45AD-B5B0-8FBD8A540B05"], Cell[BoxData[ RowBox[{"{", RowBox[{"6.962097`", ",", "2400"}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[26]=",ExpressionUUID->"B850BBC2-2E0E-45EA-B3D7-5F2C27BFC0A6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Length", "[", RowBox[{"intersections", "=", RowBox[{"ThreePlaneIntersection", "/@", RowBox[{ RowBox[{"Subsets", "[", RowBox[{"polygons", ",", RowBox[{"{", "3", "}"}]}], "]"}], "[", RowBox[{"[", "pos", "]"}], "]"}]}]}], "]"}], "//", "Timing"}]], "Input",\ CellLabel-> "(V14.0.0-Devel (3)) \ In[27]:=",ExpressionUUID->"A2E00594-CDE9-4C4C-8111-CB4D1F228FA1"], Cell[BoxData[ RowBox[{"{", RowBox[{"300.220905`", ",", "2400"}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[27]=",ExpressionUUID->"759576A2-481A-431C-A9AA-CC2AB54A531E"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", RowBox[{"pts", "=", RowBox[{"Cases", "[", RowBox[{"intersections", ",", RowBox[{ RowBox[{"Point", "[", "x_", "]"}], "\[RuleDelayed]", RowBox[{"Flatten", "[", "x", "]"}]}]}], "]"}]}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[28]:=",ExpressionUUID->"721D6B09-7679-4CD6-8976-AA4EDD5D9BA3"], Cell[BoxData["2400"], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[28]=",ExpressionUUID->"AA245EE0-4EF4-436B-87EA-72D615F205A7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"AbsolutePointSize", "[", "5", "]"}], ",", RowBox[{"Point", "[", RowBox[{"N", "[", "pts", "]"}], "]"}], ",", RowBox[{"Opacity", "[", ".2", "]"}], ",", "p"}], "}"}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[29]:=",ExpressionUUID->"453FD254-7A7C-4E3D-A79C-626F02BE49D4"], Cell[BoxData[ Graphics3DBox[ {AbsolutePointSize[5], Point3DBox[CompressedData[" 1:eJyNnXmYn1WV56GBsCmb8Cgzg0+kbWVAm8fpUVv84dt263TLTlgVUR+cRm2h aXTcCGBAlobuphWGtrFpRzEsgQCVpBIS8gtvJVXZKlWpSlWqslRVtsoKCYSE JQHEcVLfz6k+31/eh8k/9dTJrfvee+655579fOCq68b99R8ccMABXzv8gAMO +v3Pb/ztVbecN6OrPPK0NVO//kBrufHU//ezt/yu4FtOHYHvELz9rUVzTv3C 3HLdDR8/+rg9S8qOT//46l/+qr98VvDVgi8RfI7gywXvFHyu4MMGn6/fL3lj Sefsl5trGwRvEfxCwZcKfsL4Efil++BNtbmCz9b4Ca9PaX7gb8r6FsGn2zwD gr/b5nlO8GuFhz3CwwvCQ5vm+fK+8ctrL2v8gOCX7YN311YJ3pvg62ovGvzW fetcVRsSfJ7N87zg12k9L2s9W7Ue8P78ns/MPfWP22t9Gr8y4bOpNtvwcNE+ eEutWfC1gl+s8W2ClzZPu+BLdY4DFec+ZPBpgg8K3iX4QqMrzpd9Xap1Piv4 irT+iXXoZI3gGw0PfbbfVsE/cedh/973qZnlh/XzqXPG/qdVj64qP6nfT9fP pwXfonkO0L9ezbM+rbO51i94s/a1wfa7wO5Ft+Fh2O7XFVrHKbbO3go8X1Gx /hds/es0fpmtHzq8fYTeio5T98sfik2CDws+c2Q9Rbvd61LwpXa+rTae9bcI 3md4Ez0UzAvf6TL4fME7BO8w+hOdF34e+n7BOazP51DA//ryuRXwM+7bYpuH 8/m+8DZg/ETzFYu0nrb8/aIn40v8uLXg7+ELywTfLPitguu+FX4/dQ7FHLvH 3QZfYfBWg4P/hX7/R9ZRiI7Kbdr3S4JPEFz7KTvtHOfYufB7b8U6+zJ9xTq7 DP+79L1XhCfdw2KpffcFw/MPtd4uwdcLfpvg/XaOMzTPGu33LntX2Vc90yt8 oFhm9wX4SrsvWm+xwu6d7mvxY333JX1X9FgsM7paWHF/F9n8fk/93Xf883dt dq8X5/sX83NfefeeFvzufe9kV411zxV8u/g9/PhXgp992cf+deqcGSEXfDy9 8y31bYIfJPht++ZfXOfdeMbmdz4Cf4G/8o58fuRn4Bc+1aPx3Qbnns/UPKfb PLy30In4aME7lt+3phrnxnv4wxE5KN7D3QbnHQD/N0puQg7K73BTze8599/l Qc1XrPF7ovvDvmbl97DhvnEPoa+htN/uoIcXBT9i/HEX33ZRT61F8MN1vu95 7YOPHfboUG2K8PwB4VnvfQE9Lja5g3fi+SQ/Tqwx/neC/1Xzv1w16a7HassF 705y08T63P3iszvmNzk6+ClwzVf0Gj1sEpz1wHeWGV87cnyS44LOn83yZh35 hffvSOFzgeBvCH6C8IlccHPm50HPp1Tg+SmjnxX7lZdbals0/7U2/2utf/fW w0sW1Fdn+Tvg3LPNgp/x0dd//aWXZgS+Zxp8ocH3ap41WT4udo796t//zy9O rq/M9w++FnLFk+JrZ2rfj+f7HfAmwcfq9zU2z1TNM2hw8aECuujJ9FJcrnPm nsGvtomfrRf8OYMP5nMoxosvThZ8zAgdFZeY/A3dSj8pduvckCNvkZ4Df4I+ gc/P/KlwvU7ya3yX890C/dh7/Y/67pDhjXer0+C8o7s1D3SHvAs/g881afyl 4ger9ovnvprTz8XSA7lPzMv9mJzvTcwPn+u3+RdVzD9P8D02P/rDifp9g/GJ yfmdjncM/KA/bBT8FY37+p8d+KmlX/x1fdDuxXLD8yTN43DO5Tzjo9KHCu79 Bp3L/9K5rLb1P44cIzkE+r7xF+c8/9Avb4JvF6sSvtrqHTZ+BN5c1zkVWwVn /8J7sTONb6ohl/ba/Mh7yDsLxOd0/wvO+1zxS+Qo7jNyrOkdBXJ7s+Y5t2Ie vRcF75v0++K3WucxC/tv/cPr58U6twt+q/AGHlYYXPSBvFrcIbjubaH3sThO 8+u8C7uH5TLbL+/nasmxel+KLvQFjZ9q+NT9L27U+J0aL/5evK71bN13fzbV mWej4P/2o9v/cvc/r6iDn9X/EX70cH2a8Hyy8Hyl8Cz+VUyD3kb4Wh16452T /ak+3+gEOOtZlPkd9znobZvW3254Q48Az635Poc++6zRj+mD3M+y3b4L/UMP LyY6b4GPxzv2C+Fztu33QeETPVHyXtGt8wLPyMFXGD3P2L/9oJB9q7hZ+H/B 5pc8WZ5x6gVjP3LjPN6RoMNPG3w7ctzPfnb/VdvbAt/bkOMEF78qsCd+88Of OPSIVzvqA/l+lAsnrPn2TZPvQ+4O+Eo7N+Q+8enySeEDPePEbA8q3rxj5Pc1 ho/mLI8HHP1svcH57jjpSbIHFZuT3tAV/HKWwRfkc3Z7U4Ed7XvSM6Br7u8q 9NR8j7We7npp8wOfJfjbSU5vqs0UHPvX9/Vd6BS75zp9V+9L8Q/6bo/dG+xA PXY/zG4Qev+dmqfD8Iz8rvc96IT7eIn2NSz4wwneFHiGDnVPyumiB8mTMX+n zS/9ow7ffTrBm9D/Am/MzzvziugNvrLI6Af8dBp+zs925CLrnaN0tQi8G39q MXsJ+ETvgY9yj8JOYOeCPtpn63xG81wvfrElyx0F8qDopRgU3OwYyInBf/Xu Yt8KeI/Bn8p8POQY3teP/3DPGVd1DMa7i95zuuCyCxTIfdw/7hly2SXyX0gP LObbPLzfzveZ5yrDzybhAflpzz79aYafs/jy4tozgu8QXPwGv0Osk+8OVszD +X8rvx/FWq2H8W9qPdybjem762rwj72Cf1/zTxH8VVtPR8U87GtBfneDHuQ3 ife928Z3Gz08aXTCPMhV9y+ZfMH41+7EvgAfLX6n/UInnRV4QP67T/OA/xP0 7l6rnzN07z+o3y/L+mvxWtLnukLORm6+WPS20Pbr9N+U5UL0g2Le/vUG+Fxx vX7C/6YbPuEfp2d5ooCfvZjoqgs9NeSYC7R+8HyD+Mew6G256O1b2U9XbBcc voU+6nbtbYYH4MifizLewm7IPOg/4BW6RP/HD7Mq4y/8MBsyPQYc/fr/aF/o x9iXkdM5b/4Ofw/0PT2fX/Bt1oVdr9fkevcXub1xav5ejDf7dMhZ4LEl8+sG fQt/xZbsryhWCr4uywkhh3bk8wu5u9fmx06BX+JF4XWnwfcK3mHzo/9hT5tj fMXt9NynXoNr3SGnHDISD1C8of3J3lAut/Xznu40favL5Cj0NuS1Ljtf/NjI 5+j55jeOc9+m8YpfKN7S+NV2juAD/5zzVeRf7AvL7N5153vSAOddw1+3ycYj j6wwuPtFuY/4LfvsXgNfbetszfvlPEvo0O59+G+v0DmPUdxHf76PYVfebuPf rfGr8r0O+/1S+94qmxd8u19rsa0b/MDniP/AX3i81vGi1rfU9svfDeb7Enbx TlvXAls/v1fFNXRXrHOhfW+BfQ/7OPEk0PEJpyW5tLxc417VOPy5kkdjvi7D d4edC3oKeHnW1uN+1m5bv/uFiQPCr4wf86jT0n3nXsb/vyw4/s/l9h38aR4P wfehm822747sD4v52m0/jOfnItOHHb963xroYKnh0el1odGBwzttnayjx9bp 32Md8Kmh7ve/sfMPFqHflLzz980bfun4wzrQ18OO/mvZWXgn4McdmU+Xx8qu v3nErlx/nPMxuRc/wzKbH/8J8tk5PU+MuXXBPPTXEvkZf0LJ/Rf8mkev/9CH jp9dX2f7Wqv94udxvwRxTfh5/rfwsC7js8C/hZ3+auFhjcW54d+Q/6lu8VqC N4U/dYnNz3fxI927T67+efidsNP/6p9OOO2nD89E74913qX1d1bMA54PkvyK Xo4fGvlffus67z3vx69kj8N/dbzZMZmH99P5HXKD063D3U/i93uGzW/8LOQ1 5jnd9jutYr/Qv+L0il9qv/22zo7937OQ1+D7Z5r9Ef/JONlJVtg9GbGfrMOO Hveww/j+3aI/xi+2ezUousf/MpzoflV9muCKgywWWZwW95x141c6Qvvpsv1z 3ldkeyNxcmEnW1yBR/P/Bx0Y32w4j1UV59SW8NkU/iDwAx/sN/xg11ppdH+j +AX+RPRnvz/cK+gJflfXeI97+67J/3FvtV+z6wadedwb+s2XtH78a8i9d2r9 +PvQF/9C68eP/FGt/yW7D5KjirPFl/Hbon/D73YLfpToyvkjfBN+HfGOmmfA 6KFecc+5/10V4y3urIGuOowOkfv1zuh+ttXc/v73v2g9ZWBwVvhToOvzhXfs nqx3WO+h7nl8/3DFRYjOijftu8jvyDec4xOyN7xf53YW9zHrV6XbLaaY3m96 Zpyj6Lh4r82PfeKnknOel96EPoR8TJwBdgvix9BDF9t3uY/m34x7p/sTduqL T7nsysO3zAw/48Hyl1wo+x/jZb8sL1BcKv4P3c/yHO0Le1KOgxo9R/whyC98 F3ns5C8t/86DY5rq4Pl1g/cb/Zwp/5D7ey7VvqCTefZd1jmc6K2ttsL8HBuF 57790nNL0C1+F/zO0IPsteV5ml9yE/atwCfjp5ueCrwJvdHOd6qd+9Pmf+Jc oCvu9ybFl2B//1vtV3aEQnES4WfiHDmXtyvOscXof6nR4UqTFwfsfPBzsW/J f3EO+KHuTX6oFuTIOJ/zDa+c84XaR6fBmX+tnT9yzhNG7/B7ty/4eM5hS8V5 rq6YZ43hj3NWnCByZGHxg4GHrZkeeaeK2YkemyM+Ip9zyD9xj88Tnp+1e+z7 JY7P6YJzsXik4GdDhp9pxl+7K+jI/OflOVo/9x471Flav/lRyo9p/YpDLP6z rR88K66mvEFxmj12n7bqXWK/vJebzB/DPbtI/ID3infM35Mp9v74u7Te6IR3 AL2mtwJvnTZPxDEmua0t9Cfo8a598ST/VCdP5SOSS27Rfd4p+DHjs57KPMgl 6KNDFd9FLpllcq3LhciLLse4noQeUyUPcY7oMa7fYJf4R9PXl9o8rNPlUeRU ly+RO91O7nIqeufi+9Z/8h92tkbezxv/UY/8vd7vcjb6JXh7F3Fs2pePR153 ufwik+PR76+a/9vDPvnPc0O/cjjjoce/tvG+rxVGD9CPxRUX3+n62Y6vFp11 9CvPj1ls+8Iu4noL+gx2iGGb3/Uf9CLXo9yexDmut3P0eKqnTK+7SOfi+sB6 6Vcu96MPcL/c/oE9BjmS+Axfp9sPsBOE3G/8pDPvr8Gfij9G+TDKg2lt8Mej f2lfxfX5voQ93uzvwe/4fbBiXv/eUlu374d9+jpYn+XdhF8PeIf5uSLuwb7L +Pbsb+M9lJwT+UPxd/g50GeX2v6etn0ste/A9+GHCw2/z9k6ff/gpc/8qYrf QJ6K9Zg/sfB4SfbjcRbQz60W3+HxH74e/g6+u7hiPT12PuAHulll+HO66aig G+jJz4m/A1/32r4sbyjw1GZ/b3FhHk8ddNlt86ywv2ecr4914y9CjkZfIi+4 Jr0LejK9KOT3q02PQr+C3yCPE+cwJc3TFPrBDpsffQy9QXky2HUb1sP8fBf5 CzkRedb1saPH53mgB+ToqxVXyHo60vzrsMMX+JG4T+hdxNkhPxIvNNn0K4vD ifnR08gDIS4S+dTjHMEnebDEXUIXoT9bHCVyEHJRxDnaOsGP6bcR1zbW5sGO 4HEUEc9o+pDrmauNbpkHeYP1dGa/VtyL+fZdxte0Tux36NWHjM/7RX7favtF D5ut+bmnHk/ieuGJhh++63Ki+zktLqPBL4mcrziG8tAv7n70wW195aVjz3p4 8t6p9W9Tf0DwH+ya96frXv5RHfokH8TiYGJ+9DXpOeVXNN8r+E01jvuN32ad wcGr50MBf97g5OsjN86z+Ylz8HoH5JN8Nds9GvyU0BnyOPZP9HHy8nMeXHP4 2eYI/hXZi5Bjwd8ExVkyfr3tF71sgcHN3xjwXRV4665YJ3LvfTYePW62wdEL pqV5WmrK/yjfJfoZd8vbs6/50pz6ZRVw8MA7ozivgLfad7m3llfVkIcO/Q8Y 3OK3C9PzAj7d4Hx/ZJ0D8Tv/+gX/zSs//7cfDE+qP7bv5wO1lYKP/D6pBrzP 5sEOzf2dmf3ZsX7iYNFzuKfMgxwEnof/5eip7+ueWUc+9LxVk0/ju5/PfKch j9bzYodtnchPyw2OnuH7RQ4h/m+q+cUmCq8rhDd+f1R4XS34yO8PBHyF4bnf 9su7coWd+4n23b703VmV8wPvy+upIYceYedl8ljpcveSTLfFD+x8L9Y98nwr 0+div8i3I+uaZXibVePnygSfVDM7ZPgljV6LoYp1s59Dbf8/NrxcqP18T3DH S9CryaWWF1RekfPJQ04j/3KbjT9P+TzIXVsq5ve8ig4bz77Iq0CeRI5FPlyS vtsW8mGvzb/A5odfI58sMvhawffaemYgl9r5ef47drYNRjfQ01ob7/o18Yqb TW89zugVP/jmhIeWutuJL7D9+vsBv8v5yU31rciHgp+tefAbeX4p9D1oeMNf xTuicwl7ucfDI3+Spzf2v/188xOvTww7PXrtC5/7yZFvH/dg5GX12/zAVX+n QB+ZX/Fd/E/k4+4cmR+7W9hFGN9j+2J+yxeJ+F/k9nn5Hnq9D7erNsQRM35x tteU5qeMe2NyckNc8J1mVyXulfjffosXPkN8/Qt6t5T/HfcA/HAfj9H4syzf q83Gh/1IcPym5C+05PewBP91wwP7JZ7/ghxHEHHffJdzWWtwznGpweFj8GuL Lww72ibDs9MD8EO0zvNsnXdhB7JzmW/r4bv3ZPtN5Itil8LPWtf47ow//HAR D40+Bz2OGeEbBe8LeWQnCM56fkQ8p+YhbhF6zHkHEyNf/FD5Oa6UHQP+2GH7 pe7ZbpvH6oM0zA+9KW859CXZJcBPfUqW150vhbx3SX4vSsuLjnpTG2z8/Ir5 Gf9bg5Pv7nER3IPFmb4iPrjHxg/YeK/XhX2ZPEX8NMfqfC/VuT+o8z0ixRN2 16lLQn7W5dovetd7jU7wC8+0/VJX4BmDo1+1G11xn96w8ayHPFe77yV+S/II 8U+gj8mvXkN/m5/Gj9Y38fmhN+q+4R+GPvF/nqvvEvc4Q/B75P/bbnrmlbq/ 6O2bbX7iTt1vaXUOStcnIk7c5BXoiXfS6/u4vthm44nnas3nFPIo9b287hd1 Gpdl+3SDfqn8Jvw0IR9yX/5Y4z+X87xC/1ded/hlc95tU838UqXrza0VePB1 oh/3Gr2tqqBDzqtqXxV5HGFfYZ0eH4+/mn19ROv8c9PbsDMTX4Adqknr0bsc 9/0bdo6c16DhE/9ZV153g5+F9zj8LDYef9p48auj7F2aUAG3+jPhN+H84K/N vN96Pz0f1OISIl+T9471/nflm5Lf6fImcsRL6X1uijxLn9/zLZHzrO6c8D/q 74PfzzZ9xey/MQ55ebzkaL6H/DtBcbr8PXzmBo1HbqIeBf6BhRV4II6E9xC5 Hj6PfP2N+94792fXzo76BawTeX/I5t+teTjv7TZPq+3rTu3rb7J9oDhf9HON 4IcJvl52IeLQ1hje2g0PFwoPZk8uLA/M8769Pl2MV/5qSbyN5bUG/E8EB98j +BxQnY2WGnDZK0Rv02qPyA40KPiIX2haHbjseKo30lL3PD70YOQL5F30GeTH Q0wuuAT5QnCzz0SeI/lVKwyfbmf2uE7Xf2ZlPlBaPA/1hULPUVxWwPErfN70 IuCn6XfZvbB3Ffz+uOxjQ4JPEP5lN9K+BwI/zE+c2O/uyPMvT/NjL51UH7B5 fP6bdL5Dhgf8puQRHWPn5XhuN/zbPKXsb+VRNk9fxXmtt3mkP5e+/kezPRM7 J3a6ervRCfPwbj+d5ZeGvKrOTDfEdcQ+3Y4MHZu9BTtm5K+12/wuf3VkvIS8 tiDzhcg3xG9DHQj8RuRn8Hfks+MfCjuP6lQhD1MHkH1RXzLXqW6JembLbH7k pVy3uQW7XOiFileroU+tTeObYx6zgwd+wPNp474z87zZs2v44Q4XfOvlk79+ 9eeX1chvR35WfczaK+A3yYfdUecs+6NbQl9ArzpL63e46m2Fv8rlM/bh8hz0 hVy41PDr8DcNjnzZY3DWd0jyx4/KlyYH4+8POHWbOCf0IupHsp72NL4t6pXP tvHDNh46k52ifMvg0Bnx9ci1ywyfLo9+zepuEu8GPSBvQV/4YRXnFfQhfVX1 U/uiruCGRB9hB2+ALzW4xd+Gf8r1QPRD9ED8k69V6IGuH7KvdQn/o3K8y/fs a26mh9ocwXcYHP0QP+qfm552kukbDs9+lFE+/v/rX9k/PPxMYU9CvkcfdX8M chz+FOS867JcKD9LZx1/EvfW6tdF3UPy7cgjqPK3Sd4Kepe8VXN/HvNU+c/c X+t6Kva9Lrs/lpfs9oCoqzDV4ntZD3GYyD3Ipfh3H9H6+Fm1fsv3Jo63wW/t 9RaxZ3KO7odGL3c/N/hxvzJ+Z/dP/0bn4n7ldltPs83v/lHw5v5O8AA/Q27F rtdn8NA/DY4eMjuvI+y8+IfIQ8buVgU/V/L4tSYPwjdWZ74R46l7/F4bT3wu dkDkG94tr1+PfIqe0WJym9tDvc4ZfBi5Cb2Qdwp7HOdl+nrYZ+dn+gu9pM3w z3pWWL4hdVB8PVtsPd22TtbDOg+UHRZ+5HrVPMMP9pVXFCdncTdhN4cvRt1a zU+9HPkjix2aB3vfu7Qex0OH4YG4IfyPFqcZ8hN0GvJ6lveKcVrXZRX6CXTX YfNTHwT99qakd82CDxfGnxv0pf3rIQ/EPOiBxn9K1/eyHjRQPKS/f0jzuT55 Rn43Y7/8c38B94Z5DrL1LMn8I+wO4B8/G/InfmDq3XhfCasLFX4/qxNdrkz7 nVR3O4XvC/q1umKh1wGHz1Fv86v67mf13Q7bF/ZKr1u2wujkEckVvk6PT+rJ 9Bb4maT1/FZ6+yftHKEr5ieux/t7zMzr8z4YhcdtteR9xjxni894fmcV/EKL G0BOIs9a/pKIzyDOgDyLI238kI23fI+Qi7EbeR1x83c3yHNu9/Y4AOjZ40Jy /Er0E4r8Na9H5nFY622d0sOjruK/ii/5erbaeqD3vRXroU4M9EI8EHFCHj8U /XQsvifH8TTTLyripLHDIe8Sj0LcCfbUNYYf12u3WX4BdXfAO/JzX8Zr4fI5 9xQ7Ke8XdsNZk2Z/+IL/em/tOvMHnJ/llwZ7utW7b6jb5+u0viPht2DfbpfH Xo99nnNjP7lO98SaxUdFPWLkjRU2D/FOPj9yCPIydnziAaRny847avdnf9j3 iYcBD08ZftyuV+WPwX/jcT5dme7Cjg+foB4Z9vrefD9ineChyp/h/nDi46I+ a5ablZdZRp4G/Bh4u8Hp07a4Yvy8vI7i/GwXi7gT4B6PonxE5LSoo6o637H/ gbSe0fqP7TYeOpif6SzWs9Pg+K/w9680vMHHN2V5L+4DcSrrLd7I42ngXx8Q fcAnidPaJfqgfjJ5e/BV1t9v8G7Dz2r7Lvxmwz2f3f2prfPDf7Uh0dPimN/j w9x/BXyR0SV5osCbDQ59ox8Rp0L+uMX31KkLjV5/Ta4rFPFGDqdektdLc/3T 69GRz4I9gLwUr2d0UJL3RvMIvE4a8+s+Unch8pWPTXHFD9RyPPMDbv8vbzJ/ itsbvB4eeQ3Ip9hv6KsH/Mm8nrB7Yacnz62if2RDnRzeH9/vWNsvdoLxpn9U 2FHqKzMe6uStHGhxoLebv2Lv3G9+dMLciTXfl8WxoveG3at9//QT410eraoX 5Oer/dYcD/zOe+v9hby/CfQmu0MxEflG983lP+Qw+MLeBG8L//LTCT4aZ+f5 W16nm3wZryPvckHON2mK+se5j2hbvE9PpPHd0S8AP96GnKdTGB2Sz06cZsh5 XpcG+A35nQ950esXgYce29dBbZc9ddtjSxvqZQCfUDE//PeVjId4F+cbPpk/ 9/8cladyPE5z+J1H6rysjvpHvm72g5/k9HH99+9Z9Zuo64/dYly290T+IPMj F6Dfuz/Z6Qz6W5z2Pxo3e5LZC5jnhTR+tJ/AAuP3zF8anP3emP0q1FcNOtua 6zE29M+zvOrwM4GfI7Xu/6Gf6M/4ZdfbPMCtXmzEufLOLDf6wK/VXUEf0A3+ 22Hbb5/Nw3dfs3nQq26we4h8RP+BM+283I7DubgfhnMHH8i1yCedGR/kD4Qe 5Pkzh2W5vYacdpjJ+eQjmB26QY+bYnFX4Bs52/Pb0acsPyLq4W82fUp9ckM+ ld+sID9F/q5Cfe8a6u17HDjr9vk5X+pS4xfmfN+yeYhz2mVw+KzHzXBexxue 79f+D6/AP+epOKr6HNPjGA/9Iye6XOnrZ78vGBw+gF5OXyj0ffSDL8qf/ILg xOtSN4S46IEEH+0/5n2tkEdUF6oh721PGt8U6xmT4r1H+0HjV1PdkOhfN5TO tyn6NaOXeJ9Vrz/OuwrdHnhaqgNRqo5R8abomTgN7md/vp9RN9zz1Vi/5+F5 Pw78Cdw37xeHHOp+6Z12LsR1M47+Lfifya/cZfG94a8wP4P6lUo/G/UzUz99 0OJR8SsqvyP8rJyL2wO5F8pfi3gVl/vxj4Mny/NsgCOvvcvif6jrPSbLKzXg rv94fVav992Vz837HoW+BJy63K/m97eh/yXxIMhPxh8a+mgSL7QrvWuj8dI7 bX7oBDxRp4J7tMy+u8zGE/+z0s7L8XOU6S3U5T7Y4q94d9FH/svXTv7+3u2j dYnJ28HORhwEdEHdH/brdRj7DW714RrqLGA/6838It6BL1hdOMX7BfxJg3/P 4Eel+MPQpwr0KfwW2Y8xGo+Af4b9ddn6nzB7p9fJ8f4B+N98vNUfj/m9bqjV c2vod1LVB0X514Ef+qmcVIGfieaHdzw8ZnD8PuhBh9r7TJ2a9wh+mfSXtXbu 1C1EPjE5KPADHtRHh/oVgbcpmR8E/pGPK/Zbr6CTOnYb7FHYMTxuGf6LX5/3 nPoS2At4V7nfxNnx3pn+G3Uin5e/GT2/L8Hba/C5a83uTl7X2zY/8WfgW/WU oy4zcsf56rvdUbEv3rdvWr4A+oz3zbK4uqhTDPwEq9dO3tWxRlfwV/z0yruq Gf8u/kp8mri9qQan7gT+8xtVt6TP1unfdfsm7/9COy/Okb5J9OU9V/Gm8HXs FszXmc+H9yDqV2Ov/GnXJY9cU94Y8xC36vlaGwxOnB7v+5tWB5t8GPonDFqe ktdHtLikiBfm3b5c3yUeEvuK973FLkV9b/A3zeDgm7hK3jPmQR7gPevNdB3v GesfNDjvNHZA3mWXg4hLeERyGPYG4I9ZvJ+/l2vt3NEHkIvoq8g5bjY454hd g3plimcJevH8yq3IFYKfq/vQJDj89iv/fvVB8/9oWsRFoh973lbWX9qiz3bu T9cW48NPKD7CPvw9eKd+gRan4fQXdhf8+PAp9WeSf7q3PFr3/8dNd5d3732u Dl8wfhF5r+xX8c/BL/D3vXrySZ/7s5Ofxm4Qea/I4cSL9Sf4qP4YerbZdXJ+ 1Gj/bfSjvkynIS+4/eqtbEeI/ku8b95/yc+Pc6VeNfz7cKvbir4K/8M/sNLm 9/7H7o+qWg/vUo+th7juA209Hfm+BPy79g602XeRIzg/6JV+2X7e0IGfN3SA HgjfJl8KfY/3nHgT9FPsYNCH1wPzepXcF/TdZXYvLN415Ff8ociLxG1+Sz9n CX6swS0eLOTpx/cfx0V8bFERH+t5O6N2SrMXPZ7l/qjXMGjzPGJyns8/JceJ Ea8Vde89b8H5kvVfLzwPeLbmJx7rs4YHj7Pts3Uif3vdaou/jbhX+HVfPpeQ 7+GzyzLdlF4fj3u/MefJ04e5IT8XOQx/EXSHHKL+DGF/93ge/BLEBZn+H3Yb i5sMO8/U/E5E3gnr4Z3psfVgB3S7AOtBb79Y8ZfUG3q39O0pdt+Qg679w2fe N3PNs54/GvP8xOLsv6nx2DF5v9Ablto81PHF30V8kdMr+IEv824SF0ocO/3m vZ/KKQa3vmNeZ4V+WYE366Pl9ULcf0m8aOnxou4Xx3+M37cirrKh/tqknKcQ fvy+NM9oPOrqinlczuOn9T+LOJvufM+8Pkr4lbGnEE9An3rqpnidJeRy9uvx meRZeDwn67F6rpGf4vGZ+HuC/+3/XSvQw/ReB/9eZON5z3I9kXXh59xjcPwN 2Gc9zgy/6SKrM4wfh7pz5ucL+zL8HnsxcVrwMeK3PE4LucjjtDx+y/Ow11q8 De8yejn59Lwj6Cn427sMjr8HfZR9ef4779uT9p4D9/fQ5LrC4/Px92BXwO9d UZcq4n/g3/Ah+YsjDhd+4P3Gc7+fltqTxtfV1yfOzednHx7f0GHzEx8I/eb4 2XX072ro0+p8l7hN/CfWXzLoAX3V4yrxL5t/oaFO2k+yX6w8WP565EWPG+Ce 5TiDzjr1lYhT/qj8+5wb/n2PP2T9s22/nOOXhbfwmxr/Rz+w/mfU5yjl78Wu FXmb8Mm/FH/kJ/oJ7yj9Y6g/hF0APxv1UcAfei3vZnvC38ToU+Bwz/+UvS70 9nenfOKmelOOf4p3lnzF4bTO348X/LlEjxEHEXicoP32V+wLO8F6g9MXy/og Kp6lLfKT16TvN0d+0wobb/0sY73Yc/rS91vC7xh6WOZjQS/0W8aPSJ0d6glu NTryfGTsyehr9Ik8MJ1Pd+jbfyI4/p7wI96Q4dZvzvvyRJ6c+5nwP+Fn4tyO tO9yz9z/1G/nKXtq9P1YYnDqH/cmehm1y/Bd4NY/pPyM3gfkMvJrgFOHiP4+ nzB5i3rgD6d9d1PXOOqiU+ccudjvCfrq+jTPaN8e72fs/aB5N3hfqEtJnA9x bPjTNmb7aNihWC/vbbvJtfC9IwwPxL2YPlnau91gF3N7GePhd+o7FPFaHifH ejw+j/3ybqrPWeCT+Db6zD5j84Af+mLtUpwPfQ6JwyWPtM/wk+2yLTH/0vyu RDy7979hHvyKVs+7QH/bbvoTdkL6n68WHL+V5dFGXsdd+Z0qrN9ajLc8nbDL mR8w5AjiJzaZXWi5zR/9iIyukRu9zojbDbz/+WsW13aQ1rEw/12sE72O+4Uc 5XmI3t+EvFL4o/Sb4mPGV8gHIX6Jd4k6h6Jn4tbKi/X3p1fM857XPvjYYY8O hf9hmslhnldl/tiS+ki7U3+R0fPZYe+P53m5vOh5amfa+onzYTz2EMtjLzw/ 3MezfvSgXvmReDeQ628VnpnnWtsX9Mi8+Km4H9hZeT/xb5AHvMLwc7b2+XH9 fEb7fQb/qt0/4pqO0TnOy+cY9h/vg44csTDfm9LqhxGHE/Uz8HeKb5TiD/Tj aKgvwDo9D5m4mx1ZLikGxG94J5CzyQP3eHp7T0KP8H5S3Ev8WO4P4F30eFbi XD1uFbsm/hPOU3oJ+28Y73yHdS/aP/025AkMGl+R3BZxXhvz+1xQTxG+d7D5 A3hvTxW9qa9ZgXzxRqLrdZGvyL0ZkcOXRzwy9K5+w6EP0XfsdNXHQ2+fbnD0 y5b03eVRR9z9Kx7nQfwHfrExNp442eMER29mv/R1H6f9zrP9XqD1LLR94df+ XevfvfXwkhm16Buo/39TcO8n5OOX2XivO3jfvr7pd0acK37N+wVnH/SdQ2/w +A3ys14UvSAHKL4WvRP7dtwz67MZeYnIE9ijwDf0v9Xg4M/zFZkHO5j7w4gz wW8Ofoiv5Tz57ivp3MJfFt8FPt++q/c17G/TDb7E4JtzPYR4xzabvM78Z5rc PzbbnaKOH/XlDj4tyWeh32EPAH678Sv4B/KxyVvxTnhd3ajnJDh5BvAp6o30 2nirhxN29XUWP8G6Z9u6ltp6uw3ufm6+Vxrc4wV9Hv8e63B/mOdX8a8q78rh I3aWVstbmlT3vhz45fg77NTuR8QeLXt8/aEcj9bgD0Dec/8BfgXLW4WvlX5f kQeoLzjR8HNixXer8vCIN7xZ+MFe7/VP0B+wx2A/6U/rHtXTkU+xD3l9FY/n xs58jsnHR1TsB/ziD6E+0A3mH6jy27gfBrxb3IviCmfVBgxfXu+KeULfEV3L Xht5SEMJvir6wsFfiWdpzfw07AfTM58Ke8P+4whH/dc32f7Jd0M+Au51GcjX nS449bbJi+YdJT7pIr3L9OvI9vKWmuUzRz4adn/8VZfpfD1elvhIjwflXnrf v43K65oqOH6vEfvNJs+3CDw8bes5w/DsfIjv+Pfdjr/Xzp91WX3DhrxG8sqQ 17Bbel6Z4+9xg6uObM3jHayfjsVNzGqIU4AueE9fMPxV0Z3Pg32WOI9LslwX epP8G5GPAlz5/KE3w0fln6thx8b+95lMV2XF+kq/R/C7OcaP4Wu70jonRhzp USb3etwSfJZ6nMjV8E2PWzL6DD5ofCDOwfN4nW6dv9PHzfk4/N35NfNMsfVg L3D+yD3dkvX2qPO9INeHLLBr4Kf1vDTvJ07eG/Yn5Evun9cN8Xj5hjro+kme APYi9NJfaH29WrfVjW6oV+L9GafbvN6Xt6r/qdnPGtbHujMdzKr7/au639C9 x/34PYa+4M/A9Q4Tr0D/sai39bjWQx0u5C7nT/At8i0U39DAn+BbxOmwTtW9 x9/b8M75u8L6qet8teV/8P573kYVnxupz7Yp+kbg73if7ETeb4B+j/SZ9D6Q K2w87wV97HP93NF4SN5t8sQ68v0OOHlfyOXgjfH4uaibNTnz14A/af4X8rmx k2b/XnPEmw7YOa2tgLtfifxm5WeWz0uv4d7PML0Ef/7rNi/6PHVXN8hPGv5k welvhr+d9/gG2SmZB3oc1jzYPWQPkf93VdTdmZfOdXnEBXi8AP4H7yeMH8P9 G7yP3ifE4n8ibpC4T+K3iAetistzfRi77Jz8vfAHYYdz+xx2O7fnWfxSvEub 8rxR98PtkfDJZfl7YY/st33xHpqdD327sLqTYS+8Nsd9hlyGve9SxRvAf76m 8fTpxd5AvZlbZOfAHkP9IdldIv4Iu2SP4bPM72D4m87N8lCsk3eWOKmoHy84 cVKsP8sr68Lugp2/4twb+nBV9Uc7M8sT0Z8Lv8YW85e5fYh7e5XZ1YY0HjsQ 9iHG837ST8zjxL2f2Dqz3/Ub/2m1/W3L/izixoKOsNt7XrP6yUZcyxj5wXbl eLPwG0Pf7qf1ePbh/L24n5ZH3RDnuyTP1xD33Zb5bsgt1BM9Peux0Zc111nv jnxh9bGGr0Wede6fOBpHQF815FfkbKtPG34r7Freb9b7xz5t68TfRLwxcU3k RSHHr7Z9ef8gkxtLz79EL5pieIUPWVxs5NFfa3wZ/6DHX7Bf+gptzvJ4xFmA T85lnOn3L5l+4H14vO6D99vxPjzDsjPD76g3d66+Sz1U/AZ6V6Mex0aDzzG4 +a+jDsf1lseKfe36TK8Rr3iz1bnbmvbV1eCvwI9BHMMag7vfg7y42zKfiXf5 ycxnCuxZ3u9xvel9xNGSL5XrPSwnPj7kA+pGQC9DNg/fzX7XdZHPDf9o0v3g /qEfodfjRyVvFH/Qs6Jr/LP0Gct20Vlh76VvDnpGr+Ceh8B46orBnyT/Y++t od8wj8clYx9WfYyw000xfsV4+BLxcOMtr87s1TWzX9S93hhx1th1gc81OQi5 6hmDe50w60sj+bo34pKIr7F+XmH3J4+p3eapmzzlflbiXs2v0VCPpyJvK+Jc eb/ht95vw+T/0JcURxj903ak81lc4736kM5XclzkF09P+lhLnfMfa/TF/jzO qCffo6AL13+kR1k9vkmu1zbYf1bafnnHvI5CjLd5uDfYsbxPJ/4C7HzwMd4P 8wOF3Qs7E37bd/IXTMn6ZvgLDN/hL+Ceb1L/LL+3jifPP8BfwP0hzrzKL/CY wbmfyEPghfHIb/mdaI73rJ7k8ZaoT/5+7ZN+v7zHDyU8ttSq6llgL1mT56+M m/d1jhO8qq5Bld1+VdbH3b4afvQLbX4/J+zwc/N6ww5v/fHCDo9/piWNH5Vn ct+ciAdusMOD15fvyHZ49HLyDm/M78c72uMeze9Z5M9BFyYnNNjhG+694NAz 50S9Cb6DP408pn77O/q8YH/zvEf8Ovn9/f152z58f1V1VjyuAbq0PuChh47P +wu8cv+8joi/48A3ZvsG8VENebC8W+gR6HFVcZDEPVldPs+D9Xc14F6npMn0 hbCL23vI/Sav2+pNRRwk3yVuhT5txAPD/6jv82XJA0emuj+d0XeNvELrlxrv 8nPf+tNnh+7uoG54jD9z7xP3Hvjgyhr1U+krdp3kavRh3nPgyJXZLhr5X/G+ ORw5Ynumr7hX1C991uDfzvXhRu8heLXxAxnvIYd53CdyGPlU7rfF3pjr5jfX 8KN81/Q59B/wj3/Z+xlAz+DxTfsucPqZAff+Z8Cr5K7eTJ+VfdqA813iTQYy vYedEPrF/k49yCslZ3h/r3uyva2hjzTngb8bORB7KXkde4Rn7BN/JL7/afGz ror9et8v3l/iW70/MP1XLsr3LuwrC/M9Db8J/gr4G3wY/gc/x37k9Qcy/3wg xhufr3veu+Sg6IcJ33S+znvm/WrhT50Gh997/Ujmd/3D7ZHwAeOvce/dLgDf Rz6YVyG3EEd47764wGfqVuc25LqZNg/2lGGL/6NuO/IEcenk4Xr9d9bZB/9O cnlLbWvmD8Vaze/926yvm8cLNPRpoy+J943g/qiuQLyzxO8YXYW87P29uJ/8 vceJzcn7j/dxpvWloF8FfSnoP0zdDO+vgH2U795m472/AnDPSyQeErj3K/Z+ Cd5HwfseY7eZaXSI3rXY4N4PDDj1QWbZeO9nZnJJ0Bd1EHlHvd4Pdsqtif4n 1rFHQuerRYe8F0eO3/96uGfIMeh7B5l+DV/N+ZVNweeZj/pN6PvwefRx8gPR x6l/5PWSqI8g/35D3Sb2McHkHOpUEu9+CH1VtQ+v84T9BPmGdyX3iw4/dUl/ aX4Cx0/E+pFHPM+fvNYD7B98gDqzXk+OuqXWnzXqHEGP1L3xOkfUP0JObrX3 SHZt5SPHO1lw38D/DuXJIy8hv20T/C6T38hjxm6LPHOh7KL4x6iPBj6Q0w4d n+Sr+C73RnJa3euYDyW6G+2jgX+YdVFfQHiL/Or5Nk97fv9CfiJ/mz4gyBf4 GeBTVfWDgHu9IeoQdRkdUF+Kd8D1feIP3kj8oSnqqXnckdffRF/E3/CijQcv fPcevcucF/Iv993rAqBftuZzD7sEcob7wdQfsHaH1e+mrvcPDO5xVOwzx+tO C32ZOj2/Mf2ad5N4Oe7LTNNDWaf61ZfU9aW+Un5nR+0Trp9YH/rQH7y+issn 3m/D67q05nf4HePcsr38gZrlaYedxPtzMJ/X4efv96i+7e2Z3oNvX298O+Qb 0zeBcw+xu6NnoA8NvwOc92RRXm9DHBT8w+pFlcSfof+73gffZjz3AL6BP4o8 Vddn6fdr+cehd1I382azp3r/APbn/QOws2CP9b4T3icAPdjr+KMvss4muzfe x3W9wZvz+uLeSD4vr9x/PHODXYrf+cl+OirsQ/Sdpz6r18PFvmV5x3HfLxNf oq499e7PzfWao949dTrAE3wUOHob/lnqLWA/euEd4MSLub9syOiZ+gTERSGH wS/cHsff+/vBuzLB7q29rw31xd3PhBy2PtNVyFVeb8n0ooZ6S9ZXM/gl54m8 NRIH1OJ2zJDzIk7U8Mc5ef8T4nEv175fzP7l0J93K37e64txv3nPDjb9An1p jMEH7T7xPrndk/vndQSr6lRjNyJPHLrlXfT3kvUA93p42LW87i7xHfjN5e+v uzyKnGp6R9TRdLkWedflm/Az7H8dDX4a5B7iU5gX//8iow/kVOw/S4we87vb mJ/lcOLmvB8X+aKe35PljdF8JfxTb9t68X95/xbum72jdX93mafd1hl5kGa3 8XuU+yo01xcZPYI35+/vVP+bejAWrxl2eMvfp49ceU3OW2/wt/FOEL/jcjLx uyeZP8f7IcCXDrB/rN/6e3p9xIZ6C/z9TRa34PUJrA5r+DVY38qM9/hOlZ/H 6dLiFyNubW6ep/R39v8CN4KXmA== "]], {Opacity[0.2], PolyhedronBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[29]=",ExpressionUUID->"30BB6E38-ED6E-44D9-9C28-2F722ACFB64C"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Length", "[", RowBox[{"pts2", "=", RowBox[{"DeleteDuplicates", "[", RowBox[{"Map", "[", RowBox[{"ToAlgebraicRoot", ",", "pts", ",", RowBox[{"{", "2", "}"}]}], "]"}], "]"}]}], "]"}], "//", "Quiet"}], "//", "Timing"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[30]:=",ExpressionUUID->"3F6897FA-FC16-4B89-8C07-C8B6013A756C"], Cell[BoxData[ RowBox[{"{", RowBox[{"4874.510725`", ",", "102"}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[30]=",ExpressionUUID->"275EC737-7524-46FC-82A9-8423F3B2FA26"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", "grouped", "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[31]:=",ExpressionUUID->"773F15C9-1429-4158-9DDA-58F1DE98DD93"], Cell[BoxData["102"], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[31]=",ExpressionUUID->"CB305308-D533-424B-AFFF-B617FC9D1F7E"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"AbsolutePointSize", "[", "5", "]"}], ",", RowBox[{"Point", "[", "pts2", "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".2", "]"}], ",", "p"}], "}"}], ",", "Red", ",", RowBox[{"ConvexHullRegion", "[", "pts2", "]"}]}], "}"}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[32]:=",ExpressionUUID->"2CB2A7C2-0B59-46FC-8A53-31EAE1063975"], Cell[BoxData[ Graphics3DBox[ {AbsolutePointSize[5], Point3DBox[ NCache[{{Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, {Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0}, {Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, {Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0}, {Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { 0, Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 1, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0, 0}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0, 0}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 4, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { 0, 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { 0, 0, Root[1 - 6 #^2 + 4 #^4& , 3, 0]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0]}}, {{-0.2477510577926871, -0.15311857446462013`, \ -0.30623714892924025`}, {-0.13504537836886324`, -0.21850801222441055`, \ -0.35355339059327373`}, {-0.21850801222441055`, 0, -0.35355339059327373`}, {-0.09463248332806698, \ -0.09463248332806698, -0.40086963225730726`}, { 0.2477510577926871, -0.15311857446462013`, -0.30623714892924025`}, { 0.13504537836886324`, -0.21850801222441055`, -0.35355339059327373`}, { 0.21850801222441055`, -0.35355339059327373`, -0.13504537836886324`}, { 0.35355339059327373`, -0.13504537836886324`, -0.21850801222441055`}, { 0.15311857446462013`, -0.30623714892924025`, -0.2477510577926871}, { 0.30623714892924025`, -0.2477510577926871, -0.15311857446462013`}, \ {-0.35355339059327373`, -0.21850801222441055`, 0}, {-0.35355339059327373`, -0.13504537836886324`, 0.21850801222441055`}, {-0.40086963225730726`, -0.09463248332806698, 0.09463248332806698}, {-0.30623714892924025`, -0.2477510577926871, 0.15311857446462013`}, { 0, -0.35355339059327373`, 0.21850801222441055`}, { 0.21850801222441055`, -0.35355339059327373`, 0.13504537836886324`}, { 0.09463248332806698, -0.40086963225730726`, 0.09463248332806698}, { 0.15311857446462013`, -0.30623714892924025`, 0.2477510577926871}, { 0.35355339059327373`, 0.21850801222441055`, 0}, {0.35355339059327373`, 0.13504537836886324`, -0.21850801222441055`}, {0.40086963225730726`, 0.09463248332806698, -0.09463248332806698}, {0.30623714892924025`, 0.2477510577926871, -0.15311857446462013`}, { 0, 0.35355339059327373`, -0.21850801222441055`}, {-0.21850801222441055`, 0.35355339059327373`, -0.13504537836886324`}, {-0.09463248332806698, 0.40086963225730726`, -0.09463248332806698}, {-0.15311857446462013`, 0.30623714892924025`, -0.2477510577926871}, {0.2477510577926871, 0.15311857446462013`, 0.30623714892924025`}, {0.13504537836886324`, 0.21850801222441055`, 0.35355339059327373`}, { 0.21850801222441055`, 0, 0.35355339059327373`}, {0.09463248332806698, 0.09463248332806698, 0.40086963225730726`}, {-0.2477510577926871, 0.15311857446462013`, 0.30623714892924025`}, {-0.13504537836886324`, 0.21850801222441055`, 0.35355339059327373`}, {-0.35355339059327373`, 0.13504537836886324`, 0.21850801222441055`}, {-0.21850801222441055`, 0.35355339059327373`, 0.13504537836886324`}, {-0.15311857446462013`, 0.30623714892924025`, 0.2477510577926871}, {-0.30623714892924025`, 0.2477510577926871, 0.15311857446462013`}, {-0.21850801222441055`, -0.35355339059327373`, \ -0.13504537836886324`}, {-0.30623714892924025`, -0.2477510577926871, \ -0.15311857446462013`}, {-0.35355339059327373`, -0.13504537836886324`, \ -0.21850801222441055`}, {-0.15311857446462013`, -0.30623714892924025`, \ -0.2477510577926871}, {0.21850801222441055`, 0, -0.35355339059327373`}, { 0.09463248332806698, -0.09463248332806698, -0.40086963225730726`}, \ {-0.15311857446462013`, -0.30623714892924025`, 0.2477510577926871}, {-0.09463248332806698, -0.40086963225730726`, 0.09463248332806698}, {-0.21850801222441055`, -0.35355339059327373`, 0.13504537836886324`}, { 0.35355339059327373`, -0.21850801222441055`, 0}, { 0.35355339059327373`, -0.13504537836886324`, 0.21850801222441055`}, { 0.40086963225730726`, -0.09463248332806698, 0.09463248332806698}, { 0.30623714892924025`, -0.2477510577926871, 0.15311857446462013`}, { 0.15311857446462013`, 0.30623714892924025`, -0.2477510577926871}, { 0.09463248332806698, 0.40086963225730726`, -0.09463248332806698}, { 0.21850801222441055`, 0.35355339059327373`, -0.13504537836886324`}, {-0.35355339059327373`, 0.21850801222441055`, 0}, {-0.35355339059327373`, 0.13504537836886324`, -0.21850801222441055`}, {-0.40086963225730726`, 0.09463248332806698, -0.09463248332806698}, {-0.30623714892924025`, 0.2477510577926871, -0.15311857446462013`}, {0.21850801222441055`, 0.35355339059327373`, 0.13504537836886324`}, {0.30623714892924025`, 0.2477510577926871, 0.15311857446462013`}, {0.35355339059327373`, 0.13504537836886324`, 0.21850801222441055`}, {0.15311857446462013`, 0.30623714892924025`, 0.2477510577926871}, {-0.21850801222441055`, 0, 0.35355339059327373`}, {-0.09463248332806698, 0.09463248332806698, 0.40086963225730726`}, {-0.2477510577926871, -0.3423835411207541, 0}, { 0.09463248332806698, -0.40086963225730726`, -0.09463248332806698}, { 0, -0.4370160244488211, 0}, { 0.2477510577926871, -0.3423835411207541, 0}, {-0.3423835411207541, 0, 0.2477510577926871}, {0.13504537836886324`, -0.21850801222441055`, 0.35355339059327373`}, {0.2477510577926871, -0.15311857446462013`, 0.30623714892924025`}, {0.09463248332806698, -0.09463248332806698, 0.40086963225730726`}, { 0.3423835411207541, 0, -0.2477510577926871}, {-0.13504537836886324`, 0.21850801222441055`, -0.35355339059327373`}, {-0.2477510577926871, 0.15311857446462013`, -0.30623714892924025`}, {-0.09463248332806698, 0.09463248332806698, -0.40086963225730726`}, { 0.2477510577926871, 0.3423835411207541, 0}, {-0.09463248332806698, 0.40086963225730726`, 0.09463248332806698}, { 0, 0.4370160244488211, 0}, {-0.2477510577926871, 0.3423835411207541, 0}, {-0.3423835411207541, 0, -0.2477510577926871}, { 0, -0.35355339059327373`, -0.21850801222441055`}, {-0.4370160244488211, 0, 0}, {-0.40086963225730726`, 0.09463248332806698, 0.09463248332806698}, {-0.13504537836886324`, -0.21850801222441055`, 0.35355339059327373`}, {0, -0.2477510577926871, 0.3423835411207541}, { 0.4370160244488211, 0, 0}, { 0.40086963225730726`, -0.09463248332806698, -0.09463248332806698}, { 0.13504537836886324`, 0.21850801222441055`, -0.35355339059327373`}, { 0, 0.2477510577926871, -0.3423835411207541}, { 0.3423835411207541, 0, 0.2477510577926871}, { 0, 0.35355339059327373`, 0.21850801222441055`}, {-0.09463248332806698, -0.40086963225730726`, \ -0.09463248332806698}, {-0.09463248332806698, -0.09463248332806698, 0.40086963225730726`}, {-0.2477510577926871, -0.15311857446462013`, 0.30623714892924025`}, {0.09463248332806698, 0.09463248332806698, -0.40086963225730726`}, {0.2477510577926871, 0.15311857446462013`, -0.30623714892924025`}, {0.09463248332806698, 0.40086963225730726`, 0.09463248332806698}, {0.40086963225730726`, 0.09463248332806698, 0.09463248332806698}, {-0.40086963225730726`, -0.09463248332806698, \ -0.09463248332806698}, {0, 0, -0.4370160244488211}, { 0, 0, 0.4370160244488211}, { 0, -0.2477510577926871, -0.3423835411207541}, { 0, 0.2477510577926871, 0.3423835411207541}}]], {Opacity[0.2], PolyhedronBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, {RGBColor[1, 0, 0], PolyhedronBox[ NCache[{{Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, {Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0}, {Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, {Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0}, {Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { 0, Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 1, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0, 0}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0, 0}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[ 1 - 46 #^2 + 484 #^4& , 4, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[ 1 - 24 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0], Root[ 1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0], Root[ 1 - 116 #^2 + 484 #^4& , 2, 0]}, { 0, 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { 0, 0, Root[1 - 6 #^2 + 4 #^4& , 3, 0]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[ 25 - 270 #^2 + 484 #^4& , 2, 0]}, { 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[ 25 - 270 #^2 + 484 #^4& , 3, 0]}}, {{-0.2477510577926871, -0.15311857446462013`, \ -0.30623714892924025`}, {-0.13504537836886324`, -0.21850801222441055`, \ -0.35355339059327373`}, {-0.21850801222441055`, 0, -0.35355339059327373`}, {-0.09463248332806698, \ -0.09463248332806698, -0.40086963225730726`}, { 0.2477510577926871, -0.15311857446462013`, -0.30623714892924025`}, { 0.13504537836886324`, -0.21850801222441055`, -0.35355339059327373`}, { 0.21850801222441055`, -0.35355339059327373`, -0.13504537836886324`}, { 0.35355339059327373`, -0.13504537836886324`, -0.21850801222441055`}, { 0.15311857446462013`, -0.30623714892924025`, -0.2477510577926871}, { 0.30623714892924025`, -0.2477510577926871, -0.15311857446462013`}, \ {-0.35355339059327373`, -0.21850801222441055`, 0}, {-0.35355339059327373`, -0.13504537836886324`, 0.21850801222441055`}, {-0.40086963225730726`, -0.09463248332806698, 0.09463248332806698}, {-0.30623714892924025`, -0.2477510577926871, 0.15311857446462013`}, { 0, -0.35355339059327373`, 0.21850801222441055`}, { 0.21850801222441055`, -0.35355339059327373`, 0.13504537836886324`}, { 0.09463248332806698, -0.40086963225730726`, 0.09463248332806698}, { 0.15311857446462013`, -0.30623714892924025`, 0.2477510577926871}, { 0.35355339059327373`, 0.21850801222441055`, 0}, {0.35355339059327373`, 0.13504537836886324`, -0.21850801222441055`}, {0.40086963225730726`, 0.09463248332806698, -0.09463248332806698}, {0.30623714892924025`, 0.2477510577926871, -0.15311857446462013`}, { 0, 0.35355339059327373`, -0.21850801222441055`}, \ {-0.21850801222441055`, 0.35355339059327373`, -0.13504537836886324`}, {-0.09463248332806698, 0.40086963225730726`, -0.09463248332806698}, {-0.15311857446462013`, 0.30623714892924025`, -0.2477510577926871}, {0.2477510577926871, 0.15311857446462013`, 0.30623714892924025`}, {0.13504537836886324`, 0.21850801222441055`, 0.35355339059327373`}, { 0.21850801222441055`, 0, 0.35355339059327373`}, {0.09463248332806698, 0.09463248332806698, 0.40086963225730726`}, {-0.2477510577926871, 0.15311857446462013`, 0.30623714892924025`}, {-0.13504537836886324`, 0.21850801222441055`, 0.35355339059327373`}, {-0.35355339059327373`, 0.13504537836886324`, 0.21850801222441055`}, {-0.21850801222441055`, 0.35355339059327373`, 0.13504537836886324`}, {-0.15311857446462013`, 0.30623714892924025`, 0.2477510577926871}, {-0.30623714892924025`, 0.2477510577926871, 0.15311857446462013`}, {-0.21850801222441055`, -0.35355339059327373`, \ -0.13504537836886324`}, {-0.30623714892924025`, -0.2477510577926871, \ -0.15311857446462013`}, {-0.35355339059327373`, -0.13504537836886324`, \ -0.21850801222441055`}, {-0.15311857446462013`, -0.30623714892924025`, \ -0.2477510577926871}, {0.21850801222441055`, 0, -0.35355339059327373`}, { 0.09463248332806698, -0.09463248332806698, -0.40086963225730726`}, \ {-0.15311857446462013`, -0.30623714892924025`, 0.2477510577926871}, {-0.09463248332806698, -0.40086963225730726`, 0.09463248332806698}, {-0.21850801222441055`, -0.35355339059327373`, 0.13504537836886324`}, { 0.35355339059327373`, -0.21850801222441055`, 0}, { 0.35355339059327373`, -0.13504537836886324`, 0.21850801222441055`}, { 0.40086963225730726`, -0.09463248332806698, 0.09463248332806698}, { 0.30623714892924025`, -0.2477510577926871, 0.15311857446462013`}, { 0.15311857446462013`, 0.30623714892924025`, -0.2477510577926871}, { 0.09463248332806698, 0.40086963225730726`, -0.09463248332806698}, { 0.21850801222441055`, 0.35355339059327373`, -0.13504537836886324`}, {-0.35355339059327373`, 0.21850801222441055`, 0}, {-0.35355339059327373`, 0.13504537836886324`, -0.21850801222441055`}, {-0.40086963225730726`, 0.09463248332806698, -0.09463248332806698}, {-0.30623714892924025`, 0.2477510577926871, -0.15311857446462013`}, {0.21850801222441055`, 0.35355339059327373`, 0.13504537836886324`}, {0.30623714892924025`, 0.2477510577926871, 0.15311857446462013`}, {0.35355339059327373`, 0.13504537836886324`, 0.21850801222441055`}, {0.15311857446462013`, 0.30623714892924025`, 0.2477510577926871}, {-0.21850801222441055`, 0, 0.35355339059327373`}, {-0.09463248332806698, 0.09463248332806698, 0.40086963225730726`}, {-0.2477510577926871, -0.3423835411207541, 0}, { 0.09463248332806698, -0.40086963225730726`, -0.09463248332806698}, { 0, -0.4370160244488211, 0}, { 0.2477510577926871, -0.3423835411207541, 0}, {-0.3423835411207541, 0, 0.2477510577926871}, {0.13504537836886324`, -0.21850801222441055`, 0.35355339059327373`}, {0.2477510577926871, -0.15311857446462013`, 0.30623714892924025`}, {0.09463248332806698, -0.09463248332806698, 0.40086963225730726`}, { 0.3423835411207541, 0, -0.2477510577926871}, {-0.13504537836886324`, 0.21850801222441055`, -0.35355339059327373`}, {-0.2477510577926871, 0.15311857446462013`, -0.30623714892924025`}, {-0.09463248332806698, 0.09463248332806698, -0.40086963225730726`}, { 0.2477510577926871, 0.3423835411207541, 0}, {-0.09463248332806698, 0.40086963225730726`, 0.09463248332806698}, { 0, 0.4370160244488211, 0}, {-0.2477510577926871, 0.3423835411207541, 0}, {-0.3423835411207541, 0, -0.2477510577926871}, { 0, -0.35355339059327373`, -0.21850801222441055`}, {-0.4370160244488211, 0, 0}, {-0.40086963225730726`, 0.09463248332806698, 0.09463248332806698}, {-0.13504537836886324`, -0.21850801222441055`, 0.35355339059327373`}, {0, -0.2477510577926871, 0.3423835411207541}, { 0.4370160244488211, 0, 0}, { 0.40086963225730726`, -0.09463248332806698, -0.09463248332806698}, { 0.13504537836886324`, 0.21850801222441055`, -0.35355339059327373`}, { 0, 0.2477510577926871, -0.3423835411207541}, { 0.3423835411207541, 0, 0.2477510577926871}, { 0, 0.35355339059327373`, 0.21850801222441055`}, {-0.09463248332806698, -0.40086963225730726`, \ -0.09463248332806698}, {-0.09463248332806698, -0.09463248332806698, 0.40086963225730726`}, {-0.2477510577926871, -0.15311857446462013`, 0.30623714892924025`}, {0.09463248332806698, 0.09463248332806698, -0.40086963225730726`}, {0.2477510577926871, 0.15311857446462013`, -0.30623714892924025`}, {0.09463248332806698, 0.40086963225730726`, 0.09463248332806698}, {0.40086963225730726`, 0.09463248332806698, 0.09463248332806698}, {-0.40086963225730726`, -0.09463248332806698, \ -0.09463248332806698}, {0, 0, -0.4370160244488211}, { 0, 0, 0.4370160244488211}, { 0, -0.2477510577926871, -0.3423835411207541}, { 0, 0.2477510577926871, 0.3423835411207541}}], {{4, 2, 1, 3}, {39, 79, 3, 1}, {81, 98, 11, 13}, {39, 38, 11, 98}, {1, 2, 40, 37, 38, 39}, {37, 40, 80, 91}, {40, 2, 101, 80}, {91, 80, 64, 65}, {4, 99, 42, 6, 101, 2}, {83, 92, 61, 93}, {92, 100, 62, 61}, {13, 11, 14, 12}, {11, 38, 37, 63}, {45, 14, 11, 63}, {12, 14, 45, 43, 83, 93}, {91, 65, 44, 45, 63, 37}, {65, 17, 15, 44}, {43, 45, 44, 15}, {17, 16, 18, 15}, {83, 43, 15, 84}, {18, 68, 84, 15}, {93, 61, 67, 12}, {61, 62, 32, 31}, {33, 67, 61, 31}, {21, 20, 22, 19}, {22, 52, 75, 19}, {25, 77, 51, 23}, {52, 50, 23, 51}, {22, 20, 95, 87, 50, 52}, {20, 71, 41, 95}, {42, 99, 94, 41}, {87, 95, 41, 94}, {47, 49, 46, 48}, {80, 101, 6, 9}, {64, 80, 9, 7}, {85, 21, 19, 97}, {19, 75, 57, 58}, {16, 49, 47, 69, 68, 18}, {83, 84, 68, 70, 100, 92}, {68, 69, 29, 70}, {100, 70, 29, 30}, {97, 19, 58, 59}, {79, 39, 98, 81, 55, 54}, {54, 55, 53, 56}, {77, 25, 24, 78, 34, 76}, {24, 56, 53, 78}, {32, 35, 34, 36, 33, 31}, {34, 78, 53, 36}, {81, 13, 12, 67, 33, 82}, {55, 81, 82, 53}, {33, 36, 53, 82}, {79, 54, 73, 3}, {99, 4, 3, 74}, {73, 72, 74, 3}, {99, 74, 72, 88, 87, 94}, {50, 87, 88, 23}, {56, 24, 26, 72, 73, 54}, {24, 25, 23, 26}, {88, 72, 26, 23}, {71, 20, 21, 85, 86, 8}, {48, 46, 86, 85}, {10, 8, 86, 46}, {8, 10, 7, 9, 6, 5}, {6, 42, 41, 5}, {41, 71, 8, 5}, {17, 65, 64, 7, 66, 16}, {49, 16, 66, 46}, {7, 10, 46, 66}, {76, 34, 35, 90}, {28, 30, 29, 27}, {47, 48, 85, 97, 59, 89}, {69, 47, 89, 29}, {59, 27, 29, 89}, {52, 51, 77, 96, 57, 75}, {77, 76, 90, 96}, {58, 57, 60, 28, 27, 59}, {57, 96, 90, 60}, { 100, 30, 28, 102, 32, 62}, {35, 32, 102, 90}, {28, 60, 90, 102}}]}}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[32]=",ExpressionUUID->"9800E656-1A2B-41E0-9E71-B6E5A2D7CFAD"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vexact", "=", "pts2"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[33]:=",ExpressionUUID->"B28CE803-BDB3-472A-A64C-F89CEFC8A8E5"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", "0", ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", "0", ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", "0", ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"] , ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", "0", ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34238354112075408686166611005319282413`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.43701602444882109432811034821497742087`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34238354112075408686166611005319282413`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34238354112075408686166611005319282413`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 2, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34238354112075408686166611005319282413`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34238354112075408686166611005319282413`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.43701602444882109432811034821497742087`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34238354112075408686166611005319282413`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34238354112075408686166611005319282413`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 2, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.43701602444882109432811034821497742087`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 2, 0]], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34238354112075408686166611005319282413`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.43701602444882109432811034821497742087`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 3, 0]], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34238354112075408686166611005319282413`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34238354112075408686166611005319282413`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.43701602444882109432811034821497742087`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.43701602444882109432811034821497742087`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34238354112075408686166611005319282413`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34238354112075408686166611005319282413`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 3, 0]]}], "}"}]}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[33]=",ExpressionUUID->"884053CC-B88C-4DC1-B2BD-0B2F74B5C29A"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Exact interior", "Subsubsection",ExpressionUUID->"A108409F-3858-4A8E-904D-87E6ADF7CE2A"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"inthull", "=", RowBox[{"ConvexHullRegion", "[", RowBox[{"Union", "@", "vexact"}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[34]:=",ExpressionUUID->"5BB686D7-2E1B-447F-AF76-083A95FD59DF"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, {0, 0, Root[1 - 6 #^2 + 4 #^4& , 3, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0}, {0, Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0}, {0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0]}, {0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0]}, {0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0]}, {0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, {Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, {Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, {Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, {Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0, 0}, { Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0, 0}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}}, {{25, 75, 17, 76}, {79, 26, 80, 23}, {17, 75, 13, 47}, {27, 93, 35, 59}, {93, 13, 55, 35}, {75, 25, 77, 15, 55, 13}, {77, 25, 78, 18}, {28, 60, 36, 94}, {78, 25, 76, 14, 56, 16}, {94, 36, 56, 14}, {79, 23, 51, 19}, {81, 26, 79, 19, 57, 21}, {57, 19, 99, 41}, {31, 67, 41, 99}, {21, 57, 41, 101}, {67, 1, 69, 41}, { 33, 101, 41, 69}, {35, 55, 15, 95}, {59, 35, 61, 1}, {35, 95, 29, 61}, {78, 16, 50, 18}, {26, 82, 22, 58, 20, 80}, {2, 60, 28, 10, 32, 68}, {20, 58, 42, 100}, {68, 32, 100, 42}, {58, 22, 102, 42}, {2, 68, 42, 70}, {102, 34, 70, 42}, {1, 67, 31, 9, 27, 59}, {13, 93, 27, 83, 37, 47}, {27, 9, 3, 83}, {63, 37, 83, 3}, {99, 19, 51, 43, 87, 31}, {9, 31, 87, 3}, {7, 63, 3, 71}, {87, 43, 71, 3}, {76, 17, 48, 14}, {47, 37, 91, 17}, {38, 48, 17, 91}, {94, 14, 48, 38, 84, 28}, {10, 28, 84, 4}, {63, 7, 64, 38, 91, 37}, {84, 38, 64, 4}, {23, 80, 20, 52}, {43, 51, 23, 97}, {52, 44, 97, 23}, {52, 20, 100, 32, 88, 44}, {32, 10, 4, 88}, {7, 71, 43, 97, 44, 72}, {64, 7, 72, 4}, {44, 88, 4, 72}, {77, 18, 49, 15}, {33, 89, 45, 53, 21, 101}, {22, 82, 24, 54}, {82, 26, 81, 24}, {81, 21, 53, 24}, {36, 60, 2, 62}, {56, 36, 96, 16}, {62, 30, 96, 36}, {29, 95, 15, 49, 39, 85}, {1, 61, 29, 11, 33, 69}, {89, 33, 11, 5}, {29, 85, 5, 11}, {45, 89, 5, 73}, {46, 54, 24, 98}, {53, 45, 98, 24}, {73, 8, 74, 46, 98, 45}, {8, 66, 6, 74}, {102, 22, 54, 46, 90, 34}, {46, 74, 6, 90}, {50, 16, 96, 30, 86, 40}, {66, 40, 86, 6}, {62, 2, 70, 34, 12, 30}, {34, 90, 6, 12}, {86, 30, 12, 6}, {8, 73, 5, 65}, { 85, 39, 65, 5}, {8, 65, 39, 92, 40, 66}, {18, 50, 40, 92}, {49, 18, 92, 39}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{0, 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, {0, 0, Root[1 - 6 #^2 + 4 #^4& , 3, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0}, {0, Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0}, {0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0]}, {0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0]}, {0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0]}, {0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0, 0}, { Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0, 0}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}}, {{ 0, 0, -0.4370160244488211}, {0, 0, 0.4370160244488211}, { 0, -0.35355339059327373`, -0.21850801222441055`}, { 0, -0.35355339059327373`, 0.21850801222441055`}, { 0, 0.35355339059327373`, -0.21850801222441055`}, { 0, 0.35355339059327373`, 0.21850801222441055`}, { 0, -0.4370160244488211, 0}, {0, 0.4370160244488211, 0}, { 0, -0.2477510577926871, -0.3423835411207541}, { 0, -0.2477510577926871, 0.3423835411207541}, { 0, 0.2477510577926871, -0.3423835411207541}, { 0, 0.2477510577926871, 0.3423835411207541}, {-0.35355339059327373`, \ -0.13504537836886324`, -0.21850801222441055`}, {-0.35355339059327373`, \ -0.13504537836886324`, 0.21850801222441055`}, {-0.35355339059327373`, 0.13504537836886324`, -0.21850801222441055`}, \ {-0.35355339059327373`, 0.13504537836886324`, 0.21850801222441055`}, {-0.35355339059327373`, \ -0.21850801222441055`, 0}, {-0.35355339059327373`, 0.21850801222441055`, 0}, { 0.35355339059327373`, -0.13504537836886324`, \ -0.21850801222441055`}, {0.35355339059327373`, -0.13504537836886324`, 0.21850801222441055`}, {0.35355339059327373`, 0.13504537836886324`, -0.21850801222441055`}, { 0.35355339059327373`, 0.13504537836886324`, 0.21850801222441055`}, { 0.35355339059327373`, -0.21850801222441055`, 0}, { 0.35355339059327373`, 0.21850801222441055`, 0}, {-0.4370160244488211, 0, 0}, { 0.4370160244488211, 0, 0}, {-0.13504537836886324`, -0.21850801222441055`, \ -0.35355339059327373`}, {-0.13504537836886324`, -0.21850801222441055`, 0.35355339059327373`}, {-0.13504537836886324`, 0.21850801222441055`, -0.35355339059327373`}, \ {-0.13504537836886324`, 0.21850801222441055`, 0.35355339059327373`}, { 0.13504537836886324`, -0.21850801222441055`, \ -0.35355339059327373`}, {0.13504537836886324`, -0.21850801222441055`, 0.35355339059327373`}, {0.13504537836886324`, 0.21850801222441055`, -0.35355339059327373`}, { 0.13504537836886324`, 0.21850801222441055`, 0.35355339059327373`}, {-0.21850801222441055`, 0, -0.35355339059327373`}, {-0.21850801222441055`, 0, 0.35355339059327373`}, {-0.21850801222441055`, \ -0.35355339059327373`, -0.13504537836886324`}, {-0.21850801222441055`, \ -0.35355339059327373`, 0.13504537836886324`}, {-0.21850801222441055`, 0.35355339059327373`, -0.13504537836886324`}, \ {-0.21850801222441055`, 0.35355339059327373`, 0.13504537836886324`}, { 0.21850801222441055`, 0, -0.35355339059327373`}, { 0.21850801222441055`, 0, 0.35355339059327373`}, { 0.21850801222441055`, -0.35355339059327373`, \ -0.13504537836886324`}, {0.21850801222441055`, -0.35355339059327373`, 0.13504537836886324`}, {0.21850801222441055`, 0.35355339059327373`, -0.13504537836886324`}, { 0.21850801222441055`, 0.35355339059327373`, 0.13504537836886324`}, {-0.30623714892924025`, \ -0.2477510577926871, -0.15311857446462013`}, {-0.30623714892924025`, \ -0.2477510577926871, 0.15311857446462013`}, {-0.30623714892924025`, 0.2477510577926871, -0.15311857446462013`}, \ {-0.30623714892924025`, 0.2477510577926871, 0.15311857446462013`}, { 0.30623714892924025`, -0.2477510577926871, \ -0.15311857446462013`}, {0.30623714892924025`, -0.2477510577926871, 0.15311857446462013`}, {0.30623714892924025`, 0.2477510577926871, -0.15311857446462013`}, { 0.30623714892924025`, 0.2477510577926871, 0.15311857446462013`}, {-0.3423835411207541, 0, -0.2477510577926871}, {-0.3423835411207541, 0, 0.2477510577926871}, { 0.3423835411207541, 0, -0.2477510577926871}, { 0.3423835411207541, 0, 0.2477510577926871}, {-0.09463248332806698, \ -0.09463248332806698, -0.40086963225730726`}, {-0.09463248332806698, \ -0.09463248332806698, 0.40086963225730726`}, {-0.09463248332806698, 0.09463248332806698, -0.40086963225730726`}, \ {-0.09463248332806698, 0.09463248332806698, 0.40086963225730726`}, {-0.09463248332806698, \ -0.40086963225730726`, -0.09463248332806698}, {-0.09463248332806698, \ -0.40086963225730726`, 0.09463248332806698}, {-0.09463248332806698, 0.40086963225730726`, -0.09463248332806698}, \ {-0.09463248332806698, 0.40086963225730726`, 0.09463248332806698}, { 0.09463248332806698, -0.09463248332806698, \ -0.40086963225730726`}, {0.09463248332806698, -0.09463248332806698, 0.40086963225730726`}, {0.09463248332806698, 0.09463248332806698, -0.40086963225730726`}, { 0.09463248332806698, 0.09463248332806698, 0.40086963225730726`}, { 0.09463248332806698, -0.40086963225730726`, \ -0.09463248332806698}, {0.09463248332806698, -0.40086963225730726`, 0.09463248332806698}, {0.09463248332806698, 0.40086963225730726`, -0.09463248332806698}, { 0.09463248332806698, 0.40086963225730726`, 0.09463248332806698}, {-0.40086963225730726`, \ -0.09463248332806698, -0.09463248332806698}, {-0.40086963225730726`, \ -0.09463248332806698, 0.09463248332806698}, {-0.40086963225730726`, 0.09463248332806698, -0.09463248332806698}, \ {-0.40086963225730726`, 0.09463248332806698, 0.09463248332806698}, { 0.40086963225730726`, -0.09463248332806698, \ -0.09463248332806698}, {0.40086963225730726`, -0.09463248332806698, 0.09463248332806698}, {0.40086963225730726`, 0.09463248332806698, -0.09463248332806698}, { 0.40086963225730726`, 0.09463248332806698, 0.09463248332806698}, {-0.15311857446462013`, \ -0.30623714892924025`, -0.2477510577926871}, {-0.15311857446462013`, \ -0.30623714892924025`, 0.2477510577926871}, {-0.15311857446462013`, 0.30623714892924025`, -0.2477510577926871}, \ {-0.15311857446462013`, 0.30623714892924025`, 0.2477510577926871}, { 0.15311857446462013`, -0.30623714892924025`, \ -0.2477510577926871}, {0.15311857446462013`, -0.30623714892924025`, 0.2477510577926871}, {0.15311857446462013`, 0.30623714892924025`, -0.2477510577926871}, { 0.15311857446462013`, 0.30623714892924025`, 0.2477510577926871}, {-0.2477510577926871, \ -0.3423835411207541, 0}, {-0.2477510577926871, 0.3423835411207541, 0}, {-0.2477510577926871, -0.15311857446462013`, \ -0.30623714892924025`}, {-0.2477510577926871, -0.15311857446462013`, 0.30623714892924025`}, {-0.2477510577926871, 0.15311857446462013`, -0.30623714892924025`}, \ {-0.2477510577926871, 0.15311857446462013`, 0.30623714892924025`}, { 0.2477510577926871, -0.3423835411207541, 0}, { 0.2477510577926871, 0.3423835411207541, 0}, { 0.2477510577926871, -0.15311857446462013`, \ -0.30623714892924025`}, {0.2477510577926871, -0.15311857446462013`, 0.30623714892924025`}, {0.2477510577926871, 0.15311857446462013`, -0.30623714892924025`}, { 0.2477510577926871, 0.15311857446462013`, 0.30623714892924025`}}], {{25, 75, 17, 76}, {79, 26, 80, 23}, {17, 75, 13, 47}, {27, 93, 35, 59}, {93, 13, 55, 35}, { 75, 25, 77, 15, 55, 13}, {77, 25, 78, 18}, {28, 60, 36, 94}, { 78, 25, 76, 14, 56, 16}, {94, 36, 56, 14}, {79, 23, 51, 19}, { 81, 26, 79, 19, 57, 21}, {57, 19, 99, 41}, {31, 67, 41, 99}, { 21, 57, 41, 101}, {67, 1, 69, 41}, {33, 101, 41, 69}, {35, 55, 15, 95}, {59, 35, 61, 1}, {35, 95, 29, 61}, {78, 16, 50, 18}, {26, 82, 22, 58, 20, 80}, {2, 60, 28, 10, 32, 68}, {20, 58, 42, 100}, {68, 32, 100, 42}, {58, 22, 102, 42}, {2, 68, 42, 70}, {102, 34, 70, 42}, {1, 67, 31, 9, 27, 59}, {13, 93, 27, 83, 37, 47}, {27, 9, 3, 83}, {63, 37, 83, 3}, {99, 19, 51, 43, 87, 31}, {9, 31, 87, 3}, {7, 63, 3, 71}, {87, 43, 71, 3}, {76, 17, 48, 14}, {47, 37, 91, 17}, {38, 48, 17, 91}, {94, 14, 48, 38, 84, 28}, {10, 28, 84, 4}, {63, 7, 64, 38, 91, 37}, {84, 38, 64, 4}, {23, 80, 20, 52}, {43, 51, 23, 97}, {52, 44, 97, 23}, {52, 20, 100, 32, 88, 44}, {32, 10, 4, 88}, {7, 71, 43, 97, 44, 72}, {64, 7, 72, 4}, {44, 88, 4, 72}, {77, 18, 49, 15}, {33, 89, 45, 53, 21, 101}, {22, 82, 24, 54}, {82, 26, 81, 24}, {81, 21, 53, 24}, {36, 60, 2, 62}, {56, 36, 96, 16}, {62, 30, 96, 36}, {29, 95, 15, 49, 39, 85}, {1, 61, 29, 11, 33, 69}, {89, 33, 11, 5}, {29, 85, 5, 11}, {45, 89, 5, 73}, {46, 54, 24, 98}, {53, 45, 98, 24}, {73, 8, 74, 46, 98, 45}, {8, 66, 6, 74}, {102, 22, 54, 46, 90, 34}, {46, 74, 6, 90}, {50, 16, 96, 30, 86, 40}, {66, 40, 86, 6}, {62, 2, 70, 34, 12, 30}, {34, 90, 6, 12}, {86, 30, 12, 6}, {8, 73, 5, 65}, {85, 39, 65, 5}, {8, 65, 39, 92, 40, 66}, {18, 50, 40, 92}, {49, 18, 92, 39}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["102", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["80", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{0, 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, {0, 0, Root[1 - 6 #^2 + 4 #^4& , 3, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { 0, Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0}, {0, Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0}, {0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0]}, {0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0]}, {0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0]}, {0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, { Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0, 0}, { Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0, 0}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}}, {{ 0, 0, -0.4370160244488211}, {0, 0, 0.4370160244488211}, { 0, -0.35355339059327373`, -0.21850801222441055`}, { 0, -0.35355339059327373`, 0.21850801222441055`}, { 0, 0.35355339059327373`, -0.21850801222441055`}, { 0, 0.35355339059327373`, 0.21850801222441055`}, { 0, -0.4370160244488211, 0}, {0, 0.4370160244488211, 0}, { 0, -0.2477510577926871, -0.3423835411207541}, { 0, -0.2477510577926871, 0.3423835411207541}, { 0, 0.2477510577926871, -0.3423835411207541}, { 0, 0.2477510577926871, 0.3423835411207541}, {-0.35355339059327373`, \ -0.13504537836886324`, -0.21850801222441055`}, {-0.35355339059327373`, \ -0.13504537836886324`, 0.21850801222441055`}, {-0.35355339059327373`, 0.13504537836886324`, -0.21850801222441055`}, \ {-0.35355339059327373`, 0.13504537836886324`, 0.21850801222441055`}, {-0.35355339059327373`, \ -0.21850801222441055`, 0}, {-0.35355339059327373`, 0.21850801222441055`, 0}, { 0.35355339059327373`, -0.13504537836886324`, \ -0.21850801222441055`}, {0.35355339059327373`, -0.13504537836886324`, 0.21850801222441055`}, {0.35355339059327373`, 0.13504537836886324`, -0.21850801222441055`}, { 0.35355339059327373`, 0.13504537836886324`, 0.21850801222441055`}, { 0.35355339059327373`, -0.21850801222441055`, 0}, { 0.35355339059327373`, 0.21850801222441055`, 0}, {-0.4370160244488211, 0, 0}, { 0.4370160244488211, 0, 0}, {-0.13504537836886324`, -0.21850801222441055`, \ -0.35355339059327373`}, {-0.13504537836886324`, -0.21850801222441055`, 0.35355339059327373`}, {-0.13504537836886324`, 0.21850801222441055`, -0.35355339059327373`}, \ {-0.13504537836886324`, 0.21850801222441055`, 0.35355339059327373`}, { 0.13504537836886324`, -0.21850801222441055`, \ -0.35355339059327373`}, {0.13504537836886324`, -0.21850801222441055`, 0.35355339059327373`}, {0.13504537836886324`, 0.21850801222441055`, -0.35355339059327373`}, { 0.13504537836886324`, 0.21850801222441055`, 0.35355339059327373`}, {-0.21850801222441055`, 0, -0.35355339059327373`}, {-0.21850801222441055`, 0, 0.35355339059327373`}, {-0.21850801222441055`, \ -0.35355339059327373`, -0.13504537836886324`}, {-0.21850801222441055`, \ -0.35355339059327373`, 0.13504537836886324`}, {-0.21850801222441055`, 0.35355339059327373`, -0.13504537836886324`}, \ {-0.21850801222441055`, 0.35355339059327373`, 0.13504537836886324`}, { 0.21850801222441055`, 0, -0.35355339059327373`}, { 0.21850801222441055`, 0, 0.35355339059327373`}, { 0.21850801222441055`, -0.35355339059327373`, \ -0.13504537836886324`}, {0.21850801222441055`, -0.35355339059327373`, 0.13504537836886324`}, {0.21850801222441055`, 0.35355339059327373`, -0.13504537836886324`}, { 0.21850801222441055`, 0.35355339059327373`, 0.13504537836886324`}, {-0.30623714892924025`, \ -0.2477510577926871, -0.15311857446462013`}, {-0.30623714892924025`, \ -0.2477510577926871, 0.15311857446462013`}, {-0.30623714892924025`, 0.2477510577926871, -0.15311857446462013`}, \ {-0.30623714892924025`, 0.2477510577926871, 0.15311857446462013`}, { 0.30623714892924025`, -0.2477510577926871, \ -0.15311857446462013`}, {0.30623714892924025`, -0.2477510577926871, 0.15311857446462013`}, {0.30623714892924025`, 0.2477510577926871, -0.15311857446462013`}, { 0.30623714892924025`, 0.2477510577926871, 0.15311857446462013`}, {-0.3423835411207541, 0, -0.2477510577926871}, {-0.3423835411207541, 0, 0.2477510577926871}, { 0.3423835411207541, 0, -0.2477510577926871}, { 0.3423835411207541, 0, 0.2477510577926871}, {-0.09463248332806698, \ -0.09463248332806698, -0.40086963225730726`}, {-0.09463248332806698, \ -0.09463248332806698, 0.40086963225730726`}, {-0.09463248332806698, 0.09463248332806698, -0.40086963225730726`}, \ {-0.09463248332806698, 0.09463248332806698, 0.40086963225730726`}, {-0.09463248332806698, \ -0.40086963225730726`, -0.09463248332806698}, {-0.09463248332806698, \ -0.40086963225730726`, 0.09463248332806698}, {-0.09463248332806698, 0.40086963225730726`, -0.09463248332806698}, \ {-0.09463248332806698, 0.40086963225730726`, 0.09463248332806698}, { 0.09463248332806698, -0.09463248332806698, \ -0.40086963225730726`}, {0.09463248332806698, -0.09463248332806698, 0.40086963225730726`}, {0.09463248332806698, 0.09463248332806698, -0.40086963225730726`}, { 0.09463248332806698, 0.09463248332806698, 0.40086963225730726`}, { 0.09463248332806698, -0.40086963225730726`, \ -0.09463248332806698}, {0.09463248332806698, -0.40086963225730726`, 0.09463248332806698}, {0.09463248332806698, 0.40086963225730726`, -0.09463248332806698}, { 0.09463248332806698, 0.40086963225730726`, 0.09463248332806698}, {-0.40086963225730726`, \ -0.09463248332806698, -0.09463248332806698}, {-0.40086963225730726`, \ -0.09463248332806698, 0.09463248332806698}, {-0.40086963225730726`, 0.09463248332806698, -0.09463248332806698}, \ {-0.40086963225730726`, 0.09463248332806698, 0.09463248332806698}, { 0.40086963225730726`, -0.09463248332806698, \ -0.09463248332806698}, {0.40086963225730726`, -0.09463248332806698, 0.09463248332806698}, {0.40086963225730726`, 0.09463248332806698, -0.09463248332806698}, { 0.40086963225730726`, 0.09463248332806698, 0.09463248332806698}, {-0.15311857446462013`, \ -0.30623714892924025`, -0.2477510577926871}, {-0.15311857446462013`, \ -0.30623714892924025`, 0.2477510577926871}, {-0.15311857446462013`, 0.30623714892924025`, -0.2477510577926871}, \ {-0.15311857446462013`, 0.30623714892924025`, 0.2477510577926871}, { 0.15311857446462013`, -0.30623714892924025`, \ -0.2477510577926871}, {0.15311857446462013`, -0.30623714892924025`, 0.2477510577926871}, {0.15311857446462013`, 0.30623714892924025`, -0.2477510577926871}, { 0.15311857446462013`, 0.30623714892924025`, 0.2477510577926871}, {-0.2477510577926871, \ -0.3423835411207541, 0}, {-0.2477510577926871, 0.3423835411207541, 0}, {-0.2477510577926871, -0.15311857446462013`, \ -0.30623714892924025`}, {-0.2477510577926871, -0.15311857446462013`, 0.30623714892924025`}, {-0.2477510577926871, 0.15311857446462013`, -0.30623714892924025`}, \ {-0.2477510577926871, 0.15311857446462013`, 0.30623714892924025`}, { 0.2477510577926871, -0.3423835411207541, 0}, { 0.2477510577926871, 0.3423835411207541, 0}, { 0.2477510577926871, -0.15311857446462013`, \ -0.30623714892924025`}, {0.2477510577926871, -0.15311857446462013`, 0.30623714892924025`}, {0.2477510577926871, 0.15311857446462013`, -0.30623714892924025`}, { 0.2477510577926871, 0.15311857446462013`, 0.30623714892924025`}}], {{25, 75, 17, 76}, {79, 26, 80, 23}, {17, 75, 13, 47}, {27, 93, 35, 59}, {93, 13, 55, 35}, { 75, 25, 77, 15, 55, 13}, {77, 25, 78, 18}, {28, 60, 36, 94}, { 78, 25, 76, 14, 56, 16}, {94, 36, 56, 14}, {79, 23, 51, 19}, { 81, 26, 79, 19, 57, 21}, {57, 19, 99, 41}, {31, 67, 41, 99}, { 21, 57, 41, 101}, {67, 1, 69, 41}, {33, 101, 41, 69}, {35, 55, 15, 95}, {59, 35, 61, 1}, {35, 95, 29, 61}, {78, 16, 50, 18}, {26, 82, 22, 58, 20, 80}, {2, 60, 28, 10, 32, 68}, {20, 58, 42, 100}, {68, 32, 100, 42}, {58, 22, 102, 42}, {2, 68, 42, 70}, {102, 34, 70, 42}, {1, 67, 31, 9, 27, 59}, {13, 93, 27, 83, 37, 47}, {27, 9, 3, 83}, {63, 37, 83, 3}, {99, 19, 51, 43, 87, 31}, {9, 31, 87, 3}, {7, 63, 3, 71}, {87, 43, 71, 3}, {76, 17, 48, 14}, {47, 37, 91, 17}, {38, 48, 17, 91}, {94, 14, 48, 38, 84, 28}, {10, 28, 84, 4}, {63, 7, 64, 38, 91, 37}, {84, 38, 64, 4}, {23, 80, 20, 52}, {43, 51, 23, 97}, {52, 44, 97, 23}, {52, 20, 100, 32, 88, 44}, {32, 10, 4, 88}, {7, 71, 43, 97, 44, 72}, {64, 7, 72, 4}, {44, 88, 4, 72}, {77, 18, 49, 15}, {33, 89, 45, 53, 21, 101}, {22, 82, 24, 54}, {82, 26, 81, 24}, {81, 21, 53, 24}, {36, 60, 2, 62}, {56, 36, 96, 16}, {62, 30, 96, 36}, {29, 95, 15, 49, 39, 85}, {1, 61, 29, 11, 33, 69}, {89, 33, 11, 5}, {29, 85, 5, 11}, {45, 89, 5, 73}, {46, 54, 24, 98}, {53, 45, 98, 24}, {73, 8, 74, 46, 98, 45}, {8, 66, 6, 74}, {102, 22, 54, 46, 90, 34}, {46, 74, 6, 90}, {50, 16, 96, 30, 86, 40}, {66, 40, 86, 6}, {62, 2, 70, 34, 12, 30}, {34, 90, 6, 12}, {86, 30, 12, 6}, {8, 73, 5, 65}, {85, 39, 65, 5}, {8, 65, 39, 92, 40, 66}, {18, 50, 40, 92}, {49, 18, 92, 39}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["102", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["80", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, {0, 0, Root[1 - 6 #^2 + 4 #^4& , 3, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, { 0, Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, {0, Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, {0, Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0}, {0, Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0}, {0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0]}, {0, Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0]}, {0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0]}, {0, Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0]}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, {Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, {Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, {Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, {Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, { Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0}, {Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, {Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, {Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0]}, {Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0]}, {Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0}, {Rational[1, 2] 2^Rational[-1, 2], Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], 0, 0}, { Root[1 - 6 #^2 + 4 #^4& , 3, 0], 0, 0}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 2, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 56 #^2 + 64 #^4& , 3, 0], Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 2, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[-1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], 0, Rational[1, 2] 2^Rational[-1, 2]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[-1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 2, 0]}, { Root[1 - 24 #^2 + 64 #^4& , 3, 0], Rational[1, 2] 2^Rational[-1, 2], Root[1 - 56 #^2 + 64 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0]}, { Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0, Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 1, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 2, 0]}, { Root[1 - 84 #^2 + 484 #^4& , 4, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0], Root[1 - 116 #^2 + 484 #^4& , 3, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 1, 0]}, { Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0], Root[1 - 46 #^2 + 484 #^4& , 4, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 1, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 2, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[25 - 270 #^2 + 484 #^4& , 3, 0], 0}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 2, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 2, 0]}, { Root[1 - 46 #^2 + 484 #^4& , 4, 0], Root[1 - 54 #^2 + 484 #^4& , 3, 0], Root[4 - 54 #^2 + 121 #^4& , 3, 0]}}, {{25, 75, 17, 76}, {79, 26, 80, 23}, {17, 75, 13, 47}, {27, 93, 35, 59}, {93, 13, 55, 35}, {75, 25, 77, 15, 55, 13}, {77, 25, 78, 18}, {28, 60, 36, 94}, {78, 25, 76, 14, 56, 16}, {94, 36, 56, 14}, {79, 23, 51, 19}, {81, 26, 79, 19, 57, 21}, {57, 19, 99, 41}, {31, 67, 41, 99}, {21, 57, 41, 101}, {67, 1, 69, 41}, {33, 101, 41, 69}, {35, 55, 15, 95}, {59, 35, 61, 1}, {35, 95, 29, 61}, {78, 16, 50, 18}, {26, 82, 22, 58, 20, 80}, {2, 60, 28, 10, 32, 68}, {20, 58, 42, 100}, {68, 32, 100, 42}, {58, 22, 102, 42}, {2, 68, 42, 70}, {102, 34, 70, 42}, {1, 67, 31, 9, 27, 59}, {13, 93, 27, 83, 37, 47}, {27, 9, 3, 83}, {63, 37, 83, 3}, {99, 19, 51, 43, 87, 31}, {9, 31, 87, 3}, {7, 63, 3, 71}, {87, 43, 71, 3}, {76, 17, 48, 14}, {47, 37, 91, 17}, {38, 48, 17, 91}, {94, 14, 48, 38, 84, 28}, {10, 28, 84, 4}, {63, 7, 64, 38, 91, 37}, { 84, 38, 64, 4}, {23, 80, 20, 52}, {43, 51, 23, 97}, {52, 44, 97, 23}, {52, 20, 100, 32, 88, 44}, {32, 10, 4, 88}, {7, 71, 43, 97, 44, 72}, {64, 7, 72, 4}, {44, 88, 4, 72}, {77, 18, 49, 15}, {33, 89, 45, 53, 21, 101}, {22, 82, 24, 54}, {82, 26, 81, 24}, {81, 21, 53, 24}, {36, 60, 2, 62}, {56, 36, 96, 16}, {62, 30, 96, 36}, {29, 95, 15, 49, 39, 85}, {1, 61, 29, 11, 33, 69}, {89, 33, 11, 5}, {29, 85, 5, 11}, {45, 89, 5, 73}, {46, 54, 24, 98}, {53, 45, 98, 24}, {73, 8, 74, 46, 98, 45}, {8, 66, 6, 74}, {102, 22, 54, 46, 90, 34}, {46, 74, 6, 90}, {50, 16, 96, 30, 86, 40}, {66, 40, 86, 6}, {62, 2, 70, 34, 12, 30}, {34, 90, 6, 12}, {86, 30, 12, 6}, {8, 73, 5, 65}, {85, 39, 65, 5}, {8, 65, 39, 92, 40, 66}, {18, 50, 40, 92}, {49, 18, 92, 39}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[34]=",ExpressionUUID->"A6BFC41B-A158-41F5-B0CC-374B3F2DDAA6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"v", "=", RowBox[{"inthull", "[", RowBox[{"[", "1", "]"}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[35]:=",ExpressionUUID->"94AACE4D-814F-4F34-8D89-AFC737BD54F6"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.43701602444882109432811034821497742087`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.43701602444882109432811034821497742087`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.43701602444882109432811034821497742087`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.43701602444882109432811034821497742087`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34238354112075408686166611005319282413`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34238354112075408686166611005319282413`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34238354112075408686166611005319282413`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34238354112075408686166611005319282413`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.43701602444882109432811034821497742087`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 2, 0]], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.43701602444882109432811034821497742087`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 3, 0]], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", "0", ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", "0", ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21850801222441054716405517410748871043`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 2, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", "0", ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", "0", ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13504537836886323920460029057721840218`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.219\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21850801222441054716405517410748871043`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21850801222441055`}, "NumericalApproximation"], Root[1 - 24 #^2 + 64 #^4& , 3, 0]], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.135\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13504537836886323920460029057721840218`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13504537836886324`}, "NumericalApproximation"], Root[1 - 56 #^2 + 64 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34238354112075408686166611005319282413`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 2, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34238354112075408686166611005319282413`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 2, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34238354112075408686166611005319282413`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34238354112075408686166611005319282413`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"] , ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40086963225730726234630196813668590039`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.09463248332806697971086862253287108615`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.401\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40086963225730726234630196813668590039`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40086963225730726`}, "NumericalApproximation"], Root[1 - 84 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0946\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.09463248332806697971086862253287108615`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"116", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.09463248332806698}, "NumericalApproximation"], Root[1 - 116 #^2 + 484 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34238354112075408686166611005319282413`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34238354112075408686166611005319282413`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24775105779268710715079748752032173797`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34238354112075408686166611005319282413`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.342\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34238354112075408686166611005319282413`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"270", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3423835411207541}, "NumericalApproximation"], Root[25 - 270 #^2 + 484 #^4& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15311857446462012743992886498745065182`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.30623714892924025487985772997490130365`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.248\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24775105779268710715079748752032173797`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"46", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2477510577926871}, "NumericalApproximation"], Root[1 - 46 #^2 + 484 #^4& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.153\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15311857446462012743992886498745065182`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"484", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15311857446462013`}, "NumericalApproximation"], Root[1 - 54 #^2 + 484 #^4& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.306\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30623714892924025487985772997490130365`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4", "-", RowBox[{"54", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"121", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.30623714892924025`}, "NumericalApproximation"], Root[4 - 54 #^2 + 121 #^4& , 3, 0]]}], "}"}]}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[35]=",ExpressionUUID->"66704CD2-1D3D-4235-8364-4520C814B22B"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"faces", "=", RowBox[{"Sort", "[", RowBox[{"inthull", "[", RowBox[{"[", "2", "]"}], "]"}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[36]:=",ExpressionUUID->"E96A0FBB-29B3-4BF2-9B08-9F1632C2FD10"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "68", ",", "42", ",", "70"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "63", ",", "3", ",", "71"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "66", ",", "6", ",", "74"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "73", ",", "5", ",", "65"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "31", ",", "87", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "28", ",", "84", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "75", ",", "13", ",", "47"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "50", ",", "40", ",", "92"}], "}"}], ",", RowBox[{"{", RowBox[{"20", ",", "58", ",", "42", ",", "100"}], "}"}], ",", RowBox[{"{", RowBox[{"21", ",", "57", ",", "41", ",", "101"}], "}"}], ",", RowBox[{"{", RowBox[{"22", ",", "82", ",", "24", ",", "54"}], "}"}], ",", RowBox[{"{", RowBox[{"23", ",", "80", ",", "20", ",", "52"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "75", ",", "17", ",", "76"}], "}"}], ",", RowBox[{"{", RowBox[{"27", ",", "9", ",", "3", ",", "83"}], "}"}], ",", RowBox[{"{", RowBox[{"27", ",", "93", ",", "35", ",", "59"}], "}"}], ",", RowBox[{"{", RowBox[{"28", ",", "60", ",", "36", ",", "94"}], "}"}], ",", RowBox[{"{", RowBox[{"29", ",", "85", ",", "5", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"31", ",", "67", ",", "41", ",", "99"}], "}"}], ",", RowBox[{"{", RowBox[{"32", ",", "10", ",", "4", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "101", ",", "41", ",", "69"}], "}"}], ",", RowBox[{"{", RowBox[{"34", ",", "90", ",", "6", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"35", ",", "55", ",", "15", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{"35", ",", "95", ",", "29", ",", "61"}], "}"}], ",", RowBox[{"{", RowBox[{"36", ",", "60", ",", "2", ",", "62"}], "}"}], ",", RowBox[{"{", RowBox[{"38", ",", "48", ",", "17", ",", "91"}], "}"}], ",", RowBox[{"{", RowBox[{"43", ",", "51", ",", "23", ",", "97"}], "}"}], ",", RowBox[{"{", RowBox[{"44", ",", "88", ",", "4", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"45", ",", "89", ",", "5", ",", "73"}], "}"}], ",", RowBox[{"{", RowBox[{"46", ",", "54", ",", "24", ",", "98"}], "}"}], ",", RowBox[{"{", RowBox[{"46", ",", "74", ",", "6", ",", "90"}], "}"}], ",", RowBox[{"{", RowBox[{"47", ",", "37", ",", "91", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "18", ",", "92", ",", "39"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "44", ",", "97", ",", "23"}], "}"}], ",", RowBox[{"{", RowBox[{"53", ",", "45", ",", "98", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"56", ",", "36", ",", "96", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"57", ",", "19", ",", "99", ",", "41"}], "}"}], ",", RowBox[{"{", RowBox[{"58", ",", "22", ",", "102", ",", "42"}], "}"}], ",", RowBox[{"{", RowBox[{"59", ",", "35", ",", "61", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"62", ",", "30", ",", "96", ",", "36"}], "}"}], ",", RowBox[{"{", RowBox[{"63", ",", "37", ",", "83", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"64", ",", "7", ",", "72", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "40", ",", "86", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"67", ",", "1", ",", "69", ",", "41"}], "}"}], ",", RowBox[{"{", RowBox[{"68", ",", "32", ",", "100", ",", "42"}], "}"}], ",", RowBox[{"{", RowBox[{"76", ",", "17", ",", "48", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"77", ",", "18", ",", "49", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"77", ",", "25", ",", "78", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"78", ",", "16", ",", "50", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"79", ",", "23", ",", "51", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"79", ",", "26", ",", "80", ",", "23"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "21", ",", "53", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"82", ",", "26", ",", "81", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"84", ",", "38", ",", "64", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"85", ",", "39", ",", "65", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"86", ",", "30", ",", "12", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"87", ",", "43", ",", "71", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"89", ",", "33", ",", "11", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"93", ",", "13", ",", "55", ",", "35"}], "}"}], ",", RowBox[{"{", RowBox[{"94", ",", "36", ",", "56", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"102", ",", "34", ",", "70", ",", "42"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "61", ",", "29", ",", "11", ",", "33", ",", "69"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "67", ",", "31", ",", "9", ",", "27", ",", "59"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "60", ",", "28", ",", "10", ",", "32", ",", "68"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "71", ",", "43", ",", "97", ",", "44", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "65", ",", "39", ",", "92", ",", "40", ",", "66"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "93", ",", "27", ",", "83", ",", "37", ",", "47"}], "}"}], ",", RowBox[{"{", RowBox[{"26", ",", "82", ",", "22", ",", "58", ",", "20", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"29", ",", "95", ",", "15", ",", "49", ",", "39", ",", "85"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "89", ",", "45", ",", "53", ",", "21", ",", "101"}], "}"}], ",", RowBox[{"{", RowBox[{"50", ",", "16", ",", "96", ",", "30", ",", "86", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "20", ",", "100", ",", "32", ",", "88", ",", "44"}], "}"}], ",", RowBox[{"{", RowBox[{"62", ",", "2", ",", "70", ",", "34", ",", "12", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"63", ",", "7", ",", "64", ",", "38", ",", "91", ",", "37"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "8", ",", "74", ",", "46", ",", "98", ",", "45"}], "}"}], ",", RowBox[{"{", RowBox[{"75", ",", "25", ",", "77", ",", "15", ",", "55", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"78", ",", "25", ",", "76", ",", "14", ",", "56", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "26", ",", "79", ",", "19", ",", "57", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{"94", ",", "14", ",", "48", ",", "38", ",", "84", ",", "28"}], "}"}], ",", RowBox[{"{", RowBox[{"99", ",", "19", ",", "51", ",", "43", ",", "87", ",", "31"}], "}"}], ",", RowBox[{"{", RowBox[{"102", ",", "22", ",", "54", ",", "46", ",", "90", ",", "34"}], "}"}]}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[36]=",ExpressionUUID->"E4257CA3-26E9-4E7E-8F21-BA5D30E3FEAE"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"SimplifyNumericallyDistinct", "[", RowBox[{"PolyhedronEdgeLengths", "[", "inthull", "]"}], "]"}], "//", "Counts"}], "//", "Quiet"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[38]:=",ExpressionUUID->"54E362BB-C864-4397-A99F-6C8CA6A43A0A"], Cell[BoxData[ RowBox[{"\[LeftAssociation]", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "22"], " ", SqrtBox[ RowBox[{"499", "-", RowBox[{"219", " ", SqrtBox["5"]}]}]]}], "\[Rule]", "120"}], ",", RowBox[{ RowBox[{ FractionBox["1", "44"], " ", SqrtBox[ RowBox[{"313", "-", RowBox[{"117", " ", SqrtBox["5"]}]}]]}], "\[Rule]", "60"}]}], "\[RightAssociation]"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[38]=",ExpressionUUID->"24569DF1-E19E-4BF8-A7C9-8E2368330225"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData["pname"], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[39]:=",ExpressionUUID->"F8C8FAD6-54A1-4ABD-ABC4-2C8675FF9207"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"OctahedronTwentyCompound\"\>", ",", "1"}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[39]=",ExpressionUUID->"138B2688-5776-4934-9961-3BD5521B04B3"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Concave", "Subsection",ExpressionUUID->"CFE50CC9-BA00-43E7-AF10-8186E5CE8498"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[24]:=",ExpressionUUID->"6A57D476-EF78-4A60-AA89-3BA400530661"], Cell[BoxData["False"], "Output", CellLabel->"Out[24]=",ExpressionUUID->"ACC28BBD-C4C1-4336-83DC-28BE0E42F8AC"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Convex", "Subsection",ExpressionUUID->"D62B0AE2-25D4-4DE2-B82D-458A9DA98A0F"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[25]:=",ExpressionUUID->"31D93B82-E58D-40AC-95DA-3260F6FF08D7"], Cell[BoxData["False"], "Output", CellLabel->"Out[25]=",ExpressionUUID->"A1BDD5AD-7CF0-45DA-A7EF-1180A766DA4C"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ConvexPolyhedronQ", "[", "p", "]"}]], "Input", CellLabel->"In[26]:=",ExpressionUUID->"47F0671D-E7AF-4F83-BE41-0DFA1EABB27B"], Cell[BoxData["False"], "Output", CellLabel->"Out[26]=",ExpressionUUID->"D3B418A5-30AF-4A57-B47A-FC8BC423C0ED"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["ConvexHull", "Subsection",ExpressionUUID->"43EE0285-83A2-4F44-9CE2-6A34E291B535"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"convexhullname", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[27]:=",ExpressionUUID->"781B3770-06B3-47A0-817E-E4165AB278A5"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[27]=",ExpressionUUID->"9DBF6CDA-8022-45D1-A37C-D29F0E655120"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ FractionBox[ RowBox[{"Max", "[", RowBox[{"Norm", "/@", RowBox[{"p", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], RowBox[{"Max", "[", RowBox[{"Norm", "/@", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"convexhullname", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]], "//", "FullSimplify"}], "//", "Quiet"}]], "Input", CellLabel->"In[28]:=",ExpressionUUID->"512F9214-5821-4EA4-BF04-67332CD0E918"], Cell[BoxData[ FractionBox["1", RowBox[{ SqrtBox["2"], " ", RowBox[{"Missing", "[", RowBox[{"Norm", "[", "\<\"NotAvailable\"\>", "]"}], "]"}]}]]], "Output", CellLabel->"Out[28]=",ExpressionUUID->"A7BFE8BC-3222-4BBC-A408-83F21D2553F0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[29]:=",ExpressionUUID->"BB89F881-9543-4C32-B0B5-26CE54CD68E6"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[29]=",ExpressionUUID->"C49FF56B-B15D-4371-8F2C-E4679C659E35"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[30]:=",ExpressionUUID->"DF872650-9B46-47CB-A370-F4A5045EB842"], Cell[BoxData[ Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], Polygon3DBox[{{6, 18, 8, 2}, {9, 21, 39, 20}, {11, 5, 44, 68}, {12, 25, 4, 1}, {13, 27, 50, 28}, {17, 32, 43, 24}, {22, 42, 72, 41}, {34, 49, 80, 58}, {36, 63, 79, 47}, {40, 67, 109, 114}, {46, 26, 59, 90}, {51, 29, 107, 116}, {52, 33, 3, 7}, {56, 31, 15, 30}, {65, 87, 16, 10}, {69, 54, 84, 60}, {74, 64, 38, 45}, {75, 19, 35, 101}, {76, 95, 70, 53}, {81, 14, 23, 98}, {82, 99, 73, 100}, {83, 61, 37, 106}, {85, 55, 71, 96}, {89, 57, 88, 66}, {92, 111, 93, 62}, {102, 117, 120, 112}, {108, 86, 97, 115}, {113, 48, 77, 94}, {118, 103, 78, 104}, {119, 110, 91, 105}, {2, 24, 43, 80, 49, 6}, {9, 20, 88, 57, 74, 45}, {12, 33, 52, 87, 65, 25}, { 14, 26, 46, 67, 40, 23}, {18, 81, 98, 68, 44, 8}, {21, 75, 101, 83, 106, 39}, {31, 56, 69, 60, 116, 107}, {35, 19, 10, 16, 29, 51}, {55, 7, 3, 5, 11, 71}, {63, 93, 111, 118, 104, 79}, {64, 32, 17, 1, 4, 38}, {72, 42, 114, 109, 76, 53}, {86, 108, 119, 105, 84, 54}, {96, 22, 41, 30, 15, 85}, {99, 27, 13, 34, 58, 73}, {100, 89, 66, 36, 47, 82}, {103, 117, 102, 77, 48, 78}, {110, 92, 62, 37, 61, 91}, {112, 120, 115, 97, 70, 95}, { 113, 94, 90, 59, 28, 50}, {7, 55, 85, 15, 31, 107, 29, 16, 87, 52}, {25, 65, 10, 19, 75, 21, 9, 45, 38, 4}, {33, 12, 1, 17, 24, 2, 8, 44, 5, 3}, { 81, 18, 6, 49, 34, 13, 28, 59, 26, 14}, {82, 47, 79, 104, 78, 48, 113, 50, 27, 99}, {86, 54, 69, 56, 30, 41, 72, 53, 70, 97}, {88, 20, 39, 106, 37, 62, 93, 63, 36, 66}, {90, 94, 77, 102, 112, 95, 76, 109, 67, 46}, { 100, 73, 58, 80, 43, 32, 64, 74, 57, 89}, {101, 35, 51, 116, 60, 84, 105, 91, 61, 83}, {108, 115, 120, 117, 103, 118, 111, 92, 110, 119}, {114, 42, 22, 96, 71, 11, 68, 98, 23, 40}}]]]], "Output", CellLabel->"Out[30]=",ExpressionUUID->"DBA21B9C-56AC-43C0-9BC0-94ED6DD34B95"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"convexhull", "=", RowBox[{"ConvexHullRegion", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}]}]], "Input", CellLabel->"In[31]:=",ExpressionUUID->"5EDE08BD-7F4C-44BA-A894-621374116D00"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{12, 25, 4, 1}, {82, 99, 73, 100}, {9, 21, 39, 20}, {119, 110, 91, 105}, { 22, 42, 72, 41}, {113, 48, 77, 94}, {14, 26, 46, 67, 40, 23}, {81, 14, 23, 98}, {100, 89, 66, 36, 47, 82}, {36, 63, 79, 47}, {21, 75, 101, 83, 106, 39}, {75, 19, 35, 101}, {6, 18, 8, 2}, {17, 32, 43, 24}, {2, 24, 43, 80, 49, 6}, {99, 27, 13, 34, 58, 73}, {34, 49, 80, 58}, {89, 57, 88, 66}, {83, 61, 37, 106}, {86, 108, 119, 105, 84, 54}, {69, 54, 84, 60}, {102, 117, 120, 112}, {76, 95, 70, 53}, {90, 94, 77, 102, 112, 95, 76, 109, 67, 46}, {72, 42, 114, 109, 76, 53}, {40, 67, 109, 114}, { 108, 115, 120, 117, 103, 118, 111, 92, 110, 119}, {63, 93, 111, 118, 104, 79}, {103, 117, 102, 77, 48, 78}, {118, 103, 78, 104}, {12, 33, 52, 87, 65, 25}, {100, 73, 58, 80, 43, 32, 64, 74, 57, 89}, {9, 20, 88, 57, 74, 45}, {64, 32, 17, 1, 4, 38}, {25, 65, 10, 19, 75, 21, 9, 45, 38, 4}, {74, 64, 38, 45}, {88, 20, 39, 106, 37, 62, 93, 63, 36, 66}, { 110, 92, 62, 37, 61, 91}, {92, 111, 93, 62}, {112, 120, 115, 97, 70, 95}, {108, 86, 97, 115}, {81, 18, 6, 49, 34, 13, 28, 59, 26, 14}, {46, 26, 59, 90}, {82, 47, 79, 104, 78, 48, 113, 50, 27, 99}, {113, 94, 90, 59, 28, 50}, {13, 27, 50, 28}, {52, 33, 3, 7}, {35, 19, 10, 16, 29, 51}, {65, 87, 16, 10}, {7, 55, 85, 15, 31, 107, 29, 16, 87, 52}, {101, 35, 51, 116, 60, 84, 105, 91, 61, 83}, {31, 56, 69, 60, 116, 107}, {51, 29, 107, 116}, {55, 7, 3, 5, 11, 71}, {85, 55, 71, 96}, {33, 12, 1, 17, 24, 2, 8, 44, 5, 3}, {86, 54, 69, 56, 30, 41, 72, 53, 70, 97}, {96, 22, 41, 30, 15, 85}, {56, 31, 15, 30}, {114, 42, 22, 96, 71, 11, 68, 98, 23, 40}, {18, 81, 98, 68, 44, 8}, {11, 5, 44, 68}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], {{12, 25, 4, 1}, {82, 99, 73, 100}, {9, 21, 39, 20}, { 119, 110, 91, 105}, {22, 42, 72, 41}, {113, 48, 77, 94}, {14, 26, 46, 67, 40, 23}, {81, 14, 23, 98}, {100, 89, 66, 36, 47, 82}, {36, 63, 79, 47}, {21, 75, 101, 83, 106, 39}, {75, 19, 35, 101}, {6, 18, 8, 2}, {17, 32, 43, 24}, {2, 24, 43, 80, 49, 6}, {99, 27, 13, 34, 58, 73}, {34, 49, 80, 58}, {89, 57, 88, 66}, {83, 61, 37, 106}, {86, 108, 119, 105, 84, 54}, {69, 54, 84, 60}, {102, 117, 120, 112}, {76, 95, 70, 53}, {90, 94, 77, 102, 112, 95, 76, 109, 67, 46}, {72, 42, 114, 109, 76, 53}, { 40, 67, 109, 114}, {108, 115, 120, 117, 103, 118, 111, 92, 110, 119}, {63, 93, 111, 118, 104, 79}, {103, 117, 102, 77, 48, 78}, {118, 103, 78, 104}, {12, 33, 52, 87, 65, 25}, {100, 73, 58, 80, 43, 32, 64, 74, 57, 89}, {9, 20, 88, 57, 74, 45}, {64, 32, 17, 1, 4, 38}, {25, 65, 10, 19, 75, 21, 9, 45, 38, 4}, {74, 64, 38, 45}, {88, 20, 39, 106, 37, 62, 93, 63, 36, 66}, {110, 92, 62, 37, 61, 91}, {92, 111, 93, 62}, {112, 120, 115, 97, 70, 95}, {108, 86, 97, 115}, {81, 18, 6, 49, 34, 13, 28, 59, 26, 14}, {46, 26, 59, 90}, {82, 47, 79, 104, 78, 48, 113, 50, 27, 99}, {113, 94, 90, 59, 28, 50}, {13, 27, 50, 28}, {52, 33, 3, 7}, {35, 19, 10, 16, 29, 51}, {65, 87, 16, 10}, {7, 55, 85, 15, 31, 107, 29, 16, 87, 52}, {101, 35, 51, 116, 60, 84, 105, 91, 61, 83}, {31, 56, 69, 60, 116, 107}, { 51, 29, 107, 116}, {55, 7, 3, 5, 11, 71}, {85, 55, 71, 96}, { 33, 12, 1, 17, 24, 2, 8, 44, 5, 3}, {86, 54, 69, 56, 30, 41, 72, 53, 70, 97}, {96, 22, 41, 30, 15, 85}, {56, 31, 15, 30}, { 114, 42, 22, 96, 71, 11, 68, 98, 23, 40}, {18, 81, 98, 68, 44, 8}, {11, 5, 44, 68}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["120", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["62", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], {{12, 25, 4, 1}, {82, 99, 73, 100}, {9, 21, 39, 20}, { 119, 110, 91, 105}, {22, 42, 72, 41}, {113, 48, 77, 94}, {14, 26, 46, 67, 40, 23}, {81, 14, 23, 98}, {100, 89, 66, 36, 47, 82}, {36, 63, 79, 47}, {21, 75, 101, 83, 106, 39}, {75, 19, 35, 101}, {6, 18, 8, 2}, {17, 32, 43, 24}, {2, 24, 43, 80, 49, 6}, {99, 27, 13, 34, 58, 73}, {34, 49, 80, 58}, {89, 57, 88, 66}, {83, 61, 37, 106}, {86, 108, 119, 105, 84, 54}, {69, 54, 84, 60}, {102, 117, 120, 112}, {76, 95, 70, 53}, {90, 94, 77, 102, 112, 95, 76, 109, 67, 46}, {72, 42, 114, 109, 76, 53}, { 40, 67, 109, 114}, {108, 115, 120, 117, 103, 118, 111, 92, 110, 119}, {63, 93, 111, 118, 104, 79}, {103, 117, 102, 77, 48, 78}, {118, 103, 78, 104}, {12, 33, 52, 87, 65, 25}, {100, 73, 58, 80, 43, 32, 64, 74, 57, 89}, {9, 20, 88, 57, 74, 45}, {64, 32, 17, 1, 4, 38}, {25, 65, 10, 19, 75, 21, 9, 45, 38, 4}, {74, 64, 38, 45}, {88, 20, 39, 106, 37, 62, 93, 63, 36, 66}, {110, 92, 62, 37, 61, 91}, {92, 111, 93, 62}, {112, 120, 115, 97, 70, 95}, {108, 86, 97, 115}, {81, 18, 6, 49, 34, 13, 28, 59, 26, 14}, {46, 26, 59, 90}, {82, 47, 79, 104, 78, 48, 113, 50, 27, 99}, {113, 94, 90, 59, 28, 50}, {13, 27, 50, 28}, {52, 33, 3, 7}, {35, 19, 10, 16, 29, 51}, {65, 87, 16, 10}, {7, 55, 85, 15, 31, 107, 29, 16, 87, 52}, {101, 35, 51, 116, 60, 84, 105, 91, 61, 83}, {31, 56, 69, 60, 116, 107}, { 51, 29, 107, 116}, {55, 7, 3, 5, 11, 71}, {85, 55, 71, 96}, { 33, 12, 1, 17, 24, 2, 8, 44, 5, 3}, {86, 54, 69, 56, 30, 41, 72, 53, 70, 97}, {96, 22, 41, 30, 15, 85}, {56, 31, 15, 30}, { 114, 42, 22, 96, 71, 11, 68, 98, 23, 40}, {18, 81, 98, 68, 44, 8}, {11, 5, 44, 68}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["120", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["62", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{12, 25, 4, 1}, {82, 99, 73, 100}, {9, 21, 39, 20}, {119, 110, 91, 105}, {22, 42, 72, 41}, {113, 48, 77, 94}, {14, 26, 46, 67, 40, 23}, {81, 14, 23, 98}, { 100, 89, 66, 36, 47, 82}, {36, 63, 79, 47}, {21, 75, 101, 83, 106, 39}, { 75, 19, 35, 101}, {6, 18, 8, 2}, {17, 32, 43, 24}, {2, 24, 43, 80, 49, 6}, {99, 27, 13, 34, 58, 73}, {34, 49, 80, 58}, {89, 57, 88, 66}, {83, 61, 37, 106}, {86, 108, 119, 105, 84, 54}, {69, 54, 84, 60}, {102, 117, 120, 112}, {76, 95, 70, 53}, {90, 94, 77, 102, 112, 95, 76, 109, 67, 46}, {72, 42, 114, 109, 76, 53}, {40, 67, 109, 114}, {108, 115, 120, 117, 103, 118, 111, 92, 110, 119}, {63, 93, 111, 118, 104, 79}, {103, 117, 102, 77, 48, 78}, {118, 103, 78, 104}, {12, 33, 52, 87, 65, 25}, {100, 73, 58, 80, 43, 32, 64, 74, 57, 89}, {9, 20, 88, 57, 74, 45}, {64, 32, 17, 1, 4, 38}, {25, 65, 10, 19, 75, 21, 9, 45, 38, 4}, {74, 64, 38, 45}, {88, 20, 39, 106, 37, 62, 93, 63, 36, 66}, {110, 92, 62, 37, 61, 91}, {92, 111, 93, 62}, { 112, 120, 115, 97, 70, 95}, {108, 86, 97, 115}, {81, 18, 6, 49, 34, 13, 28, 59, 26, 14}, {46, 26, 59, 90}, {82, 47, 79, 104, 78, 48, 113, 50, 27, 99}, {113, 94, 90, 59, 28, 50}, {13, 27, 50, 28}, {52, 33, 3, 7}, {35, 19, 10, 16, 29, 51}, {65, 87, 16, 10}, {7, 55, 85, 15, 31, 107, 29, 16, 87, 52}, {101, 35, 51, 116, 60, 84, 105, 91, 61, 83}, {31, 56, 69, 60, 116, 107}, {51, 29, 107, 116}, {55, 7, 3, 5, 11, 71}, {85, 55, 71, 96}, {33, 12, 1, 17, 24, 2, 8, 44, 5, 3}, {86, 54, 69, 56, 30, 41, 72, 53, 70, 97}, {96, 22, 41, 30, 15, 85}, {56, 31, 15, 30}, {114, 42, 22, 96, 71, 11, 68, 98, 23, 40}, {18, 81, 98, 68, 44, 8}, {11, 5, 44, 68}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel->"Out[31]=",ExpressionUUID->"79EAC1D2-AF07-4CD1-99F6-FB38D25A62A5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"v", "=", RowBox[{"PolyhedronCoordinates", "[", "convexhull", "]"}]}]], "Input", CellLabel->"In[32]:=",ExpressionUUID->"4977E4BF-94AA-47C6-9233-5FB8067939E0"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"15", "-", RowBox[{"5", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"15", "-", RowBox[{"5", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"15", "-", RowBox[{"5", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]]}], ",", FractionBox[ SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]], "4"], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]], "4"], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"15", "-", RowBox[{"5", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "4"], ",", FractionBox[ SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]], "4"], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]]}], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"15", "-", RowBox[{"5", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"15", "-", RowBox[{"5", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"15", "-", RowBox[{"5", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"15", "-", RowBox[{"5", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]]}], ",", FractionBox[ SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]], "4"]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]]}], ",", FractionBox[ SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]], "4"]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "4"], ",", FractionBox[ SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]], "4"]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]]}], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"15", "-", RowBox[{"5", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]]}], ",", FractionBox[ SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]], "4"], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]], "4"], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]], "4"], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "4"]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"15", "-", RowBox[{"5", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "4"], ",", FractionBox[ SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]], "4"]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "4"], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]]}], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"15", "-", RowBox[{"5", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "4"], ",", FractionBox[ SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]], "4"], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]]}], ",", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "4"]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ",", FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "4"], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"15", "-", RowBox[{"5", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "4"], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "4"]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "4"], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", SqrtBox[ RowBox[{"23", "-", RowBox[{"3", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"23", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]], "4"], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "4"]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]]}], ",", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["3", RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], "}"}]}], "}"}]], "Output", CellLabel->"Out[32]=",ExpressionUUID->"7B6369F1-8A2F-4A4E-9F25-66534CA2233E"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Sort", "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"convexhull", "[", RowBox[{"[", "2", "]"}], "]"}], "/.", RowBox[{"i_Integer", "\[RuleDelayed]", RowBox[{"v", "[", RowBox[{"[", "i", "]"}], "]"}]}]}], ")"}], "/.", RowBox[{"Thread", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "->", RowBox[{"Range", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}]}], "]"}]}], "]"}]], "Input", CellLabel->"In[33]:=",ExpressionUUID->"0A8109E8-4D3B-46C3-A87A-F86FD3B1616D"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"6", ",", "18", ",", "8", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "21", ",", "39", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "5", ",", "44", ",", "68"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "25", ",", "4", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "27", ",", "50", ",", "28"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "32", ",", "43", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"22", ",", "42", ",", "72", ",", "41"}], "}"}], ",", RowBox[{"{", RowBox[{"34", ",", "49", ",", "80", ",", "58"}], "}"}], ",", RowBox[{"{", RowBox[{"36", ",", "63", ",", "79", ",", "47"}], "}"}], ",", RowBox[{"{", RowBox[{"40", ",", "67", ",", "109", ",", "114"}], "}"}], ",", RowBox[{"{", RowBox[{"46", ",", "26", ",", "59", ",", "90"}], "}"}], ",", RowBox[{"{", RowBox[{"51", ",", "29", ",", "107", ",", "116"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "33", ",", "3", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"56", ",", "31", ",", "15", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "87", ",", "16", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"69", ",", "54", ",", "84", ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{"74", ",", "64", ",", "38", ",", "45"}], "}"}], ",", RowBox[{"{", RowBox[{"75", ",", "19", ",", "35", ",", "101"}], "}"}], ",", RowBox[{"{", RowBox[{"76", ",", "95", ",", "70", ",", "53"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "14", ",", "23", ",", "98"}], "}"}], ",", RowBox[{"{", RowBox[{"82", ",", "99", ",", "73", ",", "100"}], "}"}], ",", RowBox[{"{", RowBox[{"83", ",", "61", ",", "37", ",", "106"}], "}"}], ",", RowBox[{"{", RowBox[{"85", ",", "55", ",", "71", ",", "96"}], "}"}], ",", RowBox[{"{", RowBox[{"89", ",", "57", ",", "88", ",", "66"}], "}"}], ",", RowBox[{"{", RowBox[{"92", ",", "111", ",", "93", ",", "62"}], "}"}], ",", RowBox[{"{", RowBox[{"102", ",", "117", ",", "120", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"108", ",", "86", ",", "97", ",", "115"}], "}"}], ",", RowBox[{"{", RowBox[{"113", ",", "48", ",", "77", ",", "94"}], "}"}], ",", RowBox[{"{", RowBox[{"118", ",", "103", ",", "78", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"119", ",", "110", ",", "91", ",", "105"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "24", ",", "43", ",", "80", ",", "49", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "20", ",", "88", ",", "57", ",", "74", ",", "45"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "33", ",", "52", ",", "87", ",", "65", ",", "25"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "26", ",", "46", ",", "67", ",", "40", ",", "23"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "81", ",", "98", ",", "68", ",", "44", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"21", ",", "75", ",", "101", ",", "83", ",", "106", ",", "39"}], "}"}], ",", RowBox[{"{", RowBox[{"31", ",", "56", ",", "69", ",", "60", ",", "116", ",", "107"}], "}"}], ",", RowBox[{"{", RowBox[{"35", ",", "19", ",", "10", ",", "16", ",", "29", ",", "51"}], "}"}], ",", RowBox[{"{", RowBox[{"55", ",", "7", ",", "3", ",", "5", ",", "11", ",", "71"}], "}"}], ",", RowBox[{"{", RowBox[{"63", ",", "93", ",", "111", ",", "118", ",", "104", ",", "79"}], "}"}], ",", RowBox[{"{", RowBox[{"64", ",", "32", ",", "17", ",", "1", ",", "4", ",", "38"}], "}"}], ",", RowBox[{"{", RowBox[{"72", ",", "42", ",", "114", ",", "109", ",", "76", ",", "53"}], "}"}], ",", RowBox[{"{", RowBox[{"86", ",", "108", ",", "119", ",", "105", ",", "84", ",", "54"}], "}"}], ",", RowBox[{"{", RowBox[{"96", ",", "22", ",", "41", ",", "30", ",", "15", ",", "85"}], "}"}], ",", RowBox[{"{", RowBox[{"99", ",", "27", ",", "13", ",", "34", ",", "58", ",", "73"}], "}"}], ",", RowBox[{"{", RowBox[{"100", ",", "89", ",", "66", ",", "36", ",", "47", ",", "82"}], "}"}], ",", RowBox[{"{", RowBox[{"103", ",", "117", ",", "102", ",", "77", ",", "48", ",", "78"}], "}"}], ",", RowBox[{"{", RowBox[{"110", ",", "92", ",", "62", ",", "37", ",", "61", ",", "91"}], "}"}], ",", RowBox[{"{", RowBox[{"112", ",", "120", ",", "115", ",", "97", ",", "70", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{"113", ",", "94", ",", "90", ",", "59", ",", "28", ",", "50"}], "}"}], ",", RowBox[{"{", RowBox[{ "7", ",", "55", ",", "85", ",", "15", ",", "31", ",", "107", ",", "29", ",", "16", ",", "87", ",", "52"}], "}"}], ",", RowBox[{"{", RowBox[{ "25", ",", "65", ",", "10", ",", "19", ",", "75", ",", "21", ",", "9", ",", "45", ",", "38", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{ "33", ",", "12", ",", "1", ",", "17", ",", "24", ",", "2", ",", "8", ",", "44", ",", "5", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ "81", ",", "18", ",", "6", ",", "49", ",", "34", ",", "13", ",", "28", ",", "59", ",", "26", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{ "82", ",", "47", ",", "79", ",", "104", ",", "78", ",", "48", ",", "113", ",", "50", ",", "27", ",", "99"}], "}"}], ",", RowBox[{"{", RowBox[{ "86", ",", "54", ",", "69", ",", "56", ",", "30", ",", "41", ",", "72", ",", "53", ",", "70", ",", "97"}], "}"}], ",", RowBox[{"{", RowBox[{ "88", ",", "20", ",", "39", ",", "106", ",", "37", ",", "62", ",", "93", ",", "63", ",", "36", ",", "66"}], "}"}], ",", RowBox[{"{", RowBox[{ "90", ",", "94", ",", "77", ",", "102", ",", "112", ",", "95", ",", "76", ",", "109", ",", "67", ",", "46"}], "}"}], ",", RowBox[{"{", RowBox[{ "100", ",", "73", ",", "58", ",", "80", ",", "43", ",", "32", ",", "64", ",", "74", ",", "57", ",", "89"}], "}"}], ",", RowBox[{"{", RowBox[{ "101", ",", "35", ",", "51", ",", "116", ",", "60", ",", "84", ",", "105", ",", "91", ",", "61", ",", "83"}], "}"}], ",", RowBox[{"{", RowBox[{ "108", ",", "115", ",", "120", ",", "117", ",", "103", ",", "118", ",", "111", ",", "92", ",", "110", ",", "119"}], "}"}], ",", RowBox[{"{", RowBox[{ "114", ",", "42", ",", "22", ",", "96", ",", "71", ",", "11", ",", "68", ",", "98", ",", "23", ",", "40"}], "}"}]}], "}"}]], "Output", CellLabel->"Out[33]=",ExpressionUUID->"CE1EFAE2-6C7D-4B17-ACF8-4202411193E6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"FaceForm", "[", RowBox[{"Green", ",", "Red"}], "]"}], ",", "convexhull", ",", RowBox[{"MapIndexed", "[", RowBox[{ RowBox[{ RowBox[{"Text", "[", RowBox[{ RowBox[{"#2", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "#", ",", RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], ",", "v"}], "]"}]}], "}"}], "]"}]], "Input", CellLabel->"In[34]:=",ExpressionUUID->"18B422F3-C48F-4E07-BAA6-66C159A0E3E9"], Cell[BoxData[ Graphics3DBox[ {FaceForm[RGBColor[0, 1, 0], RGBColor[1, 0, 0]], PolyhedronBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], {{12, 25, 4, 1}, {82, 99, 73, 100}, {9, 21, 39, 20}, {119, 110, 91, 105}, {22, 42, 72, 41}, {113, 48, 77, 94}, {14, 26, 46, 67, 40, 23}, {81, 14, 23, 98}, {100, 89, 66, 36, 47, 82}, {36, 63, 79, 47}, {21, 75, 101, 83, 106, 39}, {75, 19, 35, 101}, {6, 18, 8, 2}, {17, 32, 43, 24}, {2, 24, 43, 80, 49, 6}, {99, 27, 13, 34, 58, 73}, {34, 49, 80, 58}, {89, 57, 88, 66}, {83, 61, 37, 106}, {86, 108, 119, 105, 84, 54}, {69, 54, 84, 60}, { 102, 117, 120, 112}, {76, 95, 70, 53}, {90, 94, 77, 102, 112, 95, 76, 109, 67, 46}, {72, 42, 114, 109, 76, 53}, {40, 67, 109, 114}, {108, 115, 120, 117, 103, 118, 111, 92, 110, 119}, {63, 93, 111, 118, 104, 79}, { 103, 117, 102, 77, 48, 78}, {118, 103, 78, 104}, {12, 33, 52, 87, 65, 25}, {100, 73, 58, 80, 43, 32, 64, 74, 57, 89}, {9, 20, 88, 57, 74, 45}, {64, 32, 17, 1, 4, 38}, {25, 65, 10, 19, 75, 21, 9, 45, 38, 4}, {74, 64, 38, 45}, {88, 20, 39, 106, 37, 62, 93, 63, 36, 66}, {110, 92, 62, 37, 61, 91}, {92, 111, 93, 62}, {112, 120, 115, 97, 70, 95}, {108, 86, 97, 115}, {81, 18, 6, 49, 34, 13, 28, 59, 26, 14}, {46, 26, 59, 90}, {82, 47, 79, 104, 78, 48, 113, 50, 27, 99}, {113, 94, 90, 59, 28, 50}, {13, 27, 50, 28}, {52, 33, 3, 7}, {35, 19, 10, 16, 29, 51}, {65, 87, 16, 10}, {7, 55, 85, 15, 31, 107, 29, 16, 87, 52}, {101, 35, 51, 116, 60, 84, 105, 91, 61, 83}, {31, 56, 69, 60, 116, 107}, {51, 29, 107, 116}, {55, 7, 3, 5, 11, 71}, {85, 55, 71, 96}, {33, 12, 1, 17, 24, 2, 8, 44, 5, 3}, {86, 54, 69, 56, 30, 41, 72, 53, 70, 97}, {96, 22, 41, 30, 15, 85}, { 56, 31, 15, 30}, {114, 42, 22, 96, 71, 11, 68, 98, 23, 40}, {18, 81, 98, 68, 44, 8}, {11, 5, 44, 68}}], {Text3DBox[ FormBox["1", StandardForm], NCache[{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { 0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}], Background->GrayLevel[1]], Text3DBox[ FormBox["2", StandardForm], NCache[{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}, {-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}], Background->GrayLevel[1]], Text3DBox[ FormBox["3", StandardForm], NCache[{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, {0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}], Background->GrayLevel[1]], Text3DBox[ FormBox["4", StandardForm], NCache[{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}], Background->GrayLevel[1]], Text3DBox[ FormBox["5", StandardForm], NCache[{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, {-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}], Background->GrayLevel[1]], Text3DBox[ FormBox["6", StandardForm], NCache[{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}], Background->GrayLevel[1]], Text3DBox[ FormBox["7", StandardForm], NCache[{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}], Background->GrayLevel[1]], Text3DBox[ FormBox["8", StandardForm], NCache[{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}], Background->GrayLevel[1]], Text3DBox[ FormBox["9", StandardForm], NCache[{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { 0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}], Background->GrayLevel[1]], Text3DBox[ FormBox["10", StandardForm], NCache[{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["11", StandardForm], NCache[{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}], Background->GrayLevel[1]], Text3DBox[ FormBox["12", StandardForm], NCache[{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}], Background->GrayLevel[1]], Text3DBox[ FormBox["13", StandardForm], NCache[{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}], Background->GrayLevel[1]], Text3DBox[ FormBox["14", StandardForm], NCache[{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["15", StandardForm], NCache[{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}], Background->GrayLevel[1]], Text3DBox[ FormBox["16", StandardForm], NCache[{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["17", StandardForm], NCache[{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["18", StandardForm], NCache[{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["19", StandardForm], NCache[{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}], Background->GrayLevel[1]], Text3DBox[ FormBox["20", StandardForm], NCache[{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}], Background->GrayLevel[1]], Text3DBox[ FormBox["21", StandardForm], NCache[{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["22", StandardForm], NCache[{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}], Background->GrayLevel[1]], Text3DBox[ FormBox["23", StandardForm], NCache[{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["24", StandardForm], NCache[{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["25", StandardForm], NCache[{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["26", StandardForm], NCache[{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}], Background->GrayLevel[1]], Text3DBox[ FormBox["27", StandardForm], NCache[{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}], Background->GrayLevel[1]], Text3DBox[ FormBox["28", StandardForm], NCache[{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["29", StandardForm], NCache[{Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["30", StandardForm], NCache[{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}], Background->GrayLevel[1]], Text3DBox[ FormBox["31", StandardForm], NCache[{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}], Background->GrayLevel[1]], Text3DBox[ FormBox["32", StandardForm], NCache[{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["33", StandardForm], NCache[{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["34", StandardForm], NCache[{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["35", StandardForm], NCache[{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}], Background->GrayLevel[1]], Text3DBox[ FormBox["36", StandardForm], NCache[{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}], Background->GrayLevel[1]], Text3DBox[ FormBox["37", StandardForm], NCache[{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}], Background->GrayLevel[1]], Text3DBox[ FormBox["38", StandardForm], NCache[{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}], Background->GrayLevel[1]], Text3DBox[ FormBox["39", StandardForm], NCache[{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["40", StandardForm], NCache[{Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["41", StandardForm], NCache[{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}], Background->GrayLevel[1]], Text3DBox[ FormBox["42", StandardForm], NCache[{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}, {-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}], Background->GrayLevel[1]], Text3DBox[ FormBox["43", StandardForm], NCache[{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["44", StandardForm], NCache[{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["45", StandardForm], NCache[{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["46", StandardForm], NCache[{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}], Background->GrayLevel[1]], Text3DBox[ FormBox["47", StandardForm], NCache[{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}], Background->GrayLevel[1]], Text3DBox[ FormBox["48", StandardForm], NCache[{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[ 1, 2]}, {-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}], Background->GrayLevel[1]], Text3DBox[ FormBox["49", StandardForm], NCache[{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}], Background->GrayLevel[1]], Text3DBox[ FormBox["50", StandardForm], NCache[{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["51", StandardForm], NCache[{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["52", StandardForm], NCache[{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}], Background->GrayLevel[1]], Text3DBox[ FormBox["53", StandardForm], NCache[{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}], Background->GrayLevel[1]], Text3DBox[ FormBox["54", StandardForm], NCache[{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}], Background->GrayLevel[1]], Text3DBox[ FormBox["55", StandardForm], NCache[{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}], Background->GrayLevel[1]], Text3DBox[ FormBox["56", StandardForm], NCache[{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["57", StandardForm], NCache[{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["58", StandardForm], NCache[{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}], Background->GrayLevel[1]], Text3DBox[ FormBox["59", StandardForm], NCache[{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}], Background->GrayLevel[1]], Text3DBox[ FormBox["60", StandardForm], NCache[{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["61", StandardForm], NCache[{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}], Background->GrayLevel[1]], Text3DBox[ FormBox["62", StandardForm], NCache[{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}], Background->GrayLevel[1]], Text3DBox[ FormBox["63", StandardForm], NCache[{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}], Background->GrayLevel[1]], Text3DBox[ FormBox["64", StandardForm], NCache[{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { 0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}], Background->GrayLevel[1]], Text3DBox[ FormBox["65", StandardForm], NCache[{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}], Background->GrayLevel[1]], Text3DBox[ FormBox["66", StandardForm], NCache[{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}], Background->GrayLevel[1]], Text3DBox[ FormBox["67", StandardForm], NCache[{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["68", StandardForm], NCache[{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}], Background->GrayLevel[1]], Text3DBox[ FormBox["69", StandardForm], NCache[{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}], Background->GrayLevel[1]], Text3DBox[ FormBox["70", StandardForm], NCache[{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}, {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}], Background->GrayLevel[1]], Text3DBox[ FormBox["71", StandardForm], NCache[{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}], Background->GrayLevel[1]], Text3DBox[ FormBox["72", StandardForm], NCache[{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["73", StandardForm], NCache[{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["74", StandardForm], NCache[{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}], Background->GrayLevel[1]], Text3DBox[ FormBox["75", StandardForm], NCache[{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}], Background->GrayLevel[1]], Text3DBox[ FormBox["76", StandardForm], NCache[{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["77", StandardForm], NCache[{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}], Background->GrayLevel[1]], Text3DBox[ FormBox["78", StandardForm], NCache[{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[ 1, 2]}, {-0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}], Background->GrayLevel[1]], Text3DBox[ FormBox["79", StandardForm], NCache[{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}, {-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}], Background->GrayLevel[1]], Text3DBox[ FormBox["80", StandardForm], NCache[{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}], Background->GrayLevel[1]], Text3DBox[ FormBox["81", StandardForm], NCache[{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}], Background->GrayLevel[1]], Text3DBox[ FormBox["82", StandardForm], NCache[{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}], Background->GrayLevel[1]], Text3DBox[ FormBox["83", StandardForm], NCache[{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["84", StandardForm], NCache[{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}], Background->GrayLevel[1]], Text3DBox[ FormBox["85", StandardForm], NCache[{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}], Background->GrayLevel[1]], Text3DBox[ FormBox["86", StandardForm], NCache[{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["87", StandardForm], NCache[{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}], Background->GrayLevel[1]], Text3DBox[ FormBox["88", StandardForm], NCache[{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}], Background->GrayLevel[1]], Text3DBox[ FormBox["89", StandardForm], NCache[{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}], Background->GrayLevel[1]], Text3DBox[ FormBox["90", StandardForm], NCache[{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[ 1, 2])}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}], Background->GrayLevel[1]], Text3DBox[ FormBox["91", StandardForm], NCache[{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["92", StandardForm], NCache[{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["93", StandardForm], NCache[{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}], Background->GrayLevel[1]], Text3DBox[ FormBox["94", StandardForm], NCache[{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, {-0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["95", StandardForm], NCache[{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}], Background->GrayLevel[1]], Text3DBox[ FormBox["96", StandardForm], NCache[{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}], Background->GrayLevel[1]], Text3DBox[ FormBox["97", StandardForm], NCache[{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["98", StandardForm], NCache[{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}], Background->GrayLevel[1]], Text3DBox[ FormBox["99", StandardForm], NCache[{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}], Background->GrayLevel[1]], Text3DBox[ FormBox["100", StandardForm], NCache[{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}], Background->GrayLevel[1]], Text3DBox[ FormBox["101", StandardForm], NCache[{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}], Background->GrayLevel[1]], Text3DBox[ FormBox["102", StandardForm], NCache[{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["103", StandardForm], NCache[{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}, {-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["104", StandardForm], NCache[{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[ 1, 2]}, {-0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}], Background->GrayLevel[1]], Text3DBox[ FormBox["105", StandardForm], NCache[{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}], Background->GrayLevel[1]], Text3DBox[ FormBox["106", StandardForm], NCache[{Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["107", StandardForm], NCache[{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}], Background->GrayLevel[1]], Text3DBox[ FormBox["108", StandardForm], NCache[{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["109", StandardForm], NCache[{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}, {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}], Background->GrayLevel[1]], Text3DBox[ FormBox["110", StandardForm], NCache[{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}], Background->GrayLevel[1]], Text3DBox[ FormBox["111", StandardForm], NCache[{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}], Background->GrayLevel[1]], Text3DBox[ FormBox["112", StandardForm], NCache[{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[ 1, 2])}, {-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}], Background->GrayLevel[1]], Text3DBox[ FormBox["113", StandardForm], NCache[{Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}], Background->GrayLevel[1]], Text3DBox[ FormBox["114", StandardForm], NCache[{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}], Background->GrayLevel[1]], Text3DBox[ FormBox["115", StandardForm], NCache[{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}], Background->GrayLevel[1]], Text3DBox[ FormBox["116", StandardForm], NCache[{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}], Background->GrayLevel[1]], Text3DBox[ FormBox["117", StandardForm], NCache[{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}], Background->GrayLevel[1]], Text3DBox[ FormBox["118", StandardForm], NCache[{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, {-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}], Background->GrayLevel[1]], Text3DBox[ FormBox["119", StandardForm], NCache[{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}], Background->GrayLevel[1]], Text3DBox[ FormBox["120", StandardForm], NCache[{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[ 1, 2])}, {-0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}], Background->GrayLevel[1]]}}]], "Output", CellLabel->"Out[34]=",ExpressionUUID->"B9C16ECA-83D6-4A0B-A367-6BC375292EB2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{"Red", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", "p"}], "}"}], "]"}], ",", RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{"Blue", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "}"}], "]"}]}], "}"}]], "Input", CellLabel->"In[35]:=",ExpressionUUID->"51286206-C9F1-461F-970B-81E53D6342F8"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ {RGBColor[1, 0, 0], Opacity[0.5], PolyhedronBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}], ",", Graphics3DBox[ {RGBColor[0, 0, 1], Opacity[0.5], GraphicsComplex3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], Polygon3DBox[{{6, 18, 8, 2}, {9, 21, 39, 20}, {11, 5, 44, 68}, {12, 25, 4, 1}, {13, 27, 50, 28}, {17, 32, 43, 24}, {22, 42, 72, 41}, {34, 49, 80, 58}, {36, 63, 79, 47}, {40, 67, 109, 114}, {46, 26, 59, 90}, {51, 29, 107, 116}, {52, 33, 3, 7}, {56, 31, 15, 30}, {65, 87, 16, 10}, { 69, 54, 84, 60}, {74, 64, 38, 45}, {75, 19, 35, 101}, {76, 95, 70, 53}, {81, 14, 23, 98}, {82, 99, 73, 100}, {83, 61, 37, 106}, {85, 55, 71, 96}, {89, 57, 88, 66}, {92, 111, 93, 62}, {102, 117, 120, 112}, { 108, 86, 97, 115}, {113, 48, 77, 94}, {118, 103, 78, 104}, {119, 110, 91, 105}, {2, 24, 43, 80, 49, 6}, {9, 20, 88, 57, 74, 45}, {12, 33, 52, 87, 65, 25}, {14, 26, 46, 67, 40, 23}, {18, 81, 98, 68, 44, 8}, { 21, 75, 101, 83, 106, 39}, {31, 56, 69, 60, 116, 107}, {35, 19, 10, 16, 29, 51}, {55, 7, 3, 5, 11, 71}, {63, 93, 111, 118, 104, 79}, {64, 32, 17, 1, 4, 38}, {72, 42, 114, 109, 76, 53}, {86, 108, 119, 105, 84, 54}, {96, 22, 41, 30, 15, 85}, {99, 27, 13, 34, 58, 73}, {100, 89, 66, 36, 47, 82}, {103, 117, 102, 77, 48, 78}, {110, 92, 62, 37, 61, 91}, {112, 120, 115, 97, 70, 95}, {113, 94, 90, 59, 28, 50}, {7, 55, 85, 15, 31, 107, 29, 16, 87, 52}, {25, 65, 10, 19, 75, 21, 9, 45, 38, 4}, {33, 12, 1, 17, 24, 2, 8, 44, 5, 3}, {81, 18, 6, 49, 34, 13, 28, 59, 26, 14}, {82, 47, 79, 104, 78, 48, 113, 50, 27, 99}, {86, 54, 69, 56, 30, 41, 72, 53, 70, 97}, {88, 20, 39, 106, 37, 62, 93, 63, 36, 66}, {90, 94, 77, 102, 112, 95, 76, 109, 67, 46}, {100, 73, 58, 80, 43, 32, 64, 74, 57, 89}, {101, 35, 51, 116, 60, 84, 105, 91, 61, 83}, {108, 115, 120, 117, 103, 118, 111, 92, 110, 119}, {114, 42, 22, 96, 71, 11, 68, 98, 23, 40}}]]}]}], "}"}]], "Output", CellLabel->"Out[35]=",ExpressionUUID->"FF3932EF-2384-4848-A5F8-C7E1727E658C"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", "%", "]"}]], "Input", CellLabel->"In[36]:=",ExpressionUUID->"6A778E3E-30CE-4763-9A3B-727957606CF8"], Cell[BoxData[ Graphics3DBox[{ {RGBColor[1, 0, 0], Opacity[0.5], PolyhedronBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, {RGBColor[0, 0, 1], Opacity[0.5], GraphicsComplex3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], Polygon3DBox[{{6, 18, 8, 2}, {9, 21, 39, 20}, {11, 5, 44, 68}, {12, 25, 4, 1}, {13, 27, 50, 28}, {17, 32, 43, 24}, {22, 42, 72, 41}, {34, 49, 80, 58}, {36, 63, 79, 47}, {40, 67, 109, 114}, {46, 26, 59, 90}, {51, 29, 107, 116}, {52, 33, 3, 7}, {56, 31, 15, 30}, {65, 87, 16, 10}, {69, 54, 84, 60}, {74, 64, 38, 45}, {75, 19, 35, 101}, {76, 95, 70, 53}, { 81, 14, 23, 98}, {82, 99, 73, 100}, {83, 61, 37, 106}, {85, 55, 71, 96}, {89, 57, 88, 66}, {92, 111, 93, 62}, {102, 117, 120, 112}, {108, 86, 97, 115}, {113, 48, 77, 94}, {118, 103, 78, 104}, {119, 110, 91, 105}, {2, 24, 43, 80, 49, 6}, {9, 20, 88, 57, 74, 45}, {12, 33, 52, 87, 65, 25}, {14, 26, 46, 67, 40, 23}, {18, 81, 98, 68, 44, 8}, {21, 75, 101, 83, 106, 39}, {31, 56, 69, 60, 116, 107}, {35, 19, 10, 16, 29, 51}, {55, 7, 3, 5, 11, 71}, {63, 93, 111, 118, 104, 79}, {64, 32, 17, 1, 4, 38}, {72, 42, 114, 109, 76, 53}, {86, 108, 119, 105, 84, 54}, { 96, 22, 41, 30, 15, 85}, {99, 27, 13, 34, 58, 73}, {100, 89, 66, 36, 47, 82}, {103, 117, 102, 77, 48, 78}, {110, 92, 62, 37, 61, 91}, {112, 120, 115, 97, 70, 95}, {113, 94, 90, 59, 28, 50}, {7, 55, 85, 15, 31, 107, 29, 16, 87, 52}, {25, 65, 10, 19, 75, 21, 9, 45, 38, 4}, {33, 12, 1, 17, 24, 2, 8, 44, 5, 3}, {81, 18, 6, 49, 34, 13, 28, 59, 26, 14}, { 82, 47, 79, 104, 78, 48, 113, 50, 27, 99}, {86, 54, 69, 56, 30, 41, 72, 53, 70, 97}, {88, 20, 39, 106, 37, 62, 93, 63, 36, 66}, {90, 94, 77, 102, 112, 95, 76, 109, 67, 46}, {100, 73, 58, 80, 43, 32, 64, 74, 57, 89}, {101, 35, 51, 116, 60, 84, 105, 91, 61, 83}, {108, 115, 120, 117, 103, 118, 111, 92, 110, 119}, {114, 42, 22, 96, 71, 11, 68, 98, 23, 40}}]]}}, ImageSize->{360., 360.}, ImageSizeRaw->Automatic, ViewAngle->0.47030072394368955`, ViewPoint->{1.4322382673719734`, -1.1486094515229959`, 2.8424267577806415`}, ViewVertical->{-0.16192729907684586`, 0.34487246924147025`, 0.9245769463776224}]], "Output", CellLabel->"Out[36]=",ExpressionUUID->"448558E1-5450-48D8-8316-FF2E8B30830B"] }, Open ]], Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{"p", ",", RowBox[{"MapIndexed", "[", RowBox[{ RowBox[{ RowBox[{"Text", "[", RowBox[{ RowBox[{"#2", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "#", ",", RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], ",", RowBox[{"p", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "}"}], "]"}]], "Input", CellLabel->"In[98]:=",ExpressionUUID->"06B9C11C-01E6-4CAE-9355-D0F30216BD37"] }, Closed]], Cell[CellGroupData[{ Cell["DehnInvariant", "Subsection",ExpressionUUID->"7564DD89-6F9E-4387-94CC-2DDB38932AB7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[37]:=",ExpressionUUID->"A1B3B5C9-1179-4C56-BD55-E41AB7B1B6EE"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[37]=",ExpressionUUID->"6132E839-2985-4997-97FA-312A1BF76FC4"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"dehn", "=", RowBox[{"DehnInvariant", "[", RowBox[{"p", ",", RowBox[{"Debug", "\[Rule]", "True"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"5F3E2C0D-40EB-4525-8963-D5639C962513"], Cell[BoxData[ RowBox[{"ToConwayBasis", "[", "dehn", "]"}]], "Input",ExpressionUUID->"86CF5789-6CE0-4649-A447-172F7EFD6933"] }, Closed]], Cell[CellGroupData[{ Cell["DihedralAngles", "Subsection",ExpressionUUID->"11B2286D-0C64-477C-B2BF-5B39E51A01BB"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "//", "Tally"}]], "Input", CellLabel->"In[38]:=",ExpressionUUID->"1CAD82ED-DC14-41B8-A462-EBB93B5FDD01"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"ArcSec", "[", RowBox[{"-", "3"}], "]"}], ",", "240"}], "}"}], "}"}]], "Output", CellLabel->"Out[38]=",ExpressionUUID->"E94E7380-6367-49FE-8E28-F1B2DA1FFFAC"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"SimplifyNumericallyDistinct", "[", RowBox[{"DihedralAngles", "[", "p", "]"}], "]"}], "//", "Tally"}]], "Input",\ CellLabel->"In[39]:=",ExpressionUUID->"8B65FE59-E676-425B-B823-6D3EF5F2A260"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "-", RowBox[{"ArcSec", "[", "3", "]"}]}], ",", "240"}], "}"}], "}"}]], "Output", CellLabel->"Out[39]=",ExpressionUUID->"14FEBF47-2DFB-47F6-86EA-26D467CE8355"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", RowBox[{"{", RowBox[{ RowBox[{"ArcSec", "[", RowBox[{"-", "3"}], "]"}], ",", RowBox[{"\[Pi]", "-", RowBox[{"ArcSec", "[", "3", "]"}]}]}], "}"}], "]"}]], "Input", CellLabel->"In[40]:=",ExpressionUUID->"0043A3DA-C1C4-4328-A2AC-D9A7730013B8"], Cell[BoxData[ RowBox[{"{", RowBox[{"1.9106332362490184`", ",", "1.9106332362490184`"}], "}"}]], "Output", CellLabel->"Out[40]=",ExpressionUUID->"A8099622-36A6-40EE-97C2-D196DBE3C42C"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Dual", "Subsection",ExpressionUUID->"50262BB9-856D-4C3C-A608-567715A7B9A0"], Cell[CellGroupData[{ Cell[BoxData["pname"], "Input", CellLabel->"In[3]:=",ExpressionUUID->"A0D97A63-A658-4883-B26E-44786E99A1C9"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"OctahedronTwentyCompound\"\>", ",", "1"}], "}"}]], "Output", CellLabel->"Out[3]=",ExpressionUUID->"D9C00158-91E0-49DC-BF27-C39D26655BAF"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"dname", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"12BD07A7-F695-47AD-B0DC-4444C3FDDE0A"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"CubeTwentyCompound\"\>", ",", "1"}], "}"}]], "Output", CellLabel->"Out[4]=",ExpressionUUID->"33A0B2E5-BDC2-46CD-A5C3-2EFEB5706186"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[5]:=",ExpressionUUID->"9A869F85-03FB-4EDE-B5E0-94773E673BF1"], Cell[BoxData[ FractionBox["1", SqrtBox["2"]]], "Output", CellLabel->"Out[5]=",ExpressionUUID->"853CD08B-F8CD-4263-9E7C-848E043207F6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"midrs", "=", RowBox[{"{", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"dname", ",", "\"\\""}], "]"}]}], "}"}]}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"C7EB7DD0-CD2B-4A89-B063-4BA85F72F783"], Cell[BoxData[ RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", FractionBox["1", SqrtBox["2"]]}], "}"}]], "Output", CellLabel->"Out[6]=",ExpressionUUID->"B4B7F115-1ADB-4924-B674-43A063BB7968"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Divide", "@@", "midrs"}], "//", "FullSimplify"}]], "Input", CellLabel->"In[7]:=",ExpressionUUID->"11F8A159-0603-4F2F-A607-5D15C2C1A9D1"], Cell[BoxData[ FractionBox["1", SqrtBox["2"]]], "Output", CellLabel->"Out[7]=",ExpressionUUID->"6F1B285C-8BCA-46BB-86BB-237FF05B204C"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphicsRow", "[", RowBox[{ RowBox[{"With", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"s", "=", RowBox[{"{", RowBox[{"Yellow", ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"style", "=", RowBox[{"Directive", "[", RowBox[{"Black", ",", "Italic", ",", RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", "14"}], "]"}]}]}], "\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{"s", ",", "Green", ",", RowBox[{"Opacity", "[", ".1", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"TextCell", "[", RowBox[{ RowBox[{"Style", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", "style"}], "]"}], ",", RowBox[{"PageWidth", "\[Rule]", "200"}], ",", RowBox[{"TextAlignment", "\[Rule]", "Center"}]}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{"s", ",", "Red", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"dname", ",", "\"\\""}], "]"}], ",", "style"}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"Green", ",", RowBox[{"Opacity", "[", ".2", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"Red", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{ "pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", "s"}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "style"}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "style"}], "]"}]}]}], "]"}]}], "\[IndentingNewLine]", "}"}]}], "]"}], ",", RowBox[{"Alignment", "\[Rule]", "Top"}], ",", RowBox[{"ImageSize", "\[Rule]", "800"}]}], "]"}]], "Input", CellLabel->"In[12]:=",ExpressionUUID->"31835010-EB5B-4857-BF27-75784EDFB0B9"], Cell[BoxData[ GraphicsBox[{{}, {InsetBox[ Graphics3DBox[{ {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}, NCache[Rational[1, 2], 0.5]]}, {RGBColor[0, 1, 0], Opacity[0.1], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox["\"first octahedron 20\[Hyphen]compound\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], PageWidth -> 200, TextAlignment -> Center], TextCell[ Style["first octahedron 20\[Hyphen]compound", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14]], PageWidth -> 200, TextAlignment -> Center]], TraditionalForm]], {194.4, -9.5}, ImageScaled[{0.5, 1}], {360, 380}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}, NCache[Rational[1, 2], 0.5]]}, {RGBColor[1, 0, 0], Opacity[0.5], PolyhedronBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), ( Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), ( Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2])}, { 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0, 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), ( Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, { 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[ 1, 2])}}, {{-0.2860307014088421, -0.10925400611220527`, \ -0.5303300858899106}, { 0.35355339059327373`, -0.35355339059327373`, \ -0.35355339059327373`}, {-0.5303300858899106, -0.2860307014088421, 0.10925400611220527`}, {0.10925400611220527`, -0.5303300858899106, 0.2860307014088421}, {0.5303300858899106, 0.2860307014088421, -0.10925400611220527`}, {-0.10925400611220527`, 0.5303300858899106, -0.2860307014088421}, {0.2860307014088421, 0.10925400611220527`, 0.5303300858899106}, {-0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.35355339059327373`, \ -0.35355339059327373`, -0.35355339059327373`}, { 0.2860307014088421, -0.10925400611220527`, -0.5303300858899106}, \ {-0.10925400611220527`, -0.5303300858899106, 0.2860307014088421}, { 0.5303300858899106, -0.2860307014088421, 0.10925400611220527`}, { 0.10925400611220527`, 0.5303300858899106, -0.2860307014088421}, {-0.5303300858899106, 0.2860307014088421, -0.10925400611220527`}, {0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.2860307014088421, 0.10925400611220527`, 0.5303300858899106}, {-0.462807396705479, -0.39528470752104744`, \ -0.06752268918443159}, { 0.21850801222441055`, -0.5720614028176841, 0}, {-0.39528470752104744`, 0.0675226891844316, 0.462807396705479}, {0.2860307014088421, -0.10925400611220527`, 0.5303300858899106}, { 0.39528470752104744`, -0.06752268918443159, -0.462807396705479}, \ {-0.2860307014088421, 0.10925400611220527`, -0.5303300858899106}, { 0.462807396705479, 0.39528470752104744`, 0.0675226891844316}, {-0.21850801222441055`, 0.5720614028176843, 0}, {-0.39528470752104744`, -0.06752268918443159, \ -0.462807396705479}, { 0.10925400611220527`, -0.5303300858899106, -0.2860307014088421}, \ {-0.5720614028176841, 0, 0.21850801222441055`}, {-0.06752268918443159, -0.462807396705479, 0.39528470752104744`}, { 0.5720614028176843, 0, -0.21850801222441055`}, {0.0675226891844316, 0.462807396705479, -0.39528470752104744`}, {0.39528470752104744`, 0.0675226891844316, 0.462807396705479}, {-0.10925400611220527`, 0.5303300858899106, 0.2860307014088421}, {-0.21850801222441055`, -0.5720614028176841, 0}, {0.462807396705479, -0.39528470752104744`, \ -0.06752268918443159}, {-0.2860307014088421, -0.10925400611220527`, 0.5303300858899106}, {0.2860307014088421, 0.10925400611220527`, -0.5303300858899106}, { 0.21850801222441055`, 0.5720614028176843, 0}, {-0.462807396705479, 0.39528470752104744`, 0.0675226891844316}, {-0.10925400611220527`, -0.5303300858899106, \ -0.2860307014088421}, {0.0675226891844316, -0.462807396705479, 0.39528470752104744`}, { 0.5720614028176843, 0, 0.21850801222441055`}, {-0.06752268918443159, 0.462807396705479, -0.39528470752104744`}, {-0.5720614028176841, 0, -0.21850801222441055`}, {0.10925400611220527`, 0.5303300858899106, 0.2860307014088421}, {-0.5303300858899106, -0.2860307014088421, \ -0.10925400611220527`}, {0.35355339059327373`, -0.35355339059327373`, 0.35355339059327373`}, {-0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, {0.5303300858899106, 0.2860307014088421, 0.10925400611220527`}, { 0.21850801222441055`, 0, -0.5720614028176841}, { 0, -0.5720614028176841, 0.21850801222441055`}, { 0.5720614028176843, -0.21850801222441055`, 0}, { 0, 0.5720614028176843, -0.21850801222441055`}, \ {-0.5720614028176841, 0.21850801222441055`, 0}, {-0.21850801222441055`, 0, 0.5720614028176843}, { 0.5303300858899106, -0.2860307014088421, -0.10925400611220527`}, \ {-0.35355339059327373`, -0.35355339059327373`, 0.35355339059327373`}, { 0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, {-0.5303300858899106, 0.2860307014088421, 0.10925400611220527`}, {-0.21850801222441055`, 0, -0.5720614028176841}, {-0.5720614028176841, \ -0.21850801222441055`, 0}, {0.5720614028176843, 0.21850801222441055`, 0}, { 0.21850801222441055`, 0, 0.5720614028176843}, {-0.06752268918443159, -0.462807396705479, \ -0.39528470752104744`}, {0.462807396705479, -0.39528470752104744`, 0.0675226891844316}, { 0, -0.21850801222441055`, 0.5720614028176843}, { 0, 0.21850801222441055`, -0.5720614028176841}, {0.0675226891844316, 0.462807396705479, 0.39528470752104744`}, {-0.462807396705479, 0.39528470752104744`, -0.06752268918443159}, { 0, -0.21850801222441055`, -0.5720614028176841}, { 0, 0.21850801222441055`, 0.5720614028176843}, {-0.39528470752104744`, -0.06752268918443159, 0.462807396705479}, {0.39528470752104744`, 0.0675226891844316, -0.462807396705479}, {-0.462807396705479, \ -0.39528470752104744`, 0.0675226891844316}, { 0.0675226891844316, -0.462807396705479, -0.39528470752104744`}, { 0.462807396705479, 0.39528470752104744`, -0.06752268918443159}, {-0.06752268918443159, 0.462807396705479, 0.39528470752104744`}, { 0.39528470752104744`, -0.06752268918443159, 0.462807396705479}, {-0.39528470752104744`, 0.0675226891844316, -0.462807396705479}, { 0, -0.5720614028176841, -0.21850801222441055`}, { 0, 0.5720614028176843, 0.21850801222441055`}}], CompressedData[" 1:eJwNw+nWoQAAAFBSRNKGNtpUyNauBSWVssSZR/heYP7O4893z7nyz98/P0Cr 1fr3G/wN9UCg0wZAoN2FOmAPbnfgbg/qwoMh0u8j+AgZYvigP0JHOIYOByhG j8kJMZ2QkylDE+SYmhIUM6YZime52VyccTNR4uccK4hzQWJ5SVjorKwqMquy uiYr4kJRNVFfiNpkvVpSm+WKWq23y40x2VBbYz0xtqq55xY7br/YmxK3O6i7 hXQw1YNkO5jvej7me33bxRzLsfuW51r94zhYLoNoelxOw2C8jabRNhwfw+3J vsBnF77Abnw6X2zAPQOxfYqBDEqTaydJryl0Szp51rnecijLb2Y5U3aFMlMK wdzNSr3Y6UJpCvp9k4DVGkyqZNMF17f7uureNvdbN5XbVa5V7UrrpXlbvmv5 vSenvXsZEaviuCIKIjJWR7o8FgYdlbQxyh718Fo/6utrNHxkz+vw+cpGr+f8 jTz45oE8GnTOI+9Xw7/Q9xx9kXUzYJ6DhmlqfPB8k08Gf9fkG/+cDtb3bB2+ h5Nvnfef89ffnz573/nEofcNYy/+BOH34nycS/D1gst/f29OFQ== "]]}}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"first cube 20\[Hyphen]compound\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], {583.2, -9.5}, ImageScaled[{0.5, 1}], {360, 377}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ {RGBColor[0, 1, 0], Opacity[0.2], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, {RGBColor[1, 0, 0], Opacity[0.5], PolyhedronBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), ( Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), ( Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2])}, { 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0, 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), ( Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/( 6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, { 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[ 1, 2])}}, {{-0.2860307014088421, -0.10925400611220527`, \ -0.5303300858899106}, { 0.35355339059327373`, -0.35355339059327373`, \ -0.35355339059327373`}, {-0.5303300858899106, -0.2860307014088421, 0.10925400611220527`}, {0.10925400611220527`, -0.5303300858899106, 0.2860307014088421}, {0.5303300858899106, 0.2860307014088421, -0.10925400611220527`}, {-0.10925400611220527`, 0.5303300858899106, -0.2860307014088421}, {0.2860307014088421, 0.10925400611220527`, 0.5303300858899106}, {-0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.35355339059327373`, \ -0.35355339059327373`, -0.35355339059327373`}, { 0.2860307014088421, -0.10925400611220527`, -0.5303300858899106}, \ {-0.10925400611220527`, -0.5303300858899106, 0.2860307014088421}, { 0.5303300858899106, -0.2860307014088421, 0.10925400611220527`}, { 0.10925400611220527`, 0.5303300858899106, -0.2860307014088421}, {-0.5303300858899106, 0.2860307014088421, -0.10925400611220527`}, {0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.2860307014088421, 0.10925400611220527`, 0.5303300858899106}, {-0.462807396705479, -0.39528470752104744`, \ -0.06752268918443159}, { 0.21850801222441055`, -0.5720614028176841, 0}, {-0.39528470752104744`, 0.0675226891844316, 0.462807396705479}, {0.2860307014088421, -0.10925400611220527`, 0.5303300858899106}, { 0.39528470752104744`, -0.06752268918443159, -0.462807396705479}, \ {-0.2860307014088421, 0.10925400611220527`, -0.5303300858899106}, { 0.462807396705479, 0.39528470752104744`, 0.0675226891844316}, {-0.21850801222441055`, 0.5720614028176843, 0}, {-0.39528470752104744`, -0.06752268918443159, \ -0.462807396705479}, { 0.10925400611220527`, -0.5303300858899106, -0.2860307014088421}, \ {-0.5720614028176841, 0, 0.21850801222441055`}, {-0.06752268918443159, -0.462807396705479, 0.39528470752104744`}, { 0.5720614028176843, 0, -0.21850801222441055`}, {0.0675226891844316, 0.462807396705479, -0.39528470752104744`}, {0.39528470752104744`, 0.0675226891844316, 0.462807396705479}, {-0.10925400611220527`, 0.5303300858899106, 0.2860307014088421}, {-0.21850801222441055`, -0.5720614028176841, 0}, {0.462807396705479, -0.39528470752104744`, \ -0.06752268918443159}, {-0.2860307014088421, -0.10925400611220527`, 0.5303300858899106}, {0.2860307014088421, 0.10925400611220527`, -0.5303300858899106}, { 0.21850801222441055`, 0.5720614028176843, 0}, {-0.462807396705479, 0.39528470752104744`, 0.0675226891844316}, {-0.10925400611220527`, -0.5303300858899106, \ -0.2860307014088421}, {0.0675226891844316, -0.462807396705479, 0.39528470752104744`}, { 0.5720614028176843, 0, 0.21850801222441055`}, {-0.06752268918443159, 0.462807396705479, -0.39528470752104744`}, {-0.5720614028176841, 0, -0.21850801222441055`}, {0.10925400611220527`, 0.5303300858899106, 0.2860307014088421}, {-0.5303300858899106, -0.2860307014088421, \ -0.10925400611220527`}, {0.35355339059327373`, -0.35355339059327373`, 0.35355339059327373`}, {-0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, {0.5303300858899106, 0.2860307014088421, 0.10925400611220527`}, { 0.21850801222441055`, 0, -0.5720614028176841}, { 0, -0.5720614028176841, 0.21850801222441055`}, { 0.5720614028176843, -0.21850801222441055`, 0}, { 0, 0.5720614028176843, -0.21850801222441055`}, \ {-0.5720614028176841, 0.21850801222441055`, 0}, {-0.21850801222441055`, 0, 0.5720614028176843}, { 0.5303300858899106, -0.2860307014088421, -0.10925400611220527`}, \ {-0.35355339059327373`, -0.35355339059327373`, 0.35355339059327373`}, { 0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, {-0.5303300858899106, 0.2860307014088421, 0.10925400611220527`}, {-0.21850801222441055`, 0, -0.5720614028176841}, {-0.5720614028176841, \ -0.21850801222441055`, 0}, {0.5720614028176843, 0.21850801222441055`, 0}, { 0.21850801222441055`, 0, 0.5720614028176843}, {-0.06752268918443159, -0.462807396705479, \ -0.39528470752104744`}, {0.462807396705479, -0.39528470752104744`, 0.0675226891844316}, { 0, -0.21850801222441055`, 0.5720614028176843}, { 0, 0.21850801222441055`, -0.5720614028176841}, {0.0675226891844316, 0.462807396705479, 0.39528470752104744`}, {-0.462807396705479, 0.39528470752104744`, -0.06752268918443159}, { 0, -0.21850801222441055`, -0.5720614028176841}, { 0, 0.21850801222441055`, 0.5720614028176843}, {-0.39528470752104744`, -0.06752268918443159, 0.462807396705479}, {0.39528470752104744`, 0.0675226891844316, -0.462807396705479}, {-0.462807396705479, \ -0.39528470752104744`, 0.0675226891844316}, { 0.0675226891844316, -0.462807396705479, -0.39528470752104744`}, { 0.462807396705479, 0.39528470752104744`, -0.06752268918443159}, {-0.06752268918443159, 0.462807396705479, 0.39528470752104744`}, { 0.39528470752104744`, -0.06752268918443159, 0.462807396705479}, {-0.39528470752104744`, 0.0675226891844316, -0.462807396705479}, { 0, -0.5720614028176841, -0.21850801222441055`}, { 0, 0.5720614028176843, 0.21850801222441055`}}], CompressedData[" 1:eJwNw+nWoQAAAFBSRNKGNtpUyNauBSWVssSZR/heYP7O4893z7nyz98/P0Cr 1fr3G/wN9UCg0wZAoN2FOmAPbnfgbg/qwoMh0u8j+AgZYvigP0JHOIYOByhG j8kJMZ2QkylDE+SYmhIUM6YZime52VyccTNR4uccK4hzQWJ5SVjorKwqMquy uiYr4kJRNVFfiNpkvVpSm+WKWq23y40x2VBbYz0xtqq55xY7br/YmxK3O6i7 hXQw1YNkO5jvej7me33bxRzLsfuW51r94zhYLoNoelxOw2C8jabRNhwfw+3J vsBnF77Abnw6X2zAPQOxfYqBDEqTaydJryl0Szp51rnecijLb2Y5U3aFMlMK wdzNSr3Y6UJpCvp9k4DVGkyqZNMF17f7uureNvdbN5XbVa5V7UrrpXlbvmv5 vSenvXsZEaviuCIKIjJWR7o8FgYdlbQxyh718Fo/6utrNHxkz+vw+cpGr+f8 jTz45oE8GnTOI+9Xw7/Q9xx9kXUzYJ6DhmlqfPB8k08Gf9fkG/+cDtb3bB2+ h5Nvnfef89ffnz573/nEofcNYy/+BOH34nycS/D1gst/f29OFQ== "]]}, {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}, NCache[Rational[1, 2], 0.5]]}}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"compound with midsphere\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], {972., -9.5}, ImageScaled[{0.5, 1}], {360, 377}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]], PolyhedronBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^Rational[1, 2]), ( Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), ( Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), ( Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, { 2^Rational[-1, 2]/(1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0, 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-1 - 5^ Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0, 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), ( Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^Rational[1, 2]), 2^Rational[-1, 2]/(1 - 5^Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2])}, { 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2]), Rational[-1, 4] Rational[5, 2]^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2]), Rational[1, 4] Rational[5, 2]^Rational[1, 2]}, { Rational[1, 4] Rational[5, 2]^Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[-1, 4] Rational[5, 2]^Rational[1, 2], 2^Rational[-1, 2]/(6 + 2 5^Rational[1, 2]), (Rational[1, 8] 2^Rational[-1, 2]) (-3 - 5^ Rational[1, 2])}, { 0, 2^Rational[-1, 2]/(1 - 5^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (1 - 5^ Rational[1, 2])}, { 0, (Rational[1, 4] 2^Rational[-1, 2]) (1 + 5^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-1 + 5^Rational[ 1, 2])}}, {{-0.2860307014088421, -0.10925400611220527`, \ -0.5303300858899106}, { 0.35355339059327373`, -0.35355339059327373`, \ -0.35355339059327373`}, {-0.5303300858899106, -0.2860307014088421, 0.10925400611220527`}, {0.10925400611220527`, -0.5303300858899106, 0.2860307014088421}, {0.5303300858899106, 0.2860307014088421, -0.10925400611220527`}, {-0.10925400611220527`, 0.5303300858899106, -0.2860307014088421}, {0.2860307014088421, 0.10925400611220527`, 0.5303300858899106}, {-0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.35355339059327373`, \ -0.35355339059327373`, -0.35355339059327373`}, { 0.2860307014088421, -0.10925400611220527`, -0.5303300858899106}, \ {-0.10925400611220527`, -0.5303300858899106, 0.2860307014088421}, { 0.5303300858899106, -0.2860307014088421, 0.10925400611220527`}, { 0.10925400611220527`, 0.5303300858899106, -0.2860307014088421}, {-0.5303300858899106, 0.2860307014088421, -0.10925400611220527`}, {0.35355339059327373`, 0.35355339059327373`, 0.35355339059327373`}, {-0.2860307014088421, 0.10925400611220527`, 0.5303300858899106}, {-0.462807396705479, -0.39528470752104744`, \ -0.06752268918443159}, { 0.21850801222441055`, -0.5720614028176841, 0}, {-0.39528470752104744`, 0.0675226891844316, 0.462807396705479}, {0.2860307014088421, -0.10925400611220527`, 0.5303300858899106}, { 0.39528470752104744`, -0.06752268918443159, -0.462807396705479}, \ {-0.2860307014088421, 0.10925400611220527`, -0.5303300858899106}, { 0.462807396705479, 0.39528470752104744`, 0.0675226891844316}, {-0.21850801222441055`, 0.5720614028176843, 0}, {-0.39528470752104744`, -0.06752268918443159, \ -0.462807396705479}, { 0.10925400611220527`, -0.5303300858899106, -0.2860307014088421}, \ {-0.5720614028176841, 0, 0.21850801222441055`}, {-0.06752268918443159, -0.462807396705479, 0.39528470752104744`}, { 0.5720614028176843, 0, -0.21850801222441055`}, {0.0675226891844316, 0.462807396705479, -0.39528470752104744`}, {0.39528470752104744`, 0.0675226891844316, 0.462807396705479}, {-0.10925400611220527`, 0.5303300858899106, 0.2860307014088421}, {-0.21850801222441055`, -0.5720614028176841, 0}, {0.462807396705479, -0.39528470752104744`, \ -0.06752268918443159}, {-0.2860307014088421, -0.10925400611220527`, 0.5303300858899106}, {0.2860307014088421, 0.10925400611220527`, -0.5303300858899106}, { 0.21850801222441055`, 0.5720614028176843, 0}, {-0.462807396705479, 0.39528470752104744`, 0.0675226891844316}, {-0.10925400611220527`, -0.5303300858899106, \ -0.2860307014088421}, {0.0675226891844316, -0.462807396705479, 0.39528470752104744`}, { 0.5720614028176843, 0, 0.21850801222441055`}, {-0.06752268918443159, 0.462807396705479, -0.39528470752104744`}, {-0.5720614028176841, 0, -0.21850801222441055`}, {0.10925400611220527`, 0.5303300858899106, 0.2860307014088421}, {-0.5303300858899106, -0.2860307014088421, \ -0.10925400611220527`}, {0.35355339059327373`, -0.35355339059327373`, 0.35355339059327373`}, {-0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, {0.5303300858899106, 0.2860307014088421, 0.10925400611220527`}, { 0.21850801222441055`, 0, -0.5720614028176841}, { 0, -0.5720614028176841, 0.21850801222441055`}, { 0.5720614028176843, -0.21850801222441055`, 0}, { 0, 0.5720614028176843, -0.21850801222441055`}, {-0.5720614028176841, 0.21850801222441055`, 0}, {-0.21850801222441055`, 0, 0.5720614028176843}, { 0.5303300858899106, -0.2860307014088421, -0.10925400611220527`}, \ {-0.35355339059327373`, -0.35355339059327373`, 0.35355339059327373`}, { 0.35355339059327373`, 0.35355339059327373`, -0.35355339059327373`}, {-0.5303300858899106, 0.2860307014088421, 0.10925400611220527`}, {-0.21850801222441055`, 0, -0.5720614028176841}, {-0.5720614028176841, \ -0.21850801222441055`, 0}, {0.5720614028176843, 0.21850801222441055`, 0}, { 0.21850801222441055`, 0, 0.5720614028176843}, {-0.06752268918443159, -0.462807396705479, \ -0.39528470752104744`}, {0.462807396705479, -0.39528470752104744`, 0.0675226891844316}, { 0, -0.21850801222441055`, 0.5720614028176843}, { 0, 0.21850801222441055`, -0.5720614028176841}, {0.0675226891844316, 0.462807396705479, 0.39528470752104744`}, {-0.462807396705479, 0.39528470752104744`, -0.06752268918443159}, { 0, -0.21850801222441055`, -0.5720614028176841}, { 0, 0.21850801222441055`, 0.5720614028176843}, {-0.39528470752104744`, -0.06752268918443159, 0.462807396705479}, {0.39528470752104744`, 0.0675226891844316, -0.462807396705479}, {-0.462807396705479, \ -0.39528470752104744`, 0.0675226891844316}, { 0.0675226891844316, -0.462807396705479, -0.39528470752104744`}, { 0.462807396705479, 0.39528470752104744`, -0.06752268918443159}, {-0.06752268918443159, 0.462807396705479, 0.39528470752104744`}, { 0.39528470752104744`, -0.06752268918443159, 0.462807396705479}, {-0.39528470752104744`, 0.0675226891844316, -0.462807396705479}, { 0, -0.5720614028176841, -0.21850801222441055`}, { 0, 0.5720614028176843, 0.21850801222441055`}}], CompressedData[" 1:eJwNw+nWoQAAAFBSRNKGNtpUyNauBSWVssSZR/heYP7O4893z7nyz98/P0Cr 1fr3G/wN9UCg0wZAoN2FOmAPbnfgbg/qwoMh0u8j+AgZYvigP0JHOIYOByhG j8kJMZ2QkylDE+SYmhIUM6YZime52VyccTNR4uccK4hzQWJ5SVjorKwqMquy uiYr4kJRNVFfiNpkvVpSm+WKWq23y40x2VBbYz0xtqq55xY7br/YmxK3O6i7 hXQw1YNkO5jvej7me33bxRzLsfuW51r94zhYLoNoelxOw2C8jabRNhwfw+3J vsBnF77Abnw6X2zAPQOxfYqBDEqTaydJryl0Szp51rnecijLb2Y5U3aFMlMK wdzNSr3Y6UJpCvp9k4DVGkyqZNMF17f7uureNvdbN5XbVa5V7UrrpXlbvmv5 vSenvXsZEaviuCIKIjJWR7o8FgYdlbQxyh718Fo/6utrNHxkz+vw+cpGr+f8 jTz45oE8GnTOI+9Xw7/Q9xx9kXUzYJ6DhmlqfPB8k08Gf9fkG/+cDtb3bB2+ h5Nvnfef89ffnz573/nEofcNYy/+BOH34nycS/D1gst/f29OFQ== "]]}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"compound\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], {1360.8000000000002, -9.5}, ImageScaled[{0.5, 1}], {360, 377}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True]}, {}}, ImageSize->800, PlotRangePadding->{6, 5}]], "Output", CellLabel->"Out[12]=",ExpressionUUID->"BCB783DD-F5A5-403C-9A9C-CBAE49DB33FB"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["EdgeCount", "Subsection",ExpressionUUID->"0DA0CEF4-0033-49D5-890A-99E527DA617B"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[41]:=",ExpressionUUID->"E99FE9B7-A98C-42B7-93F1-10673314BDD7"], Cell[BoxData["240"], "Output", CellLabel->"Out[41]=",ExpressionUUID->"B461B05F-AB0E-45FE-BCDE-AFA060B758DB"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["EdgeLengths", "Subsection",ExpressionUUID->"5E9EA5DB-2DA3-4930-BDE9-ADBF5724A434"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Tally", "[", RowBox[{ RowBox[{"PolyhedronEdgeLengths", "[", "p", "]"}], "//", "RootReduce"}], "]"}]], "Input", CellLabel->"In[44]:=",ExpressionUUID->"D3DDAE80-B72B-4659-A5B5-281520A6D6D9"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"1", ",", "240"}], "}"}], "}"}]], "Output", CellLabel->"Out[44]=",ExpressionUUID->"EC7DFB62-20A9-422F-A134-24D92253733C"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[45]:=",ExpressionUUID->"178E9B31-8B5A-4489-825A-699ED1438046"], Cell[BoxData[ RowBox[{"{", "1", "}"}]], "Output", CellLabel->"Out[45]=",ExpressionUUID->"9FD37FF6-8E7A-4F0E-9FAE-CD9646973258"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "/.", RowBox[{ RowBox[{"Line", "[", "l_", "]"}], "\[RuleDelayed]", RowBox[{"EuclideanDistance", "@@", "l"}]}]}], "//", "FullSimplify"}], "//", "Union"}], "//", "Quiet"}]], "Input", CellLabel->"In[46]:=",ExpressionUUID->"B707BA96-3EE7-4B10-AEE3-77D6B1689158"], Cell[BoxData[ RowBox[{"{", "1", "}"}]], "Output", CellLabel->"Out[46]=",ExpressionUUID->"43C9BBDA-6431-4AAA-B855-55E60A4BE327"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"lens", "=", RowBox[{"SimplifyNumericallyDistinct", "[", RowBox[{"PolyhedronEdgeLengths", "[", "p", "]"}], "]"}]}], ";"}], "//", "Quiet"}]], "Input", CellLabel->"In[47]:=",ExpressionUUID->"9F3E9D71-D157-4FAE-933B-ACF903B6FA37"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"distinctlens", "=", RowBox[{"Mean", "/@", RowBox[{"Split", "[", RowBox[{ RowBox[{"Sort", "[", "lens", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"Abs", "[", RowBox[{"#1", "-", "#2"}], "]"}], "<", "1.*^-10"}], "&"}]}], "]"}]}]}], ")"}], "//", "N"}], "//", "Quiet"}]], "Input", CellLabel->"In[48]:=",ExpressionUUID->"CEB292CD-F1A9-4641-BE5F-FAEB55E8210E"], Cell[BoxData[ RowBox[{"{", "1.`", "}"}]], "Output", CellLabel->"Out[48]=",ExpressionUUID->"A0FFC5FA-3924-48D0-8575-58AF99073FBB"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"v", "=", RowBox[{"p", "[", RowBox[{"[", "1", "]"}], "]"}]}], ";"}]], "Input", CellLabel->"In[49]:=",ExpressionUUID->"40622DC9-85AE-4789-AC21-55147A3AA34F"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"colors", "=", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"n", "=", RowBox[{"Length", "[", "distinctlens", "]"}]}], "}"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"Hue", "[", RowBox[{"i", "/", "n"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", RowBox[{"n", "-", "1"}]}], "}"}]}], "]"}]}], "]"}]}]], "Input", CellLabel->"In[50]:=",ExpressionUUID->"FA16320D-50B0-4EB6-9B6C-36AFCA024753"], Cell[BoxData[ RowBox[{"{", TemplateBox[<|"color" -> Hue[0]|>, "HueColorSwatchTemplate"], "}"}]], "Output", CellLabel->"Out[50]=",ExpressionUUID->"25CF159D-2C89-468D-9181-50EB463FF47C"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"Thick", ",", RowBox[{"Sequence", "@@", RowBox[{"Nearest", "[", RowBox[{ RowBox[{"Thread", "[", RowBox[{"distinctlens", "->", "colors"}], "]"}], ",", RowBox[{"EuclideanDistance", "@@", RowBox[{"v", "[", RowBox[{"[", "#", "]"}], "]"}]}]}], "]"}]}], ",", RowBox[{"Line", "[", RowBox[{"v", "[", RowBox[{"[", "#", "]"}], "]"}], "]"}]}], "}"}], "&"}], "/@", RowBox[{"PolyhedronEdges", "[", "p", "]"}]}], ",", RowBox[{"Boxed", "->", "False"}]}], "]"}], "//", "Quiet"}]], "Input", CellLabel->"In[51]:=",ExpressionUUID->"E60ECC0F-E58F-4E9E-983D-4025F8ADD040"], Cell[BoxData[ Graphics3DBox[{ {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, { 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {-0.35355339059327373`, \ -0.21850801222441052`, 0.5720614028176843}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {-0.21850801222441052`, \ -0.5720614028176843, -0.35355339059327373`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, { 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.5303300858899106, \ -0.06752268918443159, 0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, \ -0.6813154089298896, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, {0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, {-0.17677669529663687`, \ -0.639584092002116, -0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, {-0.5303300858899106, \ -0.06752268918443159, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, {-0.46280739670547905`, \ -0.5303300858899106, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.5045387136332526, \ -0.46280739670547905`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, {-0.06752268918443159, \ -0.6813154089298896, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {-0.46280739670547905`, \ -0.17677669529663687`, -0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, {-0.17677669529663687`, \ -0.06752268918443159, -0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, \ -0.5303300858899106, 0.06752268918443158}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, {0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, \ -0.06752268918443159, 0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.5045387136332526, \ -0.46280739670547905`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, {-0.46280739670547905`, \ -0.17677669529663687`, 0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, {-0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.06752268918443159, \ -0.46280739670547905`, -0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.5720614028176843, \ -0.35355339059327373`, -0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, {-0.17677669529663687`, \ -0.5045387136332526, 0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, {-0.06752268918443159, \ -0.46280739670547905`, -0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{ 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}, { 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}, \ {-0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, \ {-0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{ 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, \ {-0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.24429938448106847`, \ -0.17677669529663687`, -0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, {0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.17677669529663687`, \ -0.639584092002116, -0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.35355339059327373`, \ -0.21850801222441052`, -0.5720614028176843}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[ 1, 2])}}, {{-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.639584092002116, \ -0.24429938448106847`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}, \ {-0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.21850801222441052`, \ -0.5720614028176843, -0.35355339059327373`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, {-0.17677669529663687`, \ -0.5045387136332526, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, \ {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, \ {-0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, \ -0.35355339059327373`, 0.21850801222441052`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}, \ {-0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}]]}, {Hue[0], Thickness[Large], Line3DBox[ NCache[{{Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{ 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, {-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}]]}}, Boxed->False]], "Output", CellLabel->"Out[51]=",ExpressionUUID->"BFACFE8D-B7AE-49E8-B5C7-EA8121EDA371"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["FaceCount", "Subsection",ExpressionUUID->"6CA5BB1D-DE50-48FC-BE48-91C47BC69C30"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[52]:=",ExpressionUUID->"3C00B9B4-9683-4A56-BD04-BCF7C9AEAE3C"], Cell[BoxData["160"], "Output", CellLabel->"Out[52]=",ExpressionUUID->"659F026B-19C1-4960-96EC-60A646570E0C"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["GeneralizedDiameter", "Subsection",ExpressionUUID->"54A98666-3D9A-49F0-A285-BAF543C7BE7B"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[53]:=",ExpressionUUID->"A90D65EB-6ABB-4DCF-9277-E3FA148D2231"], Cell[BoxData[ SqrtBox["2"]], "Output", CellLabel->"Out[53]=",ExpressionUUID->"CD733C6B-7C36-4204-934C-07E1D9416C3B"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"GeneralizedDiameter", "[", "p", "]"}], "//", "FullSimplify"}], "//", "Quiet"}]], "Input", CellLabel->"In[54]:=",ExpressionUUID->"6343246D-6226-4A52-A81F-6EE780E9D63C"], Cell[BoxData[ SqrtBox["2"]], "Output", CellLabel->"Out[54]=",ExpressionUUID->"F04B7E1B-EF86-4895-B455-D83B8B2E4366"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Hull", "Subsection",ExpressionUUID->"F111647F-F0B2-441A-BCC9-B689648A06C3"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"hullname", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[55]:=",ExpressionUUID->"79766255-6195-4A45-BECF-C3FF7D32D612"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[55]=",ExpressionUUID->"F286A94E-3A89-40D8-A445-A80B4931FB78"] }, Open ]], Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"B47ABD80-D496-4FB9-827D-50573B62E6DB"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox[ RowBox[{"Max", "[", RowBox[{"Norm", "/@", RowBox[{"p", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], RowBox[{"Max", "[", RowBox[{"Norm", "/@", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"hullname", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]], "//", "FullSimplify"}], "//", "Quiet"}]], "Input",ExpressionUUID->"4224F519-7D9C-405A-8DAB-F72E3011CF25"], Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[3]:=",ExpressionUUID->"4D7CF988-92CE-4F6B-B00E-67C7ACFEFB0C"], Cell[BoxData[ RowBox[{"Max", "[", RowBox[{"Norm", "/@", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]], "Input", CellLabel->"In[5]:=",ExpressionUUID->"1E4D8D64-EB0D-43A9-BFF3-8BE077242C0D"], Cell[BoxData[ RowBox[{"Max", "[", RowBox[{"Norm", "/@", RowBox[{"p", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"02BE28D0-6F70-46C6-825B-F9FE94C7F1AC"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".5", "]"}], ",", "Red", ",", "p"}], "}"}], "]"}], ",", RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".5", "]"}], ",", "Blue", ",", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "}"}], "]"}]}], "}"}]], "Input", CellLabel->"In[7]:=",ExpressionUUID->"A3EC9D66-9247-497D-A643-3EEC29BBF4AD"], Cell[BoxData[ RowBox[{"Show", "[", "%", "]"}]], "Input", CellLabel->"In[8]:=",ExpressionUUID->"64F41174-5AD8-4EF4-9BF6-F76928E86CC1"] }, Open ]], Cell[CellGroupData[{ Cell["InertiaTensor", "Subsection",ExpressionUUID->"DF90A94E-5462-4ECA-A99A-B17355D23977"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[56]:=",ExpressionUUID->"2049B52C-DE08-4BC9-91A5-49E334686216"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[56]=",ExpressionUUID->"5C54C980-C7E0-45AA-A220-5C04947C5230"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Insphere", "Subsection",ExpressionUUID->"C29CFBAE-D2CF-4D1E-8B01-FAF333890CA3"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[57]:=",ExpressionUUID->"3CC8AE36-07C8-4F4E-BF78-8B64DCE2A3C0"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[57]=",ExpressionUUID->"B5F90567-9CDD-4EAB-A223-85A14FA2BB32"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Insphere", "[", "p", "]"}]], "Input", CellLabel->"In[58]:=",ExpressionUUID->"73C80AE9-7B02-4C54-A4E4-C4CCD6F122AF"], Cell[BoxData[ TemplateBox[{ "Insphere", "spec", "\"\\!\\(\\*RowBox[{\\\"Polyhedron\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\\\ \", RowBox[{RowBox[{\\\"{\\\", RowBox[{FractionBox[\\\"1\\\", RowBox[{\\\"4\\\ \", \\\" \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\ \", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"15\\\", \\\"-\\\", RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\ \\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", RowBox[{\ \\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]]}], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\ \", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"15\\\", \\\"-\\\", RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\ \\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\ \", SqrtBox[RowBox[{\\\"7\\\", \\\"-\\\", RowBox[{\\\"3\\\", \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"7\\\ \", \\\"+\\\", RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"3\\\", \ RowBox[{\\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{FractionBox[\\\"1\\\", \ \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"7\\\", \\\"+\\\", \ RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \ \\\"]\\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"3\\\", RowBox[{\\\"4\\\", \\\" \ \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"7\\\", \\\"-\\\", \ RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \ \\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{FractionBox[RowBox[{RowBox[{\\\"-\\\", \\\"3\\\"}], \\\"+\\\", \ SqrtBox[\\\"5\\\"]}], RowBox[{\\\"8\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]], \\\ \",\\\", RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"7\\\", \\\"+\\\", RowBox[{\\\"3\\\", \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", \ FractionBox[\\\"3\\\", RowBox[{\\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]]}], \ \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{RowBox[{\\\"-\\\", \ FractionBox[\\\"1\\\", \\\"8\\\"]}], \\\" \\\", SqrtBox[RowBox[{\\\"7\\\", \\\ \"+\\\", RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"3\\\", RowBox[{\\\"4\\\", \\\" \ \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"7\\\", \\\"-\\\", \ RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \ \\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"15\\\", \\\"-\\\", RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\ \\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"1\\\", \ RowBox[{\\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\ \", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\ \\\"1\\\", \\\"4\\\"]}], \\\" \\\", SqrtBox[RowBox[{\\\"3\\\", \\\"-\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], \\\",\\\", \ FractionBox[SqrtBox[RowBox[{\\\"3\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}]], \ \\\"4\\\"], \\\",\\\", FractionBox[\\\"1\\\", RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"2\\\"]}]]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{FractionBox[SqrtBox[RowBox[{\\\"3\\\", \\\"+\\\", \ SqrtBox[\\\"5\\\"]}]], \\\"4\\\"], \\\",\\\", FractionBox[\\\"1\\\", RowBox[{\ \\\"2\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", RowBox[{RowBox[{\\\"-\ \\\", FractionBox[\\\"1\\\", \\\"4\\\"]}], \\\" \\\", SqrtBox[RowBox[{\\\"3\\\ \", \\\"-\\\", RowBox[{\\\"Power\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \ \\\"+\\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}], \\\",\ \\\", RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"15\\\", \\\"-\\\", RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\ \\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"1\\\", \ RowBox[{\\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"110\\\", \\\"\[RightSkeleton]\ \\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"66\\\", \\\",\\\", \\\"120\\\", \ \\\",\\\", \\\"28\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{\\\"120\\\", \\\",\\\", \\\"66\\\", \\\",\\\", \\\"51\\\"}], \ \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"120\\\", \\\",\\\", \\\ \"22\\\", \\\",\\\", \\\"28\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{\\\"22\\\", \\\",\\\", \\\"120\\\", \\\",\\\", \\\"51\\\"}], \ \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"66\\\", \\\",\\\", \ \\\"1\\\", \\\",\\\", \\\"51\\\"}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"66\\\", \\\",\\\", \ \\\"28\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \ \\\",\\\", \\\"22\\\", \\\",\\\", \\\"51\\\"}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"22\\\", \\\",\\\", \\\"1\\\", \\\",\\\", \ \\\"28\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"82\\\", \ \\\",\\\", \\\"119\\\", \\\",\\\", \\\"67\\\"}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"119\\\", \\\",\\\", \\\"82\\\", \\\",\\\", \ \\\"21\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"150\\\", \\\"\[RightSkeleton]\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]\\) is \ not a valid Insphere specification.\"", 2, 58, 3, 21663204854482869440, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[58]:=",ExpressionUUID->"8D056C6D-1CE4-4E15-B3E1-9FD4C3E59EDF"], Cell[BoxData[ RowBox[{"Insphere", "[", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["120", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["120", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]], Editable->False, SelectWithContents->True, Selectable->False], "]"}]], "Output", CellLabel->"Out[58]=",ExpressionUUID->"9072EB79-D84D-43D7-B2D6-279F84B4BDE3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"sphere", "=", RowBox[{"MyInsphere", "[", RowBox[{"p", "//", "N"}], "]"}]}]], "Input", CellLabel->"In[8]:=",ExpressionUUID->"77F9E612-996E-4258-82DB-8F1203C743C6"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel->"Out[8]=",ExpressionUUID->"841597A6-A4DC-4435-838A-C0EB254FAA56"] }, Open ]], Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".5", "]"}], ",", "p"}], "}"}], ",", RowBox[{"{", RowBox[{"Red", ",", "sphere"}], "}"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input",ExpressionUUID->\ "2B28A330-7DC0-4258-80AD-5473A24AEEC9"] }, Open ]], Cell[CellGroupData[{ Cell["MeanCylindricalRadius", "Subsection",ExpressionUUID->"C7D6D9C4-0004-4783-99F3-FBAE5E7DB44D"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[61]:=",ExpressionUUID->"34504522-77EB-47C2-B092-31C22D0C9B11"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[61]=",ExpressionUUID->"6009CDB7-6E06-4A78-BD1A-2EE7021CB975"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["MeanSquareCylindricalRadius", "Subsection",ExpressionUUID->"BB5B198B-B998-463E-847C-A4AC485771C7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[62]:=",ExpressionUUID->"D1F038AD-72CB-42A6-969E-87F599CA6784"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[62]=",ExpressionUUID->"5D86AB89-F43B-4A7E-8D7F-3BCAC4870E4D"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["MeanSphericalRadius", "Subsection",ExpressionUUID->"8C1D740C-D4BF-4F95-B09D-7D83D95CEF74"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[63]:=",ExpressionUUID->"7E24ADAF-EB01-4FE0-8A43-78C17268A2A2"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[63]=",ExpressionUUID->"8D85F50C-8CA2-4BD0-81D6-38049332CF77"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["MeanSquareSphericalRadius", "Subsection",ExpressionUUID->"26CC239B-C9B9-4BCC-B02B-EA8937F9400A"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",\ CellLabel->"In[64]:=",ExpressionUUID->"002DE3A9-29A1-4660-85BA-229CD6FBF7C3"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[64]=",ExpressionUUID->"F9EBCADB-3DC0-48A0-9F9B-1D8C2684F388"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Midsphere", "Subsection",ExpressionUUID->"A9FF3736-60FD-45AB-8495-BEFD4D22CAB0"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"sphere", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[65]:=",ExpressionUUID->"13FE8F09-D8D8-4220-A7B5-82420BD39310"], Cell[BoxData[ RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", FractionBox["1", "2"]}], "]"}]], "Output", CellLabel->"Out[65]=",ExpressionUUID->"214A0088-C529-4B4A-9317-DC6E52A9F73E"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Midsphere", "[", RowBox[{"p", "//", "N"}], "]"}]], "Input", CellLabel->"In[13]:=",ExpressionUUID->"85D49BC9-30A8-4687-BF48-B46DDCA99808"], Cell[BoxData[ RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", "0.499999999999999`"}], "]"}]], "Output", CellLabel->"Out[13]=",ExpressionUUID->"BC371BC0-87AC-4ED4-A708-470C4A16AB52"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"sphere", "=", RowBox[{"Midsphere", "[", "p", "]"}]}], ")"}], "//", "Timing"}]], "Input",\ CellLabel->"In[66]:=",ExpressionUUID->"EBF29231-9B75-4FF1-8352-EAEB48E8760B"], Cell[BoxData["$Aborted"], "Output", CellLabel->"Out[66]=",ExpressionUUID->"0A4A82CB-DC00-4E47-9D8E-A82B5323CB75"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"sphere", "=", RowBox[{"Midsphere", "[", RowBox[{"p", ",", RowBox[{"Method", "->", "\"\\""}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"FD2B4645-9184-4C21-A05F-\ 43CC16E02968"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".1", "]"}], ",", "Yellow", ",", "p"}], "}"}], ",", RowBox[{"{", RowBox[{"Red", ",", "sphere"}], "}"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel->"In[69]:=",ExpressionUUID->"20DBA768-D136-4174-A1B5-E5300AADF8F1"], Cell[BoxData[ Graphics3DBox[{ {RGBColor[1, 1, 0], Opacity[0.1], PolyhedronBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, {RGBColor[1, 0, 0], SphereBox[{0, 0, 0}, NCache[Rational[1, 2], 0.5]]}}, Boxed->False, ImageSize->{360., 360.}, ImageSizeRaw->Automatic, ViewAngle->0.30119507988000055`, ViewPoint->{-0.860088563322277, -2.0503910870934305`, 2.5507144201595846`}, ViewVertical->{-0.5150931933915591, 0.2576271348845668, 0.8175006186498304}]], "Output", CellLabel->"Out[69]=",ExpressionUUID->"CBB7FC75-7316-4503-B055-ECE903714D94"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Net", "Subsection",ExpressionUUID->"D901888D-2EB0-4A48-B1B0-9F1C02CB7ED8"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[70]:=",ExpressionUUID->"0FB936A9-2254-4484-AD21-0FE6729BD24F"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[70]=",ExpressionUUID->"4BA1DB53-7DA6-4988-9DB3-B85B61B9FED2"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["NotationRules", "Subsection",ExpressionUUID->"3A6A32D3-0733-4B09-9742-BDA7DA650653"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[71]:=",ExpressionUUID->"9F2BCF16-29A3-4C00-8D20-22EECD22143A"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel->"Out[71]=",ExpressionUUID->"07075ADA-1A9E-45D7-81A1-D4D7373D38C3"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Orientations", "Subsection",ExpressionUUID->"1BFA8799-5DE5-4B62-88FC-EAE6A5B6F2A1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[72]:=",ExpressionUUID->"57F535AA-28D8-4F2B-99BE-C1E92B3F9EF5"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[72]=",ExpressionUUID->"CA6DFDFE-AD13-45BF-9C23-C6DEA707EF3A"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[73]:=",ExpressionUUID->"C21B785F-3AA4-46DE-A24C-2F75F294E2E7"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[73]=",ExpressionUUID->"475D0046-EB14-4CA7-9D70-BD3088D8447F"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"{", RowBox[{"pname", ",", "#"}], "}"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], "&"}], "/@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[74]:=",ExpressionUUID->"C23482F0-F45C-4770-9869-F85ABB7F3020"], Cell[BoxData[ RowBox[{"Missing", "[", Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], Polygon3DBox[CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]], Boxed->False], "]"}]], "Output", CellLabel->"Out[74]=",ExpressionUUID->"9C1C0251-DEF2-48F8-B0E6-87E07507C570"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Polygons", "Subsection",ExpressionUUID->"EF3A8C3E-7908-4383-999D-80CB34B1C387"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[75]:=",ExpressionUUID->"8B081CCF-F717-44CB-9794-E2ACBD62A154"], Cell[BoxData["160"], "Output", CellLabel->"Out[75]=",ExpressionUUID->"2CE36E74-F9FF-4900-8B1A-8EFEDD0D0ABB"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "/@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[76]:=",ExpressionUUID->"93E54DFD-E4DF-4171-A6D6-2EF9209B5639"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.17677669529663687`, \ -0.639584092002116, -0.24429938448106847`}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}, {0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}, {0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}, \ {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}, \ {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}, { 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.639584092002116, \ -0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, { 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[ 1, 2])}}, {{-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}, {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}, {0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}, {0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.06752268918443159, \ -0.46280739670547905`, -0.5303300858899106}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, { 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, {0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, \ {-0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}, \ {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}, {0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, { 0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, \ {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}, { 0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{ 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}, \ {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, { 0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}, \ {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.6813154089298896, \ -0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}, \ {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}, \ {-0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, { 0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}, { 0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}, { 0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}, {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}, {0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.24429938448106847`, \ -0.17677669529663687`, -0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}, \ {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}, \ {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}, { 0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, \ -0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, { 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, \ {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, \ {-0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.639584092002116, \ -0.24429938448106847`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.21850801222441052`, \ -0.5720614028176843, -0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}, {0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}, {-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}, {0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, { 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, { 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, { 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, {-0.5303300858899106, \ -0.06752268918443159, -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, \ -0.6813154089298896, -0.17677669529663687`}, {-0.5303300858899106, \ -0.06752268918443159, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}, {0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}, {0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.5303300858899106, \ -0.06752268918443159, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, { 0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, { 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, \ -0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, { 0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, \ {-0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, \ {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{ 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, { 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, { 0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}, {-0.6813154089298896, \ -0.17677669529663687`, -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, \ {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, { 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, {0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {-0.46280739670547905`, \ -0.17677669529663687`, -0.5045387136332526}, {-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, { 0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.5045387136332526, \ -0.46280739670547905`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, \ -0.06752268918443159, 0.6813154089298896}, {0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.5045387136332526, \ -0.46280739670547905`, -0.17677669529663687`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, {-0.17677669529663687`, \ -0.5045387136332526, -0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[ 1, 2])}}, {{-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, {0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, { 0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, {-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, {0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, { 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}, {0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.35355339059327373`, \ -0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.5720614028176843, \ -0.35355339059327373`, -0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, \ {-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, \ {-0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]]]}], "}"}]], "Output", CellLabel->"Out[76]=",ExpressionUUID->"A6090742-B703-484C-A168-27C19841CBC9"] }, Closed]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", "%", "]"}]], "Input", CellLabel->"In[77]:=",ExpressionUUID->"6C59984A-7675-4811-BF37-E6B02815258F"], Cell[BoxData[ Graphics3DBox[{ Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.17677669529663687`, \ -0.639584092002116, -0.24429938448106847`}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}, {0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}, {0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}, \ {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}, \ {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}, { 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.639584092002116, \ -0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, { 0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[ 1, 2])}}, {{-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}, {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}, {0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}, {0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.06752268918443159, \ -0.46280739670547905`, -0.5303300858899106}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, { 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, {0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, \ {-0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}, \ {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}, {0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, { 0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, \ {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}, { 0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{ 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}, \ {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, { 0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}, \ {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.6813154089298896, \ -0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}, \ {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}, \ {-0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, { 0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}, { 0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}, { 0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}, {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}, {0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.24429938448106847`, \ -0.17677669529663687`, -0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}, \ {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}, \ {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}, { 0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, \ -0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, { 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{ 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, \ {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, \ {-0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.639584092002116, \ -0.24429938448106847`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.21850801222441052`, \ -0.5720614028176843, -0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}, {0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}, {-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}, {0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, { 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, { 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, { 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, {-0.5303300858899106, \ -0.06752268918443159, -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, \ -0.6813154089298896, -0.17677669529663687`}, {-0.5303300858899106, \ -0.06752268918443159, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}, {0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}, {0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.5303300858899106, \ -0.06752268918443159, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, { 0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, { 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, \ -0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, \ {-0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, \ {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{ 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, { 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, { 0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}, {-0.6813154089298896, \ -0.17677669529663687`, -0.06752268918443159}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, \ {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, { 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, {0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, {-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {-0.46280739670547905`, \ -0.17677669529663687`, -0.5045387136332526}, {-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.5045387136332526, \ -0.46280739670547905`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}}, {{-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, \ -0.06752268918443159, 0.6813154089298896}, {0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.5045387136332526, \ -0.46280739670547905`, -0.17677669529663687`}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, {-0.17677669529663687`, \ -0.5045387136332526, -0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[ 1, 2])}}, {{-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]], Polygon3DBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, {0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]], Polygon3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, { 0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, {-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, {0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, { 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}, {0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.35355339059327373`, \ -0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.5720614028176843, \ -0.35355339059327373`, -0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, \ {-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}]], Polygon3DBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, \ {-0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}}]]}]], \ "Output", CellLabel->"Out[77]=",ExpressionUUID->"27DC7E7E-68DD-4AAF-B91E-F636D08A53C8"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Polyhedra", "Subsection",ExpressionUUID->"E483D4D5-F0C7-410B-8A3D-E6D743C07BB4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"polyhedra", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[14]:=",ExpressionUUID->"F4749825-1B1F-4097-A63D-C8D32E61F02B"], Cell[BoxData[ RowBox[{"{", RowBox[{ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{5, 6, 3}, {6, 5, 4}, {6, 2, 3}, {2, 6, 4}, {5, 1, 4}, {1, 5, 3}, {1, 2, 4}, {2, 1, 3}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, \ -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, {0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, \ {-0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}], {{5, 6, 3}, {6, 5, 4}, {6, 2, 3}, {2, 6, 4}, {5, 1, 4}, {1, 5, 3}, { 1, 2, 4}, {2, 1, 3}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, \ -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, {0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, \ {-0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}], {{5, 6, 3}, {6, 5, 4}, {6, 2, 3}, {2, 6, 4}, {5, 1, 4}, {1, 5, 3}, { 1, 2, 4}, {2, 1, 3}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{5, 6, 3}, {6, 5, 4}, {6, 2, 3}, {2, 6, 4}, {5, 1, 4}, {1, 5, 3}, {1, 2, 4}, {2, 1, 3}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{5, 6, 4}, {6, 5, 3}, {6, 2, 4}, {2, 6, 3}, {5, 1, 3}, {1, 5, 4}, {1, 2, 3}, {2, 1, 4}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, \ {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}}], {{5, 6, 4}, {6, 5, 3}, {6, 2, 4}, {2, 6, 3}, {5, 1, 3}, {1, 5, 4}, {1, 2, 3}, {2, 1, 4}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, \ {-0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, \ -0.24429938448106847`}}], {{5, 6, 4}, {6, 5, 3}, {6, 2, 4}, {2, 6, 3}, {5, 1, 3}, {1, 5, 4}, {1, 2, 3}, {2, 1, 4}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{5, 6, 4}, {6, 5, 3}, {6, 2, 4}, {2, 6, 3}, {5, 1, 3}, {1, 5, 4}, {1, 2, 3}, {2, 1, 4}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{6, 5, 4}, {5, 6, 2}, {5, 1, 4}, {1, 5, 2}, {6, 3, 2}, {3, 6, 4}, {3, 1, 2}, {1, 3, 4}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, \ {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, \ {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, \ -0.46280739670547905`, -0.5303300858899106}}], {{6, 5, 4}, {5, 6, 2}, {5, 1, 4}, {1, 5, 2}, {6, 3, 2}, {3, 6, 4}, {3, 1, 2}, {1, 3, 4}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{ 0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, \ {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, \ {-0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, \ -0.46280739670547905`, -0.5303300858899106}}], {{6, 5, 4}, {5, 6, 2}, {5, 1, 4}, {1, 5, 2}, {6, 3, 2}, {3, 6, 4}, {3, 1, 2}, {1, 3, 4}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{6, 5, 4}, {5, 6, 2}, {5, 1, 4}, {1, 5, 2}, {6, 3, 2}, {3, 6, 4}, {3, 1, 2}, {1, 3, 4}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{4, 6, 2}, {6, 4, 3}, {6, 5, 2}, {5, 6, 3}, { 4, 1, 3}, {1, 4, 2}, {1, 5, 3}, {5, 1, 2}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.46280739670547905`, \ -0.5303300858899106, -0.06752268918443159}}], {{4, 6, 2}, {6, 4, 3}, {6, 5, 2}, {5, 6, 3}, {4, 1, 3}, {1, 4, 2}, {1, 5, 3}, {5, 1, 2}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.46280739670547905`, \ -0.5303300858899106, -0.06752268918443159}}], {{4, 6, 2}, {6, 4, 3}, {6, 5, 2}, {5, 6, 3}, {4, 1, 3}, {1, 4, 2}, {1, 5, 3}, {5, 1, 2}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{4, 6, 2}, {6, 4, 3}, {6, 5, 2}, {5, 6, 3}, {4, 1, 3}, {1, 4, 2}, {1, 5, 3}, {5, 1, 2}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{6, 3, 2}, {3, 6, 5}, {3, 1, 2}, {1, 3, 5}, {6, 4, 5}, {4, 6, 2}, {4, 1, 5}, {1, 4, 2}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, \ -0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, { 0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, { 0.06752268918443158, -0.46280739670547905`, \ -0.5303300858899106}}], {{6, 3, 2}, {3, 6, 5}, {3, 1, 2}, {1, 3, 5}, {6, 4, 5}, {4, 6, 2}, {4, 1, 5}, {1, 4, 2}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, \ -0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, { 0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, { 0.06752268918443158, -0.46280739670547905`, \ -0.5303300858899106}}], {{6, 3, 2}, {3, 6, 5}, {3, 1, 2}, {1, 3, 5}, {6, 4, 5}, {4, 6, 2}, {4, 1, 5}, {1, 4, 2}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{6, 3, 2}, {3, 6, 5}, {3, 1, 2}, {1, 3, 5}, {6, 4, 5}, {4, 6, 2}, {4, 1, 5}, {1, 4, 2}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{5, 6, 4}, {6, 5, 2}, {6, 3, 4}, {3, 6, 2}, { 5, 1, 2}, {1, 5, 4}, {1, 3, 2}, {3, 1, 4}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, { 0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.5045387136332526, \ -0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, \ -0.06752268918443159, -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}], {{5, 6, 4}, {6, 5, 2}, {6, 3, 4}, {3, 6, 2}, {5, 1, 2}, {1, 5, 4}, {1, 3, 2}, {3, 1, 4}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, { 0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.5045387136332526, \ -0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, \ -0.06752268918443159, -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}], {{5, 6, 4}, {6, 5, 2}, {6, 3, 4}, {3, 6, 2}, {5, 1, 2}, {1, 5, 4}, {1, 3, 2}, {3, 1, 4}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{5, 6, 4}, {6, 5, 2}, {6, 3, 4}, {3, 6, 2}, {5, 1, 2}, {1, 5, 4}, {1, 3, 2}, {3, 1, 4}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{6, 4, 2}, {4, 6, 5}, {4, 1, 2}, {1, 4, 5}, {6, 3, 5}, {3, 6, 2}, {3, 1, 5}, {1, 3, 2}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, { 0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, \ {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}, {-0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}}], {{6, 4, 2}, {4, 6, 5}, {4, 1, 2}, {1, 4, 5}, {6, 3, 5}, {3, 6, 2}, {3, 1, 5}, {1, 3, 2}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, { 0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, \ {-0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}, {-0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}}], {{6, 4, 2}, {4, 6, 5}, {4, 1, 2}, {1, 4, 5}, {6, 3, 5}, {3, 6, 2}, {3, 1, 5}, {1, 3, 2}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{6, 4, 2}, {4, 6, 5}, {4, 1, 2}, {1, 4, 5}, {6, 3, 5}, {3, 6, 2}, {3, 1, 5}, {1, 3, 2}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{4, 6, 5}, {6, 4, 2}, {6, 3, 5}, {3, 6, 2}, {4, 1, 2}, {1, 4, 5}, {1, 3, 2}, {3, 1, 5}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, \ {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}], {{4, 6, 5}, {6, 4, 2}, {6, 3, 5}, {3, 6, 2}, {4, 1, 2}, {1, 4, 5}, {1, 3, 2}, {3, 1, 5}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, \ {-0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}], {{4, 6, 5}, {6, 4, 2}, {6, 3, 5}, {3, 6, 2}, {4, 1, 2}, {1, 4, 5}, {1, 3, 2}, {3, 1, 5}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{4, 6, 5}, {6, 4, 2}, {6, 3, 5}, {3, 6, 2}, {4, 1, 2}, {1, 4, 5}, {1, 3, 2}, {3, 1, 5}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{5, 3, 6}, {3, 5, 1}, {3, 2, 6}, {2, 3, 1}, {5, 4, 1}, {4, 5, 6}, {4, 2, 1}, {2, 4, 6}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}, {-0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}], {{5, 3, 6}, {3, 5, 1}, {3, 2, 6}, {2, 3, 1}, {5, 4, 1}, {4, 5, 6}, {4, 2, 1}, {2, 4, 6}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, \ -0.639584092002116}, {-0.639584092002116, -0.24429938448106847`, \ -0.17677669529663687`}}], {{5, 3, 6}, {3, 5, 1}, {3, 2, 6}, {2, 3, 1}, {5, 4, 1}, {4, 5, 6}, {4, 2, 1}, {2, 4, 6}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{5, 3, 6}, {3, 5, 1}, {3, 2, 6}, {2, 3, 1}, {5, 4, 1}, {4, 5, 6}, {4, 2, 1}, {2, 4, 6}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{4, 6, 2}, {6, 4, 5}, {6, 3, 2}, {3, 6, 5}, {4, 1, 5}, {1, 4, 2}, {1, 3, 5}, {3, 1, 2}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, \ {-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, { 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, {-0.21850801222441052`, \ -0.5720614028176843, -0.35355339059327373`}}], {{4, 6, 2}, {6, 4, 5}, {6, 3, 2}, {3, 6, 5}, {4, 1, 5}, {1, 4, 2}, {1, 3, 5}, {3, 1, 2}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{ 0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, \ {-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, { 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, {-0.21850801222441052`, \ -0.5720614028176843, -0.35355339059327373`}}], {{4, 6, 2}, {6, 4, 5}, {6, 3, 2}, {3, 6, 5}, {4, 1, 5}, {1, 4, 2}, {1, 3, 5}, {3, 1, 2}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{4, 6, 2}, {6, 4, 5}, {6, 3, 2}, {3, 6, 5}, {4, 1, 5}, {1, 4, 2}, {1, 3, 5}, {3, 1, 2}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{3, 4, 6}, {4, 3, 1}, {4, 5, 6}, {5, 4, 1}, {3, 2, 1}, {2, 3, 6}, {2, 5, 1}, {5, 2, 6}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, \ -0.06752268918443159, -0.46280739670547905`}}], {{3, 4, 6}, {4, 3, 1}, {4, 5, 6}, {5, 4, 1}, {3, 2, 1}, {2, 3, 6}, {2, 5, 1}, {5, 2, 6}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, \ -0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, \ -0.06752268918443159, -0.46280739670547905`}}], {{3, 4, 6}, {4, 3, 1}, {4, 5, 6}, {5, 4, 1}, {3, 2, 1}, {2, 3, 6}, {2, 5, 1}, {5, 2, 6}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{3, 4, 6}, {4, 3, 1}, {4, 5, 6}, {5, 4, 1}, {3, 2, 1}, {2, 3, 6}, {2, 5, 1}, {5, 2, 6}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{2, 6, 4}, {6, 2, 3}, {6, 5, 4}, {5, 6, 3}, {2, 1, 3}, {1, 2, 4}, {1, 5, 3}, {5, 1, 4}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, { 0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, \ {-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, \ -0.6813154089298896, -0.17677669529663687`}}], {{2, 6, 4}, {6, 2, 3}, {6, 5, 4}, {5, 6, 3}, {2, 1, 3}, {1, 2, 4}, {1, 5, 3}, {5, 1, 4}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{ 0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, { 0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, \ {-0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, \ -0.6813154089298896, -0.17677669529663687`}}], {{2, 6, 4}, {6, 2, 3}, {6, 5, 4}, {5, 6, 3}, {2, 1, 3}, {1, 2, 4}, {1, 5, 3}, {5, 1, 4}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{2, 6, 4}, {6, 2, 3}, {6, 5, 4}, {5, 6, 3}, {2, 1, 3}, {1, 2, 4}, {1, 5, 3}, {5, 1, 4}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{3, 6, 1}, {6, 3, 5}, {6, 4, 1}, {4, 6, 5}, {3, 2, 5}, {2, 3, 1}, {2, 4, 5}, {4, 2, 1}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, { 0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, \ {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}, {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}], {{3, 6, 1}, {6, 3, 5}, {6, 4, 1}, { 4, 6, 5}, {3, 2, 5}, {2, 3, 1}, {2, 4, 5}, {4, 2, 1}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, { 0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, \ {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}, {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}], {{3, 6, 1}, {6, 3, 5}, {6, 4, 1}, { 4, 6, 5}, {3, 2, 5}, {2, 3, 1}, {2, 4, 5}, {4, 2, 1}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{3, 6, 1}, { 6, 3, 5}, {6, 4, 1}, {4, 6, 5}, {3, 2, 5}, {2, 3, 1}, {2, 4, 5}, {4, 2, 1}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{6, 5, 4}, {5, 6, 1}, {5, 2, 4}, {2, 5, 1}, {6, 3, 1}, {3, 6, 4}, {3, 2, 1}, {2, 3, 4}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, \ -0.17677669529663687`, -0.06752268918443159}, { 0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}], {{6, 5, 4}, { 5, 6, 1}, {5, 2, 4}, {2, 5, 1}, {6, 3, 1}, {3, 6, 4}, {3, 2, 1}, {2, 3, 4}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, \ -0.17677669529663687`, -0.06752268918443159}, { 0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}, {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}], {{6, 5, 4}, { 5, 6, 1}, {5, 2, 4}, {2, 5, 1}, {6, 3, 1}, {3, 6, 4}, {3, 2, 1}, {2, 3, 4}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{6, 5, 4}, {5, 6, 1}, {5, 2, 4}, {2, 5, 1}, {6, 3, 1}, {3, 6, 4}, {3, 2, 1}, {2, 3, 4}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{1, 5, 4}, {5, 1, 3}, {5, 6, 4}, {6, 5, 3}, {1, 2, 3}, {2, 1, 4}, {2, 6, 3}, {6, 2, 4}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, \ {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, \ -0.17677669529663687`}, {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}], {{1, 5, 4}, {5, 1, 3}, {5, 6, 4}, {6, 5, 3}, {1, 2, 3}, {2, 1, 4}, {2, 6, 3}, {6, 2, 4}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, \ {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, \ -0.17677669529663687`}, {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}], {{1, 5, 4}, {5, 1, 3}, {5, 6, 4}, {6, 5, 3}, {1, 2, 3}, {2, 1, 4}, {2, 6, 3}, {6, 2, 4}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{1, 5, 4}, {5, 1, 3}, {5, 6, 4}, {6, 5, 3}, {1, 2, 3}, {2, 1, 4}, {2, 6, 3}, {6, 2, 4}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{3, 4, 1}, {4, 3, 6}, {4, 5, 1}, {5, 4, 6}, {3, 2, 6}, {2, 3, 1}, {2, 5, 6}, {5, 2, 1}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, {0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}], {{3, 4, 1}, {4, 3, 6}, {4, 5, 1}, {5, 4, 6}, {3, 2, 6}, {2, 3, 1}, {2, 5, 6}, {5, 2, 1}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, {0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}], {{3, 4, 1}, {4, 3, 6}, {4, 5, 1}, {5, 4, 6}, {3, 2, 6}, {2, 3, 1}, {2, 5, 6}, {5, 2, 1}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{3, 4, 1}, {4, 3, 6}, {4, 5, 1}, {5, 4, 6}, {3, 2, 6}, {2, 3, 1}, {2, 5, 6}, {5, 2, 1}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{2, 4, 6}, {4, 2, 1}, {4, 5, 6}, {5, 4, 1}, {2, 3, 1}, {3, 2, 6}, {3, 5, 1}, {5, 3, 6}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, \ {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, \ -0.06752268918443159, 0.6813154089298896}, {-0.5045387136332526, \ -0.46280739670547905`, -0.17677669529663687`}}], {{2, 4, 6}, {4, 2, 1}, {4, 5, 6}, {5, 4, 1}, {2, 3, 1}, {3, 2, 6}, {3, 5, 1}, {5, 3, 6}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, \ {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, \ -0.06752268918443159, 0.6813154089298896}, {-0.5045387136332526, \ -0.46280739670547905`, -0.17677669529663687`}}], {{2, 4, 6}, {4, 2, 1}, {4, 5, 6}, {5, 4, 1}, {2, 3, 1}, {3, 2, 6}, {3, 5, 1}, {5, 3, 6}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{2, 4, 6}, {4, 2, 1}, {4, 5, 6}, {5, 4, 1}, {2, 3, 1}, {3, 2, 6}, {3, 5, 1}, {5, 3, 6}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{4, 6, 1}, {6, 4, 5}, {6, 3, 1}, {3, 6, 5}, {4, 2, 5}, {2, 4, 1}, {2, 3, 5}, {3, 2, 1}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, \ -0.46280739670547905`, 0.5303300858899106}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}, {-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}}], {{4, 6, 1}, {6, 4, 5}, {6, 3, 1}, {3, 6, 5}, {4, 2, 5}, {2, 4, 1}, {2, 3, 5}, {3, 2, 1}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, \ -0.46280739670547905`, 0.5303300858899106}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}, {-0.17677669529663687`, -0.5045387136332526, \ -0.46280739670547905`}}], {{4, 6, 1}, {6, 4, 5}, {6, 3, 1}, {3, 6, 5}, {4, 2, 5}, {2, 4, 1}, {2, 3, 5}, {3, 2, 1}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{4, 6, 1}, {6, 4, 5}, {6, 3, 1}, {3, 6, 5}, {4, 2, 5}, {2, 4, 1}, {2, 3, 5}, {3, 2, 1}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{2, 1, 6}, {1, 2, 3}, {5, 2, 6}, {2, 5, 3}, {4, 1, 3}, {1, 4, 6}, {5, 4, 3}, {4, 5, 6}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, \ -0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}, {0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, \ {-0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, \ {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}], {{2, 1, 6}, {1, 2, 3}, {5, 2, 6}, {2, 5, 3}, {4, 1, 3}, {1, 4, 6}, { 5, 4, 3}, {4, 5, 6}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, \ -0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}, {0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, \ {-0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, \ {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}], {{2, 1, 6}, {1, 2, 3}, {5, 2, 6}, {2, 5, 3}, {4, 1, 3}, {1, 4, 6}, { 5, 4, 3}, {4, 5, 6}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{2, 1, 6}, {1, 2, 3}, {5, 2, 6}, {2, 5, 3}, {4, 1, 3}, {1, 4, 6}, {5, 4, 3}, {4, 5, 6}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{5, 4, 6}, {4, 5, 3}, {2, 5, 6}, {5, 2, 3}, {1, 4, 3}, {4, 1, 6}, {2, 1, 3}, {1, 2, 6}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}, {0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, \ -0.35355339059327373`, -0.21850801222441052`}}], {{5, 4, 6}, {4, 5, 3}, {2, 5, 6}, {5, 2, 3}, {1, 4, 3}, {4, 1, 6}, {2, 1, 3}, {1, 2, 6}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, \ -0.5720614028176843}, {0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, { 0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, \ -0.35355339059327373`, -0.21850801222441052`}}], {{5, 4, 6}, {4, 5, 3}, {2, 5, 6}, {5, 2, 3}, {1, 4, 3}, {4, 1, 6}, {2, 1, 3}, {1, 2, 6}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["6", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{5, 4, 6}, { 4, 5, 3}, {2, 5, 6}, {5, 2, 3}, {1, 4, 3}, {4, 1, 6}, {2, 1, 3}, {1, 2, 6}}], Editable->False, SelectWithContents->True, Selectable->False]}], "}"}]], "Output", CellLabel->"Out[14]=",ExpressionUUID->"6D650388-384E-4E04-9996-95F03BFBD121"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", "polyhedra", "]"}]], "Input", CellLabel->"In[15]:=",ExpressionUUID->"8A053979-21FC-4CBD-A875-DF0F0E1E9B61"], Cell[BoxData["20"], "Output", CellLabel->"Out[15]=",ExpressionUUID->"79C2C6CD-CE11-480A-9E46-11445E3F7EE8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", "polyhedra", "]"}]], "Input", CellLabel->"In[16]:=",ExpressionUUID->"8A4A2CD0-FFAD-4E11-A576-8AFD04F188E2"], Cell[BoxData[ Graphics3DBox[{ PolyhedronBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.17677669529663687`, \ -0.639584092002116, -0.24429938448106847`}}], {{5, 6, 3}, {6, 5, 4}, {6, 2, 3}, {2, 6, 4}, {5, 1, 4}, {1, 5, 3}, {1, 2, 4}, {2, 1, 3}}], PolyhedronBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, {-0.639584092002116, \ -0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}], {{5, 6, 4}, {6, 5, 3}, {6, 2, 4}, {2, 6, 3}, {5, 1, 3}, {1, 5, 4}, {1, 2, 3}, { 2, 1, 4}}], PolyhedronBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, {-0.17677669529663687`, \ -0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}}], {{6, 5, 4}, {5, 6, 2}, {5, 1, 4}, {1, 5, 2}, {6, 3, 2}, {3, 6, 4}, {3, 1, 2}, {1, 3, 4}}], PolyhedronBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, \ {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}], {{4, 6, 2}, {6, 4, 3}, {6, 5, 2}, {5, 6, 3}, {4, 1, 3}, {1, 4, 2}, {1, 5, 3}, {5, 1, 2}}], PolyhedronBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}], {{6, 3, 2}, {3, 6, 5}, {3, 1, 2}, {1, 3, 5}, {6, 4, 5}, {4, 6, 2}, {4, 1, 5}, { 1, 4, 2}}], PolyhedronBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, {0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}], {{5, 6, 4}, {6, 5, 2}, {6, 3, 4}, {3, 6, 2}, {5, 1, 2}, {1, 5, 4}, {1, 3, 2}, { 3, 1, 4}}], PolyhedronBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.17677669529663687`, \ -0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}, \ {-0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}], {{6, 4, 2}, {4, 6, 5}, {4, 1, 2}, {1, 4, 5}, {6, 3, 5}, {3, 6, 2}, {3, 1, 5}, {1, 3, 2}}], PolyhedronBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, \ -0.35355339059327373`, 0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}], {{4, 6, 5}, {6, 4, 2}, {6, 3, 5}, {3, 6, 2}, {4, 1, 2}, {1, 4, 5}, {1, 3, 2}, {3, 1, 5}}], PolyhedronBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, \ {-0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}], {{5, 3, 6}, {3, 5, 1}, {3, 2, 6}, {2, 3, 1}, {5, 4, 1}, {4, 5, 6}, {4, 2, 1}, {2, 4, 6}}], PolyhedronBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {-0.35355339059327373`, \ -0.21850801222441052`, 0.5720614028176843}, {0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, {-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}], {{4, 6, 2}, {6, 4, 5}, {6, 3, 2}, {3, 6, 5}, {4, 1, 5}, {1, 4, 2}, {1, 3, 5}, {3, 1, 2}}], PolyhedronBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}], {{3, 4, 6}, {4, 3, 1}, {4, 5, 6}, {5, 4, 1}, {3, 2, 1}, {2, 3, 6}, {2, 5, 1}, {5, 2, 6}}], PolyhedronBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, {-0.5303300858899106, \ -0.06752268918443159, 0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}}], {{2, 6, 4}, {6, 2, 3}, {6, 5, 4}, {5, 6, 3}, {2, 1, 3}, {1, 2, 4}, {1, 5, 3}, {5, 1, 4}}], PolyhedronBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}], {{3, 6, 1}, {6, 3, 5}, {6, 4, 1}, {4, 6, 5}, {3, 2, 5}, {2, 3, 1}, {2, 4, 5}, {4, 2, 1}}], PolyhedronBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, \ {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}], {{6, 5, 4}, {5, 6, 1}, {5, 2, 4}, {2, 5, 1}, {6, 3, 1}, {3, 6, 4}, {3, 2, 1}, {2, 3, 4}}], PolyhedronBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}], {{1, 5, 4}, {5, 1, 3}, {5, 6, 4}, {6, 5, 3}, {1, 2, 3}, {2, 1, 4}, {2, 6, 3}, {6, 2, 4}}], PolyhedronBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {-0.46280739670547905`, \ -0.17677669529663687`, -0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}], {{3, 4, 1}, {4, 3, 6}, {4, 5, 1}, {5, 4, 6}, {3, 2, 6}, {2, 3, 1}, {2, 5, 6}, { 5, 2, 1}}], PolyhedronBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}], {{2, 4, 6}, {4, 2, 1}, {4, 5, 6}, {5, 4, 1}, {2, 3, 1}, {3, 2, 6}, {3, 5, 1}, {5, 3, 6}}], PolyhedronBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}, \ {-0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}], {{4, 6, 1}, {6, 4, 5}, {6, 3, 1}, {3, 6, 5}, {4, 2, 5}, {2, 4, 1}, {2, 3, 5}, {3, 2, 1}}], PolyhedronBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}, { 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.35355339059327373`, \ -0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}], {{2, 1, 6}, {1, 2, 3}, {5, 2, 6}, {2, 5, 3}, {4, 1, 3}, {1, 4, 6}, {5, 4, 3}, {4, 5, 6}}], PolyhedronBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}], {{5, 4, 6}, {4, 5, 3}, {2, 5, 6}, {5, 2, 3}, {1, 4, 3}, {4, 1, 6}, {2, 1, 3}, {1, 2, 6}}]}]], "Output", CellLabel->"Out[16]=",ExpressionUUID->"BE68EBB6-D428-4E12-A979-105F5378976A"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Hue", "[", FractionBox["i", RowBox[{"Length", "[", "polyhedra", "]"}]], "]"}], ",", RowBox[{"polyhedra", "[", RowBox[{"[", "i", "]"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"Length", "[", "polyhedra", "]"}]}], "}"}]}], "]"}], "]"}]], "Input", CellLabel->"In[17]:=",ExpressionUUID->"D88C7256-B3D6-4A84-B503-88CA8BF7705B"], Cell[BoxData[ Graphics3DBox[{ {Hue[ NCache[ Rational[1, 20], 0.05]], PolyhedronBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.17677669529663687`, \ -0.639584092002116, -0.24429938448106847`}}], {{5, 6, 3}, {6, 5, 4}, {6, 2, 3}, {2, 6, 4}, {5, 1, 4}, {1, 5, 3}, {1, 2, 4}, {2, 1, 3}}]}, {Hue[ NCache[ Rational[1, 10], 0.1]], PolyhedronBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, {-0.639584092002116, \ -0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}], {{5, 6, 4}, {6, 5, 3}, {6, 2, 4}, {2, 6, 3}, {5, 1, 3}, {1, 5, 4}, {1, 2, 3}, {2, 1, 4}}]}, {Hue[ NCache[ Rational[3, 20], 0.15]], PolyhedronBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, {-0.17677669529663687`, \ -0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}}], {{6, 5, 4}, {5, 6, 2}, {5, 1, 4}, {1, 5, 2}, {6, 3, 2}, {3, 6, 4}, {3, 1, 2}, {1, 3, 4}}]}, {Hue[ NCache[ Rational[1, 5], 0.2]], PolyhedronBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, \ {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}], {{4, 6, 2}, {6, 4, 3}, {6, 5, 2}, {5, 6, 3}, {4, 1, 3}, {1, 4, 2}, {1, 5, 3}, {5, 1, 2}}]}, {Hue[ NCache[ Rational[1, 4], 0.25]], PolyhedronBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}], {{6, 3, 2}, {3, 6, 5}, {3, 1, 2}, {1, 3, 5}, {6, 4, 5}, {4, 6, 2}, {4, 1, 5}, {1, 4, 2}}]}, {Hue[ NCache[ Rational[3, 10], 0.3]], PolyhedronBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, {0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}], {{5, 6, 4}, {6, 5, 2}, {6, 3, 4}, {3, 6, 2}, {5, 1, 2}, {1, 5, 4}, {1, 3, 2}, {3, 1, 4}}]}, {Hue[ NCache[ Rational[7, 20], 0.35]], PolyhedronBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.17677669529663687`, \ -0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}, \ {-0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}], {{6, 4, 2}, {4, 6, 5}, {4, 1, 2}, {1, 4, 5}, {6, 3, 5}, {3, 6, 2}, {3, 1, 5}, {1, 3, 2}}]}, {Hue[ NCache[ Rational[2, 5], 0.4]], PolyhedronBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, \ -0.35355339059327373`, 0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}], {{ 4, 6, 5}, {6, 4, 2}, {6, 3, 5}, {3, 6, 2}, {4, 1, 2}, {1, 4, 5}, {1, 3, 2}, {3, 1, 5}}]}, {Hue[ NCache[ Rational[9, 20], 0.45]], PolyhedronBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, \ {-0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}], {{5, 3, 6}, {3, 5, 1}, {3, 2, 6}, {2, 3, 1}, {5, 4, 1}, {4, 5, 6}, {4, 2, 1}, {2, 4, 6}}]}, {Hue[ NCache[ Rational[1, 2], 0.5]], PolyhedronBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {-0.35355339059327373`, \ -0.21850801222441052`, 0.5720614028176843}, {0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, {-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}], {{4, 6, 2}, {6, 4, 5}, {6, 3, 2}, {3, 6, 5}, {4, 1, 5}, {1, 4, 2}, {1, 3, 5}, {3, 1, 2}}]}, {Hue[ NCache[ Rational[11, 20], 0.55]], PolyhedronBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}], {{3, 4, 6}, {4, 3, 1}, {4, 5, 6}, {5, 4, 1}, {3, 2, 1}, {2, 3, 6}, {2, 5, 1}, {5, 2, 6}}]}, {Hue[ NCache[ Rational[3, 5], 0.6]], PolyhedronBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, {-0.5303300858899106, \ -0.06752268918443159, 0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}}], {{2, 6, 4}, {6, 2, 3}, {6, 5, 4}, {5, 6, 3}, {2, 1, 3}, {1, 2, 4}, {1, 5, 3}, {5, 1, 4}}]}, {Hue[ NCache[ Rational[13, 20], 0.65]], PolyhedronBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}], {{3, 6, 1}, {6, 3, 5}, {6, 4, 1}, {4, 6, 5}, {3, 2, 5}, {2, 3, 1}, {2, 4, 5}, {4, 2, 1}}]}, {Hue[ NCache[ Rational[7, 10], 0.7]], PolyhedronBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, \ {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}], {{6, 5, 4}, {5, 6, 1}, {5, 2, 4}, {2, 5, 1}, {6, 3, 1}, {3, 6, 4}, {3, 2, 1}, {2, 3, 4}}]}, {Hue[ NCache[ Rational[3, 4], 0.75]], PolyhedronBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}], {{1, 5, 4}, {5, 1, 3}, {5, 6, 4}, {6, 5, 3}, {1, 2, 3}, {2, 1, 4}, {2, 6, 3}, {6, 2, 4}}]}, {Hue[ NCache[ Rational[4, 5], 0.8]], PolyhedronBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {-0.46280739670547905`, \ -0.17677669529663687`, -0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}], {{3, 4, 1}, {4, 3, 6}, {4, 5, 1}, {5, 4, 6}, {3, 2, 6}, {2, 3, 1}, {2, 5, 6}, {5, 2, 1}}]}, {Hue[ NCache[ Rational[17, 20], 0.85]], PolyhedronBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}], {{2, 4, 6}, {4, 2, 1}, {4, 5, 6}, {5, 4, 1}, {2, 3, 1}, {3, 2, 6}, {3, 5, 1}, {5, 3, 6}}]}, {Hue[ NCache[ Rational[9, 10], 0.9]], PolyhedronBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}, \ {-0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}], {{4, 6, 1}, {6, 4, 5}, {6, 3, 1}, {3, 6, 5}, {4, 2, 5}, {2, 4, 1}, {2, 3, 5}, { 3, 2, 1}}]}, {Hue[ NCache[ Rational[19, 20], 0.95]], PolyhedronBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}, { 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.35355339059327373`, \ -0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}], {{2, 1, 6}, {1, 2, 3}, { 5, 2, 6}, {2, 5, 3}, {4, 1, 3}, {1, 4, 6}, {5, 4, 3}, {4, 5, 6}}]}, {Hue[1], PolyhedronBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}], {{5, 4, 6}, {4, 5, 3}, {2, 5, 6}, {5, 2, 3}, {1, 4, 3}, {4, 1, 6}, {2, 1, 3}, {1, 2, 6}}]}}]], "Output", CellLabel->"Out[17]=",ExpressionUUID->"4221D133-9F12-4175-927A-91A9CBAD72CF"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[18]:=",ExpressionUUID->"3D8E6301-0B9A-4F35-BABA-38A776E690AE"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{ "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{ "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{ "25", ",", "26", ",", "27", ",", "28", ",", "29", ",", "30", ",", "31", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{ "33", ",", "34", ",", "35", ",", "36", ",", "37", ",", "38", ",", "39", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{ "41", ",", "42", ",", "43", ",", "44", ",", "45", ",", "46", ",", "47", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{ "49", ",", "50", ",", "51", ",", "52", ",", "53", ",", "54", ",", "55", ",", "56"}], "}"}], ",", RowBox[{"{", RowBox[{ "57", ",", "58", ",", "59", ",", "60", ",", "61", ",", "62", ",", "63", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{ "65", ",", "66", ",", "67", ",", "68", ",", "69", ",", "70", ",", "71", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{ "73", ",", "74", ",", "75", ",", "76", ",", "77", ",", "78", ",", "79", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{ "81", ",", "82", ",", "83", ",", "84", ",", "85", ",", "86", ",", "87", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{ "89", ",", "90", ",", "91", ",", "92", ",", "93", ",", "94", ",", "95", ",", "96"}], "}"}], ",", RowBox[{"{", RowBox[{ "97", ",", "98", ",", "99", ",", "100", ",", "101", ",", "102", ",", "103", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{ "105", ",", "106", ",", "107", ",", "108", ",", "109", ",", "110", ",", "111", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{ "113", ",", "114", ",", "115", ",", "116", ",", "117", ",", "118", ",", "119", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{ "121", ",", "122", ",", "123", ",", "124", ",", "125", ",", "126", ",", "127", ",", "128"}], "}"}], ",", RowBox[{"{", RowBox[{ "129", ",", "130", ",", "131", ",", "132", ",", "133", ",", "134", ",", "135", ",", "136"}], "}"}], ",", RowBox[{"{", RowBox[{ "137", ",", "138", ",", "139", ",", "140", ",", "141", ",", "142", ",", "143", ",", "144"}], "}"}], ",", RowBox[{"{", RowBox[{ "145", ",", "146", ",", "147", ",", "148", ",", "149", ",", "150", ",", "151", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{ "153", ",", "154", ",", "155", ",", "156", ",", "157", ",", "158", ",", "159", ",", "160"}], "}"}]}], "}"}]], "Output", CellLabel->"Out[18]=",ExpressionUUID->"49B426F4-90E8-451E-8844-A1CF90F18632"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Region", "Subsection",ExpressionUUID->"FB469FEA-3A3B-40C6-946F-32F40CB5F124"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[81]:=",ExpressionUUID->"46D3E7A2-998C-4985-A1F2-360632110812"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[81]=",ExpressionUUID->"D92F9992-A07B-413F-A9DA-47A456F9BB71"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["RegionFunction", "Subsection",ExpressionUUID->"57ADB95A-56CC-4752-BA90-144FC8A34E0D"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[82]:=",ExpressionUUID->"67C5CBC9-B35D-4F33-A746-5014201670A9"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[82]=",ExpressionUUID->"DB6F0E5C-1BCD-4196-A452-83E0EC78CFF2"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["SimplePolyhedron", "Subsection",ExpressionUUID->"72D13078-F641-4E04-8E7C-6F6BC7E0EE52"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[83]:=",ExpressionUUID->"08AB71E6-0793-43BD-BCC7-F949D6D82027"], Cell[BoxData["False"], "Output", CellLabel->"Out[83]=",ExpressionUUID->"19596785-069D-48E2-B29D-C8C4E9DB20AE"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SimplePolyhedronQ", "[", "p", "]"}]], "Input", CellLabel->"In[84]:=",ExpressionUUID->"6CCFF96C-2525-428E-9AF1-8071A94F68BD"], Cell[BoxData["False"], "Output", CellLabel->"Out[84]=",ExpressionUUID->"10EAFDB6-4930-4CFF-8C9B-8AEBC8043D79"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Skeleton", "Subsection",ExpressionUUID->"9F00E0B5-6004-4867-BA13-208DBE8B1E0A"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[528]:=",ExpressionUUID->"93CA4659-67F5-49D7-A86A-CC9BFA87F170"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120}, { Null, CompressedData[" 1:eJwVxdOWAgEAANCabJuTbdvmZNdkTq7P3k/Y3Yd7LggjEAygUKifP/+j+Wgp 2o1OAQyAB6QBCKPGBDFhTAGrwkawcWweZ8MFcEVcGW/F+/EVfJ1AJyQIOUKL SCIqiEvimaQgLUkXMoXsIzfIE4qP0qBMqTSqidqnPmkmWp/2oifoOfqOwWOk GR+mkqllLpgwS8LSswysI1vHtrM77BlHzrFwxpwVV8iVcV3cEw/iffhSvpv/ FZgFDkFX0BPKhC7hXaQROUVt0VwMio3igXgr0UsMkoc0Jf3KTrK73CIfyseK s+Ki1Cph5Q00ggNwrYqr8qqrOqguqN8ap6at2WgX2pvOruvoRvqj/mE4Gh7G tXFreppeZoe5Zz5YhpaV1W+tW/e2gK1oQ+wj+8zRdRycc+fGdXLd3Sn31+P1 RD0lT9Mb9da8Td/EN/VX/PtAOYAEw8F3KBZKhjKhargQfkfikXzkGi1Fa7Fk LBurxq+JVmKXzCSzqW8aSn8y2Uw1W821crv8tfAulotIqVZqlpFKvbKvNev7 xqQxhT6tXXve3nRGnVm31z30Dv1n/zVYD7bD8XA1mo1Xk+l8s4AXN/i2PC8v 6+3xcbqfL8/XLyYzdAs= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxlkns0lHkYx02aV3kNGmZYc8xgu1qX2o5SqvcXWyfVqjRYXeymm4iYJmIo TegUIlGbpV1aprRyXKNTvT9dXGcdqx1CF8lQarSDptG47NvZ/b2ds/vHe97z O8/l+3m+z2MbeMh77zQ9Pb2j1Pfpb8JqadmaZgxio23PeLxRkUbToqWemRZg d0mw2CvZCjK7f3Xti+SDRMk+4tAWO2i6Vpf+IU5J9Pwea+Jr006i+gBmbdD1 EgwK01xEIQu4dL7LpIle8llj4Nwe+8F9mA2vlrJEKVR/pNcd9bxj3QYzkMBr zokcV5Ao3l6+MY28gUEUf1W9Mz5uhEHXyxJm8P3UbDq+0OAct+q8Kcw+U96s P84E1d8x/8rLNIWrGta/YlLxt4tGDhY7WsKW59uzBpZpCMR3yUtiuo7iQ/Pa vb6T6hfFB2f97QNe2ljCUY6nTzxHQwTdSjG+1cWAi7+e6fpxQEegfN7mH4rz As3Ao4+HTrLMraH4UkS2nNJH86w7leKnvInTfuiyfrnckagkEA/qh/xB+gLd T4T6lCmc7OI/gTomze98LWf2dAcMxA3OYVy2HCP7/txYX+neTyD9kIbNiUZS JbFFNqAL0jJg9dRoTh/Fh/KTcHd5hpeGwF4cvoHdFsBHYb4hwuVWoC9EHhM6 yYb3wPQvtd/2E3PjNUuF/DFyZG8AZhLLBygf8SN/4+ozIxMGdYQ4YsQDt7Sl +21t2nbp+4tWsGbQc5/WHqP9SdqwwsAzDweNz5qmGil/ywRGBkUxfLDbNlMc FMqheS1aWY7cGA6cnTs1vPweTut7v17TRDgpiIi6Osn+txh0t3pHXHDi0nHk f7hhm/+BUQbdv+243fltmDW00c1vWJxuDBAv8u9nWyk2TcKBLIfkOeMsDYH4 xmemPRTm40D4jy4ZHOnY3yXmg0p/sEJB3UPVg6raAMqfWekS8yYZTvNXrfcr XglxCBpPFmVkWdB6aH+rcpqTFtTiUG0+Eo6/FNBx1B/pFUgKCoVXeOAxnh/3 4yY7mLO6XFJkoiFQ3IXhMSrtFYBeQcy8+yRG8xgPGFyJVmpJ5JfcZQUM6xwi fbKf+bh9hQE0L6rfwTLM6LAfIh/rH3Fx68BB35EnE6UvtaQ0vnOi0ZpL76vS +N5YSR4PCNsUrtxjCrK0ojncW8YDOvvLVQe0WtJO16pJpvabxXwqvUvd74VQ xmHrNzriTlyF07ExFSlbPbzJy80KiA0HRZ0cW9pf+z0njudTfqL+Cl+2YWsf AyIe9Yu5ieWFOBx1XtLT7WNG+yFf6ZDZSt3bkKUKO7djiOaZUbaW716KQ817 6WmFahatJ1gYpjLic0E+m1VY1cmg6+t6yxIWyTEYHid3WenKBcW5udI26l4m R6v2idpxEP2ghFkf+vk+0Hw1d3csP57PA135WErwbEt4uiF1cZ0pRvOlCOcl 1QD9/+mzKoKutSV9rg/+5mjo0WRTGJBdya1c1U+0p883U93HocyRv38pNU8v B2xMNLSGVwO3Tz+h1BHaI4Fi/3IMshx3zYmneA+kl12vL8Bh6f2SnghqXpM8 UDFrAIOOrZbWU5/2a9OyYE+GFXwo8GM2RmkINE/ug9vZ3h1KAvH+e1fEf3nR vclDZLrecA3RdvLEpmVXP/MdvlnqeD6CQ9c3yzUzDxqb0fqqWgIXjbHhWjvh Ux/KDxS34Q4Um/ubgYmb1bGKGgHsyXzXstQCo9+Ba+yinCn/0T4QP3qj+dG9 ovl3OqmtU+RDpM0i9m/81frg4nBF6gTlx5LmsIp2kYao86p+wezXkuPvPWZ8 oVYSSA/xTxX0JUXJrGCRiFSxKV70RnpqkZtD90EO7beHRLownmUG/9jlK04t 5NH85uY8tRMVR/WIB/H9DSY7kLY= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJwVxdOWAgEAANCabJuTbdvmZNdkTq7P3k/Y3Yd7LggjEAygUKifP/+j+Wgp 2o1OAQyAB6QBCKPGBDFhTAGrwkawcWweZ8MFcEVcGW/F+/EVfJ1AJyQIOUKL SCIqiEvimaQgLUkXMoXsIzfIE4qP0qBMqTSqidqnPmkmWp/2oifoOfqOwWOk GR+mkqllLpgwS8LSswysI1vHtrM77BlHzrFwxpwVV8iVcV3cEw/iffhSvpv/ FZgFDkFX0BPKhC7hXaQROUVt0VwMio3igXgr0UsMkoc0Jf3KTrK73CIfyseK s+Ki1Cph5Q00ggNwrYqr8qqrOqguqN8ap6at2WgX2pvOruvoRvqj/mE4Gh7G tXFreppeZoe5Zz5YhpaV1W+tW/e2gK1oQ+wj+8zRdRycc+fGdXLd3Sn31+P1 RD0lT9Mb9da8Td/EN/VX/PtAOYAEw8F3KBZKhjKhargQfkfikXzkGi1Fa7Fk LBurxq+JVmKXzCSzqW8aSn8y2Uw1W821crv8tfAulotIqVZqlpFKvbKvNev7 xqQxhT6tXXve3nRGnVm31z30Dv1n/zVYD7bD8XA1mo1Xk+l8s4AXN/i2PC8v 6+3xcbqfL8/XLyYzdAs= "], 0.061222000952987604`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.061222000952987604], DiskBox[2, 0.061222000952987604], DiskBox[3, 0.061222000952987604], DiskBox[4, 0.061222000952987604], DiskBox[5, 0.061222000952987604], DiskBox[6, 0.061222000952987604], DiskBox[7, 0.061222000952987604], DiskBox[8, 0.061222000952987604], DiskBox[9, 0.061222000952987604], DiskBox[10, 0.061222000952987604], DiskBox[11, 0.061222000952987604], DiskBox[12, 0.061222000952987604], DiskBox[13, 0.061222000952987604], DiskBox[14, 0.061222000952987604], DiskBox[15, 0.061222000952987604], DiskBox[16, 0.061222000952987604], DiskBox[17, 0.061222000952987604], DiskBox[18, 0.061222000952987604], DiskBox[19, 0.061222000952987604], DiskBox[20, 0.061222000952987604], DiskBox[21, 0.061222000952987604], DiskBox[22, 0.061222000952987604], DiskBox[23, 0.061222000952987604], DiskBox[24, 0.061222000952987604], DiskBox[25, 0.061222000952987604], DiskBox[26, 0.061222000952987604], DiskBox[27, 0.061222000952987604], DiskBox[28, 0.061222000952987604], DiskBox[29, 0.061222000952987604], DiskBox[30, 0.061222000952987604], DiskBox[31, 0.061222000952987604], DiskBox[32, 0.061222000952987604], DiskBox[33, 0.061222000952987604], DiskBox[34, 0.061222000952987604], DiskBox[35, 0.061222000952987604], DiskBox[36, 0.061222000952987604], DiskBox[37, 0.061222000952987604], DiskBox[38, 0.061222000952987604], DiskBox[39, 0.061222000952987604], DiskBox[40, 0.061222000952987604], DiskBox[41, 0.061222000952987604], DiskBox[42, 0.061222000952987604], DiskBox[43, 0.061222000952987604], DiskBox[44, 0.061222000952987604], DiskBox[45, 0.061222000952987604], DiskBox[46, 0.061222000952987604], DiskBox[47, 0.061222000952987604], DiskBox[48, 0.061222000952987604], DiskBox[49, 0.061222000952987604], DiskBox[50, 0.061222000952987604], DiskBox[51, 0.061222000952987604], DiskBox[52, 0.061222000952987604], DiskBox[53, 0.061222000952987604], DiskBox[54, 0.061222000952987604], DiskBox[55, 0.061222000952987604], DiskBox[56, 0.061222000952987604], DiskBox[57, 0.061222000952987604], DiskBox[58, 0.061222000952987604], DiskBox[59, 0.061222000952987604], DiskBox[60, 0.061222000952987604], DiskBox[61, 0.061222000952987604], DiskBox[62, 0.061222000952987604], DiskBox[63, 0.061222000952987604], DiskBox[64, 0.061222000952987604], DiskBox[65, 0.061222000952987604], DiskBox[66, 0.061222000952987604], DiskBox[67, 0.061222000952987604], DiskBox[68, 0.061222000952987604], DiskBox[69, 0.061222000952987604], DiskBox[70, 0.061222000952987604], DiskBox[71, 0.061222000952987604], DiskBox[72, 0.061222000952987604], DiskBox[73, 0.061222000952987604], DiskBox[74, 0.061222000952987604], DiskBox[75, 0.061222000952987604], DiskBox[76, 0.061222000952987604], DiskBox[77, 0.061222000952987604], DiskBox[78, 0.061222000952987604], DiskBox[79, 0.061222000952987604], DiskBox[80, 0.061222000952987604], DiskBox[81, 0.061222000952987604], DiskBox[82, 0.061222000952987604], DiskBox[83, 0.061222000952987604], DiskBox[84, 0.061222000952987604], DiskBox[85, 0.061222000952987604], DiskBox[86, 0.061222000952987604], DiskBox[87, 0.061222000952987604], DiskBox[88, 0.061222000952987604], DiskBox[89, 0.061222000952987604], DiskBox[90, 0.061222000952987604], DiskBox[91, 0.061222000952987604], DiskBox[92, 0.061222000952987604], DiskBox[93, 0.061222000952987604], DiskBox[94, 0.061222000952987604], DiskBox[95, 0.061222000952987604], DiskBox[96, 0.061222000952987604], DiskBox[97, 0.061222000952987604], DiskBox[98, 0.061222000952987604], DiskBox[99, 0.061222000952987604], DiskBox[100, 0.061222000952987604], DiskBox[101, 0.061222000952987604], DiskBox[102, 0.061222000952987604], DiskBox[103, 0.061222000952987604], DiskBox[104, 0.061222000952987604], DiskBox[105, 0.061222000952987604], DiskBox[106, 0.061222000952987604], DiskBox[107, 0.061222000952987604], DiskBox[108, 0.061222000952987604], DiskBox[109, 0.061222000952987604], DiskBox[110, 0.061222000952987604], DiskBox[111, 0.061222000952987604], DiskBox[112, 0.061222000952987604], DiskBox[113, 0.061222000952987604], DiskBox[114, 0.061222000952987604], DiskBox[115, 0.061222000952987604], DiskBox[116, 0.061222000952987604], DiskBox[117, 0.061222000952987604], DiskBox[118, 0.061222000952987604], DiskBox[119, 0.061222000952987604], DiskBox[120, 0.061222000952987604]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[528]=",ExpressionUUID->"51D459EF-0D75-4133-80FC-4B5DC6CA0EEF"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"gn", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "In[529]:=",ExpressionUUID->"409E574F-2ECB-4C52-942D-8F2C40342900"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel-> "Out[529]=",ExpressionUUID->"819C600E-5AC5-43E0-8234-5D31B89F9D2E"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Tally", "[", RowBox[{"RecognizeGraph", "/@", RowBox[{"ConnectedGraphComponents", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}]}], "]"}]], "Input", CellLabel-> "In[531]:=",ExpressionUUID->"C85AC489-79A4-4710-874D-DC1633427B12"], Cell[CellGroupData[{ Cell[BoxData["\<\"Reading CanonicalForms from raw GraphData file cache (first \ time only)...\"\>"], "Print", CellLabel-> "During evaluation of \ In[531]:=",ExpressionUUID->"069F7CE8-BBCD-4EF1-95BF-4A538A578517"], Cell[BoxData["\<\"Reading GraphData standard names from raw GraphData file \ cache (first time only)...\"\>"], "Print", CellLabel-> "During evaluation of \ In[531]:=",ExpressionUUID->"9180B283-6438-4EFB-9066-96115C9C738E"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Building default Association of length \"\>", "\[InvisibleSpace]", "12476", "\[InvisibleSpace]", "\<\"...\"\>"}], SequenceForm["Building default Association of length ", 12476, "..."], Editable->False]], "Print", CellLabel-> "During evaluation of \ In[531]:=",ExpressionUUID->"02BB3BCD-DDA1-40C4-868D-C7690FEFA8DD"] }, Open ]], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"\<\"OctahedralGraph\"\>", ",", "20"}], "}"}], "}"}]], "Output", CellLabel-> "Out[531]=",ExpressionUUID->"9909AD3C-6F27-4E3B-BC16-624CF0877176"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["SurfaceArea", "Subsection",ExpressionUUID->"6C074163-1676-443C-9123-299BE33B1B77"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[87]:=",ExpressionUUID->"2577DAB2-B04B-43E8-B814-71FB4CACFF77"], Cell[BoxData[ RowBox[{"40", " ", SqrtBox["3"]}]], "Output", CellLabel->"Out[87]=",ExpressionUUID->"FA851979-9AD1-4007-B913-34341366961C"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SurfaceArea", "[", "p", "]"}]], "Input", CellLabel->"In[88]:=",ExpressionUUID->"8F6D5EB5-58EF-41D0-A090-C14044792885"], Cell[BoxData[ RowBox[{"SurfaceArea", "[", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["120", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["120", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]], Editable->False, SelectWithContents->True, Selectable->False], "]"}]], "Output", CellLabel->"Out[88]=",ExpressionUUID->"C3C3434D-2171-4FBB-A616-130874EB71A7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Total", "[", RowBox[{"Area", "/@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "]"}], "//", "RootReduce"}]], "Input", CellLabel->"In[90]:=",ExpressionUUID->"84BD1E12-7CEB-46A6-B9A9-3E1E2A5C5FB5"], Cell[BoxData[ RowBox[{"40", " ", SqrtBox["3"]}]], "Output", CellLabel->"Out[90]=",ExpressionUUID->"E7913798-908A-44EF-A55C-D77734E90D2B"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SurfaceArea", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}]], "Input", CellLabel->"In[91]:=",ExpressionUUID->"231BC032-239F-45E1-9577-CD68B216625B"], Cell[BoxData[ TemplateBox[{ "SurfaceArea", "reg", "\"\\!\\(\\*RowBox[{\\\"Missing\\\", \\\"[\\\", \ \\\"\\\\\\\"NotApplicable\\\\\\\"\\\", \\\"]\\\"}]\\) is not a correctly \ specified region.\"", 2, 91, 4, 21663204854482869440, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[91]:=",ExpressionUUID->"0FDDAB5E-CF2B-41CA-86A3-D5C5567E901E"], Cell[BoxData[ RowBox[{"SurfaceArea", "[", RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}], "]"}]], "Output", CellLabel->"Out[91]=",ExpressionUUID->"A44833CF-22B3-4AEE-AB3B-5327EF3F1D0C"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["VertexCount", "Subsection",ExpressionUUID->"579E190B-EFF9-4632-8F91-0FFFD03F384F"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[92]:=",ExpressionUUID->"CAB359C0-FD1F-4765-AADB-0361E570E131"], Cell[BoxData["120"], "Output", CellLabel->"Out[92]=",ExpressionUUID->"6B9F2D42-C218-4D57-BC7C-078570A7BB36"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["VertexSubsetHulls", "Subsection",ExpressionUUID->"40888F07-C70E-4D4A-A489-77D9CB8D8616"], Cell[CellGroupData[{ Cell[BoxData["pname"], "Input", CellLabel->"In[82]:=",ExpressionUUID->"EC778BD6-85B5-4C75-B2DE-59D9B7FC7F35"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"OctahedronTwentyCompound\"\>", ",", "1"}], "}"}]], "Output", CellLabel->"Out[82]=",ExpressionUUID->"F624A235-5822-400A-9366-1EE272D1C105"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"subsethulls", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[83]:=",ExpressionUUID->"9170E6C3-4D9A-40E4-9682-5BF6E5E47DBE"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "22", ",", "28", ",", "51", ",", "66", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "15", ",", "21", ",", "67", ",", "82", ",", "119"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "35", ",", "57", ",", "59", ",", "72", ",", "118"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "34", ",", "60", ",", "63", ",", "71", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "46", ",", "56", ",", "73", ",", "75", ",", "111"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "45", ",", "55", ",", "76", ",", "79", ",", "105"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "14", ",", "64", ",", "70", ",", "83", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "9", ",", "31", ",", "99", ",", "109", ",", "110"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "11", ",", "54", ",", "80", ",", "93", ",", "94"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "13", ",", "42", ",", "88", ",", "116", ",", "117"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "32", ",", "37", ",", "97", ",", "98", ",", "113"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "27", ",", "39", ",", "40", ",", "107", ",", "115"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "38", ",", "47", ",", "85", ",", "91", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "30", ",", "44", ",", "90", ",", "92", ",", "100"}], "}"}], ",", RowBox[{"{", RowBox[{"20", ",", "24", ",", "29", ",", "50", ",", "108", ",", "114"}], "}"}], ",", RowBox[{"{", RowBox[{"23", ",", "43", ",", "48", ",", "86", ",", "87", ",", "106"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "36", ",", "49", ",", "84", ",", "96", ",", "102"}], "}"}], ",", RowBox[{"{", RowBox[{"26", ",", "33", ",", "41", ",", "89", ",", "101", ",", "103"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "53", ",", "61", ",", "74", ",", "78", ",", "81"}], "}"}], ",", RowBox[{"{", RowBox[{"58", ",", "62", ",", "65", ",", "68", ",", "69", ",", "77"}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel->"Out[83]=",ExpressionUUID->"FE0D7C1D-D0D7-480A-BF21-41EE70FB0896"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"v", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], ";"}]], "Input", CellLabel->"In[84]:=",ExpressionUUID->"F156B440-64CC-4360-9974-E3D78B6820ED"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Rule", "[", RowBox[{"#", ",", RowBox[{"Length", "[", "#2", "]"}]}], "]"}], "&"}], "@@@", "subsethulls"}]], "Input", CellLabel->"In[85]:=",ExpressionUUID->"A215AD16-82E3-45D9-921D-7A19C2A9C1F4"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", "20"}], "}"}]], "Output", CellLabel->"Out[85]=",ExpressionUUID->"7D309716-D116-409D-9D8E-1A9ACA082EEA"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Rule", "[", RowBox[{"#", ",", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{ RowBox[{"ConvexHullRegion", "[", RowBox[{"v", "[", RowBox[{"[", "#", "]"}], "]"}], "]"}], "&"}], "/@", RowBox[{"Lookup", "[", RowBox[{"subsethulls", ",", "#"}], "]"}]}], "]"}]}], "]"}], "&"}], "/@", RowBox[{"subsethulls", "[", RowBox[{"[", RowBox[{"All", ",", "1"}], "]"}], "]"}]}]], "Input", CellLabel->"In[86]:=",ExpressionUUID->"193BC59F-3C4E-4BFA-8E9E-1F563BF04E7A"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ PolyhedronBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.17677669529663687`, \ -0.639584092002116, -0.24429938448106847`}}], {{5, 6, 3}, {6, 5, 4}, {6, 2, 3}, {2, 6, 4}, {5, 1, 4}, {1, 5, 3}, {1, 2, 4}, {2, 1, 3}}], PolyhedronBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, {-0.639584092002116, \ -0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}], {{ 5, 6, 4}, {6, 5, 3}, {6, 2, 4}, {2, 6, 3}, {5, 1, 3}, {1, 5, 4}, {1, 2, 3}, {2, 1, 4}}], PolyhedronBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, {-0.17677669529663687`, \ -0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}}], {{5, 1, 4}, {1, 5, 2}, {6, 5, 4}, {5, 6, 2}, {3, 1, 2}, {1, 3, 4}, {6, 3, 2}, {3, 6, 4}}], PolyhedronBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, \ {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}], {{6, 5, 2}, {5, 6, 3}, {4, 6, 2}, {6, 4, 3}, {1, 5, 3}, {5, 1, 2}, {4, 1, 3}, {1, 4, 2}}], PolyhedronBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}], {{ 3, 1, 2}, {1, 3, 5}, {6, 3, 2}, {3, 6, 5}, {4, 1, 5}, {1, 4, 2}, {6, 4, 5}, {4, 6, 2}}], PolyhedronBox[ NCache[{{Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, {0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}], {{ 6, 3, 4}, {3, 6, 2}, {5, 6, 4}, {6, 5, 2}, {1, 3, 2}, {3, 1, 4}, {5, 1, 2}, {1, 5, 4}}], PolyhedronBox[ NCache[{{Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.17677669529663687`, \ -0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}, \ {-0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}], {{4, 1, 2}, {1, 4, 5}, {6, 4, 2}, {4, 6, 5}, {3, 1, 5}, {1, 3, 2}, {6, 3, 5}, { 3, 6, 2}}], PolyhedronBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, \ -0.35355339059327373`, 0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}], {{ 4, 6, 5}, {6, 4, 2}, {6, 3, 5}, {3, 6, 2}, {4, 1, 2}, {1, 4, 5}, {1, 3, 2}, {3, 1, 5}}], PolyhedronBox[ NCache[{{Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, \ {-0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}], {{3, 2, 6}, {2, 3, 1}, {5, 3, 6}, {3, 5, 1}, {4, 2, 1}, {2, 4, 6}, {5, 4, 1}, { 4, 5, 6}}], PolyhedronBox[ NCache[{{Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, {-0.35355339059327373`, \ -0.21850801222441052`, 0.5720614028176843}, {0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, {-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}], {{4, 6, 2}, {6, 4, 5}, {6, 3, 2}, {3, 6, 5}, {4, 1, 5}, {1, 4, 2}, {1, 3, 5}, {3, 1, 2}}], PolyhedronBox[ NCache[{{Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}], {{3, 4, 6}, {4, 3, 1}, {2, 3, 6}, {3, 2, 1}, {5, 4, 1}, {4, 5, 6}, {2, 5, 1}, {5, 2, 6}}], PolyhedronBox[ NCache[{{Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, {-0.5303300858899106, \ -0.06752268918443159, 0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}}], {{2, 6, 4}, {6, 2, 3}, {1, 2, 4}, {2, 1, 3}, {5, 6, 3}, {6, 5, 4}, {1, 5, 3}, {5, 1, 4}}], PolyhedronBox[ NCache[{{Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}], {{3, 6, 1}, {6, 3, 5}, {6, 4, 1}, {4, 6, 5}, {3, 2, 5}, {2, 3, 1}, {2, 4, 5}, { 4, 2, 1}}], PolyhedronBox[ NCache[{{Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, \ {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}], {{6, 5, 4}, {5, 6, 1}, {5, 2, 4}, {2, 5, 1}, {6, 3, 1}, {3, 6, 4}, {3, 2, 1}, { 2, 3, 4}}], PolyhedronBox[ NCache[{{Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}], {{1, 5, 4}, {5, 1, 3}, {2, 1, 4}, {1, 2, 3}, {6, 5, 3}, {5, 6, 4}, {2, 6, 3}, { 6, 2, 4}}], PolyhedronBox[ NCache[{{Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {-0.46280739670547905`, \ -0.17677669529663687`, -0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}], {{ 3, 4, 1}, {4, 3, 6}, {4, 5, 1}, {5, 4, 6}, {3, 2, 6}, {2, 3, 1}, {2, 5, 6}, {5, 2, 1}}], PolyhedronBox[ NCache[{{Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}], {{2, 4, 6}, {4, 2, 1}, {4, 5, 6}, {5, 4, 1}, {2, 3, 1}, {3, 2, 6}, {3, 5, 1}, {5, 3, 6}}], PolyhedronBox[ NCache[{{Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}, \ {-0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}], {{4, 6, 1}, {6, 4, 5}, {6, 3, 1}, {3, 6, 5}, {4, 2, 5}, {2, 4, 1}, {2, 3, 5}, { 3, 2, 1}}], PolyhedronBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}, { 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.35355339059327373`, \ -0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}], {{2, 1, 6}, {1, 2, 3}, { 5, 2, 6}, {2, 5, 3}, {4, 1, 3}, {1, 4, 6}, {5, 4, 3}, {4, 5, 6}}], PolyhedronBox[ NCache[{{Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}], {{5, 4, 6}, {4, 5, 3}, {2, 5, 6}, {5, 2, 3}, {1, 4, 3}, {4, 1, 6}, {2, 1, 3}, {1, 2, 6}}]}]}], "}"}]], "Output", CellLabel->"Out[86]=",ExpressionUUID->"BCFF65C4-8752-4243-A176-E2DC04B88AA1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"subsethulls2", "=", RowBox[{"Flatten", "[", RowBox[{ RowBox[{"Function", "[", RowBox[{ RowBox[{"{", RowBox[{"pn", ",", "l"}], "}"}], ",", RowBox[{ RowBox[{ RowBox[{"Rule", "[", RowBox[{"pn", ",", "#"}], "]"}], "&"}], "/@", "l"}]}], "]"}], "@@@", "subsethulls"}], "]"}]}]], "Input", CellLabel->"In[87]:=",ExpressionUUID->"73052EFD-0294-4A8C-86F3-4D49E1D76B5A"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"1", ",", "22", ",", "28", ",", "51", ",", "66", ",", "120"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"2", ",", "15", ",", "21", ",", "67", ",", "82", ",", "119"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"3", ",", "35", ",", "57", ",", "59", ",", "72", ",", "118"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"4", ",", "34", ",", "60", ",", "63", ",", "71", ",", "112"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"5", ",", "46", ",", "56", ",", "73", ",", "75", ",", "111"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"6", ",", "45", ",", "55", ",", "76", ",", "79", ",", "105"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"7", ",", "14", ",", "64", ",", "70", ",", "83", ",", "104"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"8", ",", "9", ",", "31", ",", "99", ",", "109", ",", "110"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"10", ",", "11", ",", "54", ",", "80", ",", "93", ",", "94"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"12", ",", "13", ",", "42", ",", "88", ",", "116", ",", "117"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"16", ",", "32", ",", "37", ",", "97", ",", "98", ",", "113"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"17", ",", "27", ",", "39", ",", "40", ",", "107", ",", "115"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"18", ",", "38", ",", "47", ",", "85", ",", "91", ",", "95"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"19", ",", "30", ",", "44", ",", "90", ",", "92", ",", "100"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"20", ",", "24", ",", "29", ",", "50", ",", "108", ",", "114"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"23", ",", "43", ",", "48", ",", "86", ",", "87", ",", "106"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"25", ",", "36", ",", "49", ",", "84", ",", "96", ",", "102"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"26", ",", "33", ",", "41", ",", "89", ",", "101", ",", "103"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"52", ",", "53", ",", "61", ",", "74", ",", "78", ",", "81"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"58", ",", "62", ",", "65", ",", "68", ",", "69", ",", "77"}], "}"}]}]}], "}"}]], "Output", CellLabel->"Out[87]=",ExpressionUUID->"022D8AC9-D521-48FB-A2A1-9BD0FA795B92"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Rule", "[", RowBox[{"#", ",", RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".3", "]"}], ",", RowBox[{"{", RowBox[{"Green", ",", "p"}], "}"}]}], "}"}], ",", "Blue", ",", RowBox[{"ConvexHullRegion", "[", RowBox[{"v", "[", RowBox[{"[", "#2", "]"}], "]"}], "]"}]}], "}"}], "]"}]}], "]"}], "&"}], "@@@", "subsethulls2"}]], "Input", CellLabel->"In[88]:=",ExpressionUUID->"5040670A-128B-493F-BCFF-FAEFCA550D47"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{ 0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {-0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, { 0.639584092002116, -0.24429938448106847`, 0.17677669529663687`}, { 0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, {-0.17677669529663687`, \ -0.639584092002116, -0.24429938448106847`}}], {{5, 6, 3}, {6, 5, 4}, {6, 2, 3}, {2, 6, 4}, {5, 1, 4}, {1, 5, 3}, {1, 2, 4}, {2, 1, 3}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, {{-0.17677669529663687`, 0.639584092002116, 0.24429938448106847`}, {0.24429938448106847`, -0.17677669529663687`, 0.639584092002116}, {0.639584092002116, 0.24429938448106847`, -0.17677669529663687`}, {-0.639584092002116, \ -0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, -0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, -0.24429938448106847`}}], \ {{5, 6, 4}, {6, 5, 3}, {6, 2, 4}, {2, 6, 3}, {5, 1, 3}, {1, 5, 4}, {1, 2, 3}, {2, 1, 4}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.06752268918443158, 0.46280739670547905`, 0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, { 0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {-0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, {-0.17677669529663687`, \ -0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, \ -0.5303300858899106}}], {{5, 1, 4}, {1, 5, 2}, {6, 5, 4}, {5, 6, 2}, {3, 1, 2}, {1, 3, 4}, {6, 3, 2}, {3, 6, 4}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {-0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, { 0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, { 0.17677669529663687`, -0.06752268918443159, -0.6813154089298896}, \ {-0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.46280739670547905`, -0.5303300858899106, \ -0.06752268918443159}}], {{6, 5, 2}, {5, 6, 3}, {4, 6, 2}, {6, 4, 3}, {1, 5, 3}, {5, 1, 2}, {4, 1, 3}, {1, 4, 2}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{-0.06752268918443159, 0.46280739670547905`, 0.5303300858899106}, {-0.6813154089298896, -0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, -0.5045387136332526, 0.46280739670547905`}, {-0.17677669529663687`, 0.5045387136332526, -0.46280739670547905`}, {0.6813154089298896, 0.17677669529663687`, -0.06752268918443159}, { 0.06752268918443158, -0.46280739670547905`, -0.5303300858899106}}], \ {{3, 1, 2}, {1, 3, 5}, {6, 3, 2}, {3, 6, 5}, {4, 1, 5}, {1, 4, 2}, {6, 4, 5}, {4, 6, 2}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}}, {{-0.46280739670547905`, 0.5303300858899106, 0.06752268918443158}, {0.5045387136332526, 0.46280739670547905`, -0.17677669529663687`}, {0.17677669529663687`, 0.06752268918443158, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, 0.17677669529663687`}, {-0.17677669529663687`, -0.06752268918443159, \ -0.6813154089298896}, { 0.46280739670547905`, -0.5303300858899106, -0.06752268918443159}}], \ {{6, 3, 4}, {3, 6, 2}, {5, 6, 4}, {6, 5, 2}, {1, 3, 2}, {3, 1, 4}, {5, 1, 2}, {1, 5, 4}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, {-0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, {-0.17677669529663687`, \ -0.639584092002116, 0.24429938448106847`}, { 0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}, \ {-0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}}], {{4, 1, 2}, {1, 4, 5}, {6, 4, 2}, {4, 6, 5}, {3, 1, 5}, {1, 3, 2}, {6, 3, 5}, {3, 6, 2}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, { 0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, {-0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, \ -0.35355339059327373`, 0.21850801222441052`}, { 0.21850801222441052`, -0.5720614028176843, -0.35355339059327373`}}], \ {{4, 6, 5}, {6, 4, 2}, {6, 3, 5}, {3, 6, 2}, {4, 1, 2}, {1, 4, 5}, {1, 3, 2}, {3, 1, 5}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.639584092002116, 0.24429938448106847`, 0.17677669529663687`}, {-0.24429938448106847`, 0.17677669529663687`, 0.639584092002116}, { 0.17677669529663687`, -0.639584092002116, 0.24429938448106847`}, {-0.17677669529663687`, 0.639584092002116, -0.24429938448106847`}, { 0.24429938448106847`, -0.17677669529663687`, -0.639584092002116}, \ {-0.639584092002116, -0.24429938448106847`, -0.17677669529663687`}}], {{3, 2, 6}, {2, 3, 1}, {5, 3, 6}, {3, 5, 1}, {4, 2, 1}, {2, 4, 6}, {5, 4, 1}, {4, 5, 6}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}, {{0.21850801222441052`, 0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, 0.35355339059327373`, -0.21850801222441052`}, \ {-0.35355339059327373`, -0.21850801222441052`, 0.5720614028176843}, { 0.35355339059327373`, 0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, -0.35355339059327373`, 0.21850801222441052`}, {-0.21850801222441052`, -0.5720614028176843, \ -0.35355339059327373`}}], {{4, 6, 2}, {6, 4, 5}, {6, 3, 2}, {3, 6, 5}, {4, 1, 5}, {1, 4, 2}, {1, 3, 5}, {3, 1, 2}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, { 0.06752268918443158, 0.6813154089298896, -0.17677669529663687`}, { 0.46280739670547905`, -0.17677669529663687`, -0.5045387136332526}, \ {-0.06752268918443159, -0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, {-0.5303300858899106, -0.06752268918443159, \ -0.46280739670547905`}}], {{3, 4, 6}, {4, 3, 1}, {2, 3, 6}, {3, 2, 1}, {5, 4, 1}, {4, 5, 6}, {2, 5, 1}, {5, 2, 6}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.06752268918443158, 0.6813154089298896, 0.17677669529663687`}, {-0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, {-0.5303300858899106, \ -0.06752268918443159, 0.46280739670547905`}, { 0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}, {-0.06752268918443159, -0.6813154089298896, \ -0.17677669529663687`}}], {{2, 6, 4}, {6, 2, 3}, {1, 2, 4}, {2, 1, 3}, {5, 6, 3}, {6, 5, 4}, {1, 5, 3}, {5, 1, 4}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, {-0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, { 0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, { 0.5045387136332526, -0.46280739670547905`, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}}], {{3, 6, 1}, {6, 3, 5}, {6, 4, 1}, {4, 6, 5}, {3, 2, 5}, {2, 3, 1}, {2, 4, 5}, {4, 2, 1}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}}, {{0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, { 0.06752268918443158, -0.46280739670547905`, 0.5303300858899106}, {-0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.6813154089298896, -0.17677669529663687`, \ -0.06752268918443159}, { 0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}, \ {-0.06752268918443159, 0.46280739670547905`, -0.5303300858899106}}], {{6, 5, 4}, {5, 6, 1}, {5, 2, 4}, {2, 5, 1}, {6, 3, 1}, {3, 6, 4}, {3, 2, 1}, {2, 3, 4}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.46280739670547905`, 0.17677669529663687`, -0.5045387136332526}, {-0.06752268918443159, 0.6813154089298896, 0.17677669529663687`}, { 0.5303300858899106, -0.06752268918443159, 0.46280739670547905`}, {-0.5303300858899106, 0.06752268918443158, -0.46280739670547905`}, { 0.06752268918443158, -0.6813154089298896, -0.17677669529663687`}, \ {-0.46280739670547905`, -0.17677669529663687`, 0.5045387136332526}}], {{1, 5, 4}, {5, 1, 3}, {2, 1, 4}, {1, 2, 3}, {6, 5, 3}, {5, 6, 4}, {2, 6, 3}, {6, 2, 4}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5303300858899106, 0.06752268918443158, 0.46280739670547905`}, {-0.06752268918443159, 0.6813154089298896, -0.17677669529663687`}, {-0.46280739670547905`, \ -0.17677669529663687`, -0.5045387136332526}, { 0.06752268918443158, -0.6813154089298896, 0.17677669529663687`}, { 0.46280739670547905`, 0.17677669529663687`, 0.5045387136332526}, { 0.5303300858899106, -0.06752268918443159, -0.46280739670547905`}}], \ {{3, 4, 1}, {4, 3, 6}, {4, 5, 1}, {5, 4, 6}, {3, 2, 6}, {2, 3, 1}, {2, 5, 6}, {5, 2, 1}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}}, {{0.5045387136332526, 0.46280739670547905`, 0.17677669529663687`}, {0.17677669529663687`, 0.06752268918443158, -0.6813154089298896}, {-0.46280739670547905`, 0.5303300858899106, -0.06752268918443159}, { 0.46280739670547905`, -0.5303300858899106, 0.06752268918443158}, {-0.17677669529663687`, -0.06752268918443159, 0.6813154089298896}, {-0.5045387136332526, -0.46280739670547905`, \ -0.17677669529663687`}}], {{2, 4, 6}, {4, 2, 1}, {4, 5, 6}, {5, 4, 1}, {2, 3, 1}, {3, 2, 6}, {3, 5, 1}, {5, 3, 6}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6813154089298896, 0.17677669529663687`, 0.06752268918443158}, {0.17677669529663687`, 0.5045387136332526, 0.46280739670547905`}, {-0.06752268918443159, -0.46280739670547905`, 0.5303300858899106}, {0.06752268918443158, 0.46280739670547905`, -0.5303300858899106}, { 0.6813154089298896, -0.17677669529663687`, -0.06752268918443159}, \ {-0.17677669529663687`, -0.5045387136332526, -0.46280739670547905`}}], {{4, 6, 1}, {6, 4, 5}, {6, 3, 1}, {3, 6, 5}, {4, 2, 5}, {2, 4, 1}, {2, 3, 5}, {3, 2, 1}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {-0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, { 0.5720614028176843, -0.35355339059327373`, -0.21850801222441052`}, { 0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, {-0.35355339059327373`, \ -0.21850801222441052`, -0.5720614028176843}, {-0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}}], {{2, 1, 6}, {1, 2, 3}, {5, 2, 6}, {2, 5, 3}, {4, 1, 3}, {1, 4, 6}, {5, 4, 3}, {4, 5, 6}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{ Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.21850801222441052`, 0.5720614028176843, -0.35355339059327373`}, { 0.35355339059327373`, -0.21850801222441052`, -0.5720614028176843}, { 0.5720614028176843, 0.35355339059327373`, 0.21850801222441052`}, {-0.35355339059327373`, 0.21850801222441052`, 0.5720614028176843}, {0.21850801222441052`, -0.5720614028176843, 0.35355339059327373`}, {-0.5720614028176843, -0.35355339059327373`, \ -0.21850801222441052`}}], {{5, 4, 6}, {4, 5, 3}, {2, 5, 6}, {5, 2, 3}, {1, 4, 3}, {4, 1, 6}, {2, 1, 3}, {1, 2, 6}}]}}]}]}], "}"}]], "Output", CellLabel->"Out[88]=",ExpressionUUID->"4C19E86F-7F2E-4CA5-94B4-FE997ED6B888"] }, Open ]], Cell[CellGroupData[{ Cell["Platonic", "Subsubsection",ExpressionUUID->"CF60DB50-A69F-4EDB-AD6E-DDFB015C7992"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"h", "=", RowBox[{"VertexSubsetHulls", "[", RowBox[{"p", ",", "\"\\"", ",", RowBox[{"\"\\"", "\[Rule]", RowBox[{"{", "}"}]}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel->"In[89]:=",ExpressionUUID->"916C6A89-A2DA-48A4-A031-EE584B174ADA"], Cell[CellGroupData[{ Cell[BoxData["\<\"Finding equilateral triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[89]:=",ExpressionUUID->"45877DD1-3A33-4B62-BF81-4AAF18BCD4BB"], Cell[BoxData["\<\"Finding potential tetrahedra from equilateral \ triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[89]:=",ExpressionUUID->"6903FCA1-4E19-4EFC-991E-369628BE41F2"], Cell[BoxData["\<\"Finding tetrahedra from potential candidates...\"\>"], \ "Print", CellLabel-> "During evaluation of \ In[89]:=",ExpressionUUID->"96AADB1B-92C4-4CF8-9792-781F1C72BFDD"], Cell[BoxData["\<\"Finding cubes from tetrahedra...\"\>"], "Print", CellLabel-> "During evaluation of \ In[89]:=",ExpressionUUID->"63BD7DF3-2841-4368-925A-BCC72A4F82C8"], Cell[BoxData["\<\"Finding dodecahedron from cubes...\"\>"], "Print", CellLabel-> "During evaluation of \ In[89]:=",ExpressionUUID->"D7798CA6-81FC-4809-AACA-81FBA5E4A32D"], Cell[BoxData["\<\"Finding octahedra by building up from equilateral \ triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[89]:=",ExpressionUUID->"D5875792-4BA2-46C0-92F6-09C3CBE234C3"], Cell[BoxData["\<\"Finding dodecahedra from octahedra...\"\>"], "Print", CellLabel-> "During evaluation of \ In[89]:=",ExpressionUUID->"743B24A9-C86B-47B8-9FAA-C94578E91C68"], Cell[BoxData["\<\"Finding icosahedra by building up from equilateral \ triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[89]:=",ExpressionUUID->"DA2B0F6E-F40F-483C-B338-1158218A5D5B"] }, Open ]], Cell[BoxData[ RowBox[{"{", RowBox[{"20.351344`", ",", RowBox[{"{", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "22", ",", "28", ",", "51", ",", "66", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "15", ",", "21", ",", "67", ",", "82", ",", "119"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "35", ",", "57", ",", "59", ",", "72", ",", "118"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "34", ",", "60", ",", "63", ",", "71", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "46", ",", "56", ",", "73", ",", "75", ",", "111"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "45", ",", "55", ",", "76", ",", "79", ",", "105"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "14", ",", "64", ",", "70", ",", "83", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "9", ",", "31", ",", "99", ",", "109", ",", "110"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "11", ",", "54", ",", "80", ",", "93", ",", "94"}], "}"}], ",", RowBox[{"{", RowBox[{ "12", ",", "13", ",", "42", ",", "88", ",", "116", ",", "117"}], "}"}], ",", RowBox[{"{", RowBox[{ "16", ",", "32", ",", "37", ",", "97", ",", "98", ",", "113"}], "}"}], ",", RowBox[{"{", RowBox[{ "17", ",", "27", ",", "39", ",", "40", ",", "107", ",", "115"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "38", ",", "47", ",", "85", ",", "91", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{ "19", ",", "30", ",", "44", ",", "90", ",", "92", ",", "100"}], "}"}], ",", RowBox[{"{", RowBox[{ "20", ",", "24", ",", "29", ",", "50", ",", "108", ",", "114"}], "}"}], ",", RowBox[{"{", RowBox[{ "23", ",", "43", ",", "48", ",", "86", ",", "87", ",", "106"}], "}"}], ",", RowBox[{"{", RowBox[{ "25", ",", "36", ",", "49", ",", "84", ",", "96", ",", "102"}], "}"}], ",", RowBox[{"{", RowBox[{ "26", ",", "33", ",", "41", ",", "89", ",", "101", ",", "103"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "53", ",", "61", ",", "74", ",", "78", ",", "81"}], "}"}], ",", RowBox[{"{", RowBox[{"58", ",", "62", ",", "65", ",", "68", ",", "69", ",", "77"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel->"Out[89]=",ExpressionUUID->"88DE5DE2-1825-4388-9ED0-27ED12F442C1"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Volume", "Subsection",ExpressionUUID->"0C49720B-9370-4A5E-817B-82FF193FF045"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[98]:=",ExpressionUUID->"C4E6F85C-464B-4568-9F29-FD90A9A69B4E"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[98]=",ExpressionUUID->"1DF33010-F308-4F83-9415-43D6E1664EA3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Volume", "[", "p", "]"}], "//", "FullSimplify"}]], "Input", CellLabel->"In[99]:=",ExpressionUUID->"70E18B0C-FF02-41FD-9121-9CD663014145"], Cell[BoxData[ RowBox[{"Volume", "[", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["120", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["120", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]], Editable->False, SelectWithContents->True, Selectable->False], "]"}]], "Output", CellLabel->"Out[99]=",ExpressionUUID->"A91E8C3B-9C51-4C31-A134-8C6822888691"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronVolume", "[", "p", "]"}]], "Input",ExpressionUUID->"CA7981A2-EC39-423F-AE4D-6FA4AB64C1BF"], Cell[BoxData["$Failed"], "Output", CellLabel-> "Out[100]=",ExpressionUUID->"153E0055-CCA9-4ED2-8ECC-7D2F19855F16"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Volume", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}]], "Input", CellLabel-> "In[101]:=",ExpressionUUID->"721ACE9C-E5C0-47F6-A548-DE5EE75EF9BB"], Cell[BoxData[ TemplateBox[{ "Volume", "reg", "\"\\!\\(\\*RowBox[{\\\"Missing\\\", \\\"[\\\", \ \\\"\\\\\\\"NotApplicable\\\\\\\"\\\", \\\"]\\\"}]\\) is not a correctly \ specified region.\"", 2, 101, 5, 21663204854482869440, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[101]:=",ExpressionUUID->"11EEB368-A44C-4643-A389-D06743388E0D"], Cell[BoxData[ RowBox[{"Volume", "[", RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}], "]"}]], "Output", CellLabel-> "Out[101]=",ExpressionUUID->"BD5A27B0-E56D-4520-8164-95BB6673081E"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Properties: {\"OctahedronTwentyCompound\", 2}", "Section",ExpressionUUID->"F89A8A52-80C6-45D7-852B-45B67247B9DE"], Cell[CellGroupData[{ Cell["Initialization", "Subsection",ExpressionUUID->"4DAE4BB0-914B-4FCB-B386-840116544140"], Cell[BoxData[ RowBox[{"<<", "MathWorld`Polyhedra`"}]], "Input", CellLabel->"In[3]:=",ExpressionUUID->"AC5F6E41-3AFF-4A4A-BD8E-30F3DD7A957A"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"p", "=", RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"pname", "=", RowBox[{"{", RowBox[{"\"\\"", ",", "2"}], "}"}]}], ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"21DE9E8B-FA89-4A1D-9DF0-0BDBC611750B"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, \ -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, \ {0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, { 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, -0.4129918634945738}, { 0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, { 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, \ {-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, \ {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["60", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, \ -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, \ {0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, { 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, -0.4129918634945738}, { 0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, { 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, \ {-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, \ {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["60", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel->"Out[4]=",ExpressionUUID->"C047AEA6-4070-4E01-A8B9-C3243EA82B73"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["AdjacentFaceIndices", "Subsection",ExpressionUUID->"24F6BB80-C0DA-4872-8ADA-A303FB183125"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"adj1", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[9]:=",ExpressionUUID->"EC0B90A6-B6C0-4BBE-AC0C-879AC0589321"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"20", ",", "23"}], "}"}], ",", RowBox[{"{", RowBox[{"21", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{"21", ",", "23"}], "}"}], ",", RowBox[{"{", RowBox[{"22", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"23", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "26"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "27"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"26", ",", "28"}], "}"}], ",", RowBox[{"{", RowBox[{"26", ",", "29"}], "}"}], ",", RowBox[{"{", RowBox[{"27", ",", "28"}], "}"}], ",", RowBox[{"{", RowBox[{"27", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"28", ",", "31"}], "}"}], ",", RowBox[{"{", RowBox[{"29", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"29", ",", "31"}], "}"}], ",", RowBox[{"{", RowBox[{"30", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"31", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "34"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "35"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "38"}], "}"}], ",", RowBox[{"{", RowBox[{"34", ",", "36"}], "}"}], ",", RowBox[{"{", RowBox[{"34", ",", "37"}], "}"}], ",", RowBox[{"{", RowBox[{"35", ",", "36"}], "}"}], ",", RowBox[{"{", RowBox[{"35", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"36", ",", "39"}], "}"}], ",", RowBox[{"{", RowBox[{"37", ",", "38"}], "}"}], ",", RowBox[{"{", RowBox[{"37", ",", "39"}], "}"}], ",", RowBox[{"{", RowBox[{"38", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"39", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"41", ",", "42"}], "}"}], ",", RowBox[{"{", RowBox[{"41", ",", "43"}], "}"}], ",", RowBox[{"{", RowBox[{"41", ",", "46"}], "}"}], ",", RowBox[{"{", RowBox[{"42", ",", "44"}], "}"}], ",", RowBox[{"{", RowBox[{"42", ",", "45"}], "}"}], ",", RowBox[{"{", RowBox[{"43", ",", "44"}], "}"}], ",", RowBox[{"{", RowBox[{"43", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{"44", ",", "47"}], "}"}], ",", RowBox[{"{", RowBox[{"45", ",", "46"}], "}"}], ",", RowBox[{"{", RowBox[{"45", ",", "47"}], "}"}], ",", RowBox[{"{", RowBox[{"46", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{"47", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "50"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "51"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "54"}], "}"}], ",", RowBox[{"{", RowBox[{"50", ",", "52"}], "}"}], ",", RowBox[{"{", RowBox[{"50", ",", "53"}], "}"}], ",", RowBox[{"{", RowBox[{"51", ",", "52"}], "}"}], ",", RowBox[{"{", RowBox[{"51", ",", "56"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "55"}], "}"}], ",", RowBox[{"{", RowBox[{"53", ",", "54"}], "}"}], ",", RowBox[{"{", RowBox[{"53", ",", "55"}], "}"}], ",", RowBox[{"{", RowBox[{"54", ",", "56"}], "}"}], ",", RowBox[{"{", RowBox[{"55", ",", "56"}], "}"}], ",", RowBox[{"{", RowBox[{"57", ",", "58"}], "}"}], ",", RowBox[{"{", RowBox[{"57", ",", "59"}], "}"}], ",", RowBox[{"{", RowBox[{"57", ",", "62"}], "}"}], ",", RowBox[{"{", RowBox[{"58", ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{"58", ",", "61"}], "}"}], ",", RowBox[{"{", RowBox[{"59", ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{"59", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"60", ",", "63"}], "}"}], ",", RowBox[{"{", RowBox[{"61", ",", "62"}], "}"}], ",", RowBox[{"{", RowBox[{"61", ",", "63"}], "}"}], ",", RowBox[{"{", RowBox[{"62", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"63", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "66"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "67"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "70"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "68"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "69"}], "}"}], ",", RowBox[{"{", RowBox[{"67", ",", "68"}], "}"}], ",", RowBox[{"{", RowBox[{"67", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"68", ",", "71"}], "}"}], ",", RowBox[{"{", RowBox[{"69", ",", "70"}], "}"}], ",", RowBox[{"{", RowBox[{"69", ",", "71"}], "}"}], ",", RowBox[{"{", RowBox[{"70", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"71", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "74"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "75"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "78"}], "}"}], ",", RowBox[{"{", RowBox[{"74", ",", "76"}], "}"}], ",", RowBox[{"{", RowBox[{"74", ",", "77"}], "}"}], ",", RowBox[{"{", RowBox[{"75", ",", "76"}], "}"}], ",", RowBox[{"{", RowBox[{"75", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"76", ",", "79"}], "}"}], ",", RowBox[{"{", RowBox[{"77", ",", "78"}], "}"}], ",", RowBox[{"{", RowBox[{"77", ",", "79"}], "}"}], ",", RowBox[{"{", RowBox[{"78", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"79", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "82"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "83"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "86"}], "}"}], ",", RowBox[{"{", RowBox[{"82", ",", "84"}], "}"}], ",", RowBox[{"{", RowBox[{"82", ",", "85"}], "}"}], ",", RowBox[{"{", RowBox[{"83", ",", "84"}], "}"}], ",", RowBox[{"{", RowBox[{"83", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"84", ",", "87"}], "}"}], ",", RowBox[{"{", RowBox[{"85", ",", "86"}], "}"}], ",", RowBox[{"{", RowBox[{"85", ",", "87"}], "}"}], ",", RowBox[{"{", RowBox[{"86", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"87", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"89", ",", "90"}], "}"}], ",", RowBox[{"{", RowBox[{"89", ",", "91"}], "}"}], ",", RowBox[{"{", RowBox[{"89", ",", "94"}], "}"}], ",", RowBox[{"{", RowBox[{"90", ",", "92"}], "}"}], ",", RowBox[{"{", RowBox[{"90", ",", "93"}], "}"}], ",", RowBox[{"{", RowBox[{"91", ",", "92"}], "}"}], ",", RowBox[{"{", RowBox[{"91", ",", "96"}], "}"}], ",", RowBox[{"{", RowBox[{"92", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{"93", ",", "94"}], "}"}], ",", RowBox[{"{", RowBox[{"93", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{"94", ",", "96"}], "}"}], ",", RowBox[{"{", RowBox[{"95", ",", "96"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "98"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "99"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "102"}], "}"}], ",", RowBox[{"{", RowBox[{"98", ",", "100"}], "}"}], ",", RowBox[{"{", RowBox[{"98", ",", "101"}], "}"}], ",", RowBox[{"{", RowBox[{"99", ",", "100"}], "}"}], ",", RowBox[{"{", RowBox[{"99", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"100", ",", "103"}], "}"}], ",", RowBox[{"{", RowBox[{"101", ",", "102"}], "}"}], ",", RowBox[{"{", RowBox[{"101", ",", "103"}], "}"}], ",", RowBox[{"{", RowBox[{"102", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"103", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"105", ",", "106"}], "}"}], ",", RowBox[{"{", RowBox[{"105", ",", "107"}], "}"}], ",", RowBox[{"{", RowBox[{"105", ",", "110"}], "}"}], ",", RowBox[{"{", RowBox[{"106", ",", "108"}], "}"}], ",", RowBox[{"{", RowBox[{"106", ",", "109"}], "}"}], ",", RowBox[{"{", RowBox[{"107", ",", "108"}], "}"}], ",", RowBox[{"{", RowBox[{"107", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"108", ",", "111"}], "}"}], ",", RowBox[{"{", RowBox[{"109", ",", "110"}], "}"}], ",", RowBox[{"{", RowBox[{"109", ",", "111"}], "}"}], ",", RowBox[{"{", RowBox[{"110", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"111", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"113", ",", "114"}], "}"}], ",", RowBox[{"{", RowBox[{"113", ",", "115"}], "}"}], ",", RowBox[{"{", RowBox[{"113", ",", "118"}], "}"}], ",", RowBox[{"{", RowBox[{"114", ",", "116"}], "}"}], ",", RowBox[{"{", RowBox[{"114", ",", "117"}], "}"}], ",", RowBox[{"{", RowBox[{"115", ",", "116"}], "}"}], ",", RowBox[{"{", RowBox[{"115", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"116", ",", "119"}], "}"}], ",", RowBox[{"{", RowBox[{"117", ",", "118"}], "}"}], ",", RowBox[{"{", RowBox[{"117", ",", "119"}], "}"}], ",", RowBox[{"{", RowBox[{"118", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"119", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"121", ",", "122"}], "}"}], ",", RowBox[{"{", RowBox[{"121", ",", "123"}], "}"}], ",", RowBox[{"{", RowBox[{"121", ",", "126"}], "}"}], ",", RowBox[{"{", RowBox[{"122", ",", "124"}], "}"}], ",", RowBox[{"{", RowBox[{"122", ",", "125"}], "}"}], ",", RowBox[{"{", RowBox[{"123", ",", "124"}], "}"}], ",", RowBox[{"{", RowBox[{"123", ",", "128"}], "}"}], ",", RowBox[{"{", RowBox[{"124", ",", "127"}], "}"}], ",", RowBox[{"{", RowBox[{"125", ",", "126"}], "}"}], ",", RowBox[{"{", RowBox[{"125", ",", "127"}], "}"}], ",", RowBox[{"{", RowBox[{"126", ",", "128"}], "}"}], ",", RowBox[{"{", RowBox[{"127", ",", "128"}], "}"}], ",", RowBox[{"{", RowBox[{"129", ",", "130"}], "}"}], ",", RowBox[{"{", RowBox[{"129", ",", "131"}], "}"}], ",", RowBox[{"{", RowBox[{"129", ",", "134"}], "}"}], ",", RowBox[{"{", RowBox[{"130", ",", "132"}], "}"}], ",", RowBox[{"{", RowBox[{"130", ",", "133"}], "}"}], ",", RowBox[{"{", RowBox[{"131", ",", "132"}], "}"}], ",", RowBox[{"{", RowBox[{"131", ",", "136"}], "}"}], ",", RowBox[{"{", RowBox[{"132", ",", "135"}], "}"}], ",", RowBox[{"{", RowBox[{"133", ",", "134"}], "}"}], ",", RowBox[{"{", RowBox[{"133", ",", "135"}], "}"}], ",", RowBox[{"{", RowBox[{"134", ",", "136"}], "}"}], ",", RowBox[{"{", RowBox[{"135", ",", "136"}], "}"}], ",", RowBox[{"{", RowBox[{"137", ",", "138"}], "}"}], ",", RowBox[{"{", RowBox[{"137", ",", "139"}], "}"}], ",", RowBox[{"{", RowBox[{"137", ",", "142"}], "}"}], ",", RowBox[{"{", RowBox[{"138", ",", "140"}], "}"}], ",", RowBox[{"{", RowBox[{"138", ",", "141"}], "}"}], ",", RowBox[{"{", RowBox[{"139", ",", "140"}], "}"}], ",", RowBox[{"{", RowBox[{"139", ",", "144"}], "}"}], ",", RowBox[{"{", RowBox[{"140", ",", "143"}], "}"}], ",", RowBox[{"{", RowBox[{"141", ",", "142"}], "}"}], ",", RowBox[{"{", RowBox[{"141", ",", "143"}], "}"}], ",", RowBox[{"{", RowBox[{"142", ",", "144"}], "}"}], ",", RowBox[{"{", RowBox[{"143", ",", "144"}], "}"}], ",", RowBox[{"{", RowBox[{"145", ",", "146"}], "}"}], ",", RowBox[{"{", RowBox[{"145", ",", "147"}], "}"}], ",", RowBox[{"{", RowBox[{"145", ",", "150"}], "}"}], ",", RowBox[{"{", RowBox[{"146", ",", "148"}], "}"}], ",", RowBox[{"{", RowBox[{"146", ",", "149"}], "}"}], ",", RowBox[{"{", RowBox[{"147", ",", "148"}], "}"}], ",", RowBox[{"{", RowBox[{"147", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{"148", ",", "151"}], "}"}], ",", RowBox[{"{", RowBox[{"149", ",", "150"}], "}"}], ",", RowBox[{"{", RowBox[{"149", ",", "151"}], "}"}], ",", RowBox[{"{", RowBox[{"150", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{"151", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{"153", ",", "154"}], "}"}], ",", RowBox[{"{", RowBox[{"153", ",", "155"}], "}"}], ",", RowBox[{"{", RowBox[{"153", ",", "158"}], "}"}], ",", RowBox[{"{", RowBox[{"154", ",", "156"}], "}"}], ",", RowBox[{"{", RowBox[{"154", ",", "157"}], "}"}], ",", RowBox[{"{", RowBox[{"155", ",", "156"}], "}"}], ",", RowBox[{"{", RowBox[{"155", ",", "160"}], "}"}], ",", RowBox[{"{", RowBox[{"156", ",", "159"}], "}"}], ",", RowBox[{"{", RowBox[{"157", ",", "158"}], "}"}], ",", RowBox[{"{", RowBox[{"157", ",", "159"}], "}"}], ",", RowBox[{"{", RowBox[{"158", ",", "160"}], "}"}], ",", RowBox[{"{", RowBox[{"159", ",", "160"}], "}"}]}], "}"}]], "Output", CellLabel->"Out[9]=",ExpressionUUID->"BB1A0EF3-CA62-4C09-9592-AEE319E56BD3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"adj2", "=", RowBox[{"AdjacentFaceIndices", "[", "p", "]"}]}]], "Input", CellLabel->"In[10]:=",ExpressionUUID->"0814B566-8420-419A-80F6-5A3CC479CC35"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"20", ",", "23"}], "}"}], ",", RowBox[{"{", RowBox[{"21", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{"21", ",", "23"}], "}"}], ",", RowBox[{"{", RowBox[{"22", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"23", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "26"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "27"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"26", ",", "28"}], "}"}], ",", RowBox[{"{", RowBox[{"26", ",", "29"}], "}"}], ",", RowBox[{"{", RowBox[{"27", ",", "28"}], "}"}], ",", RowBox[{"{", RowBox[{"27", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"28", ",", "31"}], "}"}], ",", RowBox[{"{", RowBox[{"29", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"29", ",", "31"}], "}"}], ",", RowBox[{"{", RowBox[{"30", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"31", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "34"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "35"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "38"}], "}"}], ",", RowBox[{"{", RowBox[{"34", ",", "36"}], "}"}], ",", RowBox[{"{", RowBox[{"34", ",", "37"}], "}"}], ",", RowBox[{"{", RowBox[{"35", ",", "36"}], "}"}], ",", RowBox[{"{", RowBox[{"35", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"36", ",", "39"}], "}"}], ",", RowBox[{"{", RowBox[{"37", ",", "38"}], "}"}], ",", RowBox[{"{", RowBox[{"37", ",", "39"}], "}"}], ",", RowBox[{"{", RowBox[{"38", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"39", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"41", ",", "42"}], "}"}], ",", RowBox[{"{", RowBox[{"41", ",", "43"}], "}"}], ",", RowBox[{"{", RowBox[{"41", ",", "46"}], "}"}], ",", RowBox[{"{", RowBox[{"42", ",", "44"}], "}"}], ",", RowBox[{"{", RowBox[{"42", ",", "45"}], "}"}], ",", RowBox[{"{", RowBox[{"43", ",", "44"}], "}"}], ",", RowBox[{"{", RowBox[{"43", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{"44", ",", "47"}], "}"}], ",", RowBox[{"{", RowBox[{"45", ",", "46"}], "}"}], ",", RowBox[{"{", RowBox[{"45", ",", "47"}], "}"}], ",", RowBox[{"{", RowBox[{"46", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{"47", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "50"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "51"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "54"}], "}"}], ",", RowBox[{"{", RowBox[{"50", ",", "52"}], "}"}], ",", RowBox[{"{", RowBox[{"50", ",", "53"}], "}"}], ",", RowBox[{"{", RowBox[{"51", ",", "52"}], "}"}], ",", RowBox[{"{", RowBox[{"51", ",", "56"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "55"}], "}"}], ",", RowBox[{"{", RowBox[{"53", ",", "54"}], "}"}], ",", RowBox[{"{", RowBox[{"53", ",", "55"}], "}"}], ",", RowBox[{"{", RowBox[{"54", ",", "56"}], "}"}], ",", RowBox[{"{", RowBox[{"55", ",", "56"}], "}"}], ",", RowBox[{"{", RowBox[{"57", ",", "58"}], "}"}], ",", RowBox[{"{", RowBox[{"57", ",", "59"}], "}"}], ",", RowBox[{"{", RowBox[{"57", ",", "62"}], "}"}], ",", RowBox[{"{", RowBox[{"58", ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{"58", ",", "61"}], "}"}], ",", RowBox[{"{", RowBox[{"59", ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{"59", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"60", ",", "63"}], "}"}], ",", RowBox[{"{", RowBox[{"61", ",", "62"}], "}"}], ",", RowBox[{"{", RowBox[{"61", ",", "63"}], "}"}], ",", RowBox[{"{", RowBox[{"62", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"63", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "66"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "67"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "70"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "68"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "69"}], "}"}], ",", RowBox[{"{", RowBox[{"67", ",", "68"}], "}"}], ",", RowBox[{"{", RowBox[{"67", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"68", ",", "71"}], "}"}], ",", RowBox[{"{", RowBox[{"69", ",", "70"}], "}"}], ",", RowBox[{"{", RowBox[{"69", ",", "71"}], "}"}], ",", RowBox[{"{", RowBox[{"70", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"71", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "74"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "75"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "78"}], "}"}], ",", RowBox[{"{", RowBox[{"74", ",", "76"}], "}"}], ",", RowBox[{"{", RowBox[{"74", ",", "77"}], "}"}], ",", RowBox[{"{", RowBox[{"75", ",", "76"}], "}"}], ",", RowBox[{"{", RowBox[{"75", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"76", ",", "79"}], "}"}], ",", RowBox[{"{", RowBox[{"77", ",", "78"}], "}"}], ",", RowBox[{"{", RowBox[{"77", ",", "79"}], "}"}], ",", RowBox[{"{", RowBox[{"78", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"79", ",", "80"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "82"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "83"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "86"}], "}"}], ",", RowBox[{"{", RowBox[{"82", ",", "84"}], "}"}], ",", RowBox[{"{", RowBox[{"82", ",", "85"}], "}"}], ",", RowBox[{"{", RowBox[{"83", ",", "84"}], "}"}], ",", RowBox[{"{", RowBox[{"83", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"84", ",", "87"}], "}"}], ",", RowBox[{"{", RowBox[{"85", ",", "86"}], "}"}], ",", RowBox[{"{", RowBox[{"85", ",", "87"}], "}"}], ",", RowBox[{"{", RowBox[{"86", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"87", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"89", ",", "90"}], "}"}], ",", RowBox[{"{", RowBox[{"89", ",", "91"}], "}"}], ",", RowBox[{"{", RowBox[{"89", ",", "94"}], "}"}], ",", RowBox[{"{", RowBox[{"90", ",", "92"}], "}"}], ",", RowBox[{"{", RowBox[{"90", ",", "93"}], "}"}], ",", RowBox[{"{", RowBox[{"91", ",", "92"}], "}"}], ",", RowBox[{"{", RowBox[{"91", ",", "96"}], "}"}], ",", RowBox[{"{", RowBox[{"92", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{"93", ",", "94"}], "}"}], ",", RowBox[{"{", RowBox[{"93", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{"94", ",", "96"}], "}"}], ",", RowBox[{"{", RowBox[{"95", ",", "96"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "98"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "99"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "102"}], "}"}], ",", RowBox[{"{", RowBox[{"98", ",", "100"}], "}"}], ",", RowBox[{"{", RowBox[{"98", ",", "101"}], "}"}], ",", RowBox[{"{", RowBox[{"99", ",", "100"}], "}"}], ",", RowBox[{"{", RowBox[{"99", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"100", ",", "103"}], "}"}], ",", RowBox[{"{", RowBox[{"101", ",", "102"}], "}"}], ",", RowBox[{"{", RowBox[{"101", ",", "103"}], "}"}], ",", RowBox[{"{", RowBox[{"102", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"103", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"105", ",", "106"}], "}"}], ",", RowBox[{"{", RowBox[{"105", ",", "107"}], "}"}], ",", RowBox[{"{", RowBox[{"105", ",", "110"}], "}"}], ",", RowBox[{"{", RowBox[{"106", ",", "108"}], "}"}], ",", RowBox[{"{", RowBox[{"106", ",", "109"}], "}"}], ",", RowBox[{"{", RowBox[{"107", ",", "108"}], "}"}], ",", RowBox[{"{", RowBox[{"107", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"108", ",", "111"}], "}"}], ",", RowBox[{"{", RowBox[{"109", ",", "110"}], "}"}], ",", RowBox[{"{", RowBox[{"109", ",", "111"}], "}"}], ",", RowBox[{"{", RowBox[{"110", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"111", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"113", ",", "114"}], "}"}], ",", RowBox[{"{", RowBox[{"113", ",", "115"}], "}"}], ",", RowBox[{"{", RowBox[{"113", ",", "118"}], "}"}], ",", RowBox[{"{", RowBox[{"114", ",", "116"}], "}"}], ",", RowBox[{"{", RowBox[{"114", ",", "117"}], "}"}], ",", RowBox[{"{", RowBox[{"115", ",", "116"}], "}"}], ",", RowBox[{"{", RowBox[{"115", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"116", ",", "119"}], "}"}], ",", RowBox[{"{", RowBox[{"117", ",", "118"}], "}"}], ",", RowBox[{"{", RowBox[{"117", ",", "119"}], "}"}], ",", RowBox[{"{", RowBox[{"118", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"119", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"121", ",", "122"}], "}"}], ",", RowBox[{"{", RowBox[{"121", ",", "123"}], "}"}], ",", RowBox[{"{", RowBox[{"121", ",", "126"}], "}"}], ",", RowBox[{"{", RowBox[{"122", ",", "124"}], "}"}], ",", RowBox[{"{", RowBox[{"122", ",", "125"}], "}"}], ",", RowBox[{"{", RowBox[{"123", ",", "124"}], "}"}], ",", RowBox[{"{", RowBox[{"123", ",", "128"}], "}"}], ",", RowBox[{"{", RowBox[{"124", ",", "127"}], "}"}], ",", RowBox[{"{", RowBox[{"125", ",", "126"}], "}"}], ",", RowBox[{"{", RowBox[{"125", ",", "127"}], "}"}], ",", RowBox[{"{", RowBox[{"126", ",", "128"}], "}"}], ",", RowBox[{"{", RowBox[{"127", ",", "128"}], "}"}], ",", RowBox[{"{", RowBox[{"129", ",", "130"}], "}"}], ",", RowBox[{"{", RowBox[{"129", ",", "131"}], "}"}], ",", RowBox[{"{", RowBox[{"129", ",", "134"}], "}"}], ",", RowBox[{"{", RowBox[{"130", ",", "132"}], "}"}], ",", RowBox[{"{", RowBox[{"130", ",", "133"}], "}"}], ",", RowBox[{"{", RowBox[{"131", ",", "132"}], "}"}], ",", RowBox[{"{", RowBox[{"131", ",", "136"}], "}"}], ",", RowBox[{"{", RowBox[{"132", ",", "135"}], "}"}], ",", RowBox[{"{", RowBox[{"133", ",", "134"}], "}"}], ",", RowBox[{"{", RowBox[{"133", ",", "135"}], "}"}], ",", RowBox[{"{", RowBox[{"134", ",", "136"}], "}"}], ",", RowBox[{"{", RowBox[{"135", ",", "136"}], "}"}], ",", RowBox[{"{", RowBox[{"137", ",", "138"}], "}"}], ",", RowBox[{"{", RowBox[{"137", ",", "139"}], "}"}], ",", RowBox[{"{", RowBox[{"137", ",", "142"}], "}"}], ",", RowBox[{"{", RowBox[{"138", ",", "140"}], "}"}], ",", RowBox[{"{", RowBox[{"138", ",", "141"}], "}"}], ",", RowBox[{"{", RowBox[{"139", ",", "140"}], "}"}], ",", RowBox[{"{", RowBox[{"139", ",", "144"}], "}"}], ",", RowBox[{"{", RowBox[{"140", ",", "143"}], "}"}], ",", RowBox[{"{", RowBox[{"141", ",", "142"}], "}"}], ",", RowBox[{"{", RowBox[{"141", ",", "143"}], "}"}], ",", RowBox[{"{", RowBox[{"142", ",", "144"}], "}"}], ",", RowBox[{"{", RowBox[{"143", ",", "144"}], "}"}], ",", RowBox[{"{", RowBox[{"145", ",", "146"}], "}"}], ",", RowBox[{"{", RowBox[{"145", ",", "147"}], "}"}], ",", RowBox[{"{", RowBox[{"145", ",", "150"}], "}"}], ",", RowBox[{"{", RowBox[{"146", ",", "148"}], "}"}], ",", RowBox[{"{", RowBox[{"146", ",", "149"}], "}"}], ",", RowBox[{"{", RowBox[{"147", ",", "148"}], "}"}], ",", RowBox[{"{", RowBox[{"147", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{"148", ",", "151"}], "}"}], ",", RowBox[{"{", RowBox[{"149", ",", "150"}], "}"}], ",", RowBox[{"{", RowBox[{"149", ",", "151"}], "}"}], ",", RowBox[{"{", RowBox[{"150", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{"151", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{"153", ",", "154"}], "}"}], ",", RowBox[{"{", RowBox[{"153", ",", "155"}], "}"}], ",", RowBox[{"{", RowBox[{"153", ",", "158"}], "}"}], ",", RowBox[{"{", RowBox[{"154", ",", "156"}], "}"}], ",", RowBox[{"{", RowBox[{"154", ",", "157"}], "}"}], ",", RowBox[{"{", RowBox[{"155", ",", "156"}], "}"}], ",", RowBox[{"{", RowBox[{"155", ",", "160"}], "}"}], ",", RowBox[{"{", RowBox[{"156", ",", "159"}], "}"}], ",", RowBox[{"{", RowBox[{"157", ",", "158"}], "}"}], ",", RowBox[{"{", RowBox[{"157", ",", "159"}], "}"}], ",", RowBox[{"{", RowBox[{"158", ",", "160"}], "}"}], ",", RowBox[{"{", RowBox[{"159", ",", "160"}], "}"}]}], "}"}]], "Output", CellLabel->"Out[10]=",ExpressionUUID->"3C08AAC3-A202-4C2E-962E-7C5704EB17FB"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"adj1", "===", "adj2"}]], "Input", CellLabel->"In[11]:=",ExpressionUUID->"736B9E38-1530-4487-AAEC-B0311D5CFFA5"], Cell[BoxData["True"], "Output", CellLabel->"Out[11]=",ExpressionUUID->"60D5DA68-BA98-4A42-920C-543EBCD21033"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Centroid", "Subsection",ExpressionUUID->"BA9D0638-7D82-47EF-94D9-8341FC899420"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"A4B13647-A1AD-4FFB-8747-B1BA303FF6C4"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[4]=",ExpressionUUID->"6765201E-3653-4A3F-B1CE-822C546835CA"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Circumsphere", "Subsection",ExpressionUUID->"64F6C284-A3B8-4415-9D26-7E9342D2FD97"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"sphere", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[5]:=",ExpressionUUID->"16B9BA81-07D0-4F52-92EE-0288BE0A548B"], Cell[BoxData[ RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", FractionBox["1", SqrtBox["2"]]}], "]"}]], "Output", CellLabel->"Out[5]=",ExpressionUUID->"5D98C126-0A2A-4A23-A6AA-F0AA59B5E803"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"sphere", "=", RowBox[{"Circumsphere", "[", "p", "]"}]}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"94A0B89C-FBD2-483E-9589-346454548E69"], Cell[BoxData[ TemplateBox[{ "Circumsphere", "indep", "\"Circumsphere does not exist for \\!\\(\\*RowBox[{\\\"Polyhedron\\\", \\\ \"[\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", \ RowBox[{RowBox[{\\\"Root\\\", \\\"[\\\", RowBox[{RowBox[{RowBox[{\\\"1\\\", \ \\\"-\\\", RowBox[{\\\"6\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]}], \\\"+\\\", RowBox[{\\\"4\\\", \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]}]}], \\\"&\\\"}], \\\",\\\", \\\"2\\\", \\\",\\\", \ \\\"0\\\"}], \\\"]\\\"}], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"2\\\"], \\\" \\\", SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \ \\\"+\\\", SqrtBox[\\\"5\\\"]}]]}], \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\\\", FractionBox[RowBox[{\ \\\"1\\\", \\\"+\\\", SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \\\"+\\\ \", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], RowBox[{\\\"2\\\", \ \\\" \\\", SqrtBox[\\\"2\\\"]}]]}], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"8\\\"], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{SqrtBox[\\\"2\\\"], \ \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"3\\\"}], \\\"+\\\ \", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}], \ \\\"-\\\", RowBox[{\\\"2\\\", \\\" \\\", SqrtBox[RowBox[{\\\"Plus\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]]}]}], \\\")\\\"}]}], \\\",\\\", RowBox[{RowBox[{\\\"-\\\", \ FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\" \\\", SqrtBox[RowBox[{\\\"1\\\", \\\ \"+\\\", RowBox[{\\\"Root\\\", \\\"[\\\", RowBox[{RowBox[{RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"&\\\"}], \ \\\",\\\", \\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}]]}]}], \ \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{FractionBox[RowBox[{\\\"1\\\", \\\"+\\\", \ SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"2\\\"]}]], \\\",\\\", FractionBox[RowBox[{\\\"3\\\", \\\"-\\\", \ SqrtBox[\\\"5\\\"], \\\"+\\\", SqrtBox[RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\ \\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], RowBox[{\\\"4\\\", \\\" \\\", \ SqrtBox[\\\"2\\\"]}]], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \ \\\" \\\", SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"Root\\\", \ \\\"[\\\", RowBox[{RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"&\\\"}], \\\",\\\", \\\"1\\\", \\\",\\\", \\\"0\\\ \"}], \\\"]\\\"}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{RowBox[{\\\"-\\\", FractionBox[RowBox[{RowBox[{\\\"-\\\", \ \\\"1\\\"}], \\\"+\\\", SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \\\"+\ \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], RowBox[{\\\"2\\\", \ \\\" \\\", SqrtBox[\\\"2\\\"]}]]}], \\\",\\\", FractionBox[RowBox[{RowBox[{\\\ \"-\\\", \\\"3\\\"}], \\\"+\\\", SqrtBox[\\\"5\\\"], \\\"+\\\", \ SqrtBox[RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]}]]}], RowBox[{\\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"1\\\ \", \\\"+\\\", RowBox[{\\\"Root\\\", \\\"[\\\", RowBox[{RowBox[{RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"&\\\"}], \ \\\",\\\", \\\"2\\\", \\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}]]}]}], \ \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{FractionBox[RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"2\\\"]}]], \\\",\\\", RowBox[{\\\"-\\\", \ FractionBox[RowBox[{RowBox[{\\\"-\\\", \\\"3\\\"}], \\\"+\\\", \ SqrtBox[\\\"5\\\"], \\\"+\\\", SqrtBox[RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\ \\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], RowBox[{\\\"4\\\", \\\" \\\", \ SqrtBox[\\\"2\\\"]}]]}], \\\",\\\", RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\ \"1\\\", \\\"2\\\"]}], \\\" \\\", SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", \ RowBox[{\\\"Root\\\", \\\"[\\\", \ RowBox[{RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"&\\\"}], \\\",\\\", \\\"2\\\", \\\",\\\", \\\"0\\\ \"}], \\\"]\\\"}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"1\\\", \\\"+\\\", \ SqrtBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ \\\"\[RightSkeleton]\\\"}]]}], RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"2\\\"]}]]}], \\\",\\\", RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\ \\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"1\\\ \", \\\"+\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ \[RightSkeleton]\\\"}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{FractionBox[RowBox[{\\\"1\\\", \\\"+\\\", \ SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"2\\\"]}]], \\\",\\\", FractionBox[RowBox[{\\\"3\\\", \\\"-\\\", \ SqrtBox[\\\"5\\\"], \\\"+\\\", SqrtBox[RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\ \\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}]]}], RowBox[{\ \\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", RowBox[{RowBox[{\\\"-\ \\\", FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\" \\\", SqrtBox[RowBox[{\\\"1\\\ \", \\\"+\\\", RowBox[{\\\"Root\\\", \\\"[\\\", RowBox[{RowBox[{RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"&\\\"}], \ \\\",\\\", \\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}]]}]}], \ \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\\\", \ FractionBox[RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"2\\\"]}]]}], \\\",\\\", FractionBox[RowBox[{RowBox[{\\\"-\\\", \\\ \"3\\\"}], \\\"+\\\", SqrtBox[\\\"5\\\"], \\\"+\\\", \ SqrtBox[RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]}]]}], RowBox[{\\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", \ RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\" \\\", \ SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"Root\\\", \\\"[\\\", \ RowBox[{RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"&\\\"}], \\\",\\\", \\\"2\\\", \\\",\\\", \\\"0\\\ \"}], \\\"]\\\"}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{FractionBox[RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"2\\\"]}]], \\\",\\\", RowBox[{\\\"-\\\", \ FractionBox[RowBox[{RowBox[{\\\"-\\\", \\\"3\\\"}], \\\"+\\\", \ SqrtBox[\\\"5\\\"], \\\"+\\\", SqrtBox[RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\ \\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], RowBox[{\\\"4\\\", \\\" \\\", \ SqrtBox[\\\"2\\\"]}]]}], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"2\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"Root\ \\\", \\\"[\\\", RowBox[{RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"&\\\"}], \\\",\\\", \\\"2\\\", \\\",\\\", \ \\\"0\\\"}], \\\"]\\\"}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\" \ \\\", SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"Root\\\", \\\"[\\\", \ RowBox[{RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"&\\\"}], \\\",\\\", \\\"1\\\", \\\",\\\", \\\"0\\\ \"}], \\\"]\\\"}]}]]}], \\\",\\\", FractionBox[RowBox[{\\\"1\\\", \\\"+\\\", \ SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"2\\\"]}]], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \ \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{SqrtBox[\\\"2\\\"], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"3\\\"}], \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}], \\\"-\\\", RowBox[{\ \\\"2\\\", \\\" \\\", SqrtBox[RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]]}]}], \ \\\")\\\"}]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"50\\\", \\\"\[RightSkeleton]\\\"}]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}], \ \\\"]\\\"}]\\).\"", 2, 6, 1, 21663507198695110257, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[6]:=",ExpressionUUID->"0383FF10-0DAC-46D8-BBE5-4FC015C3C038"], Cell[BoxData[ RowBox[{"Circumsphere", "[", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D+CkQhO IBSK0ABDCEwgMVHBJBlHSFwgcFHGJYVCACWglGlTlkMjKC0A2nRoy2Y4wPAo 4waM57McyvKAdX3WCzgG5VjAiSEnRTwDeBblxYiXQgEjBJwUKCDQqIjJIq6I XCTyoYQpEi5LXCjxkaoTqkGqSaamuaaTmkFoSa6lma6SukboZqlbhaEShkYa ZmFYpUk5Jm2bemEapUXZFu1YemkZhcv4Lhu4le3WjscEHut7lePVNkxkmCpw mOA4x4kSp3I8zPE4JWqeaFkClSSWUzVLtTyFchorletUnl0dd3VetWvXnlMf V33eTec3fdA8V/PebRe0vd8+d/teXRN0rd8NYTdGfeP3bdAPUT+GA5yHeBq6 aOjDEU5jPI9dOPbRsuXLni3PvLzTumXrnq/PtL7ztmTbmm9HuZ3FvuT7mu1H sZ/lUV1HfR9bcezlWd1nfZ1bee7F09xPez3L9Kzz21xve7/L/K7THyjCO3w= "]]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, \ -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {0.43701602444882104`, -0.5558929702514211, 0}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, { 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, -0.4129918634945738}, { 0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, { 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, \ {-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, \ {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D+CkQhO IBSK0ABDCEwgMVHBJBlHSFwgcFHGJYVCACWglGlTlkMjKC0A2nRoy2Y4wPAo 4waM57McyvKAdX3WCzgG5VjAiSEnRTwDeBblxYiXQgEjBJwUKCDQqIjJIq6I XCTyoYQpEi5LXCjxkaoTqkGqSaamuaaTmkFoSa6lma6SukboZqlbhaEShkYa ZmFYpUk5Jm2bemEapUXZFu1YemkZhcv4Lhu4le3WjscEHut7lePVNkxkmCpw mOA4x4kSp3I8zPE4JWqeaFkClSSWUzVLtTyFchorletUnl0dd3VetWvXnlMf V33eTec3fdA8V/PebRe0vd8+d/teXRN0rd8NYTdGfeP3bdAPUT+GA5yHeBq6 aOjDEU5jPI9dOPbRsuXLni3PvLzTumXrnq/PtL7ztmTbmm9HuZ3FvuT7mu1H sZ/lUV1HfR9bcezlWd1nfZ1bee7F09xPez3L9Kzz21xve7/L/K7THyjCO3w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["60", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, \ -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {0.43701602444882104`, -0.5558929702514211, 0}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, { 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, -0.4129918634945738}, { 0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, { 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, \ {-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, \ {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D+CkQhO IBSK0ABDCEwgMVHBJBlHSFwgcFHGJYVCACWglGlTlkMjKC0A2nRoy2Y4wPAo 4waM57McyvKAdX3WCzgG5VjAiSEnRTwDeBblxYiXQgEjBJwUKCDQqIjJIq6I XCTyoYQpEi5LXCjxkaoTqkGqSaamuaaTmkFoSa6lma6SukboZqlbhaEShkYa ZmFYpUk5Jm2bemEapUXZFu1YemkZhcv4Lhu4le3WjscEHut7lePVNkxkmCpw mOA4x4kSp3I8zPE4JWqeaFkClSSWUzVLtTyFchorletUnl0dd3VetWvXnlMf V33eTec3fdA8V/PebRe0vd8+d/teXRN0rd8NYTdGfeP3bdAPUT+GA5yHeBq6 aOjDEU5jPI9dOPbRsuXLni3PvLzTumXrnq/PtL7ztmTbmm9HuZ3FvuT7mu1H sZ/lUV1HfR9bcezlWd1nfZ1bee7F09xPez3L9Kzz21xve7/L/K7THyjCO3w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["60", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D+CkQhO IBSK0ABDCEwgMVHBJBlHSFwgcFHGJYVCACWglGlTlkMjKC0A2nRoy2Y4wPAo 4waM57McyvKAdX3WCzgG5VjAiSEnRTwDeBblxYiXQgEjBJwUKCDQqIjJIq6I XCTyoYQpEi5LXCjxkaoTqkGqSaamuaaTmkFoSa6lma6SukboZqlbhaEShkYa ZmFYpUk5Jm2bemEapUXZFu1YemkZhcv4Lhu4le3WjscEHut7lePVNkxkmCpw mOA4x4kSp3I8zPE4JWqeaFkClSSWUzVLtTyFchorletUnl0dd3VetWvXnlMf V33eTec3fdA8V/PebRe0vd8+d/teXRN0rd8NYTdGfeP3bdAPUT+GA5yHeBq6 aOjDEU5jPI9dOPbRsuXLni3PvLzTumXrnq/PtL7ztmTbmm9HuZ3FvuT7mu1H sZ/lUV1HfR9bcezlWd1nfZ1bee7F09xPez3L9Kzz21xve7/L/K7THyjCO3w= "]], Editable->False, SelectWithContents->True, Selectable->False], "]"}]], "Output", CellLabel->"Out[6]=",ExpressionUUID->"4A5BBA75-7E74-4F97-903A-7C8232E2030E"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"sphere", "=", RowBox[{"MyCircumsphere", "[", "p", "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel->"In[7]:=",ExpressionUUID->"FFEC5B90-97A7-4CA7-9474-82A8EEDB44FF"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.468975`", ",", RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{ FractionBox["1", "4"], " ", SqrtBox[ RowBox[{"8", "+", RowBox[{"4", " ", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], "+", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], "-", SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"4", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]}]]}]}], "]"}]}], "}"}]], "Output", CellLabel->"Out[7]=",ExpressionUUID->"25D8DDA6-7D03-4823-A259-8938915F9BEB"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".2", "]"}], ",", "Yellow", ",", "sphere"}], "}"}], ",", "p"}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel->"In[9]:=",ExpressionUUID->"7D7A2EF9-A0C5-4934-9291-951205EAA941"], Cell[BoxData[ Graphics3DBox[{ {RGBColor[1, 1, 0], Opacity[0.2], SphereBox[{0, 0, 0}, NCache[ Rational[1, 4] (8 + 4 (-2 + 5^Rational[1, 2])^Rational[1, 2] + 3 (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2] - ( 10 (-1 + 5^Rational[1, 2]))^Rational[1, 2] + 4 Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], 0.7071067811865475]]}, PolyhedronBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D+CkQhO IBSK0ABDCEwgMVHBJBlHSFwgcFHGJYVCACWglGlTlkMjKC0A2nRoy2Y4wPAo 4waM57McyvKAdX3WCzgG5VjAiSEnRTwDeBblxYiXQgEjBJwUKCDQqIjJIq6I XCTyoYQpEi5LXCjxkaoTqkGqSaamuaaTmkFoSa6lma6SukboZqlbhaEShkYa ZmFYpUk5Jm2bemEapUXZFu1YemkZhcv4Lhu4le3WjscEHut7lePVNkxkmCpw mOA4x4kSp3I8zPE4JWqeaFkClSSWUzVLtTyFchorletUnl0dd3VetWvXnlMf V33eTec3fdA8V/PebRe0vd8+d/teXRN0rd8NYTdGfeP3bdAPUT+GA5yHeBq6 aOjDEU5jPI9dOPbRsuXLni3PvLzTumXrnq/PtL7ztmTbmm9HuZ3FvuT7mu1H sZ/lUV1HfR9bcezlWd1nfZ1bee7F09xPez3L9Kzz21xve7/L/K7THyjCO3w= "]]}, Boxed->False]], "Output", CellLabel->"Out[9]=",ExpressionUUID->"1A4A2EA9-B07B-43C2-B630-0058B48DA833"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Classes", "Subsection",ExpressionUUID->"F89869FB-FCAF-4F09-94F9-4DA2C4E39232"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[10]:=",ExpressionUUID->"D589CB4C-62A2-48E1-B532-8AA4DF69E1CF"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"Amphichiral\"\>", ",", "\<\"Compound\"\>", ",", "\<\"Equilateral\"\>"}], "}"}]], "Output", CellLabel->"Out[10]=",ExpressionUUID->"9C232EA3-E752-48B6-B360-0E133FFF0FC9"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Compound", "Subsection",ExpressionUUID->"C2FCECFC-4F93-4803-873E-160AEF320E07"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[11]:=",ExpressionUUID->"F747A16A-0953-45FE-800C-BFEE5AF4E3DF"], Cell[BoxData["True"], "Output", CellLabel->"Out[11]=",ExpressionUUID->"1083A9B4-57C2-4149-A5EA-B70E1F70526B"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["CompoundInterior", "Subsection",ExpressionUUID->"012CABED-6AA6-484D-8F7C-0F16EF32BCD5"], Cell[CellGroupData[{ Cell["Interior", "Subsubsection",ExpressionUUID->"1008AC0E-5C17-4766-A568-0DFA4E20CB9F"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"intname", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[5]:=",ExpressionUUID->"AEE9182E-A79D-45B1-A3DF-239C3A8D4590"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[5]=",ExpressionUUID->"488CBC3E-3C04-489F-BB25-619D04B12AAC"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"595DB36D-7442-4672-A730-D55617AD472F"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[6]=",ExpressionUUID->"A6CFD69F-7567-48C8-9526-0576290F5400"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{ "pname", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[7]:=",ExpressionUUID->"F9A13751-F0D5-4D2C-8AD8-2B595F9079C1"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[7]=",ExpressionUUID->"A8921EF8-C215-4073-AA4E-FE4A23DC3BB2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[8]:=",ExpressionUUID->"7B2C5494-317D-4207-AAAB-B0F3B152DC56"], Cell[BoxData[ Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}}, {{ 0, 0, -0.4275168751220311}, {0, 0, 0.427516875122031}, { 0, -0.22164017088719903`, -0.35235701244224593`}, { 0, -0.22164017088719903`, 0.352357012442246}, { 0, 0.22164017088719906`, -0.35235701244224593`}, { 0, 0.22164017088719906`, 0.352357012442246}, { 0, -0.4275168751220311, 0}, {0, 0.427516875122031, 0}, { 0, -0.03388653831996497, -0.4240725185716702}, { 0, -0.03388653831996497, 0.4240725185716702}, { 0, 0.03388653831996497, -0.4240725185716702}, { 0, 0.03388653831996497, 0.4240725185716702}, { 0, -0.3618267830975341, -0.22362124999431204`}, { 0, -0.3618267830975341, 0.22362124999431202`}, { 0, 0.3618267830975341, -0.22362124999431204`}, { 0, 0.3618267830975341, 0.22362124999431202`}, {-0.07042635995207269, -0.10768792678081102`, \ -0.3958828965965613}, {-0.07042635995207269, -0.10768792678081102`, 0.39588289659656134`}, {-0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, {-0.07042635995207269, 0.10768792678081102`, 0.39588289659656134`}, { 0.07042635995207269, -0.10768792678081102`, -0.3958828965965613}, { 0.07042635995207269, -0.10768792678081102`, 0.39588289659656134`}, { 0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, { 0.07042635995207269, 0.10768792678081102`, 0.39588289659656134`}, {-0.22164017088719903`, -0.35235701244224593`, 0}, {-0.22164017088719903`, 0.352357012442246, 0}, { 0.22164017088719906`, -0.35235701244224593`, 0}, { 0.22164017088719906`, 0.352357012442246, 0}, {-0.17424272570936228`, -0.2881949698157503, -0.2446690856614349}, \ {-0.17424272570936228`, -0.2881949698157503, 0.24466908566143503`}, {-0.17424272570936228`, 0.28819496981575027`, -0.2446690856614349}, {-0.17424272570936228`, 0.28819496981575027`, 0.24466908566143503`}, { 0.17424272570936225`, -0.2881949698157503, -0.2446690856614349}, { 0.17424272570936225`, -0.2881949698157503, 0.24466908566143503`}, { 0.17424272570936225`, 0.28819496981575027`, -0.2446690856614349}, { 0.17424272570936225`, 0.28819496981575027`, 0.24466908566143503`}, {-0.2881949698157503, -0.2446690856614349, \ -0.17424272570936228`}, {-0.2881949698157503, -0.2446690856614349, 0.17424272570936225`}, {-0.2881949698157503, 0.24466908566143503`, -0.17424272570936228`}, {-0.2881949698157503, 0.24466908566143503`, 0.17424272570936225`}, { 0.28819496981575027`, -0.2446690856614349, -0.17424272570936228`}, { 0.28819496981575027`, -0.2446690856614349, 0.17424272570936225`}, { 0.28819496981575027`, 0.24466908566143503`, -0.17424272570936228`}, { 0.28819496981575027`, 0.24466908566143503`, 0.17424272570936225`}, {-0.10768792678081102`, -0.3958828965965613, \ -0.07042635995207269}, {-0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, {-0.10768792678081102`, 0.39588289659656134`, -0.07042635995207269}, {-0.10768792678081102`, 0.39588289659656134`, 0.07042635995207269}, { 0.10768792678081102`, -0.3958828965965613, -0.07042635995207269}, { 0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, { 0.10768792678081102`, 0.39588289659656134`, -0.07042635995207269}, { 0.10768792678081102`, 0.39588289659656134`, 0.07042635995207269}, {-0.35235701244224593`, 0, -0.22164017088719903`}, {-0.35235701244224593`, 0, 0.22164017088719906`}, {0.352357012442246, 0, -0.22164017088719903`}, { 0.352357012442246, 0, 0.22164017088719906`}, {-0.3958828965965613, -0.07042635995207269, \ -0.10768792678081102`}, {-0.3958828965965613, -0.07042635995207269, 0.10768792678081102`}, {-0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, {-0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, { 0.39588289659656134`, -0.07042635995207269, -0.10768792678081102`}, { 0.39588289659656134`, -0.07042635995207269, 0.10768792678081102`}, { 0.39588289659656134`, 0.07042635995207269, -0.10768792678081102`}, { 0.39588289659656134`, 0.07042635995207269, 0.10768792678081102`}, {-0.2446690856614349, -0.17424272570936228`, \ -0.2881949698157503}, {-0.2446690856614349, -0.17424272570936228`, 0.28819496981575027`}, {-0.2446690856614349, 0.17424272570936225`, -0.2881949698157503}, {-0.2446690856614349, 0.17424272570936225`, 0.28819496981575027`}, { 0.24466908566143503`, -0.17424272570936228`, -0.2881949698157503}, { 0.24466908566143503`, -0.17424272570936228`, 0.28819496981575027`}, { 0.24466908566143503`, 0.17424272570936225`, -0.2881949698157503}, { 0.24466908566143503`, 0.17424272570936225`, 0.28819496981575027`}, {-0.10363082970464206`, -0.20156474306442806`, \ -0.3600251435318492}, {-0.10363082970464206`, -0.20156474306442806`, 0.36002514353184917`}, {-0.10363082970464206`, 0.20156474306442806`, -0.3600251435318492}, {-0.10363082970464206`, 0.20156474306442806`, 0.36002514353184917`}, { 0.10363082970464206`, -0.20156474306442806`, -0.3600251435318492}, { 0.10363082970464206`, -0.20156474306442806`, 0.36002514353184917`}, { 0.10363082970464206`, 0.20156474306442806`, -0.3600251435318492}, { 0.10363082970464206`, 0.20156474306442806`, 0.36002514353184917`}, {-0.4275168751220311, 0, 0}, { 0.427516875122031, 0, 0}, {-0.03388653831996497, -0.4240725185716702, 0}, {-0.03388653831996497, 0.4240725185716702, 0}, { 0.03388653831996497, -0.4240725185716702, 0}, { 0.03388653831996497, 0.4240725185716702, 0}, {-0.3261386052118843, -0.15846040046742113`, \ -0.22250777550724216`}, {-0.3261386052118843, -0.15846040046742113`, 0.22250777550724216`}, {-0.3261386052118843, 0.15846040046742113`, -0.22250777550724216`}, {-0.3261386052118843, 0.15846040046742113`, 0.22250777550724216`}, { 0.32613860521188426`, -0.15846040046742113`, -0.22250777550724216`}, { 0.32613860521188426`, -0.15846040046742113`, 0.22250777550724216`}, { 0.32613860521188426`, 0.15846040046742113`, -0.22250777550724216`}, { 0.32613860521188426`, 0.15846040046742113`, 0.22250777550724216`}, {-0.20156474306442806`, -0.3600251435318492, \ -0.10363082970464206`}, {-0.20156474306442806`, -0.3600251435318492, 0.10363082970464206`}, {-0.20156474306442806`, 0.36002514353184917`, -0.10363082970464206`}, {-0.20156474306442806`, 0.36002514353184917`, 0.10363082970464206`}, { 0.20156474306442806`, -0.3600251435318492, -0.10363082970464206`}, { 0.20156474306442806`, -0.3600251435318492, 0.10363082970464206`}, { 0.20156474306442806`, 0.36002514353184917`, -0.10363082970464206`}, { 0.20156474306442806`, 0.36002514353184917`, 0.10363082970464206`}, {-0.4240725185716702, 0, -0.03388653831996497}, {-0.4240725185716702, 0, 0.03388653831996497}, {0.4240725185716702, 0, -0.03388653831996497}, { 0.4240725185716702, 0, 0.03388653831996497}, {-0.22250777550724216`, -0.3261386052118843, \ -0.15846040046742113`}, {-0.22250777550724216`, -0.3261386052118843, 0.15846040046742113`}, {-0.22250777550724216`, 0.32613860521188426`, -0.15846040046742113`}, {-0.22250777550724216`, 0.32613860521188426`, 0.15846040046742113`}, { 0.22250777550724216`, -0.3261386052118843, -0.15846040046742113`}, { 0.22250777550724216`, -0.3261386052118843, 0.15846040046742113`}, { 0.22250777550724216`, 0.32613860521188426`, -0.15846040046742113`}, { 0.22250777550724216`, 0.32613860521188426`, 0.15846040046742113`}, {-0.3600251435318492, -0.10363082970464206`, \ -0.20156474306442806`}, {-0.3600251435318492, -0.10363082970464206`, 0.20156474306442806`}, {-0.3600251435318492, 0.10363082970464206`, -0.20156474306442806`}, {-0.3600251435318492, 0.10363082970464206`, 0.20156474306442806`}, { 0.36002514353184917`, -0.10363082970464206`, -0.20156474306442806`}, { 0.36002514353184917`, -0.10363082970464206`, 0.20156474306442806`}, { 0.36002514353184917`, 0.10363082970464206`, -0.20156474306442806`}, { 0.36002514353184917`, 0.10363082970464206`, 0.20156474306442806`}, {-0.15846040046742113`, -0.22250777550724216`, \ -0.3261386052118843}, {-0.15846040046742113`, -0.22250777550724216`, 0.32613860521188426`}, {-0.15846040046742113`, 0.22250777550724216`, -0.3261386052118843}, {-0.15846040046742113`, 0.22250777550724216`, 0.32613860521188426`}, { 0.15846040046742113`, -0.22250777550724216`, -0.3261386052118843}, { 0.15846040046742113`, -0.22250777550724216`, 0.32613860521188426`}, { 0.15846040046742113`, 0.22250777550724216`, -0.3261386052118843}, { 0.15846040046742113`, 0.22250777550724216`, 0.32613860521188426`}, {-0.3618267830975341, -0.22362124999431204`, 0}, {-0.3618267830975341, 0.22362124999431202`, 0}, { 0.3618267830975341, -0.22362124999431204`, 0}, { 0.3618267830975341, 0.22362124999431202`, 0}, {-0.22362124999431204`, 0, -0.3618267830975341}, {-0.22362124999431204`, 0, 0.3618267830975341}, {0.22362124999431202`, 0, -0.3618267830975341}, { 0.22362124999431202`, 0, 0.3618267830975341}, {-0.3458684173557953, -0.1321099797947798, \ -0.2137584375610155}, {-0.3458684173557953, -0.1321099797947798, 0.2137584375610155}, {-0.3458684173557953, 0.13210997979477976`, -0.2137584375610155}, {-0.3458684173557953, 0.13210997979477976`, 0.2137584375610155}, { 0.3458684173557953, -0.1321099797947798, -0.2137584375610155}, { 0.3458684173557953, -0.1321099797947798, 0.2137584375610155}, { 0.3458684173557953, 0.13210997979477976`, -0.2137584375610155}, { 0.3458684173557953, 0.13210997979477976`, 0.2137584375610155}, {-0.2137584375610155, -0.3458684173557953, \ -0.1321099797947798}, {-0.2137584375610155, -0.3458684173557953, 0.13210997979477976`}, {-0.2137584375610155, 0.3458684173557953, -0.1321099797947798}, {-0.2137584375610155, 0.3458684173557953, 0.13210997979477976`}, { 0.2137584375610155, -0.3458684173557953, -0.1321099797947798}, { 0.2137584375610155, -0.3458684173557953, 0.13210997979477976`}, { 0.2137584375610155, 0.3458684173557953, -0.1321099797947798}, { 0.2137584375610155, 0.3458684173557953, 0.13210997979477976`}, {-0.1321099797947798, -0.2137584375610155, \ -0.3458684173557953}, {-0.1321099797947798, -0.2137584375610155, 0.3458684173557953}, {-0.1321099797947798, 0.2137584375610155, -0.3458684173557953}, {-0.1321099797947798, 0.2137584375610155, 0.3458684173557953}, { 0.13210997979477976`, -0.2137584375610155, -0.3458684173557953}, { 0.13210997979477976`, -0.2137584375610155, 0.3458684173557953}, { 0.13210997979477976`, 0.2137584375610155, -0.3458684173557953}, { 0.13210997979477976`, 0.2137584375610155, 0.3458684173557953}}], Polygon3DBox[{{1, 135, 19, 11}, {2, 138, 24, 12}, {3, 77, 159, 13}, {6, 80, 162, 16}, {7, 85, 50, 14}, {8, 15, 47, 84}, {9, 1, 137, 21}, {9, 17, 135, 1}, {10, 2, 136, 18}, {13, 49, 85, 7}, {13, 147, 107, 29}, {13, 159, 127, 33}, {15, 31, 109, 149}, {15, 51, 101, 153}, {15, 149, 97, 47}, { 16, 8, 84, 48}, {16, 32, 126, 158}, {17, 73, 155, 135}, {22, 78, 160, 138}, {22, 138, 2, 10}, {27, 133, 152, 100}, {28, 102, 154, 134}, {28, 134, 153, 101}, {30, 108, 148, 14}, {36, 114, 154, 16}, {39, 132, 149, 109}, {40, 132, 142, 90}, {42, 112, 152, 133}, {43, 113, 153, 134}, {45, 13, 7, 83}, {45, 95, 147, 13}, {53, 117, 141, 135}, {53, 135, 139, 115}, {54, 136, 142, 118}, {56, 138, 144, 120}, {61, 133, 143, 119}, {63, 134, 82, 105}, {66, 136, 140, 88}, {69, 137, 143, 91}, {70, 92, 144, 138}, {73, 3, 13, 155}, {75, 157, 15, 5}, {77, 21, 137, 159}, {78, 4, 14, 160}, {79, 5, 15, 161}, {80, 24, 138, 162}, {81, 103, 57, 131}, {81, 131, 58, 104}, {82, 134, 64, 106}, {83, 7, 14, 46}, {86, 8, 16, 52}, {86, 51, 15, 8}, {88, 140, 131, 38}, {99, 49, 13, 151}, {99, 151, 133, 27}, { 100, 152, 14, 50}, {102, 52, 16, 154}, {105, 82, 133, 61}, {108, 38, 131, 148}, {110, 32, 16, 150}, {112, 34, 14, 152}, {117, 59, 132, 141}, {118, 142, 132, 60}, {119, 143, 137, 55}, {124, 30, 14, 156}, {124, 156, 136, 66}, {129, 71, 137, 161}, {129, 161, 15, 35}, {130, 36, 16, 162}, {130, 162, 138, 72}, {131, 25, 96, 148}, {131, 57, 115, 139}, {131, 139, 87, 37}, {131, 140, 116, 58}, {132, 40, 110, 150}, {132, 59, 103, 81}, {132, 81, 104, 60}, {132, 150, 98, 26}, {133, 82, 106, 62}, {133, 151, 111, 41}, {134, 63, 121, 145}, {134, 145, 93, 43}, {135, 67, 125, 157}, {135, 141, 89, 67}, {135, 155, 123, 65}, {135, 157, 75, 19}, {136, 2, 12, 20}, {136, 20, 76, 158}, {136, 54, 116, 140}, {136, 156, 74, 18}, {136, 158, 126, 68}, {137, 1, 11, 23}, {137, 71, 93, 145}, {138, 56, 122, 146}, {138, 146, 94, 72}, {138, 160, 128, 70}, {139, 135, 65, 87}, {141, 132, 39, 89}, {142, 136, 68, 90}, {143, 133, 41, 91}, {144, 92, 42, 133}, {144, 133, 62, 120}, {145, 121, 55, 137}, {146, 122, 64, 134}, { 146, 134, 44, 94}, {147, 95, 25, 131}, {147, 131, 37, 107}, {148, 96, 46, 14}, {149, 132, 26, 97}, {150, 16, 48, 98}, {151, 13, 33, 111}, {153, 113, 35, 15}, {154, 114, 44, 134}, {155, 13, 29, 123}, {156, 14, 4, 74}, {157, 125, 31, 15}, {158, 76, 6, 16}, {159, 137, 69, 127}, {160, 14, 34, 128}, {161, 137, 23, 79}, {4, 78, 22, 10, 18, 74}, {19, 75, 5, 79, 23, 11}, {33, 127, 69, 91, 41, 111}, {36, 130, 72, 94, 44, 114}, {38, 108, 30, 124, 66, 88}, {49, 99, 27, 100, 50, 85}, {52, 102, 28, 101, 51, 86}, {54, 118, 60, 104, 58, 116}, {71, 129, 35, 113, 43, 93}, {73, 17, 9, 21, 77, 3}, {76, 20, 12, 24, 80, 6}, {84, 47, 97, 26, 98, 48}, {92, 70, 128, 34, 112, 42}, {95, 45, 83, 46, 96, 25}, {105, 61, 119, 55, 121, 63}, {110, 40, 90, 68, 126, 32}, {117, 53, 115, 57, 103, 59}, {122, 56, 120, 62, 106, 64}, {123, 29, 107, 37, 87, 65}, {125, 67, 89, 39, 109, 31}}]], ImageSize->{360., 360.}, ImageSizeRaw->Automatic, ViewAngle->0.4703007239436896, ViewPoint->{-1.1815576211798087`, -0.8700519567254292, -3.049086942091053}, ViewVertical->{-0.6102373036292211, -0.7663530005837161, \ -0.20078224960307783`}]], "Output", CellLabel->"Out[8]=",ExpressionUUID->"3353DB80-36DC-4733-AA5C-046F2D902B63"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"AbsoluteThickness", "[", ".1", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Opacity", "[", ".8", "]"}], ",", RowBox[{"interior", "=", RowBox[{"PolyhedronData", "[", RowBox[{ "pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel->"In[9]:=",ExpressionUUID->"7CDDC9C1-30D2-47A2-9576-A8C7AEBEB8B1"], Cell[BoxData[ Graphics3DBox[ {AbsoluteThickness[ 0.1], {Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}}]], Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, { 0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, { 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[ 1, 2]}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[ 1, 2]}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.2312188477625563, -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}}, {{ 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}}, {{ 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0, -0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0, 0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, { 0, -0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, { 0, 0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, { 0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{ 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, \ {-0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {-0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, { 0.2312188477625563, 0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.2312188477625563, -0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, { 0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, { 0, -0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, { 0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, { 0, -0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, { 0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {-0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{ 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {-0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.5558929702514211, 0, -0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, { 0, 0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, { 0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, 0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, -0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, -0.43701602444882104`, -0.5558929702514211}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0, -0.43701602444882104`, -0.5558929702514211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, -0.43701602444882104`, -0.5558929702514211}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, 0.43701602444882104`, 0.5558929702514211}, {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0, 0.43701602444882104`, 0.5558929702514211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, 0.43701602444882104`, 0.5558929702514211}, {-0.2312188477625563, -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}}, {{ 0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, -0.43701602444882104`}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, -0.43701602444882104`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.5558929702514211, 0, -0.43701602444882104`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.5558929702514211, 0, -0.43701602444882104`}, {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, 0.43701602444882104`}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, 0.43701602444882104`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, 0.43701602444882104`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, 0.43701602444882104`}, {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0, -0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}}, {{ 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, -0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, -0.43701602444882104`, 0.5558929702514211}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, 0.43701602444882104`, -0.5558929702514211}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}}, {{ 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[ 1, 2]}}, {{-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[ 1, 2]}}, {{-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, 0.43701602444882104`}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, 0.43701602444882104`}, {0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.5558929702514211, 0, 0.43701602444882104`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.5558929702514211, 0, 0.43701602444882104`}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, -0.43701602444882104`}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, -0.43701602444882104`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, -0.43701602444882104`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, -0.43701602444882104`}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.4129918634945738, \ -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}}, {{ 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.43701602444882104`, \ -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}}, {{ 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, \ {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}}, {{ 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {-0.43701602444882104`, \ -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{ Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}}, {{ 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.52533376545453, -0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.4129918634945738, \ -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}}, {{ 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {-0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.43701602444882104`, 0.5558929702514211, 0}}]]}, {Opacity[0.8], PolyhedronBox[ NCache[{{0, 0, Root[ 1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}}, {{ 0, 0, -0.4275168751220311}, {0, 0, 0.427516875122031}, { 0, -0.22164017088719903`, -0.35235701244224593`}, { 0, -0.22164017088719903`, 0.352357012442246}, { 0, 0.22164017088719906`, -0.35235701244224593`}, { 0, 0.22164017088719906`, 0.352357012442246}, { 0, -0.4275168751220311, 0}, {0, 0.427516875122031, 0}, { 0, -0.03388653831996497, -0.4240725185716702}, { 0, -0.03388653831996497, 0.4240725185716702}, { 0, 0.03388653831996497, -0.4240725185716702}, { 0, 0.03388653831996497, 0.4240725185716702}, { 0, -0.3618267830975341, -0.22362124999431204`}, { 0, -0.3618267830975341, 0.22362124999431202`}, { 0, 0.3618267830975341, -0.22362124999431204`}, { 0, 0.3618267830975341, 0.22362124999431202`}, {-0.07042635995207269, -0.10768792678081102`, \ -0.3958828965965613}, {-0.07042635995207269, -0.10768792678081102`, 0.39588289659656134`}, {-0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, {-0.07042635995207269, 0.10768792678081102`, 0.39588289659656134`}, { 0.07042635995207269, -0.10768792678081102`, -0.3958828965965613}, { 0.07042635995207269, -0.10768792678081102`, 0.39588289659656134`}, { 0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, { 0.07042635995207269, 0.10768792678081102`, 0.39588289659656134`}, {-0.22164017088719903`, -0.35235701244224593`, 0}, {-0.22164017088719903`, 0.352357012442246, 0}, { 0.22164017088719906`, -0.35235701244224593`, 0}, { 0.22164017088719906`, 0.352357012442246, 0}, {-0.17424272570936228`, -0.2881949698157503, \ -0.2446690856614349}, {-0.17424272570936228`, -0.2881949698157503, 0.24466908566143503`}, {-0.17424272570936228`, 0.28819496981575027`, -0.2446690856614349}, {-0.17424272570936228`, 0.28819496981575027`, 0.24466908566143503`}, { 0.17424272570936225`, -0.2881949698157503, -0.2446690856614349}, { 0.17424272570936225`, -0.2881949698157503, 0.24466908566143503`}, { 0.17424272570936225`, 0.28819496981575027`, -0.2446690856614349}, { 0.17424272570936225`, 0.28819496981575027`, 0.24466908566143503`}, {-0.2881949698157503, -0.2446690856614349, \ -0.17424272570936228`}, {-0.2881949698157503, -0.2446690856614349, 0.17424272570936225`}, {-0.2881949698157503, 0.24466908566143503`, -0.17424272570936228`}, {-0.2881949698157503, 0.24466908566143503`, 0.17424272570936225`}, { 0.28819496981575027`, -0.2446690856614349, -0.17424272570936228`}, { 0.28819496981575027`, -0.2446690856614349, 0.17424272570936225`}, { 0.28819496981575027`, 0.24466908566143503`, -0.17424272570936228`}, { 0.28819496981575027`, 0.24466908566143503`, 0.17424272570936225`}, {-0.10768792678081102`, -0.3958828965965613, \ -0.07042635995207269}, {-0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, {-0.10768792678081102`, 0.39588289659656134`, -0.07042635995207269}, {-0.10768792678081102`, 0.39588289659656134`, 0.07042635995207269}, { 0.10768792678081102`, -0.3958828965965613, -0.07042635995207269}, { 0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, { 0.10768792678081102`, 0.39588289659656134`, -0.07042635995207269}, { 0.10768792678081102`, 0.39588289659656134`, 0.07042635995207269}, {-0.35235701244224593`, 0, -0.22164017088719903`}, {-0.35235701244224593`, 0, 0.22164017088719906`}, { 0.352357012442246, 0, -0.22164017088719903`}, { 0.352357012442246, 0, 0.22164017088719906`}, {-0.3958828965965613, -0.07042635995207269, \ -0.10768792678081102`}, {-0.3958828965965613, -0.07042635995207269, 0.10768792678081102`}, {-0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, {-0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, { 0.39588289659656134`, -0.07042635995207269, -0.10768792678081102`}, { 0.39588289659656134`, -0.07042635995207269, 0.10768792678081102`}, { 0.39588289659656134`, 0.07042635995207269, -0.10768792678081102`}, { 0.39588289659656134`, 0.07042635995207269, 0.10768792678081102`}, {-0.2446690856614349, -0.17424272570936228`, \ -0.2881949698157503}, {-0.2446690856614349, -0.17424272570936228`, 0.28819496981575027`}, {-0.2446690856614349, 0.17424272570936225`, -0.2881949698157503}, {-0.2446690856614349, 0.17424272570936225`, 0.28819496981575027`}, { 0.24466908566143503`, -0.17424272570936228`, -0.2881949698157503}, { 0.24466908566143503`, -0.17424272570936228`, 0.28819496981575027`}, { 0.24466908566143503`, 0.17424272570936225`, -0.2881949698157503}, { 0.24466908566143503`, 0.17424272570936225`, 0.28819496981575027`}, {-0.10363082970464206`, -0.20156474306442806`, \ -0.3600251435318492}, {-0.10363082970464206`, -0.20156474306442806`, 0.36002514353184917`}, {-0.10363082970464206`, 0.20156474306442806`, -0.3600251435318492}, {-0.10363082970464206`, 0.20156474306442806`, 0.36002514353184917`}, { 0.10363082970464206`, -0.20156474306442806`, -0.3600251435318492}, { 0.10363082970464206`, -0.20156474306442806`, 0.36002514353184917`}, { 0.10363082970464206`, 0.20156474306442806`, -0.3600251435318492}, { 0.10363082970464206`, 0.20156474306442806`, 0.36002514353184917`}, {-0.4275168751220311, 0, 0}, { 0.427516875122031, 0, 0}, {-0.03388653831996497, -0.4240725185716702, 0}, {-0.03388653831996497, 0.4240725185716702, 0}, { 0.03388653831996497, -0.4240725185716702, 0}, { 0.03388653831996497, 0.4240725185716702, 0}, {-0.3261386052118843, -0.15846040046742113`, \ -0.22250777550724216`}, {-0.3261386052118843, -0.15846040046742113`, 0.22250777550724216`}, {-0.3261386052118843, 0.15846040046742113`, -0.22250777550724216`}, {-0.3261386052118843, 0.15846040046742113`, 0.22250777550724216`}, { 0.32613860521188426`, -0.15846040046742113`, -0.22250777550724216`}, { 0.32613860521188426`, -0.15846040046742113`, 0.22250777550724216`}, { 0.32613860521188426`, 0.15846040046742113`, -0.22250777550724216`}, { 0.32613860521188426`, 0.15846040046742113`, 0.22250777550724216`}, {-0.20156474306442806`, -0.3600251435318492, \ -0.10363082970464206`}, {-0.20156474306442806`, -0.3600251435318492, 0.10363082970464206`}, {-0.20156474306442806`, 0.36002514353184917`, -0.10363082970464206`}, {-0.20156474306442806`, 0.36002514353184917`, 0.10363082970464206`}, { 0.20156474306442806`, -0.3600251435318492, -0.10363082970464206`}, { 0.20156474306442806`, -0.3600251435318492, 0.10363082970464206`}, { 0.20156474306442806`, 0.36002514353184917`, -0.10363082970464206`}, { 0.20156474306442806`, 0.36002514353184917`, 0.10363082970464206`}, {-0.4240725185716702, 0, -0.03388653831996497}, {-0.4240725185716702, 0, 0.03388653831996497}, {0.4240725185716702, 0, -0.03388653831996497}, { 0.4240725185716702, 0, 0.03388653831996497}, {-0.22250777550724216`, -0.3261386052118843, \ -0.15846040046742113`}, {-0.22250777550724216`, -0.3261386052118843, 0.15846040046742113`}, {-0.22250777550724216`, 0.32613860521188426`, -0.15846040046742113`}, {-0.22250777550724216`, 0.32613860521188426`, 0.15846040046742113`}, { 0.22250777550724216`, -0.3261386052118843, -0.15846040046742113`}, { 0.22250777550724216`, -0.3261386052118843, 0.15846040046742113`}, { 0.22250777550724216`, 0.32613860521188426`, -0.15846040046742113`}, { 0.22250777550724216`, 0.32613860521188426`, 0.15846040046742113`}, {-0.3600251435318492, -0.10363082970464206`, \ -0.20156474306442806`}, {-0.3600251435318492, -0.10363082970464206`, 0.20156474306442806`}, {-0.3600251435318492, 0.10363082970464206`, -0.20156474306442806`}, {-0.3600251435318492, 0.10363082970464206`, 0.20156474306442806`}, { 0.36002514353184917`, -0.10363082970464206`, -0.20156474306442806`}, { 0.36002514353184917`, -0.10363082970464206`, 0.20156474306442806`}, { 0.36002514353184917`, 0.10363082970464206`, -0.20156474306442806`}, { 0.36002514353184917`, 0.10363082970464206`, 0.20156474306442806`}, {-0.15846040046742113`, -0.22250777550724216`, \ -0.3261386052118843}, {-0.15846040046742113`, -0.22250777550724216`, 0.32613860521188426`}, {-0.15846040046742113`, 0.22250777550724216`, -0.3261386052118843}, {-0.15846040046742113`, 0.22250777550724216`, 0.32613860521188426`}, { 0.15846040046742113`, -0.22250777550724216`, -0.3261386052118843}, { 0.15846040046742113`, -0.22250777550724216`, 0.32613860521188426`}, { 0.15846040046742113`, 0.22250777550724216`, -0.3261386052118843}, { 0.15846040046742113`, 0.22250777550724216`, 0.32613860521188426`}, {-0.3618267830975341, -0.22362124999431204`, 0}, {-0.3618267830975341, 0.22362124999431202`, 0}, { 0.3618267830975341, -0.22362124999431204`, 0}, { 0.3618267830975341, 0.22362124999431202`, 0}, {-0.22362124999431204`, 0, -0.3618267830975341}, {-0.22362124999431204`, 0, 0.3618267830975341}, {0.22362124999431202`, 0, -0.3618267830975341}, { 0.22362124999431202`, 0, 0.3618267830975341}, {-0.3458684173557953, -0.1321099797947798, \ -0.2137584375610155}, {-0.3458684173557953, -0.1321099797947798, 0.2137584375610155}, {-0.3458684173557953, 0.13210997979477976`, -0.2137584375610155}, {-0.3458684173557953, 0.13210997979477976`, 0.2137584375610155}, { 0.3458684173557953, -0.1321099797947798, -0.2137584375610155}, { 0.3458684173557953, -0.1321099797947798, 0.2137584375610155}, { 0.3458684173557953, 0.13210997979477976`, -0.2137584375610155}, { 0.3458684173557953, 0.13210997979477976`, 0.2137584375610155}, {-0.2137584375610155, -0.3458684173557953, \ -0.1321099797947798}, {-0.2137584375610155, -0.3458684173557953, 0.13210997979477976`}, {-0.2137584375610155, 0.3458684173557953, -0.1321099797947798}, {-0.2137584375610155, 0.3458684173557953, 0.13210997979477976`}, { 0.2137584375610155, -0.3458684173557953, -0.1321099797947798}, { 0.2137584375610155, -0.3458684173557953, 0.13210997979477976`}, { 0.2137584375610155, 0.3458684173557953, -0.1321099797947798}, { 0.2137584375610155, 0.3458684173557953, 0.13210997979477976`}, {-0.1321099797947798, -0.2137584375610155, \ -0.3458684173557953}, {-0.1321099797947798, -0.2137584375610155, 0.3458684173557953}, {-0.1321099797947798, 0.2137584375610155, -0.3458684173557953}, {-0.1321099797947798, 0.2137584375610155, 0.3458684173557953}, { 0.13210997979477976`, -0.2137584375610155, -0.3458684173557953}, { 0.13210997979477976`, -0.2137584375610155, 0.3458684173557953}, { 0.13210997979477976`, 0.2137584375610155, -0.3458684173557953}, { 0.13210997979477976`, 0.2137584375610155, 0.3458684173557953}}], {{1, 135, 19, 11}, {2, 138, 24, 12}, {3, 77, 159, 13}, {6, 80, 162, 16}, {7, 85, 50, 14}, {8, 15, 47, 84}, {9, 1, 137, 21}, {9, 17, 135, 1}, {10, 2, 136, 18}, {13, 49, 85, 7}, {13, 147, 107, 29}, {13, 159, 127, 33}, {15, 31, 109, 149}, {15, 51, 101, 153}, {15, 149, 97, 47}, {16, 8, 84, 48}, { 16, 32, 126, 158}, {17, 73, 155, 135}, {22, 78, 160, 138}, {22, 138, 2, 10}, {27, 133, 152, 100}, {28, 102, 154, 134}, {28, 134, 153, 101}, {30, 108, 148, 14}, {36, 114, 154, 16}, {39, 132, 149, 109}, {40, 132, 142, 90}, {42, 112, 152, 133}, {43, 113, 153, 134}, {45, 13, 7, 83}, {45, 95, 147, 13}, {53, 117, 141, 135}, {53, 135, 139, 115}, {54, 136, 142, 118}, {56, 138, 144, 120}, {61, 133, 143, 119}, {63, 134, 82, 105}, {66, 136, 140, 88}, {69, 137, 143, 91}, {70, 92, 144, 138}, {73, 3, 13, 155}, {75, 157, 15, 5}, {77, 21, 137, 159}, {78, 4, 14, 160}, {79, 5, 15, 161}, {80, 24, 138, 162}, {81, 103, 57, 131}, {81, 131, 58, 104}, { 82, 134, 64, 106}, {83, 7, 14, 46}, {86, 8, 16, 52}, {86, 51, 15, 8}, { 88, 140, 131, 38}, {99, 49, 13, 151}, {99, 151, 133, 27}, {100, 152, 14, 50}, {102, 52, 16, 154}, {105, 82, 133, 61}, {108, 38, 131, 148}, {110, 32, 16, 150}, {112, 34, 14, 152}, {117, 59, 132, 141}, {118, 142, 132, 60}, {119, 143, 137, 55}, {124, 30, 14, 156}, {124, 156, 136, 66}, {129, 71, 137, 161}, {129, 161, 15, 35}, {130, 36, 16, 162}, {130, 162, 138, 72}, {131, 25, 96, 148}, {131, 57, 115, 139}, {131, 139, 87, 37}, {131, 140, 116, 58}, {132, 40, 110, 150}, {132, 59, 103, 81}, {132, 81, 104, 60}, {132, 150, 98, 26}, {133, 82, 106, 62}, {133, 151, 111, 41}, {134, 63, 121, 145}, {134, 145, 93, 43}, {135, 67, 125, 157}, {135, 141, 89, 67}, {135, 155, 123, 65}, {135, 157, 75, 19}, {136, 2, 12, 20}, {136, 20, 76, 158}, {136, 54, 116, 140}, {136, 156, 74, 18}, {136, 158, 126, 68}, {137, 1, 11, 23}, {137, 71, 93, 145}, {138, 56, 122, 146}, {138, 146, 94, 72}, {138, 160, 128, 70}, {139, 135, 65, 87}, {141, 132, 39, 89}, {142, 136, 68, 90}, {143, 133, 41, 91}, {144, 92, 42, 133}, {144, 133, 62, 120}, {145, 121, 55, 137}, {146, 122, 64, 134}, {146, 134, 44, 94}, {147, 95, 25, 131}, {147, 131, 37, 107}, {148, 96, 46, 14}, {149, 132, 26, 97}, {150, 16, 48, 98}, {151, 13, 33, 111}, {153, 113, 35, 15}, {154, 114, 44, 134}, {155, 13, 29, 123}, {156, 14, 4, 74}, {157, 125, 31, 15}, {158, 76, 6, 16}, {159, 137, 69, 127}, {160, 14, 34, 128}, {161, 137, 23, 79}, {4, 78, 22, 10, 18, 74}, {19, 75, 5, 79, 23, 11}, {33, 127, 69, 91, 41, 111}, {36, 130, 72, 94, 44, 114}, {38, 108, 30, 124, 66, 88}, {49, 99, 27, 100, 50, 85}, {52, 102, 28, 101, 51, 86}, {54, 118, 60, 104, 58, 116}, {71, 129, 35, 113, 43, 93}, {73, 17, 9, 21, 77, 3}, {76, 20, 12, 24, 80, 6}, {84, 47, 97, 26, 98, 48}, {92, 70, 128, 34, 112, 42}, {95, 45, 83, 46, 96, 25}, {105, 61, 119, 55, 121, 63}, {110, 40, 90, 68, 126, 32}, {117, 53, 115, 57, 103, 59}, {122, 56, 120, 62, 106, 64}, {123, 29, 107, 37, 87, 65}, {125, 67, 89, 39, 109, 31}}]}}, Boxed->False, ImageSize->{360., 360.}, ImageSizeRaw->Automatic, ViewAngle->0.3072476358109775, ViewPoint->{0.08797792060245163, -2.813861175720325, 1.8773505717527288`}, ViewVertical->{-0.18458999772000353`, -0.062135808527625194`, 0.9808494655350266}]], "Output", CellLabel->"Out[9]=",ExpressionUUID->"BA68BFA4-4570-4EAF-ABC3-8860972B6B33"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", "0", "]"}], ",", "p"}], "}"}], ",", "Red", ",", "interior"}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel->"In[10]:=",ExpressionUUID->"61B5143F-72C6-4EE8-B6A1-99986EC3A090"], Cell[BoxData[ Graphics3DBox[{ {Opacity[0], PolyhedronBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2] (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2] (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]]}, {RGBColor[1, 0, 0], PolyhedronBox[ NCache[{{0, 0, Root[ 1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}}, {{ 0, 0, -0.4275168751220311}, {0, 0, 0.427516875122031}, { 0, -0.22164017088719903`, -0.35235701244224593`}, { 0, -0.22164017088719903`, 0.352357012442246}, { 0, 0.22164017088719906`, -0.35235701244224593`}, { 0, 0.22164017088719906`, 0.352357012442246}, { 0, -0.4275168751220311, 0}, {0, 0.427516875122031, 0}, { 0, -0.03388653831996497, -0.4240725185716702}, { 0, -0.03388653831996497, 0.4240725185716702}, { 0, 0.03388653831996497, -0.4240725185716702}, { 0, 0.03388653831996497, 0.4240725185716702}, { 0, -0.3618267830975341, -0.22362124999431204`}, { 0, -0.3618267830975341, 0.22362124999431202`}, { 0, 0.3618267830975341, -0.22362124999431204`}, { 0, 0.3618267830975341, 0.22362124999431202`}, {-0.07042635995207269, -0.10768792678081102`, \ -0.3958828965965613}, {-0.07042635995207269, -0.10768792678081102`, 0.39588289659656134`}, {-0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, {-0.07042635995207269, 0.10768792678081102`, 0.39588289659656134`}, { 0.07042635995207269, -0.10768792678081102`, -0.3958828965965613}, { 0.07042635995207269, -0.10768792678081102`, 0.39588289659656134`}, { 0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, { 0.07042635995207269, 0.10768792678081102`, 0.39588289659656134`}, {-0.22164017088719903`, -0.35235701244224593`, 0}, {-0.22164017088719903`, 0.352357012442246, 0}, { 0.22164017088719906`, -0.35235701244224593`, 0}, { 0.22164017088719906`, 0.352357012442246, 0}, {-0.17424272570936228`, -0.2881949698157503, \ -0.2446690856614349}, {-0.17424272570936228`, -0.2881949698157503, 0.24466908566143503`}, {-0.17424272570936228`, 0.28819496981575027`, -0.2446690856614349}, {-0.17424272570936228`, 0.28819496981575027`, 0.24466908566143503`}, { 0.17424272570936225`, -0.2881949698157503, -0.2446690856614349}, { 0.17424272570936225`, -0.2881949698157503, 0.24466908566143503`}, { 0.17424272570936225`, 0.28819496981575027`, -0.2446690856614349}, { 0.17424272570936225`, 0.28819496981575027`, 0.24466908566143503`}, {-0.2881949698157503, -0.2446690856614349, \ -0.17424272570936228`}, {-0.2881949698157503, -0.2446690856614349, 0.17424272570936225`}, {-0.2881949698157503, 0.24466908566143503`, -0.17424272570936228`}, {-0.2881949698157503, 0.24466908566143503`, 0.17424272570936225`}, { 0.28819496981575027`, -0.2446690856614349, -0.17424272570936228`}, { 0.28819496981575027`, -0.2446690856614349, 0.17424272570936225`}, { 0.28819496981575027`, 0.24466908566143503`, -0.17424272570936228`}, { 0.28819496981575027`, 0.24466908566143503`, 0.17424272570936225`}, {-0.10768792678081102`, -0.3958828965965613, \ -0.07042635995207269}, {-0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, {-0.10768792678081102`, 0.39588289659656134`, -0.07042635995207269}, {-0.10768792678081102`, 0.39588289659656134`, 0.07042635995207269}, { 0.10768792678081102`, -0.3958828965965613, -0.07042635995207269}, { 0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, { 0.10768792678081102`, 0.39588289659656134`, -0.07042635995207269}, { 0.10768792678081102`, 0.39588289659656134`, 0.07042635995207269}, {-0.35235701244224593`, 0, -0.22164017088719903`}, {-0.35235701244224593`, 0, 0.22164017088719906`}, { 0.352357012442246, 0, -0.22164017088719903`}, { 0.352357012442246, 0, 0.22164017088719906`}, {-0.3958828965965613, -0.07042635995207269, \ -0.10768792678081102`}, {-0.3958828965965613, -0.07042635995207269, 0.10768792678081102`}, {-0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, {-0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, { 0.39588289659656134`, -0.07042635995207269, -0.10768792678081102`}, { 0.39588289659656134`, -0.07042635995207269, 0.10768792678081102`}, { 0.39588289659656134`, 0.07042635995207269, -0.10768792678081102`}, { 0.39588289659656134`, 0.07042635995207269, 0.10768792678081102`}, {-0.2446690856614349, -0.17424272570936228`, \ -0.2881949698157503}, {-0.2446690856614349, -0.17424272570936228`, 0.28819496981575027`}, {-0.2446690856614349, 0.17424272570936225`, -0.2881949698157503}, {-0.2446690856614349, 0.17424272570936225`, 0.28819496981575027`}, { 0.24466908566143503`, -0.17424272570936228`, -0.2881949698157503}, { 0.24466908566143503`, -0.17424272570936228`, 0.28819496981575027`}, { 0.24466908566143503`, 0.17424272570936225`, -0.2881949698157503}, { 0.24466908566143503`, 0.17424272570936225`, 0.28819496981575027`}, {-0.10363082970464206`, -0.20156474306442806`, \ -0.3600251435318492}, {-0.10363082970464206`, -0.20156474306442806`, 0.36002514353184917`}, {-0.10363082970464206`, 0.20156474306442806`, -0.3600251435318492}, {-0.10363082970464206`, 0.20156474306442806`, 0.36002514353184917`}, { 0.10363082970464206`, -0.20156474306442806`, -0.3600251435318492}, { 0.10363082970464206`, -0.20156474306442806`, 0.36002514353184917`}, { 0.10363082970464206`, 0.20156474306442806`, -0.3600251435318492}, { 0.10363082970464206`, 0.20156474306442806`, 0.36002514353184917`}, {-0.4275168751220311, 0, 0}, { 0.427516875122031, 0, 0}, {-0.03388653831996497, -0.4240725185716702, 0}, {-0.03388653831996497, 0.4240725185716702, 0}, { 0.03388653831996497, -0.4240725185716702, 0}, { 0.03388653831996497, 0.4240725185716702, 0}, {-0.3261386052118843, -0.15846040046742113`, \ -0.22250777550724216`}, {-0.3261386052118843, -0.15846040046742113`, 0.22250777550724216`}, {-0.3261386052118843, 0.15846040046742113`, -0.22250777550724216`}, {-0.3261386052118843, 0.15846040046742113`, 0.22250777550724216`}, { 0.32613860521188426`, -0.15846040046742113`, -0.22250777550724216`}, { 0.32613860521188426`, -0.15846040046742113`, 0.22250777550724216`}, { 0.32613860521188426`, 0.15846040046742113`, -0.22250777550724216`}, { 0.32613860521188426`, 0.15846040046742113`, 0.22250777550724216`}, {-0.20156474306442806`, -0.3600251435318492, \ -0.10363082970464206`}, {-0.20156474306442806`, -0.3600251435318492, 0.10363082970464206`}, {-0.20156474306442806`, 0.36002514353184917`, -0.10363082970464206`}, {-0.20156474306442806`, 0.36002514353184917`, 0.10363082970464206`}, { 0.20156474306442806`, -0.3600251435318492, -0.10363082970464206`}, { 0.20156474306442806`, -0.3600251435318492, 0.10363082970464206`}, { 0.20156474306442806`, 0.36002514353184917`, -0.10363082970464206`}, { 0.20156474306442806`, 0.36002514353184917`, 0.10363082970464206`}, {-0.4240725185716702, 0, -0.03388653831996497}, {-0.4240725185716702, 0, 0.03388653831996497}, {0.4240725185716702, 0, -0.03388653831996497}, { 0.4240725185716702, 0, 0.03388653831996497}, {-0.22250777550724216`, -0.3261386052118843, \ -0.15846040046742113`}, {-0.22250777550724216`, -0.3261386052118843, 0.15846040046742113`}, {-0.22250777550724216`, 0.32613860521188426`, -0.15846040046742113`}, {-0.22250777550724216`, 0.32613860521188426`, 0.15846040046742113`}, { 0.22250777550724216`, -0.3261386052118843, -0.15846040046742113`}, { 0.22250777550724216`, -0.3261386052118843, 0.15846040046742113`}, { 0.22250777550724216`, 0.32613860521188426`, -0.15846040046742113`}, { 0.22250777550724216`, 0.32613860521188426`, 0.15846040046742113`}, {-0.3600251435318492, -0.10363082970464206`, \ -0.20156474306442806`}, {-0.3600251435318492, -0.10363082970464206`, 0.20156474306442806`}, {-0.3600251435318492, 0.10363082970464206`, -0.20156474306442806`}, {-0.3600251435318492, 0.10363082970464206`, 0.20156474306442806`}, { 0.36002514353184917`, -0.10363082970464206`, -0.20156474306442806`}, { 0.36002514353184917`, -0.10363082970464206`, 0.20156474306442806`}, { 0.36002514353184917`, 0.10363082970464206`, -0.20156474306442806`}, { 0.36002514353184917`, 0.10363082970464206`, 0.20156474306442806`}, {-0.15846040046742113`, -0.22250777550724216`, \ -0.3261386052118843}, {-0.15846040046742113`, -0.22250777550724216`, 0.32613860521188426`}, {-0.15846040046742113`, 0.22250777550724216`, -0.3261386052118843}, {-0.15846040046742113`, 0.22250777550724216`, 0.32613860521188426`}, { 0.15846040046742113`, -0.22250777550724216`, -0.3261386052118843}, { 0.15846040046742113`, -0.22250777550724216`, 0.32613860521188426`}, { 0.15846040046742113`, 0.22250777550724216`, -0.3261386052118843}, { 0.15846040046742113`, 0.22250777550724216`, 0.32613860521188426`}, {-0.3618267830975341, -0.22362124999431204`, 0}, {-0.3618267830975341, 0.22362124999431202`, 0}, { 0.3618267830975341, -0.22362124999431204`, 0}, { 0.3618267830975341, 0.22362124999431202`, 0}, {-0.22362124999431204`, 0, -0.3618267830975341}, {-0.22362124999431204`, 0, 0.3618267830975341}, {0.22362124999431202`, 0, -0.3618267830975341}, { 0.22362124999431202`, 0, 0.3618267830975341}, {-0.3458684173557953, -0.1321099797947798, \ -0.2137584375610155}, {-0.3458684173557953, -0.1321099797947798, 0.2137584375610155}, {-0.3458684173557953, 0.13210997979477976`, -0.2137584375610155}, {-0.3458684173557953, 0.13210997979477976`, 0.2137584375610155}, { 0.3458684173557953, -0.1321099797947798, -0.2137584375610155}, { 0.3458684173557953, -0.1321099797947798, 0.2137584375610155}, { 0.3458684173557953, 0.13210997979477976`, -0.2137584375610155}, { 0.3458684173557953, 0.13210997979477976`, 0.2137584375610155}, {-0.2137584375610155, -0.3458684173557953, \ -0.1321099797947798}, {-0.2137584375610155, -0.3458684173557953, 0.13210997979477976`}, {-0.2137584375610155, 0.3458684173557953, -0.1321099797947798}, {-0.2137584375610155, 0.3458684173557953, 0.13210997979477976`}, { 0.2137584375610155, -0.3458684173557953, -0.1321099797947798}, { 0.2137584375610155, -0.3458684173557953, 0.13210997979477976`}, { 0.2137584375610155, 0.3458684173557953, -0.1321099797947798}, { 0.2137584375610155, 0.3458684173557953, 0.13210997979477976`}, {-0.1321099797947798, -0.2137584375610155, \ -0.3458684173557953}, {-0.1321099797947798, -0.2137584375610155, 0.3458684173557953}, {-0.1321099797947798, 0.2137584375610155, -0.3458684173557953}, {-0.1321099797947798, 0.2137584375610155, 0.3458684173557953}, { 0.13210997979477976`, -0.2137584375610155, -0.3458684173557953}, { 0.13210997979477976`, -0.2137584375610155, 0.3458684173557953}, { 0.13210997979477976`, 0.2137584375610155, -0.3458684173557953}, { 0.13210997979477976`, 0.2137584375610155, 0.3458684173557953}}], {{1, 135, 19, 11}, {2, 138, 24, 12}, {3, 77, 159, 13}, {6, 80, 162, 16}, {7, 85, 50, 14}, {8, 15, 47, 84}, {9, 1, 137, 21}, {9, 17, 135, 1}, {10, 2, 136, 18}, {13, 49, 85, 7}, {13, 147, 107, 29}, {13, 159, 127, 33}, {15, 31, 109, 149}, {15, 51, 101, 153}, {15, 149, 97, 47}, {16, 8, 84, 48}, { 16, 32, 126, 158}, {17, 73, 155, 135}, {22, 78, 160, 138}, {22, 138, 2, 10}, {27, 133, 152, 100}, {28, 102, 154, 134}, {28, 134, 153, 101}, {30, 108, 148, 14}, {36, 114, 154, 16}, {39, 132, 149, 109}, {40, 132, 142, 90}, {42, 112, 152, 133}, {43, 113, 153, 134}, {45, 13, 7, 83}, {45, 95, 147, 13}, {53, 117, 141, 135}, {53, 135, 139, 115}, {54, 136, 142, 118}, {56, 138, 144, 120}, {61, 133, 143, 119}, {63, 134, 82, 105}, {66, 136, 140, 88}, {69, 137, 143, 91}, {70, 92, 144, 138}, {73, 3, 13, 155}, {75, 157, 15, 5}, {77, 21, 137, 159}, {78, 4, 14, 160}, {79, 5, 15, 161}, {80, 24, 138, 162}, {81, 103, 57, 131}, {81, 131, 58, 104}, { 82, 134, 64, 106}, {83, 7, 14, 46}, {86, 8, 16, 52}, {86, 51, 15, 8}, { 88, 140, 131, 38}, {99, 49, 13, 151}, {99, 151, 133, 27}, {100, 152, 14, 50}, {102, 52, 16, 154}, {105, 82, 133, 61}, {108, 38, 131, 148}, {110, 32, 16, 150}, {112, 34, 14, 152}, {117, 59, 132, 141}, {118, 142, 132, 60}, {119, 143, 137, 55}, {124, 30, 14, 156}, {124, 156, 136, 66}, {129, 71, 137, 161}, {129, 161, 15, 35}, {130, 36, 16, 162}, {130, 162, 138, 72}, {131, 25, 96, 148}, {131, 57, 115, 139}, {131, 139, 87, 37}, {131, 140, 116, 58}, {132, 40, 110, 150}, {132, 59, 103, 81}, {132, 81, 104, 60}, {132, 150, 98, 26}, {133, 82, 106, 62}, {133, 151, 111, 41}, {134, 63, 121, 145}, {134, 145, 93, 43}, {135, 67, 125, 157}, {135, 141, 89, 67}, {135, 155, 123, 65}, {135, 157, 75, 19}, {136, 2, 12, 20}, {136, 20, 76, 158}, {136, 54, 116, 140}, {136, 156, 74, 18}, {136, 158, 126, 68}, {137, 1, 11, 23}, {137, 71, 93, 145}, {138, 56, 122, 146}, {138, 146, 94, 72}, {138, 160, 128, 70}, {139, 135, 65, 87}, {141, 132, 39, 89}, {142, 136, 68, 90}, {143, 133, 41, 91}, {144, 92, 42, 133}, {144, 133, 62, 120}, {145, 121, 55, 137}, {146, 122, 64, 134}, {146, 134, 44, 94}, {147, 95, 25, 131}, {147, 131, 37, 107}, {148, 96, 46, 14}, {149, 132, 26, 97}, {150, 16, 48, 98}, {151, 13, 33, 111}, {153, 113, 35, 15}, {154, 114, 44, 134}, {155, 13, 29, 123}, {156, 14, 4, 74}, {157, 125, 31, 15}, {158, 76, 6, 16}, {159, 137, 69, 127}, {160, 14, 34, 128}, {161, 137, 23, 79}, {4, 78, 22, 10, 18, 74}, {19, 75, 5, 79, 23, 11}, {33, 127, 69, 91, 41, 111}, {36, 130, 72, 94, 44, 114}, {38, 108, 30, 124, 66, 88}, {49, 99, 27, 100, 50, 85}, {52, 102, 28, 101, 51, 86}, {54, 118, 60, 104, 58, 116}, {71, 129, 35, 113, 43, 93}, {73, 17, 9, 21, 77, 3}, {76, 20, 12, 24, 80, 6}, {84, 47, 97, 26, 98, 48}, {92, 70, 128, 34, 112, 42}, {95, 45, 83, 46, 96, 25}, {105, 61, 119, 55, 121, 63}, {110, 40, 90, 68, 126, 32}, {117, 53, 115, 57, 103, 59}, {122, 56, 120, 62, 106, 64}, {123, 29, 107, 37, 87, 65}, {125, 67, 89, 39, 109, 31}}]}}, Boxed->False]], "Output", CellLabel->"Out[10]=",ExpressionUUID->"A683087D-6156-4601-9D90-3028F675B46C"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MyCircumsphere", "[", "interior", "]"}], "//", "Quiet"}]], "Input",\ CellLabel->"In[11]:=",ExpressionUUID->"9FA4EFFA-7340-4320-86FA-FBDD31DDD0DC"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel->"Out[11]=",ExpressionUUID->"6C33A06D-4B75-4499-BDDE-6842AB82B825"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Insphere", "[", "interior", "]"}], "/.", RowBox[{ RowBox[{"x_", "?", "NumericQ"}], "\[RuleDelayed]", RowBox[{"RootReduce", "[", "x", "]"}]}]}], "//", "Quiet"}], "//", "Timing"}]], "Input", CellLabel->"In[12]:=",ExpressionUUID->"C08AD240-EAC0-4AF6-94B2-4221E16C4AED"], Cell[BoxData["$Aborted"], "Output", CellLabel->"Out[12]=",ExpressionUUID->"9225388B-6B06-42BC-B58C-4613C992B11A"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MyInsphere", "[", "interior", "]"}]], "Input", CellLabel->"In[12]:=",ExpressionUUID->"7E689D35-58AE-4B73-A708-1584D58908DC"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel->"Out[12]=",ExpressionUUID->"4A7FE5FB-7948-49D9-AD26-68B4EA18D60E"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Midsphere", "[", RowBox[{"interior", "//", "N"}], "]"}]], "Input", CellLabel->"In[11]:=",ExpressionUUID->"014403C0-BD42-4496-A2FD-F91699A4CBC0"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel->"Out[11]=",ExpressionUUID->"27398E37-83F8-4194-8B64-719A4D94C4D7"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Construction", "Subsubsection",ExpressionUUID->"60F12B11-14B9-4EE2-B0CD-67E5764B50E2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"int", "=", RowBox[{"RegionIntersection", "[", RowBox[{ RowBox[{"Sequence", "@@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], ",", RowBox[{"PerformanceGoal", "->", "\"\\""}]}], "]"}]}]], "Input",\ CellLabel-> "(V14.0.0-Devel (2)) \ In[3]:=",ExpressionUUID->"CAAB0892-58EC-42A7-B751-2AFA459FEDB5"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[CompressedData[" 1:eJx1WWtQFcYVvhrjq2oLmlSNMQGxZdKajnaaZHB1sVGLTYzI1KhgEAimShVQ gfiIeKU+eKlXgxbkISAiZggiYoK6ZdFQH42x1kkM1oymtjXWoY4aH4lVaaf7 ndWz3vrnDvfu4zvnfOc756xBCSlRszp7PJ5xnTyexzz0b7cIjG3Kaow9ruOf GzWvy9rTuvevUk/mr9kvC7OaS88fP6YXyYkXq3t+rlNOTPvszqUWmXU04vcp Mz7WmR9HTtgbfFqbc3wiM6jP6h+Ffq5njt/baevW47p74tIXh75+Rl8d9Yfw jG4Nsuh3DcUpGw7I7IVF3+0Uctbsa9mm9hz8MO/d6RWyF9b/w6zXb2N9Bu7v Z3DpLQaXJLzmfi36GTtkOtYHwI6tWL/Y4Nd5Br9cYvDLJ3BuGdZhvzTnVqon cW6cuQ/f1yuvsVfOMPbKN2G3+T1bkT/egZ/mwX/58N/IX5xOSzv/qf7l3bPP J0e0ygWJaSuClx7Xd7pX9Jo8+U/69pzR7ZsmHpbPNq+LPDb/lF4Cf8BP8hz8 VA3cC4F7COzJgZ2Ik5wD+w2+crEM+BOA+7q5V/7b3KuDzb1ytMEpJxiceq7B KZfh3Pk4dw3uw3mSGAY/WLvhd414yO3gWRri9iTiVmHstTy6Bh6ZU/eLFfDv NNxHcaN4luBcHrcq4omm9YNxXynWd4V/7+K+auBYbXhr7TpqeKt7Yv3fEI+V tB72rYPdi+CvsbivCvfNZ3xrFQOAL5bhrhXLYW8s7M1weF6M81heeA+rvtxe PQD+IXsfh3+7jjb4FfCveThPPSWqBfZ+B+vb4J9MrF/o5NdSpg9VlA9yJsuT RgX9kQnAPQj4Kng+Ej9tXgwBPwXyKAJ5NB/8pLxLRhxygSuR3Z9KumV/B24J e6SDQ5K/Sc96IP6XGD+bFPgppyJecSwvChTF07mP/KdfQt5FIe/SoQ+depg8 vYM8HQR9SEMcSEe/AB+B38a/D/wLe7XjJ/ilxupXPNdzeQXnlsN+nheLxBno OeUF5e0arueUp5L0nOeptrwgvxMvSM8pD8mPbwDneh4XjbjoNuBazXhdqMxn pMr+nz8efM/5v1H8Efzn67zi1A+jzrz2sxU2njGIc1lI4AsTfDk4v0IZf5+V F54ae/vnokpV4rwc+C9yzq2G7b4aVYI4Eq++YbzKtnlIdfQ+7Cvi+3QC47nV YfydJcznOpEDe1B/ZBh4NxG8C0KeXUN9uAfeET+nIO+SwM8vsK57ksnTH4Cf 47EuFfegruhryOeBuKeP4bfubPRIbkE8iX8Gd76oQDyzGf/Wwd+lCnY59ajG 5vsorhs6BbieAd770JubwEf2jcG+sbCns7FTh2LfedhPeTsb+6BT8gbOdess t6NSNMO+5Y5udjmbPOmDZQspbli/WUXXx0xM2LRJLEWck7A+PLhjc3tYpqB+ bS6v13oU70PIDxR3fQt4vwXeFdjnhW7hPOsfwXVLXsE++FV2g34Z3D5bFyhO pOuX4Mcu4BHx8jWcS/GiPi4DOGzfg3Oh97LzhuWvZDy9XoXALjq/A/hSHfzE i5sO/nvwxzj8Pg84JPwYw/hWQX2i7Z/RD9j6RPH/Bud+Db69zOuZpj4M/pQD YEcA/En5O9Kph2mI9yrEjepNPNOHQpsXqCtyKM6/DFxJjp1kf7ZjTwqrI7W2 T3ud+kynbvVAvifDTpePXfD7NR4H0hMbN9ITc2+Reo/rJOIRB30osPmT6L9v l5ehq7nQVapnHU7/8S/wKBL+Rr6TvsirXDftvjnOOtpPOk28HdSydbBXlTv1 6T3ROCzzwqTLqU6dyhZ/h27UAXc34H4c/d0n8Av2ybbqN76+vHCK8Uv4IeuX b0MPhS7YsFhRnpIOgd92vymD1Wo31TOmSx7Ppb475+7YYudDOydFBvYoDjla IFZA36mvPM3qXbWtq7x/2i3IH/drx8n6XVXiilPfB5/754nevbajzmWaT+8O qgu2LpLOkh9v4P5Cp4/4P3WE5jrbT2Eu0rzPjbN2/Bj8PQZe9IS+CWe+Qp1x +sYHeZoOPVnl9K00X2U4cxnVhbnAFf382cKX25eoXD4Pa+iFnZcIN825NDfO xt83kr2NORe8wu2bocNWd5bj99l8DrVzNOlDhNNPkN6gj5AXnXpE800Cew/I Fsrpk8z3deod7gfbb/b3N+d7P1JV/vqMLz9Q/L4T6nvAweNeYP0Xz+6rtPwJ RB/svD84c+sB8X3gi2Xn2PjY/riU9/syieHxCdhv+4rpD//uPYh8V2qZ0//j fo4r/KSgOZv6+iDgcOdVc24Dzj8iFjs8Mt8nihbub30ROpyPfIQOw559it59 aO4lfr7FziXd91Jf5dQFn+jL38HkLa4Dth8n/vyGz5GqHPFz5/InOK8sPymP eR3er/i6QrJPR/M6ZevqW+z7coqbvA6/ZTlzajzj1T56H7D6wO1aqVxehiC+ /fzaVS2cfKE53/KU8yGS3tccvh8U5Q6PwSu512/89ol2xGuz/znIfY+yc7DD X83zpcDqRQz73uOh+Z7bX6Mo3gOd90eyI4rhKbHvBOSfGeyeenqn07PYPp/i /joiyI/c3jjB574GW4egU8RP0k/paSy8m1T8rNUtft5+2w+c5PXW4ghwdHQJ 7FrA8aMu77HvU9yPeeIQ71Mor/WvHT3L5LzC900qwHlXeqGreO7AdJ/wcrvo HOW8hwJnquL5ad+xnPc5JZ6mdzu232vv4/nrpfyVvI4ctv7jeVhLPKQ+wM4V NG/Q78lsn6J4ufmnaT/jo/ewSnR4Rn73X2crBfEqC+fjPVaTfdHcn/adPoH5 zyd+i3vGsPX5FvdUZtciVZbX+OKYIevpPUTyPtinWnpP65awfaN934jzP+/Y 9aPjZv+0blWufTf4cthf5oeVZKgyR2+4PeW2Lzb+axW5D/e/3kZR7/edgt6d Ch+Ji9Mn0z2C9dv/9SPeoyThDX9shmfp8DWIx2ZV56//aSnHvQ2C98FV2Ndk +U39HvXZF+9u61h5wot1O525wyfoPZz2u/4mf7m/U91JZzw8oshuRxflLHZu zSN4yb/kR+Llq6zPaVX+89Ly03lHbwGeSqsTpMcO73H/RlsHeL39UND6CEcP zOdBmwdRTp7GOnazd8zwOnUVfMhlcX0fc12z2uaPh95i9cpfowoKcnbQfAmc jVZXed3JdtZFmvPjWtRMh69UP5KT4tsubXtT7HH4GDr5qUX9I9MF2U98/MlL u5rrLlB9qLLzaP+v9p+ovrpWlDl2tDp1AuchXjWP6G/zzrblHSP2OnPgLvHM 3VMVtcf22v6Y6sDBmxnL6gIU1Vc5E/Ec/0nT9RFT8x6Zi0mPh2QM+ypqZ7W9 f/i5obeDwjZa3hFfqZ69Xxq69s9J+xTVy8C6ScNTP2uwcwXpbliXTz8q37XP 9iU0T0e33rtSN7BW+O/LlLWLv3c8+P85qlv0eas9vSkw5l3CT3OojhvxdnD/ kVNsfNc2e2JSXy0S/Wn+cXTdnQP+A+Fy2UE= "], {{1, 2, 3, 4}, {11, 12, 13, 14}, {15, 16, 17, 18}, {19, 20, 21, 22}, {23, 24, 25, 26}, {27, 28, 29, 30}, {37, 38, 39, 40}, {47, 48, 49, 50}, {51, 52, 53, 54}, {55, 56, 57, 14}, {59, 60, 61, 62}, {63, 64, 65, 66}, {66, 74, 75, 76}, {46, 45, 78, 79}, {80, 81, 82, 14}, {83, 84, 85, 86}, {93, 94, 95, 26}, {68, 67, 104, 105}, {106, 107, 108, 109}, { 110, 111, 112, 14}, {114, 115, 116, 117}, {91, 90, 122, 123}, {128, 54, 102, 101}, {130, 131, 132, 4}, {138, 95, 54, 141}, {79, 78, 6, 5}, { 149, 81, 80, 152}, {36, 35, 105, 104}, {156, 30, 76, 75}, {86, 161, 162, 122}, {164, 137, 136, 85}, {26, 144, 143, 169}, {98, 97, 170, 171}, {172, 127, 126, 40}, {174, 175, 89, 88}, {120, 119, 176, 177}, { 79, 166, 111, 110}, {107, 43, 42, 15}, {123, 122, 162, 188}, {71, 70, 116, 26}, {191, 141, 129, 128}, {132, 131, 179, 193}, {134, 137, 164, 66}, {195, 196, 176, 79}, {169, 143, 142, 198}, {175, 174, 34, 33}, { 171, 170, 8, 7}, {207, 208, 209, 172}, {42, 41, 16, 15}, {54, 213, 12, 11}, {72, 71, 26, 25}, {99, 98, 171, 27}, {174, 88, 87, 21}, {223, 224, 3, 2}, {225, 164, 85, 84}, {129, 9, 8, 170}, {229, 93, 26, 169}, {172, 209, 124, 127}, {176, 119, 118, 182}, {175, 33, 32, 234}, {128, 101, 100, 235}, {221, 195, 79, 110}, {92, 91, 123, 22}, {117, 116, 70, 69}, {107, 106, 44, 43}, {216, 132, 209, 208}, {135, 65, 106, 109}, { 145, 114, 117, 55}, {200, 15, 47, 50}, {32, 31, 60, 234}, {205, 38, 37, 96}, {129, 53, 10, 9}, {167, 51, 54, 11}, {100, 99, 27, 235}, {124, 209, 25, 24}, {87, 92, 22, 21}, {182, 118, 17, 16}, {59, 62, 178, 3}, { 106, 65, 64, 180}, {47, 121, 120, 48}, {117, 183, 56, 55}, {79, 5, 10, 53}, {60, 31, 36, 104}, {126, 125, 37, 40}, {200, 161, 86, 85}, {95, 138, 205, 26}, {80, 184, 19, 152}, {117, 69, 68, 105}, {181, 76, 30, 29}, {78, 45, 44, 106}, {135, 134, 66, 65}, {166, 79, 53, 52}, {142, 145, 55, 14}, {15, 18, 121, 47}, {37, 125, 23, 26}, {179, 61, 60, 104}, {106, 180, 28, 27}, {112, 167, 11, 14}, {247, 21, 20, 183}, {41, 46, 79, 16}, {104, 67, 72, 25}, {178, 130, 4, 3}, {106, 7, 6, 78}, { 184, 80, 14, 57}, {117, 105, 35, 34}, {224, 223, 83, 86}, {95, 94, 213, 54}, {181, 63, 66, 76}, {229, 169, 198, 13}, {176, 196, 149, 152}, { 90, 89, 175, 122}, {156, 207, 172, 157}, {129, 170, 97, 102}, {164, 225, 1, 4}, {123, 188, 49, 48}, {82, 221, 110, 14}, {144, 96, 116, 115}, {132, 216, 74, 4}, {136, 108, 107, 85}, {39, 191, 128, 40}, {5, 6, 7, 8, 9, 10}, {31, 32, 33, 34, 35, 36}, {41, 42, 43, 44, 45, 46}, { 67, 68, 69, 70, 71, 72}, {87, 88, 89, 90, 91, 92}, {97, 98, 99, 100, 101, 102}, {118, 119, 120, 121, 18, 17}, {124, 24, 23, 125, 126, 127}, {134, 135, 109, 108, 136, 137}, {142, 143, 144, 115, 114, 145}, { 166, 52, 51, 167, 112, 111}, {178, 62, 61, 179, 131, 130}, {180, 64, 63, 181, 29, 28}, {183, 20, 19, 184, 57, 56}, {188, 162, 161, 200, 50, 49}, {138, 141, 191, 39, 38, 205}, {216, 208, 207, 156, 75, 74}, {149, 196, 195, 221, 82, 81}, {213, 94, 93, 229, 13, 12}, {223, 2, 1, 225, 84, 83}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[CompressedData[" 1:eJx1WWtQFcYVvhrjq2oLmlSNMQGxZdKajnaaZHB1sVGLTYzI1KhgEAimShVQ gfiIeKU+eKlXgxbkISAiZggiYoK6ZdFQH42x1kkM1oymtjXWoY4aH4lVaaf7 ndWz3vrnDvfu4zvnfOc756xBCSlRszp7PJ5xnTyexzz0b7cIjG3Kaow9ruOf GzWvy9rTuvevUk/mr9kvC7OaS88fP6YXyYkXq3t+rlNOTPvszqUWmXU04vcp Mz7WmR9HTtgbfFqbc3wiM6jP6h+Ffq5njt/baevW47p74tIXh75+Rl8d9Yfw jG4Nsuh3DcUpGw7I7IVF3+0Uctbsa9mm9hz8MO/d6RWyF9b/w6zXb2N9Bu7v Z3DpLQaXJLzmfi36GTtkOtYHwI6tWL/Y4Nd5Br9cYvDLJ3BuGdZhvzTnVqon cW6cuQ/f1yuvsVfOMPbKN2G3+T1bkT/egZ/mwX/58N/IX5xOSzv/qf7l3bPP J0e0ygWJaSuClx7Xd7pX9Jo8+U/69pzR7ZsmHpbPNq+LPDb/lF4Cf8BP8hz8 VA3cC4F7COzJgZ2Ik5wD+w2+crEM+BOA+7q5V/7b3KuDzb1ytMEpJxiceq7B KZfh3Pk4dw3uw3mSGAY/WLvhd414yO3gWRri9iTiVmHstTy6Bh6ZU/eLFfDv NNxHcaN4luBcHrcq4omm9YNxXynWd4V/7+K+auBYbXhr7TpqeKt7Yv3fEI+V tB72rYPdi+CvsbivCvfNZ3xrFQOAL5bhrhXLYW8s7M1weF6M81heeA+rvtxe PQD+IXsfh3+7jjb4FfCveThPPSWqBfZ+B+vb4J9MrF/o5NdSpg9VlA9yJsuT RgX9kQnAPQj4Kng+Ej9tXgwBPwXyKAJ5NB/8pLxLRhxygSuR3Z9KumV/B24J e6SDQ5K/Sc96IP6XGD+bFPgppyJecSwvChTF07mP/KdfQt5FIe/SoQ+depg8 vYM8HQR9SEMcSEe/AB+B38a/D/wLe7XjJ/ilxupXPNdzeQXnlsN+nheLxBno OeUF5e0arueUp5L0nOeptrwgvxMvSM8pD8mPbwDneh4XjbjoNuBazXhdqMxn pMr+nz8efM/5v1H8Efzn67zi1A+jzrz2sxU2njGIc1lI4AsTfDk4v0IZf5+V F54ae/vnokpV4rwc+C9yzq2G7b4aVYI4Eq++YbzKtnlIdfQ+7Cvi+3QC47nV YfydJcznOpEDe1B/ZBh4NxG8C0KeXUN9uAfeET+nIO+SwM8vsK57ksnTH4Cf 47EuFfegruhryOeBuKeP4bfubPRIbkE8iX8Gd76oQDyzGf/Wwd+lCnY59ajG 5vsorhs6BbieAd770JubwEf2jcG+sbCns7FTh2LfedhPeTsb+6BT8gbOdess t6NSNMO+5Y5udjmbPOmDZQspbli/WUXXx0xM2LRJLEWck7A+PLhjc3tYpqB+ bS6v13oU70PIDxR3fQt4vwXeFdjnhW7hPOsfwXVLXsE++FV2g34Z3D5bFyhO pOuX4Mcu4BHx8jWcS/GiPi4DOGzfg3Oh97LzhuWvZDy9XoXALjq/A/hSHfzE i5sO/nvwxzj8Pg84JPwYw/hWQX2i7Z/RD9j6RPH/Bud+Db69zOuZpj4M/pQD YEcA/En5O9Kph2mI9yrEjepNPNOHQpsXqCtyKM6/DFxJjp1kf7ZjTwqrI7W2 T3ud+kynbvVAvifDTpePXfD7NR4H0hMbN9ITc2+Reo/rJOIRB30osPmT6L9v l5ehq7nQVapnHU7/8S/wKBL+Rr6TvsirXDftvjnOOtpPOk28HdSydbBXlTv1 6T3ROCzzwqTLqU6dyhZ/h27UAXc34H4c/d0n8Av2ybbqN76+vHCK8Uv4IeuX b0MPhS7YsFhRnpIOgd92vymD1Wo31TOmSx7Ppb475+7YYudDOydFBvYoDjla IFZA36mvPM3qXbWtq7x/2i3IH/drx8n6XVXiilPfB5/754nevbajzmWaT+8O qgu2LpLOkh9v4P5Cp4/4P3WE5jrbT2Eu0rzPjbN2/Bj8PQZe9IS+CWe+Qp1x +sYHeZoOPVnl9K00X2U4cxnVhbnAFf382cKX25eoXD4Pa+iFnZcIN825NDfO xt83kr2NORe8wu2bocNWd5bj99l8DrVzNOlDhNNPkN6gj5AXnXpE800Cew/I Fsrpk8z3deod7gfbb/b3N+d7P1JV/vqMLz9Q/L4T6nvAweNeYP0Xz+6rtPwJ RB/svD84c+sB8X3gi2Xn2PjY/riU9/syieHxCdhv+4rpD//uPYh8V2qZ0//j fo4r/KSgOZv6+iDgcOdVc24Dzj8iFjs8Mt8nihbub30ROpyPfIQOw559it59 aO4lfr7FziXd91Jf5dQFn+jL38HkLa4Dth8n/vyGz5GqHPFz5/InOK8sPymP eR3er/i6QrJPR/M6ZevqW+z7coqbvA6/ZTlzajzj1T56H7D6wO1aqVxehiC+ /fzaVS2cfKE53/KU8yGS3tccvh8U5Q6PwSu512/89ol2xGuz/znIfY+yc7DD X83zpcDqRQz73uOh+Z7bX6Mo3gOd90eyI4rhKbHvBOSfGeyeenqn07PYPp/i /joiyI/c3jjB574GW4egU8RP0k/paSy8m1T8rNUtft5+2w+c5PXW4ghwdHQJ 7FrA8aMu77HvU9yPeeIQ71Mor/WvHT3L5LzC900qwHlXeqGreO7AdJ/wcrvo HOW8hwJnquL5ad+xnPc5JZ6mdzu232vv4/nrpfyVvI4ctv7jeVhLPKQ+wM4V NG/Q78lsn6J4ufmnaT/jo/ewSnR4Rn73X2crBfEqC+fjPVaTfdHcn/adPoH5 zyd+i3vGsPX5FvdUZtciVZbX+OKYIevpPUTyPtinWnpP65awfaN934jzP+/Y 9aPjZv+0blWufTf4cthf5oeVZKgyR2+4PeW2Lzb+axW5D/e/3kZR7/edgt6d Ch+Ji9Mn0z2C9dv/9SPeoyThDX9shmfp8DWIx2ZV56//aSnHvQ2C98FV2Ndk +U39HvXZF+9u61h5wot1O525wyfoPZz2u/4mf7m/U91JZzw8oshuRxflLHZu zSN4yb/kR+Llq6zPaVX+89Ly03lHbwGeSqsTpMcO73H/RlsHeL39UND6CEcP zOdBmwdRTp7GOnazd8zwOnUVfMhlcX0fc12z2uaPh95i9cpfowoKcnbQfAmc jVZXed3JdtZFmvPjWtRMh69UP5KT4tsubXtT7HH4GDr5qUX9I9MF2U98/MlL u5rrLlB9qLLzaP+v9p+ovrpWlDl2tDp1AuchXjWP6G/zzrblHSP2OnPgLvHM 3VMVtcf22v6Y6sDBmxnL6gIU1Vc5E/Ec/0nT9RFT8x6Zi0mPh2QM+ypqZ7W9 f/i5obeDwjZa3hFfqZ69Xxq69s9J+xTVy8C6ScNTP2uwcwXpbliXTz8q37XP 9iU0T0e33rtSN7BW+O/LlLWLv3c8+P85qlv0eas9vSkw5l3CT3OojhvxdnD/ kVNsfNc2e2JSXy0S/Wn+cXTdnQP+A+Fy2UE= "], {{1, 2, 3, 4}, {11, 12, 13, 14}, {15, 16, 17, 18}, {19, 20, 21, 22}, {23, 24, 25, 26}, {27, 28, 29, 30}, {37, 38, 39, 40}, {47, 48, 49, 50}, {51, 52, 53, 54}, {55, 56, 57, 14}, { 59, 60, 61, 62}, {63, 64, 65, 66}, {66, 74, 75, 76}, {46, 45, 78, 79}, {80, 81, 82, 14}, {83, 84, 85, 86}, {93, 94, 95, 26}, {68, 67, 104, 105}, {106, 107, 108, 109}, {110, 111, 112, 14}, {114, 115, 116, 117}, {91, 90, 122, 123}, {128, 54, 102, 101}, {130, 131, 132, 4}, {138, 95, 54, 141}, {79, 78, 6, 5}, {149, 81, 80, 152}, {36, 35, 105, 104}, {156, 30, 76, 75}, {86, 161, 162, 122}, {164, 137, 136, 85}, {26, 144, 143, 169}, {98, 97, 170, 171}, {172, 127, 126, 40}, {174, 175, 89, 88}, {120, 119, 176, 177}, {79, 166, 111, 110}, {107, 43, 42, 15}, {123, 122, 162, 188}, {71, 70, 116, 26}, {191, 141, 129, 128}, {132, 131, 179, 193}, {134, 137, 164, 66}, {195, 196, 176, 79}, {169, 143, 142, 198}, {175, 174, 34, 33}, {171, 170, 8, 7}, {207, 208, 209, 172}, {42, 41, 16, 15}, {54, 213, 12, 11}, {72, 71, 26, 25}, {99, 98, 171, 27}, {174, 88, 87, 21}, { 223, 224, 3, 2}, {225, 164, 85, 84}, {129, 9, 8, 170}, {229, 93, 26, 169}, {172, 209, 124, 127}, {176, 119, 118, 182}, { 175, 33, 32, 234}, {128, 101, 100, 235}, {221, 195, 79, 110}, {92, 91, 123, 22}, {117, 116, 70, 69}, {107, 106, 44, 43}, {216, 132, 209, 208}, {135, 65, 106, 109}, {145, 114, 117, 55}, {200, 15, 47, 50}, {32, 31, 60, 234}, {205, 38, 37, 96}, {129, 53, 10, 9}, {167, 51, 54, 11}, {100, 99, 27, 235}, {124, 209, 25, 24}, {87, 92, 22, 21}, {182, 118, 17, 16}, {59, 62, 178, 3}, {106, 65, 64, 180}, {47, 121, 120, 48}, {117, 183, 56, 55}, {79, 5, 10, 53}, {60, 31, 36, 104}, { 126, 125, 37, 40}, {200, 161, 86, 85}, {95, 138, 205, 26}, { 80, 184, 19, 152}, {117, 69, 68, 105}, {181, 76, 30, 29}, {78, 45, 44, 106}, {135, 134, 66, 65}, {166, 79, 53, 52}, {142, 145, 55, 14}, {15, 18, 121, 47}, {37, 125, 23, 26}, {179, 61, 60, 104}, {106, 180, 28, 27}, {112, 167, 11, 14}, {247, 21, 20, 183}, {41, 46, 79, 16}, {104, 67, 72, 25}, {178, 130, 4, 3}, {106, 7, 6, 78}, {184, 80, 14, 57}, {117, 105, 35, 34}, { 224, 223, 83, 86}, {95, 94, 213, 54}, {181, 63, 66, 76}, {229, 169, 198, 13}, {176, 196, 149, 152}, {90, 89, 175, 122}, { 156, 207, 172, 157}, {129, 170, 97, 102}, {164, 225, 1, 4}, { 123, 188, 49, 48}, {82, 221, 110, 14}, {144, 96, 116, 115}, { 132, 216, 74, 4}, {136, 108, 107, 85}, {39, 191, 128, 40}, {5, 6, 7, 8, 9, 10}, {31, 32, 33, 34, 35, 36}, {41, 42, 43, 44, 45, 46}, {67, 68, 69, 70, 71, 72}, {87, 88, 89, 90, 91, 92}, { 97, 98, 99, 100, 101, 102}, {118, 119, 120, 121, 18, 17}, { 124, 24, 23, 125, 126, 127}, {134, 135, 109, 108, 136, 137}, { 142, 143, 144, 115, 114, 145}, {166, 52, 51, 167, 112, 111}, { 178, 62, 61, 179, 131, 130}, {180, 64, 63, 181, 29, 28}, {183, 20, 19, 184, 57, 56}, {188, 162, 161, 200, 50, 49}, {138, 141, 191, 39, 38, 205}, {216, 208, 207, 156, 75, 74}, {149, 196, 195, 221, 82, 81}, {213, 94, 93, 229, 13, 12}, {223, 2, 1, 225, 84, 83}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["325", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["140", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[CompressedData[" 1:eJx1WWtQFcYVvhrjq2oLmlSNMQGxZdKajnaaZHB1sVGLTYzI1KhgEAimShVQ gfiIeKU+eKlXgxbkISAiZggiYoK6ZdFQH42x1kkM1oymtjXWoY4aH4lVaaf7 ndWz3vrnDvfu4zvnfOc756xBCSlRszp7PJ5xnTyexzz0b7cIjG3Kaow9ruOf GzWvy9rTuvevUk/mr9kvC7OaS88fP6YXyYkXq3t+rlNOTPvszqUWmXU04vcp Mz7WmR9HTtgbfFqbc3wiM6jP6h+Ffq5njt/baevW47p74tIXh75+Rl8d9Yfw jG4Nsuh3DcUpGw7I7IVF3+0Uctbsa9mm9hz8MO/d6RWyF9b/w6zXb2N9Bu7v Z3DpLQaXJLzmfi36GTtkOtYHwI6tWL/Y4Nd5Br9cYvDLJ3BuGdZhvzTnVqon cW6cuQ/f1yuvsVfOMPbKN2G3+T1bkT/egZ/mwX/58N/IX5xOSzv/qf7l3bPP J0e0ygWJaSuClx7Xd7pX9Jo8+U/69pzR7ZsmHpbPNq+LPDb/lF4Cf8BP8hz8 VA3cC4F7COzJgZ2Ik5wD+w2+crEM+BOA+7q5V/7b3KuDzb1ytMEpJxiceq7B KZfh3Pk4dw3uw3mSGAY/WLvhd414yO3gWRri9iTiVmHstTy6Bh6ZU/eLFfDv NNxHcaN4luBcHrcq4omm9YNxXynWd4V/7+K+auBYbXhr7TpqeKt7Yv3fEI+V tB72rYPdi+CvsbivCvfNZ3xrFQOAL5bhrhXLYW8s7M1weF6M81heeA+rvtxe PQD+IXsfh3+7jjb4FfCveThPPSWqBfZ+B+vb4J9MrF/o5NdSpg9VlA9yJsuT RgX9kQnAPQj4Kng+Ej9tXgwBPwXyKAJ5NB/8pLxLRhxygSuR3Z9KumV/B24J e6SDQ5K/Sc96IP6XGD+bFPgppyJecSwvChTF07mP/KdfQt5FIe/SoQ+depg8 vYM8HQR9SEMcSEe/AB+B38a/D/wLe7XjJ/ilxupXPNdzeQXnlsN+nheLxBno OeUF5e0arueUp5L0nOeptrwgvxMvSM8pD8mPbwDneh4XjbjoNuBazXhdqMxn pMr+nz8efM/5v1H8Efzn67zi1A+jzrz2sxU2njGIc1lI4AsTfDk4v0IZf5+V F54ae/vnokpV4rwc+C9yzq2G7b4aVYI4Eq++YbzKtnlIdfQ+7Cvi+3QC47nV YfydJcznOpEDe1B/ZBh4NxG8C0KeXUN9uAfeET+nIO+SwM8vsK57ksnTH4Cf 47EuFfegruhryOeBuKeP4bfubPRIbkE8iX8Gd76oQDyzGf/Wwd+lCnY59ajG 5vsorhs6BbieAd770JubwEf2jcG+sbCns7FTh2LfedhPeTsb+6BT8gbOdess t6NSNMO+5Y5udjmbPOmDZQspbli/WUXXx0xM2LRJLEWck7A+PLhjc3tYpqB+ bS6v13oU70PIDxR3fQt4vwXeFdjnhW7hPOsfwXVLXsE++FV2g34Z3D5bFyhO pOuX4Mcu4BHx8jWcS/GiPi4DOGzfg3Oh97LzhuWvZDy9XoXALjq/A/hSHfzE i5sO/nvwxzj8Pg84JPwYw/hWQX2i7Z/RD9j6RPH/Bud+Db69zOuZpj4M/pQD YEcA/En5O9Kph2mI9yrEjepNPNOHQpsXqCtyKM6/DFxJjp1kf7ZjTwqrI7W2 T3ud+kynbvVAvifDTpePXfD7NR4H0hMbN9ITc2+Reo/rJOIRB30osPmT6L9v l5ehq7nQVapnHU7/8S/wKBL+Rr6TvsirXDftvjnOOtpPOk28HdSydbBXlTv1 6T3ROCzzwqTLqU6dyhZ/h27UAXc34H4c/d0n8Av2ybbqN76+vHCK8Uv4IeuX b0MPhS7YsFhRnpIOgd92vymD1Wo31TOmSx7Ppb475+7YYudDOydFBvYoDjla IFZA36mvPM3qXbWtq7x/2i3IH/drx8n6XVXiilPfB5/754nevbajzmWaT+8O qgu2LpLOkh9v4P5Cp4/4P3WE5jrbT2Eu0rzPjbN2/Bj8PQZe9IS+CWe+Qp1x +sYHeZoOPVnl9K00X2U4cxnVhbnAFf382cKX25eoXD4Pa+iFnZcIN825NDfO xt83kr2NORe8wu2bocNWd5bj99l8DrVzNOlDhNNPkN6gj5AXnXpE800Cew/I Fsrpk8z3deod7gfbb/b3N+d7P1JV/vqMLz9Q/L4T6nvAweNeYP0Xz+6rtPwJ RB/svD84c+sB8X3gi2Xn2PjY/riU9/syieHxCdhv+4rpD//uPYh8V2qZ0//j fo4r/KSgOZv6+iDgcOdVc24Dzj8iFjs8Mt8nihbub30ROpyPfIQOw559it59 aO4lfr7FziXd91Jf5dQFn+jL38HkLa4Dth8n/vyGz5GqHPFz5/InOK8sPymP eR3er/i6QrJPR/M6ZevqW+z7coqbvA6/ZTlzajzj1T56H7D6wO1aqVxehiC+ /fzaVS2cfKE53/KU8yGS3tccvh8U5Q6PwSu512/89ol2xGuz/znIfY+yc7DD X83zpcDqRQz73uOh+Z7bX6Mo3gOd90eyI4rhKbHvBOSfGeyeenqn07PYPp/i /joiyI/c3jjB574GW4egU8RP0k/paSy8m1T8rNUtft5+2w+c5PXW4ghwdHQJ 7FrA8aMu77HvU9yPeeIQ71Mor/WvHT3L5LzC900qwHlXeqGreO7AdJ/wcrvo HOW8hwJnquL5ad+xnPc5JZ6mdzu232vv4/nrpfyVvI4ctv7jeVhLPKQ+wM4V NG/Q78lsn6J4ufmnaT/jo/ewSnR4Rn73X2crBfEqC+fjPVaTfdHcn/adPoH5 zyd+i3vGsPX5FvdUZtciVZbX+OKYIevpPUTyPtinWnpP65awfaN934jzP+/Y 9aPjZv+0blWufTf4cthf5oeVZKgyR2+4PeW2Lzb+axW5D/e/3kZR7/edgt6d Ch+Ji9Mn0z2C9dv/9SPeoyThDX9shmfp8DWIx2ZV56//aSnHvQ2C98FV2Ndk +U39HvXZF+9u61h5wot1O525wyfoPZz2u/4mf7m/U91JZzw8oshuRxflLHZu zSN4yb/kR+Llq6zPaVX+89Ly03lHbwGeSqsTpMcO73H/RlsHeL39UND6CEcP zOdBmwdRTp7GOnazd8zwOnUVfMhlcX0fc12z2uaPh95i9cpfowoKcnbQfAmc jVZXed3JdtZFmvPjWtRMh69UP5KT4tsubXtT7HH4GDr5qUX9I9MF2U98/MlL u5rrLlB9qLLzaP+v9p+ovrpWlDl2tDp1AuchXjWP6G/zzrblHSP2OnPgLvHM 3VMVtcf22v6Y6sDBmxnL6gIU1Vc5E/Ec/0nT9RFT8x6Zi0mPh2QM+ypqZ7W9 f/i5obeDwjZa3hFfqZ69Xxq69s9J+xTVy8C6ScNTP2uwcwXpbliXTz8q37XP 9iU0T0e33rtSN7BW+O/LlLWLv3c8+P85qlv0eas9vSkw5l3CT3OojhvxdnD/ kVNsfNc2e2JSXy0S/Wn+cXTdnQP+A+Fy2UE= "], {{1, 2, 3, 4}, {11, 12, 13, 14}, {15, 16, 17, 18}, {19, 20, 21, 22}, {23, 24, 25, 26}, {27, 28, 29, 30}, {37, 38, 39, 40}, {47, 48, 49, 50}, {51, 52, 53, 54}, {55, 56, 57, 14}, { 59, 60, 61, 62}, {63, 64, 65, 66}, {66, 74, 75, 76}, {46, 45, 78, 79}, {80, 81, 82, 14}, {83, 84, 85, 86}, {93, 94, 95, 26}, {68, 67, 104, 105}, {106, 107, 108, 109}, {110, 111, 112, 14}, {114, 115, 116, 117}, {91, 90, 122, 123}, {128, 54, 102, 101}, {130, 131, 132, 4}, {138, 95, 54, 141}, {79, 78, 6, 5}, {149, 81, 80, 152}, {36, 35, 105, 104}, {156, 30, 76, 75}, {86, 161, 162, 122}, {164, 137, 136, 85}, {26, 144, 143, 169}, {98, 97, 170, 171}, {172, 127, 126, 40}, {174, 175, 89, 88}, {120, 119, 176, 177}, {79, 166, 111, 110}, {107, 43, 42, 15}, {123, 122, 162, 188}, {71, 70, 116, 26}, {191, 141, 129, 128}, {132, 131, 179, 193}, {134, 137, 164, 66}, {195, 196, 176, 79}, {169, 143, 142, 198}, {175, 174, 34, 33}, {171, 170, 8, 7}, {207, 208, 209, 172}, {42, 41, 16, 15}, {54, 213, 12, 11}, {72, 71, 26, 25}, {99, 98, 171, 27}, {174, 88, 87, 21}, { 223, 224, 3, 2}, {225, 164, 85, 84}, {129, 9, 8, 170}, {229, 93, 26, 169}, {172, 209, 124, 127}, {176, 119, 118, 182}, { 175, 33, 32, 234}, {128, 101, 100, 235}, {221, 195, 79, 110}, {92, 91, 123, 22}, {117, 116, 70, 69}, {107, 106, 44, 43}, {216, 132, 209, 208}, {135, 65, 106, 109}, {145, 114, 117, 55}, {200, 15, 47, 50}, {32, 31, 60, 234}, {205, 38, 37, 96}, {129, 53, 10, 9}, {167, 51, 54, 11}, {100, 99, 27, 235}, {124, 209, 25, 24}, {87, 92, 22, 21}, {182, 118, 17, 16}, {59, 62, 178, 3}, {106, 65, 64, 180}, {47, 121, 120, 48}, {117, 183, 56, 55}, {79, 5, 10, 53}, {60, 31, 36, 104}, { 126, 125, 37, 40}, {200, 161, 86, 85}, {95, 138, 205, 26}, { 80, 184, 19, 152}, {117, 69, 68, 105}, {181, 76, 30, 29}, {78, 45, 44, 106}, {135, 134, 66, 65}, {166, 79, 53, 52}, {142, 145, 55, 14}, {15, 18, 121, 47}, {37, 125, 23, 26}, {179, 61, 60, 104}, {106, 180, 28, 27}, {112, 167, 11, 14}, {247, 21, 20, 183}, {41, 46, 79, 16}, {104, 67, 72, 25}, {178, 130, 4, 3}, {106, 7, 6, 78}, {184, 80, 14, 57}, {117, 105, 35, 34}, { 224, 223, 83, 86}, {95, 94, 213, 54}, {181, 63, 66, 76}, {229, 169, 198, 13}, {176, 196, 149, 152}, {90, 89, 175, 122}, { 156, 207, 172, 157}, {129, 170, 97, 102}, {164, 225, 1, 4}, { 123, 188, 49, 48}, {82, 221, 110, 14}, {144, 96, 116, 115}, { 132, 216, 74, 4}, {136, 108, 107, 85}, {39, 191, 128, 40}, {5, 6, 7, 8, 9, 10}, {31, 32, 33, 34, 35, 36}, {41, 42, 43, 44, 45, 46}, {67, 68, 69, 70, 71, 72}, {87, 88, 89, 90, 91, 92}, { 97, 98, 99, 100, 101, 102}, {118, 119, 120, 121, 18, 17}, { 124, 24, 23, 125, 126, 127}, {134, 135, 109, 108, 136, 137}, { 142, 143, 144, 115, 114, 145}, {166, 52, 51, 167, 112, 111}, { 178, 62, 61, 179, 131, 130}, {180, 64, 63, 181, 29, 28}, {183, 20, 19, 184, 57, 56}, {188, 162, 161, 200, 50, 49}, {138, 141, 191, 39, 38, 205}, {216, 208, 207, 156, 75, 74}, {149, 196, 195, 221, 82, 81}, {213, 94, 93, 229, 13, 12}, {223, 2, 1, 225, 84, 83}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["325", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["140", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[CompressedData[" 1:eJx1WWtQFcYVvhrjq2oLmlSNMQGxZdKajnaaZHB1sVGLTYzI1KhgEAimShVQ gfiIeKU+eKlXgxbkISAiZggiYoK6ZdFQH42x1kkM1oymtjXWoY4aH4lVaaf7 ndWz3vrnDvfu4zvnfOc756xBCSlRszp7PJ5xnTyexzz0b7cIjG3Kaow9ruOf GzWvy9rTuvevUk/mr9kvC7OaS88fP6YXyYkXq3t+rlNOTPvszqUWmXU04vcp Mz7WmR9HTtgbfFqbc3wiM6jP6h+Ffq5njt/baevW47p74tIXh75+Rl8d9Yfw jG4Nsuh3DcUpGw7I7IVF3+0Uctbsa9mm9hz8MO/d6RWyF9b/w6zXb2N9Bu7v Z3DpLQaXJLzmfi36GTtkOtYHwI6tWL/Y4Nd5Br9cYvDLJ3BuGdZhvzTnVqon cW6cuQ/f1yuvsVfOMPbKN2G3+T1bkT/egZ/mwX/58N/IX5xOSzv/qf7l3bPP J0e0ygWJaSuClx7Xd7pX9Jo8+U/69pzR7ZsmHpbPNq+LPDb/lF4Cf8BP8hz8 VA3cC4F7COzJgZ2Ik5wD+w2+crEM+BOA+7q5V/7b3KuDzb1ytMEpJxiceq7B KZfh3Pk4dw3uw3mSGAY/WLvhd414yO3gWRri9iTiVmHstTy6Bh6ZU/eLFfDv NNxHcaN4luBcHrcq4omm9YNxXynWd4V/7+K+auBYbXhr7TpqeKt7Yv3fEI+V tB72rYPdi+CvsbivCvfNZ3xrFQOAL5bhrhXLYW8s7M1weF6M81heeA+rvtxe PQD+IXsfh3+7jjb4FfCveThPPSWqBfZ+B+vb4J9MrF/o5NdSpg9VlA9yJsuT RgX9kQnAPQj4Kng+Ej9tXgwBPwXyKAJ5NB/8pLxLRhxygSuR3Z9KumV/B24J e6SDQ5K/Sc96IP6XGD+bFPgppyJecSwvChTF07mP/KdfQt5FIe/SoQ+depg8 vYM8HQR9SEMcSEe/AB+B38a/D/wLe7XjJ/ilxupXPNdzeQXnlsN+nheLxBno OeUF5e0arueUp5L0nOeptrwgvxMvSM8pD8mPbwDneh4XjbjoNuBazXhdqMxn pMr+nz8efM/5v1H8Efzn67zi1A+jzrz2sxU2njGIc1lI4AsTfDk4v0IZf5+V F54ae/vnokpV4rwc+C9yzq2G7b4aVYI4Eq++YbzKtnlIdfQ+7Cvi+3QC47nV YfydJcznOpEDe1B/ZBh4NxG8C0KeXUN9uAfeET+nIO+SwM8vsK57ksnTH4Cf 47EuFfegruhryOeBuKeP4bfubPRIbkE8iX8Gd76oQDyzGf/Wwd+lCnY59ajG 5vsorhs6BbieAd770JubwEf2jcG+sbCns7FTh2LfedhPeTsb+6BT8gbOdess t6NSNMO+5Y5udjmbPOmDZQspbli/WUXXx0xM2LRJLEWck7A+PLhjc3tYpqB+ bS6v13oU70PIDxR3fQt4vwXeFdjnhW7hPOsfwXVLXsE++FV2g34Z3D5bFyhO pOuX4Mcu4BHx8jWcS/GiPi4DOGzfg3Oh97LzhuWvZDy9XoXALjq/A/hSHfzE i5sO/nvwxzj8Pg84JPwYw/hWQX2i7Z/RD9j6RPH/Bud+Db69zOuZpj4M/pQD YEcA/En5O9Kph2mI9yrEjepNPNOHQpsXqCtyKM6/DFxJjp1kf7ZjTwqrI7W2 T3ud+kynbvVAvifDTpePXfD7NR4H0hMbN9ITc2+Reo/rJOIRB30osPmT6L9v l5ehq7nQVapnHU7/8S/wKBL+Rr6TvsirXDftvjnOOtpPOk28HdSydbBXlTv1 6T3ROCzzwqTLqU6dyhZ/h27UAXc34H4c/d0n8Av2ybbqN76+vHCK8Uv4IeuX b0MPhS7YsFhRnpIOgd92vymD1Wo31TOmSx7Ppb475+7YYudDOydFBvYoDjla IFZA36mvPM3qXbWtq7x/2i3IH/drx8n6XVXiilPfB5/754nevbajzmWaT+8O qgu2LpLOkh9v4P5Cp4/4P3WE5jrbT2Eu0rzPjbN2/Bj8PQZe9IS+CWe+Qp1x +sYHeZoOPVnl9K00X2U4cxnVhbnAFf382cKX25eoXD4Pa+iFnZcIN825NDfO xt83kr2NORe8wu2bocNWd5bj99l8DrVzNOlDhNNPkN6gj5AXnXpE800Cew/I Fsrpk8z3deod7gfbb/b3N+d7P1JV/vqMLz9Q/L4T6nvAweNeYP0Xz+6rtPwJ RB/svD84c+sB8X3gi2Xn2PjY/riU9/syieHxCdhv+4rpD//uPYh8V2qZ0//j fo4r/KSgOZv6+iDgcOdVc24Dzj8iFjs8Mt8nihbub30ROpyPfIQOw559it59 aO4lfr7FziXd91Jf5dQFn+jL38HkLa4Dth8n/vyGz5GqHPFz5/InOK8sPymP eR3er/i6QrJPR/M6ZevqW+z7coqbvA6/ZTlzajzj1T56H7D6wO1aqVxehiC+ /fzaVS2cfKE53/KU8yGS3tccvh8U5Q6PwSu512/89ol2xGuz/znIfY+yc7DD X83zpcDqRQz73uOh+Z7bX6Mo3gOd90eyI4rhKbHvBOSfGeyeenqn07PYPp/i /joiyI/c3jjB574GW4egU8RP0k/paSy8m1T8rNUtft5+2w+c5PXW4ghwdHQJ 7FrA8aMu77HvU9yPeeIQ71Mor/WvHT3L5LzC900qwHlXeqGreO7AdJ/wcrvo HOW8hwJnquL5ad+xnPc5JZ6mdzu232vv4/nrpfyVvI4ctv7jeVhLPKQ+wM4V NG/Q78lsn6J4ufmnaT/jo/ewSnR4Rn73X2crBfEqC+fjPVaTfdHcn/adPoH5 zyd+i3vGsPX5FvdUZtciVZbX+OKYIevpPUTyPtinWnpP65awfaN934jzP+/Y 9aPjZv+0blWufTf4cthf5oeVZKgyR2+4PeW2Lzb+axW5D/e/3kZR7/edgt6d Ch+Ji9Mn0z2C9dv/9SPeoyThDX9shmfp8DWIx2ZV56//aSnHvQ2C98FV2Ndk +U39HvXZF+9u61h5wot1O525wyfoPZz2u/4mf7m/U91JZzw8oshuRxflLHZu zSN4yb/kR+Llq6zPaVX+89Ly03lHbwGeSqsTpMcO73H/RlsHeL39UND6CEcP zOdBmwdRTp7GOnazd8zwOnUVfMhlcX0fc12z2uaPh95i9cpfowoKcnbQfAmc jVZXed3JdtZFmvPjWtRMh69UP5KT4tsubXtT7HH4GDr5qUX9I9MF2U98/MlL u5rrLlB9qLLzaP+v9p+ovrpWlDl2tDp1AuchXjWP6G/zzrblHSP2OnPgLvHM 3VMVtcf22v6Y6sDBmxnL6gIU1Vc5E/Ec/0nT9RFT8x6Zi0mPh2QM+ypqZ7W9 f/i5obeDwjZa3hFfqZ69Xxq69s9J+xTVy8C6ScNTP2uwcwXpbliXTz8q37XP 9iU0T0e33rtSN7BW+O/LlLWLv3c8+P85qlv0eas9vSkw5l3CT3OojhvxdnD/ kVNsfNc2e2JSXy0S/Wn+cXTdnQP+A+Fy2UE= "], {{1, 2, 3, 4}, {11, 12, 13, 14}, {15, 16, 17, 18}, {19, 20, 21, 22}, { 23, 24, 25, 26}, {27, 28, 29, 30}, {37, 38, 39, 40}, {47, 48, 49, 50}, { 51, 52, 53, 54}, {55, 56, 57, 14}, {59, 60, 61, 62}, {63, 64, 65, 66}, { 66, 74, 75, 76}, {46, 45, 78, 79}, {80, 81, 82, 14}, {83, 84, 85, 86}, { 93, 94, 95, 26}, {68, 67, 104, 105}, {106, 107, 108, 109}, {110, 111, 112, 14}, {114, 115, 116, 117}, {91, 90, 122, 123}, {128, 54, 102, 101}, {130, 131, 132, 4}, {138, 95, 54, 141}, {79, 78, 6, 5}, {149, 81, 80, 152}, { 36, 35, 105, 104}, {156, 30, 76, 75}, {86, 161, 162, 122}, {164, 137, 136, 85}, {26, 144, 143, 169}, {98, 97, 170, 171}, {172, 127, 126, 40}, {174, 175, 89, 88}, {120, 119, 176, 177}, {79, 166, 111, 110}, {107, 43, 42, 15}, {123, 122, 162, 188}, {71, 70, 116, 26}, {191, 141, 129, 128}, {132, 131, 179, 193}, {134, 137, 164, 66}, {195, 196, 176, 79}, {169, 143, 142, 198}, {175, 174, 34, 33}, {171, 170, 8, 7}, {207, 208, 209, 172}, {42, 41, 16, 15}, {54, 213, 12, 11}, {72, 71, 26, 25}, {99, 98, 171, 27}, {174, 88, 87, 21}, {223, 224, 3, 2}, {225, 164, 85, 84}, {129, 9, 8, 170}, {229, 93, 26, 169}, {172, 209, 124, 127}, {176, 119, 118, 182}, {175, 33, 32, 234}, {128, 101, 100, 235}, {221, 195, 79, 110}, {92, 91, 123, 22}, {117, 116, 70, 69}, {107, 106, 44, 43}, {216, 132, 209, 208}, {135, 65, 106, 109}, {145, 114, 117, 55}, {200, 15, 47, 50}, {32, 31, 60, 234}, {205, 38, 37, 96}, {129, 53, 10, 9}, {167, 51, 54, 11}, {100, 99, 27, 235}, {124, 209, 25, 24}, {87, 92, 22, 21}, {182, 118, 17, 16}, {59, 62, 178, 3}, { 106, 65, 64, 180}, {47, 121, 120, 48}, {117, 183, 56, 55}, {79, 5, 10, 53}, {60, 31, 36, 104}, {126, 125, 37, 40}, {200, 161, 86, 85}, {95, 138, 205, 26}, {80, 184, 19, 152}, {117, 69, 68, 105}, {181, 76, 30, 29}, {78, 45, 44, 106}, {135, 134, 66, 65}, {166, 79, 53, 52}, {142, 145, 55, 14}, { 15, 18, 121, 47}, {37, 125, 23, 26}, {179, 61, 60, 104}, {106, 180, 28, 27}, {112, 167, 11, 14}, {247, 21, 20, 183}, {41, 46, 79, 16}, {104, 67, 72, 25}, {178, 130, 4, 3}, {106, 7, 6, 78}, {184, 80, 14, 57}, {117, 105, 35, 34}, {224, 223, 83, 86}, {95, 94, 213, 54}, {181, 63, 66, 76}, {229, 169, 198, 13}, {176, 196, 149, 152}, {90, 89, 175, 122}, {156, 207, 172, 157}, {129, 170, 97, 102}, {164, 225, 1, 4}, {123, 188, 49, 48}, {82, 221, 110, 14}, {144, 96, 116, 115}, {132, 216, 74, 4}, {136, 108, 107, 85}, { 39, 191, 128, 40}, {5, 6, 7, 8, 9, 10}, {31, 32, 33, 34, 35, 36}, {41, 42, 43, 44, 45, 46}, {67, 68, 69, 70, 71, 72}, {87, 88, 89, 90, 91, 92}, {97, 98, 99, 100, 101, 102}, {118, 119, 120, 121, 18, 17}, {124, 24, 23, 125, 126, 127}, {134, 135, 109, 108, 136, 137}, {142, 143, 144, 115, 114, 145}, {166, 52, 51, 167, 112, 111}, {178, 62, 61, 179, 131, 130}, {180, 64, 63, 181, 29, 28}, {183, 20, 19, 184, 57, 56}, {188, 162, 161, 200, 50, 49}, {138, 141, 191, 39, 38, 205}, {216, 208, 207, 156, 75, 74}, {149, 196, 195, 221, 82, 81}, {213, 94, 93, 229, 13, 12}, {223, 2, 1, 225, 84, 83}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[3]=",ExpressionUUID->"A1266626-E424-4C89-9802-B32A6476D4D3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", "int", "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"B4617DBF-E911-4D04-8040-248932FEE6D2"], Cell[BoxData[ Graphics3DBox[PolyhedronBox[CompressedData[" 1:eJx1WWtQFcYVvhrjq2oLmlSNMQGxZdKajnaaZHB1sVGLTYzI1KhgEAimShVQ gfiIeKU+eKlXgxbkISAiZggiYoK6ZdFQH42x1kkM1oymtjXWoY4aH4lVaaf7 ndWz3vrnDvfu4zvnfOc756xBCSlRszp7PJ5xnTyexzz0b7cIjG3Kaow9ruOf GzWvy9rTuvevUk/mr9kvC7OaS88fP6YXyYkXq3t+rlNOTPvszqUWmXU04vcp Mz7WmR9HTtgbfFqbc3wiM6jP6h+Ffq5njt/baevW47p74tIXh75+Rl8d9Yfw jG4Nsuh3DcUpGw7I7IVF3+0Uctbsa9mm9hz8MO/d6RWyF9b/w6zXb2N9Bu7v Z3DpLQaXJLzmfi36GTtkOtYHwI6tWL/Y4Nd5Br9cYvDLJ3BuGdZhvzTnVqon cW6cuQ/f1yuvsVfOMPbKN2G3+T1bkT/egZ/mwX/58N/IX5xOSzv/qf7l3bPP J0e0ygWJaSuClx7Xd7pX9Jo8+U/69pzR7ZsmHpbPNq+LPDb/lF4Cf8BP8hz8 VA3cC4F7COzJgZ2Ik5wD+w2+crEM+BOA+7q5V/7b3KuDzb1ytMEpJxiceq7B KZfh3Pk4dw3uw3mSGAY/WLvhd414yO3gWRri9iTiVmHstTy6Bh6ZU/eLFfDv NNxHcaN4luBcHrcq4omm9YNxXynWd4V/7+K+auBYbXhr7TpqeKt7Yv3fEI+V tB72rYPdi+CvsbivCvfNZ3xrFQOAL5bhrhXLYW8s7M1weF6M81heeA+rvtxe PQD+IXsfh3+7jjb4FfCveThPPSWqBfZ+B+vb4J9MrF/o5NdSpg9VlA9yJsuT RgX9kQnAPQj4Kng+Ej9tXgwBPwXyKAJ5NB/8pLxLRhxygSuR3Z9KumV/B24J e6SDQ5K/Sc96IP6XGD+bFPgppyJecSwvChTF07mP/KdfQt5FIe/SoQ+depg8 vYM8HQR9SEMcSEe/AB+B38a/D/wLe7XjJ/ilxupXPNdzeQXnlsN+nheLxBno OeUF5e0arueUp5L0nOeptrwgvxMvSM8pD8mPbwDneh4XjbjoNuBazXhdqMxn pMr+nz8efM/5v1H8Efzn67zi1A+jzrz2sxU2njGIc1lI4AsTfDk4v0IZf5+V F54ae/vnokpV4rwc+C9yzq2G7b4aVYI4Eq++YbzKtnlIdfQ+7Cvi+3QC47nV YfydJcznOpEDe1B/ZBh4NxG8C0KeXUN9uAfeET+nIO+SwM8vsK57ksnTH4Cf 47EuFfegruhryOeBuKeP4bfubPRIbkE8iX8Gd76oQDyzGf/Wwd+lCnY59ajG 5vsorhs6BbieAd770JubwEf2jcG+sbCns7FTh2LfedhPeTsb+6BT8gbOdess t6NSNMO+5Y5udjmbPOmDZQspbli/WUXXx0xM2LRJLEWck7A+PLhjc3tYpqB+ bS6v13oU70PIDxR3fQt4vwXeFdjnhW7hPOsfwXVLXsE++FV2g34Z3D5bFyhO pOuX4Mcu4BHx8jWcS/GiPi4DOGzfg3Oh97LzhuWvZDy9XoXALjq/A/hSHfzE i5sO/nvwxzj8Pg84JPwYw/hWQX2i7Z/RD9j6RPH/Bud+Db69zOuZpj4M/pQD YEcA/En5O9Kph2mI9yrEjepNPNOHQpsXqCtyKM6/DFxJjp1kf7ZjTwqrI7W2 T3ud+kynbvVAvifDTpePXfD7NR4H0hMbN9ITc2+Reo/rJOIRB30osPmT6L9v l5ehq7nQVapnHU7/8S/wKBL+Rr6TvsirXDftvjnOOtpPOk28HdSydbBXlTv1 6T3ROCzzwqTLqU6dyhZ/h27UAXc34H4c/d0n8Av2ybbqN76+vHCK8Uv4IeuX b0MPhS7YsFhRnpIOgd92vymD1Wo31TOmSx7Ppb475+7YYudDOydFBvYoDjla IFZA36mvPM3qXbWtq7x/2i3IH/drx8n6XVXiilPfB5/754nevbajzmWaT+8O qgu2LpLOkh9v4P5Cp4/4P3WE5jrbT2Eu0rzPjbN2/Bj8PQZe9IS+CWe+Qp1x +sYHeZoOPVnl9K00X2U4cxnVhbnAFf382cKX25eoXD4Pa+iFnZcIN825NDfO xt83kr2NORe8wu2bocNWd5bj99l8DrVzNOlDhNNPkN6gj5AXnXpE800Cew/I Fsrpk8z3deod7gfbb/b3N+d7P1JV/vqMLz9Q/L4T6nvAweNeYP0Xz+6rtPwJ RB/svD84c+sB8X3gi2Xn2PjY/riU9/syieHxCdhv+4rpD//uPYh8V2qZ0//j fo4r/KSgOZv6+iDgcOdVc24Dzj8iFjs8Mt8nihbub30ROpyPfIQOw559it59 aO4lfr7FziXd91Jf5dQFn+jL38HkLa4Dth8n/vyGz5GqHPFz5/InOK8sPymP eR3er/i6QrJPR/M6ZevqW+z7coqbvA6/ZTlzajzj1T56H7D6wO1aqVxehiC+ /fzaVS2cfKE53/KU8yGS3tccvh8U5Q6PwSu512/89ol2xGuz/znIfY+yc7DD X83zpcDqRQz73uOh+Z7bX6Mo3gOd90eyI4rhKbHvBOSfGeyeenqn07PYPp/i /joiyI/c3jjB574GW4egU8RP0k/paSy8m1T8rNUtft5+2w+c5PXW4ghwdHQJ 7FrA8aMu77HvU9yPeeIQ71Mor/WvHT3L5LzC900qwHlXeqGreO7AdJ/wcrvo HOW8hwJnquL5ad+xnPc5JZ6mdzu232vv4/nrpfyVvI4ctv7jeVhLPKQ+wM4V NG/Q78lsn6J4ufmnaT/jo/ewSnR4Rn73X2crBfEqC+fjPVaTfdHcn/adPoH5 zyd+i3vGsPX5FvdUZtciVZbX+OKYIevpPUTyPtinWnpP65awfaN934jzP+/Y 9aPjZv+0blWufTf4cthf5oeVZKgyR2+4PeW2Lzb+axW5D/e/3kZR7/edgt6d Ch+Ji9Mn0z2C9dv/9SPeoyThDX9shmfp8DWIx2ZV56//aSnHvQ2C98FV2Ndk +U39HvXZF+9u61h5wot1O525wyfoPZz2u/4mf7m/U91JZzw8oshuRxflLHZu zSN4yb/kR+Llq6zPaVX+89Ly03lHbwGeSqsTpMcO73H/RlsHeL39UND6CEcP zOdBmwdRTp7GOnazd8zwOnUVfMhlcX0fc12z2uaPh95i9cpfowoKcnbQfAmc jVZXed3JdtZFmvPjWtRMh69UP5KT4tsubXtT7HH4GDr5qUX9I9MF2U98/MlL u5rrLlB9qLLzaP+v9p+ovrpWlDl2tDp1AuchXjWP6G/zzrblHSP2OnPgLvHM 3VMVtcf22v6Y6sDBmxnL6gIU1Vc5E/Ec/0nT9RFT8x6Zi0mPh2QM+ypqZ7W9 f/i5obeDwjZa3hFfqZ69Xxq69s9J+xTVy8C6ScNTP2uwcwXpbliXTz8q37XP 9iU0T0e33rtSN7BW+O/LlLWLv3c8+P85qlv0eas9vSkw5l3CT3OojhvxdnD/ kVNsfNc2e2JSXy0S/Wn+cXTdnQP+A+Fy2UE= "], {{1, 2, 3, 4}, {11, 12, 13, 14}, {15, 16, 17, 18}, {19, 20, 21, 22}, { 23, 24, 25, 26}, {27, 28, 29, 30}, {37, 38, 39, 40}, {47, 48, 49, 50}, { 51, 52, 53, 54}, {55, 56, 57, 14}, {59, 60, 61, 62}, {63, 64, 65, 66}, { 66, 74, 75, 76}, {46, 45, 78, 79}, {80, 81, 82, 14}, {83, 84, 85, 86}, { 93, 94, 95, 26}, {68, 67, 104, 105}, {106, 107, 108, 109}, {110, 111, 112, 14}, {114, 115, 116, 117}, {91, 90, 122, 123}, {128, 54, 102, 101}, {130, 131, 132, 4}, {138, 95, 54, 141}, {79, 78, 6, 5}, {149, 81, 80, 152}, { 36, 35, 105, 104}, {156, 30, 76, 75}, {86, 161, 162, 122}, {164, 137, 136, 85}, {26, 144, 143, 169}, {98, 97, 170, 171}, {172, 127, 126, 40}, {174, 175, 89, 88}, {120, 119, 176, 177}, {79, 166, 111, 110}, {107, 43, 42, 15}, {123, 122, 162, 188}, {71, 70, 116, 26}, {191, 141, 129, 128}, {132, 131, 179, 193}, {134, 137, 164, 66}, {195, 196, 176, 79}, {169, 143, 142, 198}, {175, 174, 34, 33}, {171, 170, 8, 7}, {207, 208, 209, 172}, {42, 41, 16, 15}, {54, 213, 12, 11}, {72, 71, 26, 25}, {99, 98, 171, 27}, {174, 88, 87, 21}, {223, 224, 3, 2}, {225, 164, 85, 84}, {129, 9, 8, 170}, {229, 93, 26, 169}, {172, 209, 124, 127}, {176, 119, 118, 182}, {175, 33, 32, 234}, {128, 101, 100, 235}, {221, 195, 79, 110}, {92, 91, 123, 22}, {117, 116, 70, 69}, {107, 106, 44, 43}, {216, 132, 209, 208}, {135, 65, 106, 109}, {145, 114, 117, 55}, {200, 15, 47, 50}, {32, 31, 60, 234}, {205, 38, 37, 96}, {129, 53, 10, 9}, {167, 51, 54, 11}, {100, 99, 27, 235}, {124, 209, 25, 24}, {87, 92, 22, 21}, {182, 118, 17, 16}, {59, 62, 178, 3}, { 106, 65, 64, 180}, {47, 121, 120, 48}, {117, 183, 56, 55}, {79, 5, 10, 53}, {60, 31, 36, 104}, {126, 125, 37, 40}, {200, 161, 86, 85}, {95, 138, 205, 26}, {80, 184, 19, 152}, {117, 69, 68, 105}, {181, 76, 30, 29}, {78, 45, 44, 106}, {135, 134, 66, 65}, {166, 79, 53, 52}, {142, 145, 55, 14}, { 15, 18, 121, 47}, {37, 125, 23, 26}, {179, 61, 60, 104}, {106, 180, 28, 27}, {112, 167, 11, 14}, {247, 21, 20, 183}, {41, 46, 79, 16}, {104, 67, 72, 25}, {178, 130, 4, 3}, {106, 7, 6, 78}, {184, 80, 14, 57}, {117, 105, 35, 34}, {224, 223, 83, 86}, {95, 94, 213, 54}, {181, 63, 66, 76}, {229, 169, 198, 13}, {176, 196, 149, 152}, {90, 89, 175, 122}, {156, 207, 172, 157}, {129, 170, 97, 102}, {164, 225, 1, 4}, {123, 188, 49, 48}, {82, 221, 110, 14}, {144, 96, 116, 115}, {132, 216, 74, 4}, {136, 108, 107, 85}, { 39, 191, 128, 40}, {5, 6, 7, 8, 9, 10}, {31, 32, 33, 34, 35, 36}, {41, 42, 43, 44, 45, 46}, {67, 68, 69, 70, 71, 72}, {87, 88, 89, 90, 91, 92}, {97, 98, 99, 100, 101, 102}, {118, 119, 120, 121, 18, 17}, {124, 24, 23, 125, 126, 127}, {134, 135, 109, 108, 136, 137}, {142, 143, 144, 115, 114, 145}, {166, 52, 51, 167, 112, 111}, {178, 62, 61, 179, 131, 130}, {180, 64, 63, 181, 29, 28}, {183, 20, 19, 184, 57, 56}, {188, 162, 161, 200, 50, 49}, {138, 141, 191, 39, 38, 205}, {216, 208, 207, 156, 75, 74}, {149, 196, 195, 221, 82, 81}, {213, 94, 93, 229, 13, 12}, {223, 2, 1, 225, 84, 83}}]]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[4]=",ExpressionUUID->"11546B2A-4E81-4AE3-9F4C-4C45CDD76DFE"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".1", "]"}], ",", "p"}], "}"}], ",", "Red", ",", "int"}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[5]:=",ExpressionUUID->"72F3D4DA-2A20-4A7B-B61A-33FD0E3B8BF6"], Cell[BoxData[ Graphics3DBox[{ {Opacity[0.1], PolyhedronBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]]}, {RGBColor[1, 0, 0], PolyhedronBox[CompressedData[" 1:eJx1WWtQFcYVvhrjq2oLmlSNMQGxZdKajnaaZHB1sVGLTYzI1KhgEAimShVQ gfiIeKU+eKlXgxbkISAiZggiYoK6ZdFQH42x1kkM1oymtjXWoY4aH4lVaaf7 ndWz3vrnDvfu4zvnfOc756xBCSlRszp7PJ5xnTyexzz0b7cIjG3Kaow9ruOf GzWvy9rTuvevUk/mr9kvC7OaS88fP6YXyYkXq3t+rlNOTPvszqUWmXU04vcp Mz7WmR9HTtgbfFqbc3wiM6jP6h+Ffq5njt/baevW47p74tIXh75+Rl8d9Yfw jG4Nsuh3DcUpGw7I7IVF3+0Uctbsa9mm9hz8MO/d6RWyF9b/w6zXb2N9Bu7v Z3DpLQaXJLzmfi36GTtkOtYHwI6tWL/Y4Nd5Br9cYvDLJ3BuGdZhvzTnVqon cW6cuQ/f1yuvsVfOMPbKN2G3+T1bkT/egZ/mwX/58N/IX5xOSzv/qf7l3bPP J0e0ygWJaSuClx7Xd7pX9Jo8+U/69pzR7ZsmHpbPNq+LPDb/lF4Cf8BP8hz8 VA3cC4F7COzJgZ2Ik5wD+w2+crEM+BOA+7q5V/7b3KuDzb1ytMEpJxiceq7B KZfh3Pk4dw3uw3mSGAY/WLvhd414yO3gWRri9iTiVmHstTy6Bh6ZU/eLFfDv NNxHcaN4luBcHrcq4omm9YNxXynWd4V/7+K+auBYbXhr7TpqeKt7Yv3fEI+V tB72rYPdi+CvsbivCvfNZ3xrFQOAL5bhrhXLYW8s7M1weF6M81heeA+rvtxe PQD+IXsfh3+7jjb4FfCveThPPSWqBfZ+B+vb4J9MrF/o5NdSpg9VlA9yJsuT RgX9kQnAPQj4Kng+Ej9tXgwBPwXyKAJ5NB/8pLxLRhxygSuR3Z9KumV/B24J e6SDQ5K/Sc96IP6XGD+bFPgppyJecSwvChTF07mP/KdfQt5FIe/SoQ+depg8 vYM8HQR9SEMcSEe/AB+B38a/D/wLe7XjJ/ilxupXPNdzeQXnlsN+nheLxBno OeUF5e0arueUp5L0nOeptrwgvxMvSM8pD8mPbwDneh4XjbjoNuBazXhdqMxn pMr+nz8efM/5v1H8Efzn67zi1A+jzrz2sxU2njGIc1lI4AsTfDk4v0IZf5+V F54ae/vnokpV4rwc+C9yzq2G7b4aVYI4Eq++YbzKtnlIdfQ+7Cvi+3QC47nV YfydJcznOpEDe1B/ZBh4NxG8C0KeXUN9uAfeET+nIO+SwM8vsK57ksnTH4Cf 47EuFfegruhryOeBuKeP4bfubPRIbkE8iX8Gd76oQDyzGf/Wwd+lCnY59ajG 5vsorhs6BbieAd770JubwEf2jcG+sbCns7FTh2LfedhPeTsb+6BT8gbOdess t6NSNMO+5Y5udjmbPOmDZQspbli/WUXXx0xM2LRJLEWck7A+PLhjc3tYpqB+ bS6v13oU70PIDxR3fQt4vwXeFdjnhW7hPOsfwXVLXsE++FV2g34Z3D5bFyhO pOuX4Mcu4BHx8jWcS/GiPi4DOGzfg3Oh97LzhuWvZDy9XoXALjq/A/hSHfzE i5sO/nvwxzj8Pg84JPwYw/hWQX2i7Z/RD9j6RPH/Bud+Db69zOuZpj4M/pQD YEcA/En5O9Kph2mI9yrEjepNPNOHQpsXqCtyKM6/DFxJjp1kf7ZjTwqrI7W2 T3ud+kynbvVAvifDTpePXfD7NR4H0hMbN9ITc2+Reo/rJOIRB30osPmT6L9v l5ehq7nQVapnHU7/8S/wKBL+Rr6TvsirXDftvjnOOtpPOk28HdSydbBXlTv1 6T3ROCzzwqTLqU6dyhZ/h27UAXc34H4c/d0n8Av2ybbqN76+vHCK8Uv4IeuX b0MPhS7YsFhRnpIOgd92vymD1Wo31TOmSx7Ppb475+7YYudDOydFBvYoDjla IFZA36mvPM3qXbWtq7x/2i3IH/drx8n6XVXiilPfB5/754nevbajzmWaT+8O qgu2LpLOkh9v4P5Cp4/4P3WE5jrbT2Eu0rzPjbN2/Bj8PQZe9IS+CWe+Qp1x +sYHeZoOPVnl9K00X2U4cxnVhbnAFf382cKX25eoXD4Pa+iFnZcIN825NDfO xt83kr2NORe8wu2bocNWd5bj99l8DrVzNOlDhNNPkN6gj5AXnXpE800Cew/I Fsrpk8z3deod7gfbb/b3N+d7P1JV/vqMLz9Q/L4T6nvAweNeYP0Xz+6rtPwJ RB/svD84c+sB8X3gi2Xn2PjY/riU9/syieHxCdhv+4rpD//uPYh8V2qZ0//j fo4r/KSgOZv6+iDgcOdVc24Dzj8iFjs8Mt8nihbub30ROpyPfIQOw559it59 aO4lfr7FziXd91Jf5dQFn+jL38HkLa4Dth8n/vyGz5GqHPFz5/InOK8sPymP eR3er/i6QrJPR/M6ZevqW+z7coqbvA6/ZTlzajzj1T56H7D6wO1aqVxehiC+ /fzaVS2cfKE53/KU8yGS3tccvh8U5Q6PwSu512/89ol2xGuz/znIfY+yc7DD X83zpcDqRQz73uOh+Z7bX6Mo3gOd90eyI4rhKbHvBOSfGeyeenqn07PYPp/i /joiyI/c3jjB574GW4egU8RP0k/paSy8m1T8rNUtft5+2w+c5PXW4ghwdHQJ 7FrA8aMu77HvU9yPeeIQ71Mor/WvHT3L5LzC900qwHlXeqGreO7AdJ/wcrvo HOW8hwJnquL5ad+xnPc5JZ6mdzu232vv4/nrpfyVvI4ctv7jeVhLPKQ+wM4V NG/Q78lsn6J4ufmnaT/jo/ewSnR4Rn73X2crBfEqC+fjPVaTfdHcn/adPoH5 zyd+i3vGsPX5FvdUZtciVZbX+OKYIevpPUTyPtinWnpP65awfaN934jzP+/Y 9aPjZv+0blWufTf4cthf5oeVZKgyR2+4PeW2Lzb+axW5D/e/3kZR7/edgt6d Ch+Ji9Mn0z2C9dv/9SPeoyThDX9shmfp8DWIx2ZV56//aSnHvQ2C98FV2Ndk +U39HvXZF+9u61h5wot1O525wyfoPZz2u/4mf7m/U91JZzw8oshuRxflLHZu zSN4yb/kR+Llq6zPaVX+89Ly03lHbwGeSqsTpMcO73H/RlsHeL39UND6CEcP zOdBmwdRTp7GOnazd8zwOnUVfMhlcX0fc12z2uaPh95i9cpfowoKcnbQfAmc jVZXed3JdtZFmvPjWtRMh69UP5KT4tsubXtT7HH4GDr5qUX9I9MF2U98/MlL u5rrLlB9qLLzaP+v9p+ovrpWlDl2tDp1AuchXjWP6G/zzrblHSP2OnPgLvHM 3VMVtcf22v6Y6sDBmxnL6gIU1Vc5E/Ec/0nT9RFT8x6Zi0mPh2QM+ypqZ7W9 f/i5obeDwjZa3hFfqZ69Xxq69s9J+xTVy8C6ScNTP2uwcwXpbliXTz8q37XP 9iU0T0e33rtSN7BW+O/LlLWLv3c8+P85qlv0eas9vSkw5l3CT3OojhvxdnD/ kVNsfNc2e2JSXy0S/Wn+cXTdnQP+A+Fy2UE= "], {{1, 2, 3, 4}, {11, 12, 13, 14}, {15, 16, 17, 18}, {19, 20, 21, 22}, {23, 24, 25, 26}, {27, 28, 29, 30}, {37, 38, 39, 40}, {47, 48, 49, 50}, {51, 52, 53, 54}, {55, 56, 57, 14}, {59, 60, 61, 62}, {63, 64, 65, 66}, {66, 74, 75, 76}, {46, 45, 78, 79}, {80, 81, 82, 14}, {83, 84, 85, 86}, {93, 94, 95, 26}, {68, 67, 104, 105}, {106, 107, 108, 109}, {110, 111, 112, 14}, {114, 115, 116, 117}, {91, 90, 122, 123}, {128, 54, 102, 101}, {130, 131, 132, 4}, {138, 95, 54, 141}, {79, 78, 6, 5}, {149, 81, 80, 152}, {36, 35, 105, 104}, {156, 30, 76, 75}, {86, 161, 162, 122}, { 164, 137, 136, 85}, {26, 144, 143, 169}, {98, 97, 170, 171}, {172, 127, 126, 40}, {174, 175, 89, 88}, {120, 119, 176, 177}, {79, 166, 111, 110}, {107, 43, 42, 15}, {123, 122, 162, 188}, {71, 70, 116, 26}, {191, 141, 129, 128}, {132, 131, 179, 193}, {134, 137, 164, 66}, {195, 196, 176, 79}, {169, 143, 142, 198}, {175, 174, 34, 33}, {171, 170, 8, 7}, { 207, 208, 209, 172}, {42, 41, 16, 15}, {54, 213, 12, 11}, {72, 71, 26, 25}, {99, 98, 171, 27}, {174, 88, 87, 21}, {223, 224, 3, 2}, {225, 164, 85, 84}, {129, 9, 8, 170}, {229, 93, 26, 169}, {172, 209, 124, 127}, { 176, 119, 118, 182}, {175, 33, 32, 234}, {128, 101, 100, 235}, {221, 195, 79, 110}, {92, 91, 123, 22}, {117, 116, 70, 69}, {107, 106, 44, 43}, {216, 132, 209, 208}, {135, 65, 106, 109}, {145, 114, 117, 55}, { 200, 15, 47, 50}, {32, 31, 60, 234}, {205, 38, 37, 96}, {129, 53, 10, 9}, {167, 51, 54, 11}, {100, 99, 27, 235}, {124, 209, 25, 24}, {87, 92, 22, 21}, {182, 118, 17, 16}, {59, 62, 178, 3}, {106, 65, 64, 180}, {47, 121, 120, 48}, {117, 183, 56, 55}, {79, 5, 10, 53}, {60, 31, 36, 104}, { 126, 125, 37, 40}, {200, 161, 86, 85}, {95, 138, 205, 26}, {80, 184, 19, 152}, {117, 69, 68, 105}, {181, 76, 30, 29}, {78, 45, 44, 106}, {135, 134, 66, 65}, {166, 79, 53, 52}, {142, 145, 55, 14}, {15, 18, 121, 47}, {37, 125, 23, 26}, {179, 61, 60, 104}, {106, 180, 28, 27}, {112, 167, 11, 14}, {247, 21, 20, 183}, {41, 46, 79, 16}, {104, 67, 72, 25}, { 178, 130, 4, 3}, {106, 7, 6, 78}, {184, 80, 14, 57}, {117, 105, 35, 34}, {224, 223, 83, 86}, {95, 94, 213, 54}, {181, 63, 66, 76}, {229, 169, 198, 13}, {176, 196, 149, 152}, {90, 89, 175, 122}, {156, 207, 172, 157}, {129, 170, 97, 102}, {164, 225, 1, 4}, {123, 188, 49, 48}, {82, 221, 110, 14}, {144, 96, 116, 115}, {132, 216, 74, 4}, {136, 108, 107, 85}, {39, 191, 128, 40}, {5, 6, 7, 8, 9, 10}, {31, 32, 33, 34, 35, 36}, {41, 42, 43, 44, 45, 46}, {67, 68, 69, 70, 71, 72}, {87, 88, 89, 90, 91, 92}, {97, 98, 99, 100, 101, 102}, {118, 119, 120, 121, 18, 17}, {124, 24, 23, 125, 126, 127}, {134, 135, 109, 108, 136, 137}, {142, 143, 144, 115, 114, 145}, {166, 52, 51, 167, 112, 111}, {178, 62, 61, 179, 131, 130}, {180, 64, 63, 181, 29, 28}, {183, 20, 19, 184, 57, 56}, {188, 162, 161, 200, 50, 49}, {138, 141, 191, 39, 38, 205}, {216, 208, 207, 156, 75, 74}, {149, 196, 195, 221, 82, 81}, {213, 94, 93, 229, 13, 12}, {223, 2, 1, 225, 84, 83}}]}}, Boxed->False]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[5]=",ExpressionUUID->"376158C8-C6EF-419D-95E3-389FE91D9512"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Numerically group", "Subsubsection",ExpressionUUID->"292504DF-0ED9-4F58-B915-6BE7C4BC24A2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Union", "[", RowBox[{"Chop", "@", RowBox[{"int", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], "//", "Length"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[6]:=",ExpressionUUID->"BF78D6BD-1EB5-464B-B8E1-D0790D3D726B"], Cell[BoxData["302"], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[6]=",ExpressionUUID->"63152B0D-6F69-462B-A824-43939ADF57F7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", RowBox[{"grouped", "=", RowBox[{ RowBox[{"SplitBy", "[", RowBox[{ RowBox[{"SortBy", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"#", ",", RowBox[{"Round", "[", RowBox[{"1*^12", "#"}], "]"}]}], "}"}], "&"}], "/@", RowBox[{"Chop", "[", RowBox[{"int", "[", RowBox[{"[", "1", "]"}], "]"}], "]"}]}], ",", "Last"}], "]"}], ",", "Last"}], "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "All", ",", "1"}], "]"}], "]"}]}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[7]:=",ExpressionUUID->"22133D21-1116-429E-91E5-DEE969BCC071"], Cell[BoxData["162"], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[7]=",ExpressionUUID->"6BF3D709-B3CB-46FB-BE96-41822AA3DB0D"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Max", "[", RowBox[{"EuclideanDistance", "@@@", RowBox[{"Flatten", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Subsets", "[", RowBox[{"#", ",", RowBox[{"{", "2", "}"}]}], "]"}], "&"}], "/@", "grouped"}], ",", "1"}], "]"}]}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[8]:=",ExpressionUUID->"85C0744F-D5B2-4438-BA77-3FC48EFD9BC2"], Cell[BoxData["1.5100665727558131`*^-15"], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[8]=",ExpressionUUID->"648D09CD-715F-4B83-A296-B9CD95EA1A14"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"grouped", "//", "Column"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[9]:=",ExpressionUUID->"EDD86731-BA68-4713-9FA7-60CC4D8A13AA"], Cell[BoxData[ TagBox[GridBox[{ { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.4275168751220312`"}], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.42751687512203107`"}], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.42751687512203107`"}], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.42751687512203107`"}], ",", "0", ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.4240725185716702`"}], ",", "0", ",", RowBox[{"-", "0.03388653831996498`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.4240725185716702`"}], ",", "0", ",", RowBox[{"-", "0.033886538319964965`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.4240725185716702`"}], ",", "0", ",", RowBox[{"-", "0.03388653831996491`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.4240725185716703`"}], ",", "0", ",", "0.03388653831996482`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.4240725185716702`"}], ",", "0", ",", "0.03388653831996516`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.42407251857167017`"}], ",", "0", ",", "0.03388653831996524`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3958828965965611`"}], ",", RowBox[{"-", "0.070426359952073`"}], ",", RowBox[{"-", "0.10768792678081146`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3958828965965615`"}], ",", RowBox[{"-", "0.07042635995207254`"}], ",", "0.1076879267808105`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.39588289659656145`"}], ",", "0.07042635995207236`", ",", RowBox[{"-", "0.1076879267808106`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3958828965965613`"}], ",", "0.07042635995207269`", ",", "0.10768792678081097`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.36182678309753413`"}], ",", RowBox[{"-", "0.22362124999431204`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.36182678309753413`"}], ",", RowBox[{"-", "0.22362124999431193`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.36182678309753413`"}], ",", RowBox[{"-", "0.22362124999431182`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.361826783097534`"}], ",", RowBox[{"-", "0.223621249994312`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.36182678309753397`"}], ",", RowBox[{"-", "0.22362124999431218`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3618267830975339`"}], ",", RowBox[{"-", "0.2236212499943123`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.36182678309753386`"}], ",", RowBox[{"-", "0.22362124999431232`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.36182678309753386`"}], ",", RowBox[{"-", "0.2236212499943123`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.36182678309753386`"}], ",", RowBox[{"-", "0.22362124999431227`"}], ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.3618267830975343`"}], ",", "0.22362124999431113`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.36182678309753413`"}], ",", "0.2236212499943116`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3618267830975341`"}], ",", "0.22362124999431185`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3618267830975341`"}], ",", "0.22362124999431193`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3618267830975341`"}], ",", "0.22362124999431204`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.361826783097534`"}], ",", "0.2236212499943121`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.36182678309753397`"}], ",", "0.22362124999431213`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3618267830975339`"}], ",", "0.22362124999431232`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.36182678309753386`"}], ",", "0.22362124999431257`", ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.36002514353184917`"}], ",", RowBox[{"-", "0.10363082970464212`"}], ",", RowBox[{"-", "0.20156474306442798`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3600251435318492`"}], ",", RowBox[{"-", "0.10363082970464205`"}], ",", "0.2015647430644279`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3600251435318492`"}], ",", "0.103630829704642`", ",", RowBox[{"-", "0.20156474306442793`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.36002514353184917`"}], ",", "0.103630829704642`", ",", "0.20156474306442804`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.35235701244224604`"}], ",", "0", ",", RowBox[{"-", "0.2216401708871989`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.352357012442246`"}], ",", "0", ",", RowBox[{"-", "0.22164017088719898`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.35235701244224593`"}], ",", "0", ",", RowBox[{"-", "0.221640170887199`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.35235701244224604`"}], ",", "0", ",", "0.22164017088719892`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.352357012442246`"}], ",", "0", ",", "0.221640170887199`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.35235701244224593`"}], ",", "0", ",", "0.22164017088719903`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.34586841735579543`"}], ",", RowBox[{"-", "0.13210997979477968`"}], ",", RowBox[{"-", "0.2137584375610155`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3458684173557952`"}], ",", RowBox[{"-", "0.13210997979477995`"}], ",", "0.2137584375610155`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3458684173557953`"}], ",", "0.1321099797947797`", ",", RowBox[{"-", "0.21375843756101565`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3458684173557953`"}], ",", "0.13210997979477973`", ",", "0.2137584375610156`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.32613860521188426`"}], ",", RowBox[{"-", "0.1584604004674211`"}], ",", RowBox[{"-", "0.22250777550724218`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.32613860521188426`"}], ",", RowBox[{"-", "0.15846040046742105`"}], ",", "0.22250777550724218`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.32613860521188415`"}], ",", "0.1584604004674211`", ",", RowBox[{"-", "0.22250777550724227`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3261386052118842`"}], ",", "0.15846040046742105`", ",", "0.22250777550724224`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.28819496981575027`"}], ",", RowBox[{"-", "0.24466908566143503`"}], ",", RowBox[{"-", "0.1742427257093622`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.28819496981575016`"}], ",", RowBox[{"-", "0.24466908566143525`"}], ",", "0.17424272570936208`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.28819496981575043`"}], ",", "0.24466908566143464`", ",", RowBox[{"-", "0.17424272570936236`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2881949698157509`"}], ",", "0.24466908566143378`", ",", "0.17424272570936267`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24466908566143541`"}], ",", RowBox[{"-", "0.17424272570936197`"}], ",", RowBox[{"-", "0.28819496981575016`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24466908566143497`"}], ",", RowBox[{"-", "0.17424272570936225`"}], ",", "0.2881949698157503`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24466908566143514`"}], ",", "0.17424272570936214`", ",", RowBox[{"-", "0.2881949698157502`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24466908566143492`"}], ",", "0.17424272570936214`", ",", "0.2881949698157504`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.22362124999431227`"}], ",", "0", ",", RowBox[{"-", "0.3618267830975339`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22362124999431213`"}], ",", "0", ",", RowBox[{"-", "0.361826783097534`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22362124999431207`"}], ",", "0", ",", RowBox[{"-", "0.361826783097534`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22362124999431204`"}], ",", "0", ",", RowBox[{"-", "0.361826783097534`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22362124999431202`"}], ",", "0", ",", RowBox[{"-", "0.361826783097534`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.223621249994312`"}], ",", "0", ",", RowBox[{"-", "0.3618267830975341`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.223621249994312`"}], ",", "0", ",", RowBox[{"-", "0.361826783097534`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22362124999431196`"}], ",", "0", ",", RowBox[{"-", "0.3618267830975341`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22362124999431196`"}], ",", "0", ",", RowBox[{"-", "0.3618267830975341`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22362124999431182`"}], ",", "0", ",", RowBox[{"-", "0.3618267830975342`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.2236212499943123`"}], ",", "0", ",", "0.3618267830975339`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22362124999431227`"}], ",", "0", ",", "0.3618267830975339`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22362124999431218`"}], ",", "0", ",", "0.3618267830975338`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22362124999431215`"}], ",", "0", ",", "0.36182678309753397`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2236212499943121`"}], ",", "0", ",", "0.361826783097534`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2236212499943121`"}], ",", "0", ",", "0.361826783097534`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22362124999431202`"}], ",", "0", ",", "0.361826783097534`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22362124999431185`"}], ",", "0", ",", "0.3618267830975342`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22362124999431182`"}], ",", "0", ",", "0.3618267830975342`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22250777550724216`"}], ",", RowBox[{"-", "0.32613860521188426`"}], ",", RowBox[{"-", "0.1584604004674211`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22250777550724204`"}], ",", RowBox[{"-", "0.3261386052118845`"}], ",", "0.15846040046742094`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2225077755072422`"}], ",", "0.3261386052118842`", ",", RowBox[{"-", "0.15846040046742105`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22250777550724204`"}], ",", "0.3261386052118842`", ",", "0.15846040046742133`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.221640170887199`"}], ",", RowBox[{"-", "0.352357012442246`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22164017088719898`"}], ",", RowBox[{"-", "0.35235701244224604`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22164017088719898`"}], ",", RowBox[{"-", "0.35235701244224604`"}], ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.2216401708871991`"}], ",", "0.35235701244224593`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22164017088719906`"}], ",", "0.35235701244224593`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22164017088719903`"}], ",", "0.35235701244224604`", ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2137584375610156`"}], ",", RowBox[{"-", "0.3458684173557953`"}], ",", RowBox[{"-", "0.13210997979477973`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21375843756101565`"}], ",", RowBox[{"-", "0.3458684173557952`"}], ",", "0.13210997979478004`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21375843756101545`"}], ",", "0.3458684173557955`", ",", RowBox[{"-", "0.13210997979477956`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21375843756101534`"}], ",", "0.34586841735579554`", ",", "0.13210997979477968`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2015647430644281`"}], ",", RowBox[{"-", "0.36002514353184917`"}], ",", RowBox[{"-", "0.10363082970464196`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2015647430644282`"}], ",", RowBox[{"-", "0.3600251435318491`"}], ",", "0.10363082970464207`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.20156474306442795`"}], ",", "0.3600251435318492`", ",", RowBox[{"-", "0.10363082970464223`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.20156474306442806`"}], ",", "0.36002514353184917`", ",", "0.10363082970464223`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.174242725709362`"}], ",", RowBox[{"-", "0.28819496981575`"}], ",", RowBox[{"-", "0.24466908566143555`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.17424272570936244`"}], ",", RowBox[{"-", "0.28819496981575066`"}], ",", "0.2446690856614344`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.17424272570936208`"}], ",", "0.28819496981575016`", ",", RowBox[{"-", "0.24466908566143522`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.1742427257093619`"}], ",", "0.28819496981575016`", ",", "0.2446690856614355`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.158460400467421`"}], ",", RowBox[{"-", "0.2225077755072422`"}], ",", RowBox[{"-", "0.3261386052118843`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.15846040046742133`"}], ",", RowBox[{"-", "0.222507775507242`"}], ",", "0.3261386052118842`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.15846040046742096`"}], ",", "0.22250777550724213`", ",", RowBox[{"-", "0.32613860521188437`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.15846040046742071`"}], ",", "0.2225077755072421`", ",", "0.3261386052118845`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.1321099797947797`"}], ",", RowBox[{"-", "0.2137584375610156`"}], ",", RowBox[{"-", "0.3458684173557954`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.1321099797947799`"}], ",", RowBox[{"-", "0.21375843756101545`"}], ",", "0.34586841735579527`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.13210997979477987`"}], ",", "0.21375843756101562`", ",", RowBox[{"-", "0.34586841735579527`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.13210997979478004`"}], ",", "0.21375843756101562`", ",", "0.3458684173557952`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10768792678081046`"}], ",", RowBox[{"-", "0.3958828965965615`"}], ",", RowBox[{"-", "0.07042635995207241`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10768792678081109`"}], ",", RowBox[{"-", "0.3958828965965613`"}], ",", "0.0704263599520727`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10768792678081127`"}], ",", "0.39588289659656123`", ",", RowBox[{"-", "0.07042635995207298`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10768792678081102`"}], ",", "0.39588289659656134`", ",", "0.0704263599520728`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10363082970464196`"}], ",", RowBox[{"-", "0.20156474306442795`"}], ",", RowBox[{"-", "0.3600251435318492`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10363082970464216`"}], ",", RowBox[{"-", "0.20156474306442798`"}], ",", "0.36002514353184917`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10363082970464216`"}], ",", "0.2015647430644281`", ",", RowBox[{"-", "0.36002514353184917`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10363082970464206`"}], ",", "0.201564743064428`", ",", "0.36002514353184917`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.07042635995207289`"}], ",", RowBox[{"-", "0.10768792678081097`"}], ",", RowBox[{"-", "0.39588289659656134`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.07042635995207261`"}], ",", RowBox[{"-", "0.10768792678081077`"}], ",", "0.3958828965965614`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.07042635995207255`"}], ",", "0.1076879267808108`", ",", RowBox[{"-", "0.3958828965965614`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "0.07042635995207272`"}], ",", "0.10768792678081066`", ",", "0.39588289659656134`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.03388653831996494`"}], ",", RowBox[{"-", "0.4240725185716702`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.03388653831996488`"}], ",", RowBox[{"-", "0.4240725185716703`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.033886538319964785`"}], ",", RowBox[{"-", "0.4240725185716703`"}], ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.033886538319965`"}], ",", "0.4240725185716702`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.03388653831996483`"}], ",", "0.4240725185716703`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.0338865383199647`"}], ",", "0.42407251857167033`", ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.4275168751220311`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.4275168751220311`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.42751687512203107`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.42751687512203107`"}], ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3618267830975343`"}], ",", RowBox[{"-", "0.2236212499943116`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3618267830975342`"}], ",", RowBox[{"-", "0.2236212499943117`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.36182678309753413`"}], ",", RowBox[{"-", "0.22362124999431182`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3618267830975341`"}], ",", RowBox[{"-", "0.2236212499943119`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.361826783097534`"}], ",", RowBox[{"-", "0.22362124999431202`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.361826783097534`"}], ",", RowBox[{"-", "0.223621249994312`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.361826783097534`"}], ",", RowBox[{"-", "0.22362124999431196`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.36182678309753397`"}], ",", RowBox[{"-", "0.22362124999431202`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3618267830975339`"}], ",", RowBox[{"-", "0.22362124999431207`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3618267830975342`"}], ",", "0.22362124999431177`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.36182678309753413`"}], ",", "0.22362124999431185`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.36182678309753413`"}], ",", "0.22362124999431188`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3618267830975341`"}], ",", "0.22362124999431188`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3618267830975341`"}], ",", "0.22362124999431193`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3618267830975341`"}], ",", "0.22362124999431193`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3618267830975341`"}], ",", "0.22362124999431196`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3618267830975341`"}], ",", "0.223621249994312`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.361826783097534`"}], ",", "0.22362124999431188`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.22164017088719898`"}], ",", RowBox[{"-", "0.35235701244224593`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.22164017088719895`"}], ",", RowBox[{"-", "0.352357012442246`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.2216401708871989`"}], ",", RowBox[{"-", "0.35235701244224604`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.22164017088719914`"}], ",", "0.3523570124422458`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.22164017088719912`"}], ",", "0.3523570124422459`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.22164017088719898`"}], ",", "0.352357012442246`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.03388653831996492`"}], ",", RowBox[{"-", "0.4240725185716702`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.03388653831996491`"}], ",", RowBox[{"-", "0.4240725185716703`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.03388653831996482`"}], ",", RowBox[{"-", "0.4240725185716703`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.033886538319964896`"}], ",", "0.4240725185716703`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.03388653831996476`"}], ",", "0.4240725185716703`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.033886538319964674`"}], ",", "0.4240725185716703`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "0.4275168751220311`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "0.4275168751220311`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "0.4275168751220311`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "0.4275168751220311`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0.4275168751220311`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0.4275168751220311`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0.4275168751220311`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0.4275168751220311`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0.033886538319964896`", ",", RowBox[{"-", "0.4240725185716702`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.03388653831996491`", ",", RowBox[{"-", "0.4240725185716703`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.03388653831996491`", ",", RowBox[{"-", "0.4240725185716702`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0", ",", "0.033886538319964674`", ",", "0.4240725185716703`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0", ",", "0.033886538319964694`", ",", "0.4240725185716703`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0", ",", "0.03388653831996502`", ",", "0.42407251857167017`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0.22164017088719895`", ",", RowBox[{"-", "0.35235701244224604`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.221640170887199`", ",", RowBox[{"-", "0.352357012442246`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.221640170887199`", ",", RowBox[{"-", "0.35235701244224593`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0", ",", "0.22164017088719892`", ",", "0.35235701244224593`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0", ",", "0.22164017088719906`", ",", "0.3523570124422459`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0", ",", "0.22164017088719906`", ",", "0.35235701244224593`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0.3618267830975339`", ",", RowBox[{"-", "0.2236212499943121`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.36182678309753397`", ",", RowBox[{"-", "0.22362124999431204`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.361826783097534`", ",", RowBox[{"-", "0.22362124999431196`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.3618267830975341`", ",", RowBox[{"-", "0.22362124999431193`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.3618267830975341`", ",", RowBox[{"-", "0.22362124999431193`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.3618267830975341`", ",", RowBox[{"-", "0.22362124999431185`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.3618267830975341`", ",", RowBox[{"-", "0.22362124999431185`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.36182678309753413`", ",", RowBox[{"-", "0.2236212499943117`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.36182678309753424`", ",", RowBox[{"-", "0.22362124999431177`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0", ",", "0.36182678309753374`", ",", "0.2236212499943122`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0", ",", "0.3618267830975339`", ",", "0.22362124999431204`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0", ",", "0.36182678309753397`", ",", "0.22362124999431213`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.361826783097534`", ",", "0.22362124999431193`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.361826783097534`", ",", "0.22362124999431204`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0", ",", "0.3618267830975341`", ",", "0.22362124999431188`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0", ",", "0.36182678309753413`", ",", "0.22362124999431188`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0", ",", "0.3618267830975342`", ",", "0.22362124999431174`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0.42751687512203107`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.4275168751220311`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.4275168751220312`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.4275168751220312`", ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.033886538319964715`", ",", RowBox[{"-", "0.4240725185716703`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.033886538319965076`", ",", RowBox[{"-", "0.42407251857167017`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.03388653831996523`", ",", RowBox[{"-", "0.42407251857167017`"}], ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0.03388653831996471`", ",", "0.4240725185716703`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.033886538319964715`", ",", "0.4240725185716703`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.0338865383199648`", ",", "0.4240725185716703`", ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.07042635995207264`", ",", RowBox[{"-", "0.10768792678081093`"}], ",", RowBox[{"-", "0.39588289659656134`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.07042635995207278`", ",", RowBox[{"-", "0.10768792678081096`"}], ",", "0.39588289659656134`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.07042635995207275`", ",", "0.10768792678081096`", ",", RowBox[{"-", "0.39588289659656134`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.07042635995207294`", ",", "0.10768792678081099`", ",", "0.3958828965965613`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.10363082970464195`", ",", RowBox[{"-", "0.20156474306442784`"}], ",", RowBox[{"-", "0.36002514353184933`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.10363082970464271`", ",", RowBox[{"-", "0.20156474306442818`"}], ",", "0.36002514353184895`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.10363082970464202`", ",", "0.201564743064428`", ",", RowBox[{"-", "0.36002514353184917`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.10363082970464213`", ",", "0.20156474306442804`", ",", "0.36002514353184917`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.10768792678081084`", ",", RowBox[{"-", "0.39588289659656134`"}], ",", RowBox[{"-", "0.07042635995207258`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.10768792678081064`", ",", RowBox[{"-", "0.39588289659656145`"}], ",", "0.07042635995207233`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.10768792678081054`", ",", "0.3958828965965615`", ",", RowBox[{"-", "0.07042635995207244`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.10768792678081097`", ",", "0.39588289659656134`", ",", "0.07042635995207258`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.13210997979477976`", ",", RowBox[{"-", "0.21375843756101537`"}], ",", RowBox[{"-", "0.34586841735579543`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.1321099797947804`", ",", RowBox[{"-", "0.2137584375610157`"}], ",", "0.3458684173557951`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.13210997979477976`", ",", "0.2137584375610157`", ",", RowBox[{"-", "0.3458684173557953`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.13210997979477992`", ",", "0.21375843756101545`", ",", "0.34586841735579527`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.15846040046742105`", ",", RowBox[{"-", "0.22250777550724204`"}], ",", RowBox[{"-", "0.32613860521188437`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.1584604004674209`", ",", RowBox[{"-", "0.22250777550724224`"}], ",", "0.3261386052118843`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.158460400467421`", ",", "0.2225077755072422`", ",", RowBox[{"-", "0.3261386052118843`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.15846040046742127`", ",", "0.222507775507242`", ",", "0.32613860521188426`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.17424272570936222`", ",", RowBox[{"-", "0.2881949698157505`"}], ",", RowBox[{"-", "0.2446690856614347`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.1742427257093619`", ",", RowBox[{"-", "0.2881949698157498`"}], ",", "0.24466908566143578`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.17424272570936197`", ",", "0.2881949698157499`", ",", RowBox[{"-", "0.2446690856614357`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.17424272570936236`", ",", "0.2881949698157504`", ",", "0.24466908566143478`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.201564743064428`", ",", RowBox[{"-", "0.36002514353184917`"}], ",", RowBox[{"-", "0.10363082970464227`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.20156474306442806`", ",", RowBox[{"-", "0.3600251435318492`"}], ",", "0.103630829704642`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.20156474306442823`", ",", "0.36002514353184906`", ",", RowBox[{"-", "0.10363082970464225`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.2015647430644281`", ",", "0.36002514353184917`", ",", "0.103630829704642`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.21375843756101554`", ",", RowBox[{"-", "0.3458684173557953`"}], ",", RowBox[{"-", "0.13210997979477976`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.2137584375610156`", ",", RowBox[{"-", "0.3458684173557952`"}], ",", "0.1321099797947799`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.21375843756101556`", ",", "0.34586841735579543`", ",", RowBox[{"-", "0.1321099797947796`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.2137584375610156`", ",", "0.34586841735579527`", ",", "0.13210997979477987`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.22164017088719892`", ",", RowBox[{"-", "0.35235701244224604`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.221640170887199`", ",", RowBox[{"-", "0.35235701244224593`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.22164017088719903`", ",", RowBox[{"-", "0.35235701244224593`"}], ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.221640170887199`", ",", "0.35235701244224604`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.22164017088719903`", ",", "0.352357012442246`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.22164017088719912`", ",", "0.35235701244224593`", ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.22250777550724204`", ",", RowBox[{"-", "0.32613860521188437`"}], ",", RowBox[{"-", "0.15846040046742096`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.22250777550724227`", ",", RowBox[{"-", "0.32613860521188415`"}], ",", "0.15846040046742105`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.22250777550724227`", ",", "0.3261386052118841`", ",", RowBox[{"-", "0.1584604004674212`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.22250777550724202`", ",", "0.32613860521188426`", ",", "0.15846040046742127`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.22362124999431185`", ",", "0", ",", RowBox[{"-", "0.36182678309753413`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.22362124999431185`", ",", "0", ",", RowBox[{"-", "0.36182678309753413`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.22362124999431193`", ",", "0", ",", RowBox[{"-", "0.36182678309753413`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.22362124999431196`", ",", "0", ",", RowBox[{"-", "0.3618267830975341`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.223621249994312`", ",", "0", ",", RowBox[{"-", "0.3618267830975341`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.22362124999431202`", ",", "0", ",", RowBox[{"-", "0.361826783097534`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.22362124999431204`", ",", "0", ",", RowBox[{"-", "0.361826783097534`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.22362124999431204`", ",", "0", ",", RowBox[{"-", "0.361826783097534`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.22362124999431204`", ",", "0", ",", RowBox[{"-", "0.361826783097534`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.2236212499943121`", ",", "0", ",", RowBox[{"-", "0.36182678309753397`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.2236212499943116`", ",", "0", ",", "0.3618267830975342`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.22362124999431182`", ",", "0", ",", "0.3618267830975341`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.22362124999431188`", ",", "0", ",", "0.361826783097534`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.22362124999431193`", ",", "0", ",", "0.3618267830975341`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.22362124999431193`", ",", "0", ",", "0.36182678309753413`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.223621249994312`", ",", "0", ",", "0.361826783097534`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.22362124999431204`", ",", "0", ",", "0.361826783097534`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.22362124999431204`", ",", "0", ",", "0.361826783097534`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.24466908566143533`", ",", RowBox[{"-", "0.17424272570936222`"}], ",", RowBox[{"-", "0.28819496981575`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.24466908566143492`", ",", RowBox[{"-", "0.17424272570936225`"}], ",", "0.2881949698157503`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.2446690856614343`", ",", "0.1742427257093626`", ",", RowBox[{"-", "0.28819496981575055`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.24466908566143486`", ",", "0.1742427257093623`", ",", "0.2881949698157504`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.28819496981575055`", ",", RowBox[{"-", "0.24466908566143458`"}], ",", RowBox[{"-", "0.1742427257093622`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.2881949698157503`", ",", RowBox[{"-", "0.24466908566143508`"}], ",", "0.17424272570936203`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.28819496981575027`", ",", "0.2446690856614349`", ",", RowBox[{"-", "0.1742427257093623`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.2881949698157504`", ",", "0.24466908566143464`", ",", "0.1742427257093625`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.326138605211884`", ",", RowBox[{"-", "0.15846040046742133`"}], ",", RowBox[{"-", "0.22250777550724235`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.3261386052118843`", ",", RowBox[{"-", "0.15846040046742108`"}], ",", "0.2225077755072421`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.326138605211884`", ",", "0.1584604004674214`", ",", RowBox[{"-", "0.22250777550724204`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.3261386052118841`", ",", "0.15846040046742121`", ",", "0.22250777550724218`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.34586841735579527`", ",", RowBox[{"-", "0.13210997979477987`"}], ",", RowBox[{"-", "0.21375843756101562`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.3458684173557954`", ",", RowBox[{"-", "0.1321099797947798`"}], ",", "0.2137584375610155`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.34586841735579527`", ",", "0.13210997979477987`", ",", RowBox[{"-", "0.21375843756101556`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.3458684173557952`", ",", "0.13210997979477995`", ",", "0.21375843756101556`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.3523570124422458`", ",", "0", ",", RowBox[{"-", "0.22164017088719926`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.35235701244224593`", ",", "0", ",", RowBox[{"-", "0.22164017088719906`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.35235701244224593`", ",", "0", ",", RowBox[{"-", "0.221640170887199`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0.35235701244224593`", ",", "0", ",", "0.22164017088719895`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.35235701244224593`", ",", "0", ",", "0.2216401708871991`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.352357012442246`", ",", "0", ",", "0.22164017088719898`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.36002514353184917`", ",", RowBox[{"-", "0.10363082970464206`"}], ",", RowBox[{"-", "0.20156474306442795`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.36002514353184917`", ",", RowBox[{"-", "0.10363082970464216`"}], ",", "0.20156474306442804`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.36002514353184917`", ",", "0.10363082970464219`", ",", RowBox[{"-", "0.20156474306442798`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.3600251435318492`", ",", "0.10363082970464206`", ",", "0.2015647430644279`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.3618267830975339`", ",", RowBox[{"-", "0.22362124999431238`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.361826783097534`", ",", RowBox[{"-", "0.22362124999431207`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.361826783097534`", ",", RowBox[{"-", "0.22362124999431202`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.361826783097534`", ",", RowBox[{"-", "0.22362124999431193`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.3618267830975341`", ",", RowBox[{"-", "0.22362124999431196`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.3618267830975341`", ",", RowBox[{"-", "0.22362124999431188`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.3618267830975341`", ",", RowBox[{"-", "0.2236212499943118`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.3618267830975341`", ",", RowBox[{"-", "0.22362124999431174`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.36182678309753424`", ",", RowBox[{"-", "0.22362124999431143`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.36182678309753424`", ",", RowBox[{"-", "0.22362124999431132`"}], ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.3618267830975338`", ",", "0.2236212499943125`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.36182678309753397`", ",", "0.22362124999431204`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.36182678309753397`", ",", "0.22362124999431215`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.36182678309753397`", ",", "0.2236212499943122`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.361826783097534`", ",", "0.22362124999431207`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.361826783097534`", ",", "0.2236212499943121`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.361826783097534`", ",", "0.22362124999431213`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.3618267830975341`", ",", "0.22362124999431193`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.3618267830975342`", ",", "0.22362124999431182`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.36182678309753424`", ",", "0.22362124999431177`", ",", "0"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.3958828965965614`", ",", RowBox[{"-", "0.07042635995207251`"}], ",", RowBox[{"-", "0.10768792678081068`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.3958828965965613`", ",", RowBox[{"-", "0.07042635995207266`"}], ",", "0.10768792678081107`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{"0.3958828965965612`", ",", "0.07042635995207286`", ",", RowBox[{"-", "0.10768792678081116`"}]}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", RowBox[{ "0.3958828965965614`", ",", "0.0704263599520727`", ",", "0.10768792678081072`"}], "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.42407251857167017`", ",", "0", ",", RowBox[{"-", "0.033886538319964965`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.4240725185716702`", ",", "0", ",", RowBox[{"-", "0.033886538319964805`"}]}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0.42407251857167017`", ",", "0", ",", "0.03388653831996508`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.4240725185716702`", ",", "0", ",", "0.03388653831996498`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.4240725185716703`", ",", "0", ",", "0.033886538319964896`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.42751687512203107`", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.4275168751220311`", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.4275168751220311`", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.4275168751220311`", ",", "0", ",", "0"}], "}"}]}], "}"}]} }, DefaultBaseStyle->"Column", GridBoxAlignment->{"Columns" -> {{Left}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[9]=",ExpressionUUID->"8C25250B-05F7-4866-8352-500641A3252C"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"rules", "=", RowBox[{"Flatten", "[", RowBox[{ RowBox[{ RowBox[{"Function", "[", RowBox[{"l", ",", RowBox[{ RowBox[{ RowBox[{"Rule", "[", RowBox[{"#", ",", RowBox[{"Mean", "[", "l", "]"}]}], "]"}], "&"}], "/@", "l"}]}], "]"}], "/@", "grouped"}], ",", "1"}], "]"}]}], ";"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[10]:=",ExpressionUUID->"16BE66A0-8D3B-400A-BBFE-78A25BB73ED4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"newi", "=", RowBox[{"ConvexHullRegion", "[", RowBox[{"DeleteDuplicates", "[", RowBox[{ RowBox[{"Chop", "[", RowBox[{"int", "[", RowBox[{"[", "1", "]"}], "]"}], "]"}], "/.", "rules"}], "]"}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[11]:=",ExpressionUUID->"C22B5AF5-CCDA-44AC-904E-6ED7A07ACC82"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, -0.22164017088719892`, -0.35235701244224593`}, { 0.10363082970464195`, -0.20156474306442784`, -0.36002514353184933`}, { 0.13210997979477976`, -0.21375843756101537`, -0.34586841735579543`}, { 0, -0.361826783097534, -0.22362124999431188`}, {-0.3958828965965613, 0.07042635995207269, 0.10768792678081097`}, {-0.4240725185716703, 0, 0.033886538319965076`}, {-0.3958828965965615, -0.07042635995207254, 0.1076879267808105}, {-0.3600251435318492, -0.10363082970464205`, 0.2015647430644279}, {-0.352357012442246, 0, 0.22164017088719898`}, {-0.36002514353184917`, 0.103630829704642, 0.20156474306442804`}, {-0.13210997979478004`, 0.21375843756101562`, 0.3458684173557952}, {-0.10363082970464206`, 0.201564743064428, 0.36002514353184917`}, { 0, 0.22164017088719903`, 0.35235701244224593`}, { 0, 0.361826783097534, 0.223621249994312}, {-0.22362124999431204`, 0, -0.361826783097534}, {-0.3458684173557953, 0.1321099797947797, -0.21375843756101565`}, {-0.32613860521188415`, 0.1584604004674211, -0.22250777550724227`}, {-0.24466908566143514`, 0.17424272570936214`, -0.2881949698157502}, {0.10768792678081054`, 0.3958828965965615, -0.07042635995207244}, {0.20156474306442823`, 0.36002514353184906`, -0.10363082970464225`}, {0.21375843756101556`, 0.34586841735579543`, -0.1321099797947796}, { 0, 0.3618267830975341, -0.22362124999431188`}, { 0.24466908566143492`, -0.17424272570936225`, 0.2881949698157503}, { 0.3261386052118843, -0.15846040046742108`, 0.2225077755072421}, { 0.3458684173557954, -0.1321099797947798, 0.2137584375610155}, { 0.2236212499943119, 0, 0.361826783097534}, {-0.21375843756101565`, -0.3458684173557952, 0.13210997979478004`}, {-0.2015647430644282, -0.3600251435318491, 0.10363082970464207`}, {-0.10768792678081109`, -0.3958828965965613, 0.0704263599520727}, {0, -0.3618267830975341, 0.22362124999431188`}, { 0.36002514353184917`, -0.10363082970464206`, -0.20156474306442795`}, { 0.35235701244224593`, 0, -0.22164017088719912`}, {0.36002514353184917`, 0.10363082970464219`, -0.20156474306442798`}, {0.3958828965965612, 0.07042635995207286, -0.10768792678081116`}, { 0.42407251857167017`, 0, -0.03388653831996488}, { 0.3958828965965614, -0.07042635995207251, -0.10768792678081068`}, { 0.1321099797947804, -0.2137584375610157, 0.3458684173557951}, { 0.10363082970464271`, -0.20156474306442818`, 0.36002514353184895`}, { 0, -0.2216401708871991, 0.3523570124422459}, {-0.3600251435318492, 0.103630829704642, -0.20156474306442793`}, {-0.352357012442246, 0, -0.22164017088719898`}, {-0.36002514353184917`, \ -0.10363082970464212`, -0.20156474306442798`}, {-0.3958828965965611, \ -0.070426359952073, -0.10768792678081146`}, {-0.4240725185716702, 0, -0.03388653831996495}, {-0.39588289659656145`, 0.07042635995207236, -0.1076879267808106}, {-0.13210997979477987`, 0.21375843756101562`, -0.34586841735579527`}, { 0, 0.22164017088719898`, -0.352357012442246}, {-0.10363082970464216`, 0.2015647430644281, -0.36002514353184917`}, {-0.24466908566143492`, 0.17424272570936214`, 0.2881949698157504}, {-0.3261386052118842, 0.15846040046742105`, 0.22250777550724224`}, {-0.3458684173557953, 0.13210997979477973`, 0.2137584375610156}, {-0.2236212499943121, 0, 0.361826783097534}, { 0.2137584375610156, 0.34586841735579527`, 0.13210997979477987`}, { 0.2015647430644281, 0.36002514353184917`, 0.103630829704642}, { 0.10768792678081097`, 0.39588289659656134`, 0.07042635995207258}, { 0.223621249994312, 0, -0.361826783097534}, { 0.34586841735579527`, -0.13210997979477987`, -0.21375843756101562`}, { 0.326138605211884, -0.15846040046742133`, -0.22250777550724235`}, { 0.24466908566143533`, -0.17424272570936222`, -0.28819496981575}, \ {-0.10768792678081046`, -0.3958828965965615, -0.07042635995207241}, \ {-0.2015647430644281, -0.36002514353184917`, -0.10363082970464196`}, \ {-0.2137584375610156, -0.3458684173557953, -0.13210997979477973`}, { 0.3958828965965613, -0.07042635995207266, 0.10768792678081107`}, { 0.4240725185716702, 0, 0.033886538319964986`}, {0.3958828965965614, 0.0704263599520727, 0.10768792678081072`}, {0.3600251435318492, 0.10363082970464206`, 0.2015647430644279}, { 0.35235701244224593`, 0, 0.221640170887199}, { 0.36002514353184917`, -0.10363082970464216`, 0.20156474306442804`}, { 0.10768792678081084`, -0.39588289659656134`, -0.07042635995207258}, { 0.03388653831996501, -0.4240725185716702, 0}, { 0, -0.42751687512203107`, 0}, {-0.42751687512203107`, 0, 0}, {-0.361826783097534, 0.223621249994312, 0}, { 0, 0.4275168751220311, 0}, {-0.03388653831996485, 0.4240725185716703, 0}, {-0.10768792678081102`, 0.39588289659656134`, 0.0704263599520728}, { 0, -0.03388653831996488, -0.4240725185716703}, {-0.07042635995207289, \ -0.10768792678081097`, -0.39588289659656134`}, {0, 0, -0.4275168751220311}, { 0.22250777550724227`, 0.3261386052118841, -0.1584604004674212}, { 0.28819496981575027`, 0.2446690856614349, -0.1742427257093623}, { 0.326138605211884, 0.1584604004674214, -0.22250777550724204`}, { 0.2446690856614343, 0.1742427257093626, -0.28819496981575055`}, { 0.158460400467421, 0.2225077755072422, -0.3261386052118843}, { 0.17424272570936197`, 0.2881949698157499, -0.2446690856614357}, { 0.07042635995207294, 0.10768792678081099`, 0.3958828965965613}, { 0, 0.0338865383199648, 0.4240725185716703}, { 0, 0, 0.4275168751220311}, {-0.32613860521188426`, \ -0.15846040046742105`, 0.22250777550724218`}, {-0.28819496981575016`, -0.24466908566143525`, 0.17424272570936208`}, {-0.22250777550724204`, -0.3261386052118845, 0.15846040046742094`}, {-0.17424272570936244`, -0.28819496981575066`, 0.2446690856614344}, {-0.15846040046742133`, -0.222507775507242, 0.3261386052118842}, {-0.24466908566143497`, -0.17424272570936225`, 0.2881949698157503}, {0.361826783097534, -0.22362124999431185`, 0}, { 0.42751687512203107`, 0, 0}, {-0.361826783097534, -0.22362124999431213`, 0}, {-0.34586841735579543`, -0.13210997979477968`, \ -0.2137584375610155}, {-0.32613860521188426`, -0.1584604004674211, \ -0.22250777550724218`}, {-0.28819496981575027`, -0.24466908566143503`, \ -0.1742427257093622}, {-0.21375843756101534`, 0.34586841735579554`, 0.13210997979477968`}, {-0.22250777550724204`, 0.3261386052118842, 0.15846040046742133`}, {-0.1742427257093619, 0.28819496981575016`, 0.2446690856614355}, {0.2881949698157504, 0.24466908566143464`, 0.1742427257093625}, {0.3261386052118841, 0.15846040046742121`, 0.22250777550724218`}, {0.3458684173557952, 0.13210997979477995`, 0.21375843756101556`}, { 0.361826783097534, 0.22362124999431207`, 0}, {-0.28819496981575043`, 0.24466908566143464`, -0.17424272570936236`}, {-0.2225077755072422, 0.3261386052118842, -0.15846040046742105`}, {-0.17424272570936208`, 0.28819496981575016`, -0.24466908566143522`}, {-0.15846040046742096`, 0.22250777550724213`, -0.32613860521188437`}, {0.13210997979477976`, 0.2137584375610157, -0.3458684173557953}, { 0.2881949698157503, -0.24466908566143508`, 0.17424272570936203`}, { 0.1584604004674209, -0.22250777550724224`, 0.3261386052118843}, { 0.1742427257093619, -0.2881949698157498, 0.24466908566143578`}, { 0.22250777550724227`, -0.32613860521188415`, 0.15846040046742105`}, {-0.1321099797947799, -0.21375843756101545`, 0.34586841735579527`}, { 0.17424272570936222`, -0.2881949698157505, -0.2446690856614347}, { 0.22250777550724204`, -0.32613860521188437`, -0.15846040046742096`}, { 0.21375843756101554`, -0.3458684173557953, -0.13210997979477976`}, \ {-0.174242725709362, -0.28819496981575, -0.24466908566143555`}, \ {-0.22250777550724216`, -0.32613860521188426`, -0.1584604004674211}, \ {-0.24466908566143541`, -0.17424272570936197`, -0.28819496981575016`}, \ {-0.158460400467421, -0.2225077755072422, -0.3261386052118843}, { 0, -0.03388653831996478, 0.4240725185716703}, {-0.07042635995207261, -0.10768792678081077`, 0.3958828965965614}, {0.17424272570936236`, 0.2881949698157504, 0.24466908566143478`}, {0.15846040046742127`, 0.222507775507242, 0.32613860521188426`}, {0.24466908566143486`, 0.1742427257093623, 0.2881949698157504}, {0.22250777550724202`, 0.32613860521188426`, 0.15846040046742127`}, {-0.10768792678081127`, 0.39588289659656123`, -0.07042635995207298}, { 0.10768792678081064`, -0.39588289659656145`, 0.07042635995207233}, { 0, 0.0338865383199649, -0.4240725185716703}, {0.07042635995207275, 0.10768792678081096`, -0.39588289659656134`}, {-0.1321099797947797, \ -0.2137584375610156, -0.3458684173557954}, {-0.2881949698157509, 0.24466908566143378`, 0.17424272570936267`}, {-0.15846040046742071`, 0.2225077755072421, 0.3261386052118845}, {0.13210997979477992`, 0.21375843756101545`, 0.34586841735579527`}, {-0.3458684173557952, -0.13210997979477995`, 0.2137584375610155}, {0.2137584375610156, -0.3458684173557952, 0.1321099797947799}, {0.34586841735579527`, 0.13210997979477987`, -0.21375843756101556`}, {-0.21375843756101545`, 0.3458684173557955, -0.13210997979477956`}, { 0.15846040046742105`, -0.22250777550724204`, -0.32613860521188437`}, { 0.28819496981575055`, -0.24466908566143458`, -0.1742427257093622}, \ {-0.221640170887199, -0.3523570124422461, 0}, {-0.03388653831996487, -0.4240725185716703, 0}, { 0.22164017088719903`, 0.352357012442246, 0}, { 0.03388653831996474, 0.4240725185716703, 0}, {0.10363082970464202`, 0.201564743064428, -0.36002514353184917`}, {-0.10363082970464216`, \ -0.20156474306442798`, 0.36002514353184917`}, {-0.22164017088719903`, 0.35235701244224593`, 0}, {-0.20156474306442795`, 0.3600251435318492, -0.10363082970464223`}, {-0.07042635995207255, 0.1076879267808108, -0.3958828965965614}, { 0.07042635995207278, -0.10768792678081096`, 0.39588289659656134`}, { 0.20156474306442806`, -0.3600251435318492, 0.103630829704642}, { 0.22164017088719898`, -0.35235701244224593`, 0}, {-0.07042635995207272, 0.10768792678081066`, 0.39588289659656134`}, { 0.201564743064428, -0.36002514353184917`, -0.10363082970464227`}, \ {-0.20156474306442806`, 0.36002514353184917`, 0.10363082970464223`}, { 0.07042635995207264, -0.10768792678081093`, -0.39588289659656134`}, \ {-0.10363082970464196`, -0.20156474306442795`, -0.3600251435318492}, { 0.10363082970464213`, 0.20156474306442804`, 0.36002514353184917`}}, {{ 18, 15, 16, 17}, {16, 40, 45, 73}, {16, 15, 41, 40}, {15, 18, 111, 46}, {73, 136, 102, 101}, {107, 81, 80, 21}, {107, 21, 20, 147}, {41, 15, 98, 42}, {43, 42, 98, 97}, {123, 15, 135, 124}, {15, 46, 48, 153}, {46, 111, 110, 22}, {48, 46, 22, 47}, {45, 40, 41, 42, 43, 44}, { 73, 45, 44, 72}, {43, 97, 72, 44}, {136, 73, 51, 50}, {50, 51, 52, 49}, {49, 52, 11, 137}, {73, 101, 159, 151}, {159, 101, 14, 76}, {76, 14, 74, 75}, {75, 74, 22, 131}, {16, 73, 108, 17}, {151, 159, 76, 75, 131, 152}, {73, 151, 152, 142}, {131, 22, 142, 152}, {95, 36, 35, 96}, {96, 35, 34, 107}, {107, 34, 33, 141}, {36, 95, 57, 31}, {135, 15, 78, 161}, {78, 15, 79, 77}, {59, 143, 3, 56}, {21, 80, 85, 22}, {20, 21, 22, 19}, {22, 74, 148, 19}, {54, 147, 20, 19, 148, 55}, {74, 14, 55, 148}, {54, 55, 14, 53}, {127, 130, 53, 14}, {107, 147, 54, 53}, { 130, 104, 107, 53}, {66, 65, 107, 106}, {52, 9, 8, 139}, {102, 136, 50, 49, 137, 103}, {101, 102, 103, 14}, {137, 11, 14, 103}, {110, 111, 18, 17, 108, 109}, {22, 110, 109, 142}, {108, 73, 142, 109}, {96, 107, 65, 64}, {95, 96, 64, 63}, {66, 106, 26, 67}, {126, 52, 117, 150}, {52, 126, 125, 88}, {34, 35, 36, 31, 32, 33}, {31, 57, 56, 32}, {141, 33, 32, 56}, {124, 135, 4, 121}, {1, 2, 3, 4}, {135, 161, 1, 4}, {161, 78, 77, 160, 2, 1}, {56, 3, 2, 160}, {77, 79, 56, 160}, {81, 107, 141, 82}, {141, 56, 83, 82}, {79, 15, 153, 133}, {56, 79, 133, 134}, {48, 47, 149, 134, 133, 153}, {47, 22, 112, 149}, {56, 134, 149, 112}, {80, 81, 82, 83, 84, 85}, {83, 56, 112, 84}, {22, 85, 84, 112}, {107, 104, 105, 106}, {26, 106, 105, 129}, {90, 97, 27, 91}, {51, 73, 5, 10}, {52, 51, 10, 9}, {139, 8, 7, 97}, {25, 24, 113, 95}, {24, 25, 26, 23}, {4, 69, 70, 71}, {92, 91, 27, 30}, {70, 132, 30, 71}, {150, 117, 30, 39}, { 126, 150, 39, 38, 154, 125}, {88, 125, 154, 26}, {98, 15, 123, 99}, { 97, 98, 99, 100}, {123, 124, 121, 122, 100, 99}, {97, 100, 122, 62}, { 121, 4, 62, 122}, {97, 62, 61, 145}, {27, 97, 145, 28}, {59, 56, 57, 58}, {3, 143, 118, 4}, {118, 119, 120, 4}, {52, 88, 87, 157}, {11, 52, 157, 12}, {130, 127, 128, 129, 105, 104}, {127, 14, 138, 128}, {26, 129, 128, 138}, {92, 30, 117, 93}, {117, 52, 94, 93}, {90, 91, 92, 93, 94, 89}, {97, 90, 89, 139}, {52, 139, 89, 94}, {8, 9, 10, 5, 6, 7}, { 73, 72, 6, 5}, {72, 97, 7, 6}, {65, 66, 67, 68, 63, 64}, {95, 63, 68, 25}, {67, 26, 25, 68}, {132, 155, 140, 30}, {4, 71, 146, 60}, {62, 4, 60, 61}, {145, 61, 60, 146, 29, 28}, {71, 30, 29, 146}, {30, 27, 28, 29}, {143, 59, 58, 144, 119, 118}, {120, 119, 144, 95}, {57, 95, 144, 58}, {69, 4, 120, 158}, {26, 138, 162, 86}, {88, 26, 86, 87}, {157, 87, 86, 162, 13, 12}, {138, 14, 13, 162}, {14, 11, 12, 13}, {113, 24, 23, 114, 115, 116}, {30, 140, 116, 115}, {95, 113, 116, 140}, {154, 38, 37, 26}, {23, 26, 37, 114}, {38, 39, 30, 37}, {115, 114, 37, 30}, {70, 69, 158, 156, 155, 132}, {140, 155, 156, 95}, {120, 95, 156, 158}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[{{ 0, -0.22164017088719892`, -0.35235701244224593`}, { 0.10363082970464195`, -0.20156474306442784`, \ -0.36002514353184933`}, { 0.13210997979477976`, -0.21375843756101537`, \ -0.34586841735579543`}, { 0, -0.361826783097534, -0.22362124999431188`}, \ {-0.3958828965965613, 0.07042635995207269, 0.10768792678081097`}, {-0.4240725185716703, 0, 0.033886538319965076`}, {-0.3958828965965615, \ -0.07042635995207254, 0.1076879267808105}, {-0.3600251435318492, \ -0.10363082970464205`, 0.2015647430644279}, {-0.352357012442246, 0, 0.22164017088719898`}, {-0.36002514353184917`, 0.103630829704642, 0.20156474306442804`}, {-0.13210997979478004`, 0.21375843756101562`, 0.3458684173557952}, {-0.10363082970464206`, 0.201564743064428, 0.36002514353184917`}, { 0, 0.22164017088719903`, 0.35235701244224593`}, { 0, 0.361826783097534, 0.223621249994312}, {-0.22362124999431204`, 0, -0.361826783097534}, {-0.3458684173557953, 0.1321099797947797, -0.21375843756101565`}, \ {-0.32613860521188415`, 0.1584604004674211, -0.22250777550724227`}, \ {-0.24466908566143514`, 0.17424272570936214`, -0.2881949698157502}, { 0.10768792678081054`, 0.3958828965965615, -0.07042635995207244}, { 0.20156474306442823`, 0.36002514353184906`, -0.10363082970464225`}, { 0.21375843756101556`, 0.34586841735579543`, -0.1321099797947796}, { 0, 0.3618267830975341, -0.22362124999431188`}, { 0.24466908566143492`, -0.17424272570936225`, 0.2881949698157503}, { 0.3261386052118843, -0.15846040046742108`, 0.2225077755072421}, {0.3458684173557954, -0.1321099797947798, 0.2137584375610155}, { 0.2236212499943119, 0, 0.361826783097534}, {-0.21375843756101565`, \ -0.3458684173557952, 0.13210997979478004`}, {-0.2015647430644282, \ -0.3600251435318491, 0.10363082970464207`}, {-0.10768792678081109`, \ -0.3958828965965613, 0.0704263599520727}, { 0, -0.3618267830975341, 0.22362124999431188`}, { 0.36002514353184917`, -0.10363082970464206`, \ -0.20156474306442795`}, {0.35235701244224593`, 0, -0.22164017088719912`}, { 0.36002514353184917`, 0.10363082970464219`, -0.20156474306442798`}, { 0.3958828965965612, 0.07042635995207286, -0.10768792678081116`}, { 0.42407251857167017`, 0, -0.03388653831996488}, { 0.3958828965965614, -0.07042635995207251, \ -0.10768792678081068`}, {0.1321099797947804, -0.2137584375610157, 0.3458684173557951}, { 0.10363082970464271`, -0.20156474306442818`, 0.36002514353184895`}, { 0, -0.2216401708871991, 0.3523570124422459}, {-0.3600251435318492, 0.103630829704642, -0.20156474306442793`}, \ {-0.352357012442246, 0, -0.22164017088719898`}, {-0.36002514353184917`, \ -0.10363082970464212`, -0.20156474306442798`}, {-0.3958828965965611, \ -0.070426359952073, -0.10768792678081146`}, {-0.4240725185716702, 0, -0.03388653831996495}, {-0.39588289659656145`, 0.07042635995207236, -0.1076879267808106}, \ {-0.13210997979477987`, 0.21375843756101562`, -0.34586841735579527`}, { 0, 0.22164017088719898`, -0.352357012442246}, \ {-0.10363082970464216`, 0.2015647430644281, -0.36002514353184917`}, \ {-0.24466908566143492`, 0.17424272570936214`, 0.2881949698157504}, {-0.3261386052118842, 0.15846040046742105`, 0.22250777550724224`}, {-0.3458684173557953, 0.13210997979477973`, 0.2137584375610156}, {-0.2236212499943121, 0, 0.361826783097534}, {0.2137584375610156, 0.34586841735579527`, 0.13210997979477987`}, { 0.2015647430644281, 0.36002514353184917`, 0.103630829704642}, {0.10768792678081097`, 0.39588289659656134`, 0.07042635995207258}, { 0.223621249994312, 0, -0.361826783097534}, { 0.34586841735579527`, -0.13210997979477987`, \ -0.21375843756101562`}, { 0.326138605211884, -0.15846040046742133`, \ -0.22250777550724235`}, { 0.24466908566143533`, -0.17424272570936222`, \ -0.28819496981575}, {-0.10768792678081046`, -0.3958828965965615, \ -0.07042635995207241}, {-0.2015647430644281, -0.36002514353184917`, \ -0.10363082970464196`}, {-0.2137584375610156, -0.3458684173557953, \ -0.13210997979477973`}, {0.3958828965965613, -0.07042635995207266, 0.10768792678081107`}, { 0.4240725185716702, 0, 0.033886538319964986`}, { 0.3958828965965614, 0.0704263599520727, 0.10768792678081072`}, {0.3600251435318492, 0.10363082970464206`, 0.2015647430644279}, { 0.35235701244224593`, 0, 0.221640170887199}, { 0.36002514353184917`, -0.10363082970464216`, 0.20156474306442804`}, { 0.10768792678081084`, -0.39588289659656134`, \ -0.07042635995207258}, {0.03388653831996501, -0.4240725185716702, 0}, { 0, -0.42751687512203107`, 0}, {-0.42751687512203107`, 0, 0}, {-0.361826783097534, 0.223621249994312, 0}, { 0, 0.4275168751220311, 0}, {-0.03388653831996485, 0.4240725185716703, 0}, {-0.10768792678081102`, 0.39588289659656134`, 0.0704263599520728}, { 0, -0.03388653831996488, -0.4240725185716703}, \ {-0.07042635995207289, -0.10768792678081097`, -0.39588289659656134`}, { 0, 0, -0.4275168751220311}, {0.22250777550724227`, 0.3261386052118841, -0.1584604004674212}, { 0.28819496981575027`, 0.2446690856614349, -0.1742427257093623}, {0.326138605211884, 0.1584604004674214, -0.22250777550724204`}, { 0.2446690856614343, 0.1742427257093626, -0.28819496981575055`}, { 0.158460400467421, 0.2225077755072422, -0.3261386052118843}, { 0.17424272570936197`, 0.2881949698157499, -0.2446690856614357}, { 0.07042635995207294, 0.10768792678081099`, 0.3958828965965613}, { 0, 0.0338865383199648, 0.4240725185716703}, { 0, 0, 0.4275168751220311}, {-0.32613860521188426`, \ -0.15846040046742105`, 0.22250777550724218`}, {-0.28819496981575016`, \ -0.24466908566143525`, 0.17424272570936208`}, {-0.22250777550724204`, \ -0.3261386052118845, 0.15846040046742094`}, {-0.17424272570936244`, \ -0.28819496981575066`, 0.2446690856614344}, {-0.15846040046742133`, \ -0.222507775507242, 0.3261386052118842}, {-0.24466908566143497`, \ -0.17424272570936225`, 0.2881949698157503}, { 0.361826783097534, -0.22362124999431185`, 0}, { 0.42751687512203107`, 0, 0}, {-0.361826783097534, -0.22362124999431213`, 0}, {-0.34586841735579543`, -0.13210997979477968`, \ -0.2137584375610155}, {-0.32613860521188426`, -0.1584604004674211, \ -0.22250777550724218`}, {-0.28819496981575027`, -0.24466908566143503`, \ -0.1742427257093622}, {-0.21375843756101534`, 0.34586841735579554`, 0.13210997979477968`}, {-0.22250777550724204`, 0.3261386052118842, 0.15846040046742133`}, {-0.1742427257093619, 0.28819496981575016`, 0.2446690856614355}, { 0.2881949698157504, 0.24466908566143464`, 0.1742427257093625}, {0.3261386052118841, 0.15846040046742121`, 0.22250777550724218`}, { 0.3458684173557952, 0.13210997979477995`, 0.21375843756101556`}, { 0.361826783097534, 0.22362124999431207`, 0}, {-0.28819496981575043`, 0.24466908566143464`, -0.17424272570936236`}, \ {-0.2225077755072422, 0.3261386052118842, -0.15846040046742105`}, \ {-0.17424272570936208`, 0.28819496981575016`, -0.24466908566143522`}, \ {-0.15846040046742096`, 0.22250777550724213`, -0.32613860521188437`}, { 0.13210997979477976`, 0.2137584375610157, -0.3458684173557953}, { 0.2881949698157503, -0.24466908566143508`, 0.17424272570936203`}, { 0.1584604004674209, -0.22250777550724224`, 0.3261386052118843}, {0.1742427257093619, -0.2881949698157498, 0.24466908566143578`}, { 0.22250777550724227`, -0.32613860521188415`, 0.15846040046742105`}, {-0.1321099797947799, \ -0.21375843756101545`, 0.34586841735579527`}, { 0.17424272570936222`, -0.2881949698157505, \ -0.2446690856614347}, { 0.22250777550724204`, -0.32613860521188437`, \ -0.15846040046742096`}, { 0.21375843756101554`, -0.3458684173557953, \ -0.13210997979477976`}, {-0.174242725709362, -0.28819496981575, \ -0.24466908566143555`}, {-0.22250777550724216`, -0.32613860521188426`, \ -0.1584604004674211}, {-0.24466908566143541`, -0.17424272570936197`, \ -0.28819496981575016`}, {-0.158460400467421, -0.2225077755072422, \ -0.3261386052118843}, { 0, -0.03388653831996478, 0.4240725185716703}, {-0.07042635995207261, \ -0.10768792678081077`, 0.3958828965965614}, {0.17424272570936236`, 0.2881949698157504, 0.24466908566143478`}, { 0.15846040046742127`, 0.222507775507242, 0.32613860521188426`}, {0.24466908566143486`, 0.1742427257093623, 0.2881949698157504}, { 0.22250777550724202`, 0.32613860521188426`, 0.15846040046742127`}, {-0.10768792678081127`, 0.39588289659656123`, -0.07042635995207298}, { 0.10768792678081064`, -0.39588289659656145`, 0.07042635995207233}, { 0, 0.0338865383199649, -0.4240725185716703}, { 0.07042635995207275, 0.10768792678081096`, -0.39588289659656134`}, \ {-0.1321099797947797, -0.2137584375610156, -0.3458684173557954}, \ {-0.2881949698157509, 0.24466908566143378`, 0.17424272570936267`}, {-0.15846040046742071`, 0.2225077755072421, 0.3261386052118845}, { 0.13210997979477992`, 0.21375843756101545`, 0.34586841735579527`}, {-0.3458684173557952, \ -0.13210997979477995`, 0.2137584375610155}, { 0.2137584375610156, -0.3458684173557952, 0.1321099797947799}, {0.34586841735579527`, 0.13210997979477987`, -0.21375843756101556`}, \ {-0.21375843756101545`, 0.3458684173557955, -0.13210997979477956`}, { 0.15846040046742105`, -0.22250777550724204`, \ -0.32613860521188437`}, { 0.28819496981575055`, -0.24466908566143458`, \ -0.1742427257093622}, {-0.221640170887199, -0.3523570124422461, 0}, {-0.03388653831996487, -0.4240725185716703, 0}, { 0.22164017088719903`, 0.352357012442246, 0}, { 0.03388653831996474, 0.4240725185716703, 0}, { 0.10363082970464202`, 0.201564743064428, -0.36002514353184917`}, \ {-0.10363082970464216`, -0.20156474306442798`, 0.36002514353184917`}, {-0.22164017088719903`, 0.35235701244224593`, 0}, {-0.20156474306442795`, 0.3600251435318492, -0.10363082970464223`}, \ {-0.07042635995207255, 0.1076879267808108, -0.3958828965965614}, { 0.07042635995207278, -0.10768792678081096`, 0.39588289659656134`}, { 0.20156474306442806`, -0.3600251435318492, 0.103630829704642}, { 0.22164017088719898`, -0.35235701244224593`, 0}, {-0.07042635995207272, 0.10768792678081066`, 0.39588289659656134`}, { 0.201564743064428, -0.36002514353184917`, \ -0.10363082970464227`}, {-0.20156474306442806`, 0.36002514353184917`, 0.10363082970464223`}, { 0.07042635995207264, -0.10768792678081093`, \ -0.39588289659656134`}, {-0.10363082970464196`, -0.20156474306442795`, \ -0.3600251435318492}, {0.10363082970464213`, 0.20156474306442804`, 0.36002514353184917`}}, {{18, 15, 16, 17}, {16, 40, 45, 73}, { 16, 15, 41, 40}, {15, 18, 111, 46}, {73, 136, 102, 101}, {107, 81, 80, 21}, {107, 21, 20, 147}, {41, 15, 98, 42}, {43, 42, 98, 97}, {123, 15, 135, 124}, {15, 46, 48, 153}, {46, 111, 110, 22}, {48, 46, 22, 47}, {45, 40, 41, 42, 43, 44}, {73, 45, 44, 72}, {43, 97, 72, 44}, {136, 73, 51, 50}, {50, 51, 52, 49}, {49, 52, 11, 137}, {73, 101, 159, 151}, {159, 101, 14, 76}, {76, 14, 74, 75}, {75, 74, 22, 131}, {16, 73, 108, 17}, { 151, 159, 76, 75, 131, 152}, {73, 151, 152, 142}, {131, 22, 142, 152}, {95, 36, 35, 96}, {96, 35, 34, 107}, {107, 34, 33, 141}, {36, 95, 57, 31}, {135, 15, 78, 161}, {78, 15, 79, 77}, {59, 143, 3, 56}, {21, 80, 85, 22}, {20, 21, 22, 19}, { 22, 74, 148, 19}, {54, 147, 20, 19, 148, 55}, {74, 14, 55, 148}, {54, 55, 14, 53}, {127, 130, 53, 14}, {107, 147, 54, 53}, {130, 104, 107, 53}, {66, 65, 107, 106}, {52, 9, 8, 139}, {102, 136, 50, 49, 137, 103}, {101, 102, 103, 14}, {137, 11, 14, 103}, {110, 111, 18, 17, 108, 109}, {22, 110, 109, 142}, {108, 73, 142, 109}, {96, 107, 65, 64}, {95, 96, 64, 63}, {66, 106, 26, 67}, {126, 52, 117, 150}, {52, 126, 125, 88}, {34, 35, 36, 31, 32, 33}, {31, 57, 56, 32}, {141, 33, 32, 56}, {124, 135, 4, 121}, {1, 2, 3, 4}, {135, 161, 1, 4}, { 161, 78, 77, 160, 2, 1}, {56, 3, 2, 160}, {77, 79, 56, 160}, { 81, 107, 141, 82}, {141, 56, 83, 82}, {79, 15, 153, 133}, {56, 79, 133, 134}, {48, 47, 149, 134, 133, 153}, {47, 22, 112, 149}, {56, 134, 149, 112}, {80, 81, 82, 83, 84, 85}, {83, 56, 112, 84}, {22, 85, 84, 112}, {107, 104, 105, 106}, {26, 106, 105, 129}, {90, 97, 27, 91}, {51, 73, 5, 10}, {52, 51, 10, 9}, {139, 8, 7, 97}, {25, 24, 113, 95}, {24, 25, 26, 23}, {4, 69, 70, 71}, {92, 91, 27, 30}, {70, 132, 30, 71}, {150, 117, 30, 39}, {126, 150, 39, 38, 154, 125}, {88, 125, 154, 26}, { 98, 15, 123, 99}, {97, 98, 99, 100}, {123, 124, 121, 122, 100, 99}, {97, 100, 122, 62}, {121, 4, 62, 122}, {97, 62, 61, 145}, {27, 97, 145, 28}, {59, 56, 57, 58}, {3, 143, 118, 4}, { 118, 119, 120, 4}, {52, 88, 87, 157}, {11, 52, 157, 12}, {130, 127, 128, 129, 105, 104}, {127, 14, 138, 128}, {26, 129, 128, 138}, {92, 30, 117, 93}, {117, 52, 94, 93}, {90, 91, 92, 93, 94, 89}, {97, 90, 89, 139}, {52, 139, 89, 94}, {8, 9, 10, 5, 6, 7}, {73, 72, 6, 5}, {72, 97, 7, 6}, {65, 66, 67, 68, 63, 64}, {95, 63, 68, 25}, {67, 26, 25, 68}, {132, 155, 140, 30}, {4, 71, 146, 60}, {62, 4, 60, 61}, {145, 61, 60, 146, 29, 28}, {71, 30, 29, 146}, {30, 27, 28, 29}, {143, 59, 58, 144, 119, 118}, {120, 119, 144, 95}, {57, 95, 144, 58}, {69, 4, 120, 158}, {26, 138, 162, 86}, {88, 26, 86, 87}, {157, 87, 86, 162, 13, 12}, {138, 14, 13, 162}, {14, 11, 12, 13}, {113, 24, 23, 114, 115, 116}, {30, 140, 116, 115}, {95, 113, 116, 140}, {154, 38, 37, 26}, {23, 26, 37, 114}, {38, 39, 30, 37}, {115, 114, 37, 30}, {70, 69, 158, 156, 155, 132}, {140, 155, 156, 95}, {120, 95, 156, 158}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["162", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["140", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[{{ 0, -0.22164017088719892`, -0.35235701244224593`}, { 0.10363082970464195`, -0.20156474306442784`, \ -0.36002514353184933`}, { 0.13210997979477976`, -0.21375843756101537`, \ -0.34586841735579543`}, { 0, -0.361826783097534, -0.22362124999431188`}, \ {-0.3958828965965613, 0.07042635995207269, 0.10768792678081097`}, {-0.4240725185716703, 0, 0.033886538319965076`}, {-0.3958828965965615, \ -0.07042635995207254, 0.1076879267808105}, {-0.3600251435318492, \ -0.10363082970464205`, 0.2015647430644279}, {-0.352357012442246, 0, 0.22164017088719898`}, {-0.36002514353184917`, 0.103630829704642, 0.20156474306442804`}, {-0.13210997979478004`, 0.21375843756101562`, 0.3458684173557952}, {-0.10363082970464206`, 0.201564743064428, 0.36002514353184917`}, { 0, 0.22164017088719903`, 0.35235701244224593`}, { 0, 0.361826783097534, 0.223621249994312}, {-0.22362124999431204`, 0, -0.361826783097534}, {-0.3458684173557953, 0.1321099797947797, -0.21375843756101565`}, \ {-0.32613860521188415`, 0.1584604004674211, -0.22250777550724227`}, \ {-0.24466908566143514`, 0.17424272570936214`, -0.2881949698157502}, { 0.10768792678081054`, 0.3958828965965615, -0.07042635995207244}, { 0.20156474306442823`, 0.36002514353184906`, -0.10363082970464225`}, { 0.21375843756101556`, 0.34586841735579543`, -0.1321099797947796}, { 0, 0.3618267830975341, -0.22362124999431188`}, { 0.24466908566143492`, -0.17424272570936225`, 0.2881949698157503}, { 0.3261386052118843, -0.15846040046742108`, 0.2225077755072421}, {0.3458684173557954, -0.1321099797947798, 0.2137584375610155}, { 0.2236212499943119, 0, 0.361826783097534}, {-0.21375843756101565`, \ -0.3458684173557952, 0.13210997979478004`}, {-0.2015647430644282, \ -0.3600251435318491, 0.10363082970464207`}, {-0.10768792678081109`, \ -0.3958828965965613, 0.0704263599520727}, { 0, -0.3618267830975341, 0.22362124999431188`}, { 0.36002514353184917`, -0.10363082970464206`, \ -0.20156474306442795`}, {0.35235701244224593`, 0, -0.22164017088719912`}, { 0.36002514353184917`, 0.10363082970464219`, -0.20156474306442798`}, { 0.3958828965965612, 0.07042635995207286, -0.10768792678081116`}, { 0.42407251857167017`, 0, -0.03388653831996488}, { 0.3958828965965614, -0.07042635995207251, \ -0.10768792678081068`}, {0.1321099797947804, -0.2137584375610157, 0.3458684173557951}, { 0.10363082970464271`, -0.20156474306442818`, 0.36002514353184895`}, { 0, -0.2216401708871991, 0.3523570124422459}, {-0.3600251435318492, 0.103630829704642, -0.20156474306442793`}, \ {-0.352357012442246, 0, -0.22164017088719898`}, {-0.36002514353184917`, \ -0.10363082970464212`, -0.20156474306442798`}, {-0.3958828965965611, \ -0.070426359952073, -0.10768792678081146`}, {-0.4240725185716702, 0, -0.03388653831996495}, {-0.39588289659656145`, 0.07042635995207236, -0.1076879267808106}, \ {-0.13210997979477987`, 0.21375843756101562`, -0.34586841735579527`}, { 0, 0.22164017088719898`, -0.352357012442246}, \ {-0.10363082970464216`, 0.2015647430644281, -0.36002514353184917`}, \ {-0.24466908566143492`, 0.17424272570936214`, 0.2881949698157504}, {-0.3261386052118842, 0.15846040046742105`, 0.22250777550724224`}, {-0.3458684173557953, 0.13210997979477973`, 0.2137584375610156}, {-0.2236212499943121, 0, 0.361826783097534}, {0.2137584375610156, 0.34586841735579527`, 0.13210997979477987`}, { 0.2015647430644281, 0.36002514353184917`, 0.103630829704642}, {0.10768792678081097`, 0.39588289659656134`, 0.07042635995207258}, { 0.223621249994312, 0, -0.361826783097534}, { 0.34586841735579527`, -0.13210997979477987`, \ -0.21375843756101562`}, { 0.326138605211884, -0.15846040046742133`, \ -0.22250777550724235`}, { 0.24466908566143533`, -0.17424272570936222`, \ -0.28819496981575}, {-0.10768792678081046`, -0.3958828965965615, \ -0.07042635995207241}, {-0.2015647430644281, -0.36002514353184917`, \ -0.10363082970464196`}, {-0.2137584375610156, -0.3458684173557953, \ -0.13210997979477973`}, {0.3958828965965613, -0.07042635995207266, 0.10768792678081107`}, { 0.4240725185716702, 0, 0.033886538319964986`}, { 0.3958828965965614, 0.0704263599520727, 0.10768792678081072`}, {0.3600251435318492, 0.10363082970464206`, 0.2015647430644279}, { 0.35235701244224593`, 0, 0.221640170887199}, { 0.36002514353184917`, -0.10363082970464216`, 0.20156474306442804`}, { 0.10768792678081084`, -0.39588289659656134`, \ -0.07042635995207258}, {0.03388653831996501, -0.4240725185716702, 0}, { 0, -0.42751687512203107`, 0}, {-0.42751687512203107`, 0, 0}, {-0.361826783097534, 0.223621249994312, 0}, { 0, 0.4275168751220311, 0}, {-0.03388653831996485, 0.4240725185716703, 0}, {-0.10768792678081102`, 0.39588289659656134`, 0.0704263599520728}, { 0, -0.03388653831996488, -0.4240725185716703}, \ {-0.07042635995207289, -0.10768792678081097`, -0.39588289659656134`}, { 0, 0, -0.4275168751220311}, {0.22250777550724227`, 0.3261386052118841, -0.1584604004674212}, { 0.28819496981575027`, 0.2446690856614349, -0.1742427257093623}, {0.326138605211884, 0.1584604004674214, -0.22250777550724204`}, { 0.2446690856614343, 0.1742427257093626, -0.28819496981575055`}, { 0.158460400467421, 0.2225077755072422, -0.3261386052118843}, { 0.17424272570936197`, 0.2881949698157499, -0.2446690856614357}, { 0.07042635995207294, 0.10768792678081099`, 0.3958828965965613}, { 0, 0.0338865383199648, 0.4240725185716703}, { 0, 0, 0.4275168751220311}, {-0.32613860521188426`, \ -0.15846040046742105`, 0.22250777550724218`}, {-0.28819496981575016`, \ -0.24466908566143525`, 0.17424272570936208`}, {-0.22250777550724204`, \ -0.3261386052118845, 0.15846040046742094`}, {-0.17424272570936244`, \ -0.28819496981575066`, 0.2446690856614344}, {-0.15846040046742133`, \ -0.222507775507242, 0.3261386052118842}, {-0.24466908566143497`, \ -0.17424272570936225`, 0.2881949698157503}, { 0.361826783097534, -0.22362124999431185`, 0}, { 0.42751687512203107`, 0, 0}, {-0.361826783097534, -0.22362124999431213`, 0}, {-0.34586841735579543`, -0.13210997979477968`, \ -0.2137584375610155}, {-0.32613860521188426`, -0.1584604004674211, \ -0.22250777550724218`}, {-0.28819496981575027`, -0.24466908566143503`, \ -0.1742427257093622}, {-0.21375843756101534`, 0.34586841735579554`, 0.13210997979477968`}, {-0.22250777550724204`, 0.3261386052118842, 0.15846040046742133`}, {-0.1742427257093619, 0.28819496981575016`, 0.2446690856614355}, { 0.2881949698157504, 0.24466908566143464`, 0.1742427257093625}, {0.3261386052118841, 0.15846040046742121`, 0.22250777550724218`}, { 0.3458684173557952, 0.13210997979477995`, 0.21375843756101556`}, { 0.361826783097534, 0.22362124999431207`, 0}, {-0.28819496981575043`, 0.24466908566143464`, -0.17424272570936236`}, \ {-0.2225077755072422, 0.3261386052118842, -0.15846040046742105`}, \ {-0.17424272570936208`, 0.28819496981575016`, -0.24466908566143522`}, \ {-0.15846040046742096`, 0.22250777550724213`, -0.32613860521188437`}, { 0.13210997979477976`, 0.2137584375610157, -0.3458684173557953}, { 0.2881949698157503, -0.24466908566143508`, 0.17424272570936203`}, { 0.1584604004674209, -0.22250777550724224`, 0.3261386052118843}, {0.1742427257093619, -0.2881949698157498, 0.24466908566143578`}, { 0.22250777550724227`, -0.32613860521188415`, 0.15846040046742105`}, {-0.1321099797947799, \ -0.21375843756101545`, 0.34586841735579527`}, { 0.17424272570936222`, -0.2881949698157505, \ -0.2446690856614347}, { 0.22250777550724204`, -0.32613860521188437`, \ -0.15846040046742096`}, { 0.21375843756101554`, -0.3458684173557953, \ -0.13210997979477976`}, {-0.174242725709362, -0.28819496981575, \ -0.24466908566143555`}, {-0.22250777550724216`, -0.32613860521188426`, \ -0.1584604004674211}, {-0.24466908566143541`, -0.17424272570936197`, \ -0.28819496981575016`}, {-0.158460400467421, -0.2225077755072422, \ -0.3261386052118843}, { 0, -0.03388653831996478, 0.4240725185716703}, {-0.07042635995207261, \ -0.10768792678081077`, 0.3958828965965614}, {0.17424272570936236`, 0.2881949698157504, 0.24466908566143478`}, { 0.15846040046742127`, 0.222507775507242, 0.32613860521188426`}, {0.24466908566143486`, 0.1742427257093623, 0.2881949698157504}, { 0.22250777550724202`, 0.32613860521188426`, 0.15846040046742127`}, {-0.10768792678081127`, 0.39588289659656123`, -0.07042635995207298}, { 0.10768792678081064`, -0.39588289659656145`, 0.07042635995207233}, { 0, 0.0338865383199649, -0.4240725185716703}, { 0.07042635995207275, 0.10768792678081096`, -0.39588289659656134`}, \ {-0.1321099797947797, -0.2137584375610156, -0.3458684173557954}, \ {-0.2881949698157509, 0.24466908566143378`, 0.17424272570936267`}, {-0.15846040046742071`, 0.2225077755072421, 0.3261386052118845}, { 0.13210997979477992`, 0.21375843756101545`, 0.34586841735579527`}, {-0.3458684173557952, \ -0.13210997979477995`, 0.2137584375610155}, { 0.2137584375610156, -0.3458684173557952, 0.1321099797947799}, {0.34586841735579527`, 0.13210997979477987`, -0.21375843756101556`}, \ {-0.21375843756101545`, 0.3458684173557955, -0.13210997979477956`}, { 0.15846040046742105`, -0.22250777550724204`, \ -0.32613860521188437`}, { 0.28819496981575055`, -0.24466908566143458`, \ -0.1742427257093622}, {-0.221640170887199, -0.3523570124422461, 0}, {-0.03388653831996487, -0.4240725185716703, 0}, { 0.22164017088719903`, 0.352357012442246, 0}, { 0.03388653831996474, 0.4240725185716703, 0}, { 0.10363082970464202`, 0.201564743064428, -0.36002514353184917`}, \ {-0.10363082970464216`, -0.20156474306442798`, 0.36002514353184917`}, {-0.22164017088719903`, 0.35235701244224593`, 0}, {-0.20156474306442795`, 0.3600251435318492, -0.10363082970464223`}, \ {-0.07042635995207255, 0.1076879267808108, -0.3958828965965614}, { 0.07042635995207278, -0.10768792678081096`, 0.39588289659656134`}, { 0.20156474306442806`, -0.3600251435318492, 0.103630829704642}, { 0.22164017088719898`, -0.35235701244224593`, 0}, {-0.07042635995207272, 0.10768792678081066`, 0.39588289659656134`}, { 0.201564743064428, -0.36002514353184917`, \ -0.10363082970464227`}, {-0.20156474306442806`, 0.36002514353184917`, 0.10363082970464223`}, { 0.07042635995207264, -0.10768792678081093`, \ -0.39588289659656134`}, {-0.10363082970464196`, -0.20156474306442795`, \ -0.3600251435318492}, {0.10363082970464213`, 0.20156474306442804`, 0.36002514353184917`}}, {{18, 15, 16, 17}, {16, 40, 45, 73}, { 16, 15, 41, 40}, {15, 18, 111, 46}, {73, 136, 102, 101}, {107, 81, 80, 21}, {107, 21, 20, 147}, {41, 15, 98, 42}, {43, 42, 98, 97}, {123, 15, 135, 124}, {15, 46, 48, 153}, {46, 111, 110, 22}, {48, 46, 22, 47}, {45, 40, 41, 42, 43, 44}, {73, 45, 44, 72}, {43, 97, 72, 44}, {136, 73, 51, 50}, {50, 51, 52, 49}, {49, 52, 11, 137}, {73, 101, 159, 151}, {159, 101, 14, 76}, {76, 14, 74, 75}, {75, 74, 22, 131}, {16, 73, 108, 17}, { 151, 159, 76, 75, 131, 152}, {73, 151, 152, 142}, {131, 22, 142, 152}, {95, 36, 35, 96}, {96, 35, 34, 107}, {107, 34, 33, 141}, {36, 95, 57, 31}, {135, 15, 78, 161}, {78, 15, 79, 77}, {59, 143, 3, 56}, {21, 80, 85, 22}, {20, 21, 22, 19}, { 22, 74, 148, 19}, {54, 147, 20, 19, 148, 55}, {74, 14, 55, 148}, {54, 55, 14, 53}, {127, 130, 53, 14}, {107, 147, 54, 53}, {130, 104, 107, 53}, {66, 65, 107, 106}, {52, 9, 8, 139}, {102, 136, 50, 49, 137, 103}, {101, 102, 103, 14}, {137, 11, 14, 103}, {110, 111, 18, 17, 108, 109}, {22, 110, 109, 142}, {108, 73, 142, 109}, {96, 107, 65, 64}, {95, 96, 64, 63}, {66, 106, 26, 67}, {126, 52, 117, 150}, {52, 126, 125, 88}, {34, 35, 36, 31, 32, 33}, {31, 57, 56, 32}, {141, 33, 32, 56}, {124, 135, 4, 121}, {1, 2, 3, 4}, {135, 161, 1, 4}, { 161, 78, 77, 160, 2, 1}, {56, 3, 2, 160}, {77, 79, 56, 160}, { 81, 107, 141, 82}, {141, 56, 83, 82}, {79, 15, 153, 133}, {56, 79, 133, 134}, {48, 47, 149, 134, 133, 153}, {47, 22, 112, 149}, {56, 134, 149, 112}, {80, 81, 82, 83, 84, 85}, {83, 56, 112, 84}, {22, 85, 84, 112}, {107, 104, 105, 106}, {26, 106, 105, 129}, {90, 97, 27, 91}, {51, 73, 5, 10}, {52, 51, 10, 9}, {139, 8, 7, 97}, {25, 24, 113, 95}, {24, 25, 26, 23}, {4, 69, 70, 71}, {92, 91, 27, 30}, {70, 132, 30, 71}, {150, 117, 30, 39}, {126, 150, 39, 38, 154, 125}, {88, 125, 154, 26}, { 98, 15, 123, 99}, {97, 98, 99, 100}, {123, 124, 121, 122, 100, 99}, {97, 100, 122, 62}, {121, 4, 62, 122}, {97, 62, 61, 145}, {27, 97, 145, 28}, {59, 56, 57, 58}, {3, 143, 118, 4}, { 118, 119, 120, 4}, {52, 88, 87, 157}, {11, 52, 157, 12}, {130, 127, 128, 129, 105, 104}, {127, 14, 138, 128}, {26, 129, 128, 138}, {92, 30, 117, 93}, {117, 52, 94, 93}, {90, 91, 92, 93, 94, 89}, {97, 90, 89, 139}, {52, 139, 89, 94}, {8, 9, 10, 5, 6, 7}, {73, 72, 6, 5}, {72, 97, 7, 6}, {65, 66, 67, 68, 63, 64}, {95, 63, 68, 25}, {67, 26, 25, 68}, {132, 155, 140, 30}, {4, 71, 146, 60}, {62, 4, 60, 61}, {145, 61, 60, 146, 29, 28}, {71, 30, 29, 146}, {30, 27, 28, 29}, {143, 59, 58, 144, 119, 118}, {120, 119, 144, 95}, {57, 95, 144, 58}, {69, 4, 120, 158}, {26, 138, 162, 86}, {88, 26, 86, 87}, {157, 87, 86, 162, 13, 12}, {138, 14, 13, 162}, {14, 11, 12, 13}, {113, 24, 23, 114, 115, 116}, {30, 140, 116, 115}, {95, 113, 116, 140}, {154, 38, 37, 26}, {23, 26, 37, 114}, {38, 39, 30, 37}, {115, 114, 37, 30}, {70, 69, 158, 156, 155, 132}, {140, 155, 156, 95}, {120, 95, 156, 158}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["162", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["140", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, -0.22164017088719892`, -0.35235701244224593`}, { 0.10363082970464195`, -0.20156474306442784`, -0.36002514353184933`}, { 0.13210997979477976`, -0.21375843756101537`, -0.34586841735579543`}, { 0, -0.361826783097534, -0.22362124999431188`}, {-0.3958828965965613, 0.07042635995207269, 0.10768792678081097`}, {-0.4240725185716703, 0, 0.033886538319965076`}, {-0.3958828965965615, -0.07042635995207254, 0.1076879267808105}, {-0.3600251435318492, -0.10363082970464205`, 0.2015647430644279}, {-0.352357012442246, 0, 0.22164017088719898`}, {-0.36002514353184917`, 0.103630829704642, 0.20156474306442804`}, {-0.13210997979478004`, 0.21375843756101562`, 0.3458684173557952}, {-0.10363082970464206`, 0.201564743064428, 0.36002514353184917`}, {0, 0.22164017088719903`, 0.35235701244224593`}, { 0, 0.361826783097534, 0.223621249994312}, {-0.22362124999431204`, 0, -0.361826783097534}, {-0.3458684173557953, 0.1321099797947797, -0.21375843756101565`}, {-0.32613860521188415`, 0.1584604004674211, -0.22250777550724227`}, {-0.24466908566143514`, 0.17424272570936214`, -0.2881949698157502}, {0.10768792678081054`, 0.3958828965965615, -0.07042635995207244}, {0.20156474306442823`, 0.36002514353184906`, -0.10363082970464225`}, {0.21375843756101556`, 0.34586841735579543`, -0.1321099797947796}, { 0, 0.3618267830975341, -0.22362124999431188`}, { 0.24466908566143492`, -0.17424272570936225`, 0.2881949698157503}, { 0.3261386052118843, -0.15846040046742108`, 0.2225077755072421}, { 0.3458684173557954, -0.1321099797947798, 0.2137584375610155}, { 0.2236212499943119, 0, 0.361826783097534}, {-0.21375843756101565`, -0.3458684173557952, 0.13210997979478004`}, {-0.2015647430644282, -0.3600251435318491, 0.10363082970464207`}, {-0.10768792678081109`, -0.3958828965965613, 0.0704263599520727}, {0, -0.3618267830975341, 0.22362124999431188`}, { 0.36002514353184917`, -0.10363082970464206`, -0.20156474306442795`}, { 0.35235701244224593`, 0, -0.22164017088719912`}, {0.36002514353184917`, 0.10363082970464219`, -0.20156474306442798`}, {0.3958828965965612, 0.07042635995207286, -0.10768792678081116`}, { 0.42407251857167017`, 0, -0.03388653831996488}, { 0.3958828965965614, -0.07042635995207251, -0.10768792678081068`}, { 0.1321099797947804, -0.2137584375610157, 0.3458684173557951}, { 0.10363082970464271`, -0.20156474306442818`, 0.36002514353184895`}, { 0, -0.2216401708871991, 0.3523570124422459}, {-0.3600251435318492, 0.103630829704642, -0.20156474306442793`}, {-0.352357012442246, 0, -0.22164017088719898`}, {-0.36002514353184917`, \ -0.10363082970464212`, -0.20156474306442798`}, {-0.3958828965965611, \ -0.070426359952073, -0.10768792678081146`}, {-0.4240725185716702, 0, -0.03388653831996495}, {-0.39588289659656145`, 0.07042635995207236, -0.1076879267808106}, {-0.13210997979477987`, 0.21375843756101562`, -0.34586841735579527`}, { 0, 0.22164017088719898`, -0.352357012442246}, {-0.10363082970464216`, 0.2015647430644281, -0.36002514353184917`}, {-0.24466908566143492`, 0.17424272570936214`, 0.2881949698157504}, {-0.3261386052118842, 0.15846040046742105`, 0.22250777550724224`}, {-0.3458684173557953, 0.13210997979477973`, 0.2137584375610156}, {-0.2236212499943121, 0, 0.361826783097534}, { 0.2137584375610156, 0.34586841735579527`, 0.13210997979477987`}, { 0.2015647430644281, 0.36002514353184917`, 0.103630829704642}, { 0.10768792678081097`, 0.39588289659656134`, 0.07042635995207258}, { 0.223621249994312, 0, -0.361826783097534}, { 0.34586841735579527`, -0.13210997979477987`, -0.21375843756101562`}, { 0.326138605211884, -0.15846040046742133`, -0.22250777550724235`}, { 0.24466908566143533`, -0.17424272570936222`, -0.28819496981575}, \ {-0.10768792678081046`, -0.3958828965965615, -0.07042635995207241}, \ {-0.2015647430644281, -0.36002514353184917`, -0.10363082970464196`}, \ {-0.2137584375610156, -0.3458684173557953, -0.13210997979477973`}, { 0.3958828965965613, -0.07042635995207266, 0.10768792678081107`}, { 0.4240725185716702, 0, 0.033886538319964986`}, {0.3958828965965614, 0.0704263599520727, 0.10768792678081072`}, {0.3600251435318492, 0.10363082970464206`, 0.2015647430644279}, { 0.35235701244224593`, 0, 0.221640170887199}, { 0.36002514353184917`, -0.10363082970464216`, 0.20156474306442804`}, { 0.10768792678081084`, -0.39588289659656134`, -0.07042635995207258}, { 0.03388653831996501, -0.4240725185716702, 0}, { 0, -0.42751687512203107`, 0}, {-0.42751687512203107`, 0, 0}, {-0.361826783097534, 0.223621249994312, 0}, { 0, 0.4275168751220311, 0}, {-0.03388653831996485, 0.4240725185716703, 0}, {-0.10768792678081102`, 0.39588289659656134`, 0.0704263599520728}, { 0, -0.03388653831996488, -0.4240725185716703}, {-0.07042635995207289, \ -0.10768792678081097`, -0.39588289659656134`}, {0, 0, -0.4275168751220311}, { 0.22250777550724227`, 0.3261386052118841, -0.1584604004674212}, { 0.28819496981575027`, 0.2446690856614349, -0.1742427257093623}, { 0.326138605211884, 0.1584604004674214, -0.22250777550724204`}, { 0.2446690856614343, 0.1742427257093626, -0.28819496981575055`}, { 0.158460400467421, 0.2225077755072422, -0.3261386052118843}, { 0.17424272570936197`, 0.2881949698157499, -0.2446690856614357}, { 0.07042635995207294, 0.10768792678081099`, 0.3958828965965613}, { 0, 0.0338865383199648, 0.4240725185716703}, { 0, 0, 0.4275168751220311}, {-0.32613860521188426`, -0.15846040046742105`, 0.22250777550724218`}, {-0.28819496981575016`, -0.24466908566143525`, 0.17424272570936208`}, {-0.22250777550724204`, -0.3261386052118845, 0.15846040046742094`}, {-0.17424272570936244`, -0.28819496981575066`, 0.2446690856614344}, {-0.15846040046742133`, -0.222507775507242, 0.3261386052118842}, {-0.24466908566143497`, -0.17424272570936225`, 0.2881949698157503}, {0.361826783097534, -0.22362124999431185`, 0}, { 0.42751687512203107`, 0, 0}, {-0.361826783097534, -0.22362124999431213`, 0}, {-0.34586841735579543`, -0.13210997979477968`, -0.2137584375610155}, \ {-0.32613860521188426`, -0.1584604004674211, -0.22250777550724218`}, \ {-0.28819496981575027`, -0.24466908566143503`, -0.1742427257093622}, \ {-0.21375843756101534`, 0.34586841735579554`, 0.13210997979477968`}, {-0.22250777550724204`, 0.3261386052118842, 0.15846040046742133`}, {-0.1742427257093619, 0.28819496981575016`, 0.2446690856614355}, {0.2881949698157504, 0.24466908566143464`, 0.1742427257093625}, {0.3261386052118841, 0.15846040046742121`, 0.22250777550724218`}, {0.3458684173557952, 0.13210997979477995`, 0.21375843756101556`}, { 0.361826783097534, 0.22362124999431207`, 0}, {-0.28819496981575043`, 0.24466908566143464`, -0.17424272570936236`}, {-0.2225077755072422, 0.3261386052118842, -0.15846040046742105`}, {-0.17424272570936208`, 0.28819496981575016`, -0.24466908566143522`}, {-0.15846040046742096`, 0.22250777550724213`, -0.32613860521188437`}, {0.13210997979477976`, 0.2137584375610157, -0.3458684173557953}, { 0.2881949698157503, -0.24466908566143508`, 0.17424272570936203`}, { 0.1584604004674209, -0.22250777550724224`, 0.3261386052118843}, { 0.1742427257093619, -0.2881949698157498, 0.24466908566143578`}, { 0.22250777550724227`, -0.32613860521188415`, 0.15846040046742105`}, {-0.1321099797947799, -0.21375843756101545`, 0.34586841735579527`}, { 0.17424272570936222`, -0.2881949698157505, -0.2446690856614347}, { 0.22250777550724204`, -0.32613860521188437`, -0.15846040046742096`}, { 0.21375843756101554`, -0.3458684173557953, -0.13210997979477976`}, \ {-0.174242725709362, -0.28819496981575, -0.24466908566143555`}, \ {-0.22250777550724216`, -0.32613860521188426`, -0.1584604004674211}, \ {-0.24466908566143541`, -0.17424272570936197`, -0.28819496981575016`}, \ {-0.158460400467421, -0.2225077755072422, -0.3261386052118843}, { 0, -0.03388653831996478, 0.4240725185716703}, {-0.07042635995207261, -0.10768792678081077`, 0.3958828965965614}, {0.17424272570936236`, 0.2881949698157504, 0.24466908566143478`}, {0.15846040046742127`, 0.222507775507242, 0.32613860521188426`}, {0.24466908566143486`, 0.1742427257093623, 0.2881949698157504}, {0.22250777550724202`, 0.32613860521188426`, 0.15846040046742127`}, {-0.10768792678081127`, 0.39588289659656123`, -0.07042635995207298}, { 0.10768792678081064`, -0.39588289659656145`, 0.07042635995207233}, { 0, 0.0338865383199649, -0.4240725185716703}, {0.07042635995207275, 0.10768792678081096`, -0.39588289659656134`}, {-0.1321099797947797, \ -0.2137584375610156, -0.3458684173557954}, {-0.2881949698157509, 0.24466908566143378`, 0.17424272570936267`}, {-0.15846040046742071`, 0.2225077755072421, 0.3261386052118845}, {0.13210997979477992`, 0.21375843756101545`, 0.34586841735579527`}, {-0.3458684173557952, -0.13210997979477995`, 0.2137584375610155}, {0.2137584375610156, -0.3458684173557952, 0.1321099797947799}, {0.34586841735579527`, 0.13210997979477987`, -0.21375843756101556`}, {-0.21375843756101545`, 0.3458684173557955, -0.13210997979477956`}, { 0.15846040046742105`, -0.22250777550724204`, -0.32613860521188437`}, { 0.28819496981575055`, -0.24466908566143458`, -0.1742427257093622}, \ {-0.221640170887199, -0.3523570124422461, 0}, {-0.03388653831996487, -0.4240725185716703, 0}, { 0.22164017088719903`, 0.352357012442246, 0}, { 0.03388653831996474, 0.4240725185716703, 0}, {0.10363082970464202`, 0.201564743064428, -0.36002514353184917`}, {-0.10363082970464216`, \ -0.20156474306442798`, 0.36002514353184917`}, {-0.22164017088719903`, 0.35235701244224593`, 0}, {-0.20156474306442795`, 0.3600251435318492, -0.10363082970464223`}, {-0.07042635995207255, 0.1076879267808108, -0.3958828965965614}, { 0.07042635995207278, -0.10768792678081096`, 0.39588289659656134`}, { 0.20156474306442806`, -0.3600251435318492, 0.103630829704642}, { 0.22164017088719898`, -0.35235701244224593`, 0}, {-0.07042635995207272, 0.10768792678081066`, 0.39588289659656134`}, { 0.201564743064428, -0.36002514353184917`, -0.10363082970464227`}, \ {-0.20156474306442806`, 0.36002514353184917`, 0.10363082970464223`}, { 0.07042635995207264, -0.10768792678081093`, -0.39588289659656134`}, \ {-0.10363082970464196`, -0.20156474306442795`, -0.3600251435318492}, { 0.10363082970464213`, 0.20156474306442804`, 0.36002514353184917`}}, {{18, 15, 16, 17}, {16, 40, 45, 73}, {16, 15, 41, 40}, {15, 18, 111, 46}, {73, 136, 102, 101}, {107, 81, 80, 21}, {107, 21, 20, 147}, {41, 15, 98, 42}, { 43, 42, 98, 97}, {123, 15, 135, 124}, {15, 46, 48, 153}, {46, 111, 110, 22}, {48, 46, 22, 47}, {45, 40, 41, 42, 43, 44}, {73, 45, 44, 72}, {43, 97, 72, 44}, {136, 73, 51, 50}, {50, 51, 52, 49}, {49, 52, 11, 137}, {73, 101, 159, 151}, {159, 101, 14, 76}, {76, 14, 74, 75}, {75, 74, 22, 131}, { 16, 73, 108, 17}, {151, 159, 76, 75, 131, 152}, {73, 151, 152, 142}, {131, 22, 142, 152}, {95, 36, 35, 96}, {96, 35, 34, 107}, {107, 34, 33, 141}, { 36, 95, 57, 31}, {135, 15, 78, 161}, {78, 15, 79, 77}, {59, 143, 3, 56}, { 21, 80, 85, 22}, {20, 21, 22, 19}, {22, 74, 148, 19}, {54, 147, 20, 19, 148, 55}, {74, 14, 55, 148}, {54, 55, 14, 53}, {127, 130, 53, 14}, {107, 147, 54, 53}, {130, 104, 107, 53}, {66, 65, 107, 106}, {52, 9, 8, 139}, { 102, 136, 50, 49, 137, 103}, {101, 102, 103, 14}, {137, 11, 14, 103}, { 110, 111, 18, 17, 108, 109}, {22, 110, 109, 142}, {108, 73, 142, 109}, { 96, 107, 65, 64}, {95, 96, 64, 63}, {66, 106, 26, 67}, {126, 52, 117, 150}, {52, 126, 125, 88}, {34, 35, 36, 31, 32, 33}, {31, 57, 56, 32}, { 141, 33, 32, 56}, {124, 135, 4, 121}, {1, 2, 3, 4}, {135, 161, 1, 4}, { 161, 78, 77, 160, 2, 1}, {56, 3, 2, 160}, {77, 79, 56, 160}, {81, 107, 141, 82}, {141, 56, 83, 82}, {79, 15, 153, 133}, {56, 79, 133, 134}, {48, 47, 149, 134, 133, 153}, {47, 22, 112, 149}, {56, 134, 149, 112}, {80, 81, 82, 83, 84, 85}, {83, 56, 112, 84}, {22, 85, 84, 112}, {107, 104, 105, 106}, {26, 106, 105, 129}, {90, 97, 27, 91}, {51, 73, 5, 10}, {52, 51, 10, 9}, {139, 8, 7, 97}, {25, 24, 113, 95}, {24, 25, 26, 23}, {4, 69, 70, 71}, {92, 91, 27, 30}, {70, 132, 30, 71}, {150, 117, 30, 39}, {126, 150, 39, 38, 154, 125}, {88, 125, 154, 26}, {98, 15, 123, 99}, {97, 98, 99, 100}, {123, 124, 121, 122, 100, 99}, {97, 100, 122, 62}, {121, 4, 62, 122}, {97, 62, 61, 145}, {27, 97, 145, 28}, {59, 56, 57, 58}, {3, 143, 118, 4}, {118, 119, 120, 4}, {52, 88, 87, 157}, {11, 52, 157, 12}, {130, 127, 128, 129, 105, 104}, {127, 14, 138, 128}, {26, 129, 128, 138}, {92, 30, 117, 93}, {117, 52, 94, 93}, {90, 91, 92, 93, 94, 89}, {97, 90, 89, 139}, {52, 139, 89, 94}, {8, 9, 10, 5, 6, 7}, {73, 72, 6, 5}, {72, 97, 7, 6}, {65, 66, 67, 68, 63, 64}, {95, 63, 68, 25}, {67, 26, 25, 68}, {132, 155, 140, 30}, {4, 71, 146, 60}, {62, 4, 60, 61}, {145, 61, 60, 146, 29, 28}, {71, 30, 29, 146}, {30, 27, 28, 29}, {143, 59, 58, 144, 119, 118}, { 120, 119, 144, 95}, {57, 95, 144, 58}, {69, 4, 120, 158}, {26, 138, 162, 86}, {88, 26, 86, 87}, {157, 87, 86, 162, 13, 12}, {138, 14, 13, 162}, { 14, 11, 12, 13}, {113, 24, 23, 114, 115, 116}, {30, 140, 116, 115}, {95, 113, 116, 140}, {154, 38, 37, 26}, {23, 26, 37, 114}, {38, 39, 30, 37}, { 115, 114, 37, 30}, {70, 69, 158, 156, 155, 132}, {140, 155, 156, 95}, { 120, 95, 156, 158}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[11]=",ExpressionUUID->"651954BD-E821-4ECB-9705-EAC0D715ED64"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"LabelPolyhedron", "@", "newi"}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[12]:=",ExpressionUUID->"004578F4-0C8A-43B9-98A5-DE81D89D6F95"], Cell[BoxData[ Graphics3DBox[{ PolyhedronBox[{{0, -0.22164017088719892`, -0.35235701244224593`}, { 0.10363082970464195`, -0.20156474306442784`, -0.36002514353184933`}, { 0.13210997979477976`, -0.21375843756101537`, -0.34586841735579543`}, { 0, -0.361826783097534, -0.22362124999431188`}, {-0.3958828965965613, 0.07042635995207269, 0.10768792678081097`}, {-0.4240725185716703, 0, 0.033886538319965076`}, {-0.3958828965965615, -0.07042635995207254, 0.1076879267808105}, {-0.3600251435318492, -0.10363082970464205`, 0.2015647430644279}, {-0.352357012442246, 0, 0.22164017088719898`}, {-0.36002514353184917`, 0.103630829704642, 0.20156474306442804`}, {-0.13210997979478004`, 0.21375843756101562`, 0.3458684173557952}, {-0.10363082970464206`, 0.201564743064428, 0.36002514353184917`}, {0, 0.22164017088719903`, 0.35235701244224593`}, { 0, 0.361826783097534, 0.223621249994312}, {-0.22362124999431204`, 0, -0.361826783097534}, {-0.3458684173557953, 0.1321099797947797, -0.21375843756101565`}, {-0.32613860521188415`, 0.1584604004674211, -0.22250777550724227`}, {-0.24466908566143514`, 0.17424272570936214`, -0.2881949698157502}, {0.10768792678081054`, 0.3958828965965615, -0.07042635995207244}, {0.20156474306442823`, 0.36002514353184906`, -0.10363082970464225`}, {0.21375843756101556`, 0.34586841735579543`, -0.1321099797947796}, { 0, 0.3618267830975341, -0.22362124999431188`}, { 0.24466908566143492`, -0.17424272570936225`, 0.2881949698157503}, { 0.3261386052118843, -0.15846040046742108`, 0.2225077755072421}, { 0.3458684173557954, -0.1321099797947798, 0.2137584375610155}, { 0.2236212499943119, 0, 0.361826783097534}, {-0.21375843756101565`, -0.3458684173557952, 0.13210997979478004`}, {-0.2015647430644282, -0.3600251435318491, 0.10363082970464207`}, {-0.10768792678081109`, -0.3958828965965613, 0.0704263599520727}, {0, -0.3618267830975341, 0.22362124999431188`}, { 0.36002514353184917`, -0.10363082970464206`, -0.20156474306442795`}, { 0.35235701244224593`, 0, -0.22164017088719912`}, {0.36002514353184917`, 0.10363082970464219`, -0.20156474306442798`}, {0.3958828965965612, 0.07042635995207286, -0.10768792678081116`}, { 0.42407251857167017`, 0, -0.03388653831996488}, { 0.3958828965965614, -0.07042635995207251, -0.10768792678081068`}, { 0.1321099797947804, -0.2137584375610157, 0.3458684173557951}, { 0.10363082970464271`, -0.20156474306442818`, 0.36002514353184895`}, { 0, -0.2216401708871991, 0.3523570124422459}, {-0.3600251435318492, 0.103630829704642, -0.20156474306442793`}, {-0.352357012442246, 0, -0.22164017088719898`}, {-0.36002514353184917`, \ -0.10363082970464212`, -0.20156474306442798`}, {-0.3958828965965611, \ -0.070426359952073, -0.10768792678081146`}, {-0.4240725185716702, 0, -0.03388653831996495}, {-0.39588289659656145`, 0.07042635995207236, -0.1076879267808106}, {-0.13210997979477987`, 0.21375843756101562`, -0.34586841735579527`}, { 0, 0.22164017088719898`, -0.352357012442246}, {-0.10363082970464216`, 0.2015647430644281, -0.36002514353184917`}, {-0.24466908566143492`, 0.17424272570936214`, 0.2881949698157504}, {-0.3261386052118842, 0.15846040046742105`, 0.22250777550724224`}, {-0.3458684173557953, 0.13210997979477973`, 0.2137584375610156}, {-0.2236212499943121, 0, 0.361826783097534}, { 0.2137584375610156, 0.34586841735579527`, 0.13210997979477987`}, { 0.2015647430644281, 0.36002514353184917`, 0.103630829704642}, { 0.10768792678081097`, 0.39588289659656134`, 0.07042635995207258}, { 0.223621249994312, 0, -0.361826783097534}, { 0.34586841735579527`, -0.13210997979477987`, -0.21375843756101562`}, { 0.326138605211884, -0.15846040046742133`, -0.22250777550724235`}, { 0.24466908566143533`, -0.17424272570936222`, -0.28819496981575}, \ {-0.10768792678081046`, -0.3958828965965615, -0.07042635995207241}, \ {-0.2015647430644281, -0.36002514353184917`, -0.10363082970464196`}, \ {-0.2137584375610156, -0.3458684173557953, -0.13210997979477973`}, { 0.3958828965965613, -0.07042635995207266, 0.10768792678081107`}, { 0.4240725185716702, 0, 0.033886538319964986`}, {0.3958828965965614, 0.0704263599520727, 0.10768792678081072`}, {0.3600251435318492, 0.10363082970464206`, 0.2015647430644279}, { 0.35235701244224593`, 0, 0.221640170887199}, { 0.36002514353184917`, -0.10363082970464216`, 0.20156474306442804`}, { 0.10768792678081084`, -0.39588289659656134`, -0.07042635995207258}, { 0.03388653831996501, -0.4240725185716702, 0}, { 0, -0.42751687512203107`, 0}, {-0.42751687512203107`, 0, 0}, {-0.361826783097534, 0.223621249994312, 0}, { 0, 0.4275168751220311, 0}, {-0.03388653831996485, 0.4240725185716703, 0}, {-0.10768792678081102`, 0.39588289659656134`, 0.0704263599520728}, { 0, -0.03388653831996488, -0.4240725185716703}, {-0.07042635995207289, \ -0.10768792678081097`, -0.39588289659656134`}, {0, 0, -0.4275168751220311}, { 0.22250777550724227`, 0.3261386052118841, -0.1584604004674212}, { 0.28819496981575027`, 0.2446690856614349, -0.1742427257093623}, { 0.326138605211884, 0.1584604004674214, -0.22250777550724204`}, { 0.2446690856614343, 0.1742427257093626, -0.28819496981575055`}, { 0.158460400467421, 0.2225077755072422, -0.3261386052118843}, { 0.17424272570936197`, 0.2881949698157499, -0.2446690856614357}, { 0.07042635995207294, 0.10768792678081099`, 0.3958828965965613}, { 0, 0.0338865383199648, 0.4240725185716703}, { 0, 0, 0.4275168751220311}, {-0.32613860521188426`, -0.15846040046742105`, 0.22250777550724218`}, {-0.28819496981575016`, -0.24466908566143525`, 0.17424272570936208`}, {-0.22250777550724204`, -0.3261386052118845, 0.15846040046742094`}, {-0.17424272570936244`, -0.28819496981575066`, 0.2446690856614344}, {-0.15846040046742133`, -0.222507775507242, 0.3261386052118842}, {-0.24466908566143497`, -0.17424272570936225`, 0.2881949698157503}, {0.361826783097534, -0.22362124999431185`, 0}, { 0.42751687512203107`, 0, 0}, {-0.361826783097534, -0.22362124999431213`, 0}, {-0.34586841735579543`, -0.13210997979477968`, \ -0.2137584375610155}, {-0.32613860521188426`, -0.1584604004674211, \ -0.22250777550724218`}, {-0.28819496981575027`, -0.24466908566143503`, \ -0.1742427257093622}, {-0.21375843756101534`, 0.34586841735579554`, 0.13210997979477968`}, {-0.22250777550724204`, 0.3261386052118842, 0.15846040046742133`}, {-0.1742427257093619, 0.28819496981575016`, 0.2446690856614355}, {0.2881949698157504, 0.24466908566143464`, 0.1742427257093625}, {0.3261386052118841, 0.15846040046742121`, 0.22250777550724218`}, {0.3458684173557952, 0.13210997979477995`, 0.21375843756101556`}, { 0.361826783097534, 0.22362124999431207`, 0}, {-0.28819496981575043`, 0.24466908566143464`, -0.17424272570936236`}, {-0.2225077755072422, 0.3261386052118842, -0.15846040046742105`}, {-0.17424272570936208`, 0.28819496981575016`, -0.24466908566143522`}, {-0.15846040046742096`, 0.22250777550724213`, -0.32613860521188437`}, {0.13210997979477976`, 0.2137584375610157, -0.3458684173557953}, { 0.2881949698157503, -0.24466908566143508`, 0.17424272570936203`}, { 0.1584604004674209, -0.22250777550724224`, 0.3261386052118843}, { 0.1742427257093619, -0.2881949698157498, 0.24466908566143578`}, { 0.22250777550724227`, -0.32613860521188415`, 0.15846040046742105`}, {-0.1321099797947799, -0.21375843756101545`, 0.34586841735579527`}, { 0.17424272570936222`, -0.2881949698157505, -0.2446690856614347}, { 0.22250777550724204`, -0.32613860521188437`, -0.15846040046742096`}, { 0.21375843756101554`, -0.3458684173557953, -0.13210997979477976`}, \ {-0.174242725709362, -0.28819496981575, -0.24466908566143555`}, \ {-0.22250777550724216`, -0.32613860521188426`, -0.1584604004674211}, \ {-0.24466908566143541`, -0.17424272570936197`, -0.28819496981575016`}, \ {-0.158460400467421, -0.2225077755072422, -0.3261386052118843}, { 0, -0.03388653831996478, 0.4240725185716703}, {-0.07042635995207261, -0.10768792678081077`, 0.3958828965965614}, {0.17424272570936236`, 0.2881949698157504, 0.24466908566143478`}, {0.15846040046742127`, 0.222507775507242, 0.32613860521188426`}, {0.24466908566143486`, 0.1742427257093623, 0.2881949698157504}, {0.22250777550724202`, 0.32613860521188426`, 0.15846040046742127`}, {-0.10768792678081127`, 0.39588289659656123`, -0.07042635995207298}, { 0.10768792678081064`, -0.39588289659656145`, 0.07042635995207233}, { 0, 0.0338865383199649, -0.4240725185716703}, {0.07042635995207275, 0.10768792678081096`, -0.39588289659656134`}, {-0.1321099797947797, \ -0.2137584375610156, -0.3458684173557954}, {-0.2881949698157509, 0.24466908566143378`, 0.17424272570936267`}, {-0.15846040046742071`, 0.2225077755072421, 0.3261386052118845}, {0.13210997979477992`, 0.21375843756101545`, 0.34586841735579527`}, {-0.3458684173557952, -0.13210997979477995`, 0.2137584375610155}, {0.2137584375610156, -0.3458684173557952, 0.1321099797947799}, {0.34586841735579527`, 0.13210997979477987`, -0.21375843756101556`}, {-0.21375843756101545`, 0.3458684173557955, -0.13210997979477956`}, { 0.15846040046742105`, -0.22250777550724204`, -0.32613860521188437`}, { 0.28819496981575055`, -0.24466908566143458`, -0.1742427257093622}, \ {-0.221640170887199, -0.3523570124422461, 0}, {-0.03388653831996487, -0.4240725185716703, 0}, { 0.22164017088719903`, 0.352357012442246, 0}, { 0.03388653831996474, 0.4240725185716703, 0}, {0.10363082970464202`, 0.201564743064428, -0.36002514353184917`}, {-0.10363082970464216`, \ -0.20156474306442798`, 0.36002514353184917`}, {-0.22164017088719903`, 0.35235701244224593`, 0}, {-0.20156474306442795`, 0.3600251435318492, -0.10363082970464223`}, {-0.07042635995207255, 0.1076879267808108, -0.3958828965965614}, { 0.07042635995207278, -0.10768792678081096`, 0.39588289659656134`}, { 0.20156474306442806`, -0.3600251435318492, 0.103630829704642}, { 0.22164017088719898`, -0.35235701244224593`, 0}, {-0.07042635995207272, 0.10768792678081066`, 0.39588289659656134`}, { 0.201564743064428, -0.36002514353184917`, -0.10363082970464227`}, \ {-0.20156474306442806`, 0.36002514353184917`, 0.10363082970464223`}, { 0.07042635995207264, -0.10768792678081093`, -0.39588289659656134`}, \ {-0.10363082970464196`, -0.20156474306442795`, -0.3600251435318492}, { 0.10363082970464213`, 0.20156474306442804`, 0.36002514353184917`}}, {{18, 15, 16, 17}, {16, 40, 45, 73}, {16, 15, 41, 40}, {15, 18, 111, 46}, {73, 136, 102, 101}, {107, 81, 80, 21}, {107, 21, 20, 147}, {41, 15, 98, 42}, {43, 42, 98, 97}, {123, 15, 135, 124}, {15, 46, 48, 153}, {46, 111, 110, 22}, {48, 46, 22, 47}, {45, 40, 41, 42, 43, 44}, {73, 45, 44, 72}, { 43, 97, 72, 44}, {136, 73, 51, 50}, {50, 51, 52, 49}, {49, 52, 11, 137}, {73, 101, 159, 151}, {159, 101, 14, 76}, {76, 14, 74, 75}, {75, 74, 22, 131}, {16, 73, 108, 17}, {151, 159, 76, 75, 131, 152}, {73, 151, 152, 142}, {131, 22, 142, 152}, {95, 36, 35, 96}, {96, 35, 34, 107}, { 107, 34, 33, 141}, {36, 95, 57, 31}, {135, 15, 78, 161}, {78, 15, 79, 77}, {59, 143, 3, 56}, {21, 80, 85, 22}, {20, 21, 22, 19}, {22, 74, 148, 19}, {54, 147, 20, 19, 148, 55}, {74, 14, 55, 148}, {54, 55, 14, 53}, { 127, 130, 53, 14}, {107, 147, 54, 53}, {130, 104, 107, 53}, {66, 65, 107, 106}, {52, 9, 8, 139}, {102, 136, 50, 49, 137, 103}, {101, 102, 103, 14}, {137, 11, 14, 103}, {110, 111, 18, 17, 108, 109}, {22, 110, 109, 142}, {108, 73, 142, 109}, {96, 107, 65, 64}, {95, 96, 64, 63}, {66, 106, 26, 67}, {126, 52, 117, 150}, {52, 126, 125, 88}, {34, 35, 36, 31, 32, 33}, {31, 57, 56, 32}, {141, 33, 32, 56}, {124, 135, 4, 121}, {1, 2, 3, 4}, {135, 161, 1, 4}, {161, 78, 77, 160, 2, 1}, {56, 3, 2, 160}, {77, 79, 56, 160}, {81, 107, 141, 82}, {141, 56, 83, 82}, {79, 15, 153, 133}, { 56, 79, 133, 134}, {48, 47, 149, 134, 133, 153}, {47, 22, 112, 149}, {56, 134, 149, 112}, {80, 81, 82, 83, 84, 85}, {83, 56, 112, 84}, {22, 85, 84, 112}, {107, 104, 105, 106}, {26, 106, 105, 129}, {90, 97, 27, 91}, { 51, 73, 5, 10}, {52, 51, 10, 9}, {139, 8, 7, 97}, {25, 24, 113, 95}, {24, 25, 26, 23}, {4, 69, 70, 71}, {92, 91, 27, 30}, {70, 132, 30, 71}, {150, 117, 30, 39}, {126, 150, 39, 38, 154, 125}, {88, 125, 154, 26}, {98, 15, 123, 99}, {97, 98, 99, 100}, {123, 124, 121, 122, 100, 99}, {97, 100, 122, 62}, {121, 4, 62, 122}, {97, 62, 61, 145}, {27, 97, 145, 28}, {59, 56, 57, 58}, {3, 143, 118, 4}, {118, 119, 120, 4}, {52, 88, 87, 157}, { 11, 52, 157, 12}, {130, 127, 128, 129, 105, 104}, {127, 14, 138, 128}, { 26, 129, 128, 138}, {92, 30, 117, 93}, {117, 52, 94, 93}, {90, 91, 92, 93, 94, 89}, {97, 90, 89, 139}, {52, 139, 89, 94}, {8, 9, 10, 5, 6, 7}, { 73, 72, 6, 5}, {72, 97, 7, 6}, {65, 66, 67, 68, 63, 64}, {95, 63, 68, 25}, {67, 26, 25, 68}, {132, 155, 140, 30}, {4, 71, 146, 60}, {62, 4, 60, 61}, {145, 61, 60, 146, 29, 28}, {71, 30, 29, 146}, {30, 27, 28, 29}, { 143, 59, 58, 144, 119, 118}, {120, 119, 144, 95}, {57, 95, 144, 58}, {69, 4, 120, 158}, {26, 138, 162, 86}, {88, 26, 86, 87}, {157, 87, 86, 162, 13, 12}, {138, 14, 13, 162}, {14, 11, 12, 13}, {113, 24, 23, 114, 115, 116}, {30, 140, 116, 115}, {95, 113, 116, 140}, {154, 38, 37, 26}, {23, 26, 37, 114}, {38, 39, 30, 37}, {115, 114, 37, 30}, {70, 69, 158, 156, 155, 132}, {140, 155, 156, 95}, {120, 95, 156, 158}}], {Text3DBox[ FormBox["1", StandardForm], { 0, -0.22164017088719892`, -0.35235701244224593`}, Background->GrayLevel[1]], Text3DBox[ FormBox["2", StandardForm], { 0.10363082970464195`, -0.20156474306442784`, -0.36002514353184933`}, Background->GrayLevel[1]], Text3DBox[ FormBox["3", StandardForm], { 0.13210997979477976`, -0.21375843756101537`, -0.34586841735579543`}, Background->GrayLevel[1]], Text3DBox[ FormBox["4", StandardForm], { 0, -0.361826783097534, -0.22362124999431188`}, Background->GrayLevel[1]], Text3DBox[ FormBox["5", StandardForm], {-0.3958828965965613, 0.07042635995207269, 0.10768792678081097`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "6", StandardForm], {-0.4240725185716703, 0, 0.033886538319965076`}, Background->GrayLevel[1]], Text3DBox[ FormBox["7", StandardForm], {-0.3958828965965615, -0.07042635995207254, 0.1076879267808105}, Background->GrayLevel[1]], Text3DBox[ FormBox["8", StandardForm], {-0.3600251435318492, -0.10363082970464205`, 0.2015647430644279}, Background->GrayLevel[1]], Text3DBox[ FormBox["9", StandardForm], {-0.352357012442246, 0, 0.22164017088719898`}, Background->GrayLevel[1]], Text3DBox[ FormBox["10", StandardForm], {-0.36002514353184917`, 0.103630829704642, 0.20156474306442804`}, Background->GrayLevel[1]], Text3DBox[ FormBox["11", StandardForm], {-0.13210997979478004`, 0.21375843756101562`, 0.3458684173557952}, Background->GrayLevel[1]], Text3DBox[ FormBox["12", StandardForm], {-0.10363082970464206`, 0.201564743064428, 0.36002514353184917`}, Background->GrayLevel[1]], Text3DBox[ FormBox["13", StandardForm], { 0, 0.22164017088719903`, 0.35235701244224593`}, Background->GrayLevel[1]], Text3DBox[ FormBox["14", StandardForm], {0, 0.361826783097534, 0.223621249994312}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "15", StandardForm], {-0.22362124999431204`, 0, -0.361826783097534}, Background->GrayLevel[1]], Text3DBox[ FormBox["16", StandardForm], {-0.3458684173557953, 0.1321099797947797, -0.21375843756101565`}, Background->GrayLevel[1]], Text3DBox[ FormBox["17", StandardForm], {-0.32613860521188415`, 0.1584604004674211, -0.22250777550724227`}, Background->GrayLevel[1]], Text3DBox[ FormBox["18", StandardForm], {-0.24466908566143514`, 0.17424272570936214`, -0.2881949698157502}, Background->GrayLevel[1]], Text3DBox[ FormBox["19", StandardForm], {0.10768792678081054`, 0.3958828965965615, -0.07042635995207244}, Background->GrayLevel[1]], Text3DBox[ FormBox["20", StandardForm], {0.20156474306442823`, 0.36002514353184906`, -0.10363082970464225`}, Background->GrayLevel[1]], Text3DBox[ FormBox["21", StandardForm], {0.21375843756101556`, 0.34586841735579543`, -0.1321099797947796}, Background->GrayLevel[1]], Text3DBox[ FormBox["22", StandardForm], { 0, 0.3618267830975341, -0.22362124999431188`}, Background->GrayLevel[1]], Text3DBox[ FormBox["23", StandardForm], { 0.24466908566143492`, -0.17424272570936225`, 0.2881949698157503}, Background->GrayLevel[1]], Text3DBox[ FormBox["24", StandardForm], {0.3261386052118843, -0.15846040046742108`, 0.2225077755072421}, Background->GrayLevel[1]], Text3DBox[ FormBox["25", StandardForm], {0.3458684173557954, -0.1321099797947798, 0.2137584375610155}, Background->GrayLevel[1]], Text3DBox[ FormBox["26", StandardForm], {0.2236212499943119, 0, 0.361826783097534}, Background->GrayLevel[1]], Text3DBox[ FormBox["27", StandardForm], {-0.21375843756101565`, -0.3458684173557952, 0.13210997979478004`}, Background->GrayLevel[1]], Text3DBox[ FormBox["28", StandardForm], {-0.2015647430644282, -0.3600251435318491, 0.10363082970464207`}, Background->GrayLevel[1]], Text3DBox[ FormBox["29", StandardForm], {-0.10768792678081109`, -0.3958828965965613, 0.0704263599520727}, Background->GrayLevel[1]], Text3DBox[ FormBox["30", StandardForm], { 0, -0.3618267830975341, 0.22362124999431188`}, Background->GrayLevel[1]], Text3DBox[ FormBox["31", StandardForm], { 0.36002514353184917`, -0.10363082970464206`, -0.20156474306442795`}, Background->GrayLevel[1]], Text3DBox[ FormBox["32", StandardForm], { 0.35235701244224593`, 0, -0.22164017088719912`}, Background->GrayLevel[1]], Text3DBox[ FormBox["33", StandardForm], {0.36002514353184917`, 0.10363082970464219`, -0.20156474306442798`}, Background->GrayLevel[1]], Text3DBox[ FormBox["34", StandardForm], {0.3958828965965612, 0.07042635995207286, -0.10768792678081116`}, Background->GrayLevel[1]], Text3DBox[ FormBox["35", StandardForm], { 0.42407251857167017`, 0, -0.03388653831996488}, Background->GrayLevel[1]], Text3DBox[ FormBox["36", StandardForm], { 0.3958828965965614, -0.07042635995207251, -0.10768792678081068`}, Background->GrayLevel[1]], Text3DBox[ FormBox["37", StandardForm], {0.1321099797947804, -0.2137584375610157, 0.3458684173557951}, Background->GrayLevel[1]], Text3DBox[ FormBox["38", StandardForm], { 0.10363082970464271`, -0.20156474306442818`, 0.36002514353184895`}, Background->GrayLevel[1]], Text3DBox[ FormBox["39", StandardForm], {0, -0.2216401708871991, 0.3523570124422459}, Background->GrayLevel[1]], Text3DBox[ FormBox["40", StandardForm], {-0.3600251435318492, 0.103630829704642, -0.20156474306442793`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "41", StandardForm], {-0.352357012442246, 0, -0.22164017088719898`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "42", StandardForm], {-0.36002514353184917`, -0.10363082970464212`, \ -0.20156474306442798`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "43", StandardForm], {-0.3958828965965611, -0.070426359952073, \ -0.10768792678081146`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "44", StandardForm], {-0.4240725185716702, 0, -0.03388653831996495}, Background->GrayLevel[1]], Text3DBox[ FormBox["45", StandardForm], {-0.39588289659656145`, 0.07042635995207236, -0.1076879267808106}, Background->GrayLevel[1]], Text3DBox[ FormBox["46", StandardForm], {-0.13210997979477987`, 0.21375843756101562`, -0.34586841735579527`}, Background->GrayLevel[1]], Text3DBox[ FormBox["47", StandardForm], { 0, 0.22164017088719898`, -0.352357012442246}, Background->GrayLevel[1]], Text3DBox[ FormBox["48", StandardForm], {-0.10363082970464216`, 0.2015647430644281, -0.36002514353184917`}, Background->GrayLevel[1]], Text3DBox[ FormBox["49", StandardForm], {-0.24466908566143492`, 0.17424272570936214`, 0.2881949698157504}, Background->GrayLevel[1]], Text3DBox[ FormBox["50", StandardForm], {-0.3261386052118842, 0.15846040046742105`, 0.22250777550724224`}, Background->GrayLevel[1]], Text3DBox[ FormBox["51", StandardForm], {-0.3458684173557953, 0.13210997979477973`, 0.2137584375610156}, Background->GrayLevel[1]], Text3DBox[ FormBox["52", StandardForm], {-0.2236212499943121, 0, 0.361826783097534}, Background->GrayLevel[1]], Text3DBox[ FormBox["53", StandardForm], {0.2137584375610156, 0.34586841735579527`, 0.13210997979477987`}, Background->GrayLevel[1]], Text3DBox[ FormBox["54", StandardForm], {0.2015647430644281, 0.36002514353184917`, 0.103630829704642}, Background->GrayLevel[1]], Text3DBox[ FormBox["55", StandardForm], {0.10768792678081097`, 0.39588289659656134`, 0.07042635995207258}, Background->GrayLevel[1]], Text3DBox[ FormBox["56", StandardForm], {0.223621249994312, 0, -0.361826783097534}, Background->GrayLevel[1]], Text3DBox[ FormBox["57", StandardForm], { 0.34586841735579527`, -0.13210997979477987`, -0.21375843756101562`}, Background->GrayLevel[1]], Text3DBox[ FormBox["58", StandardForm], { 0.326138605211884, -0.15846040046742133`, -0.22250777550724235`}, Background->GrayLevel[1]], Text3DBox[ FormBox["59", StandardForm], { 0.24466908566143533`, -0.17424272570936222`, -0.28819496981575}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "60", StandardForm], {-0.10768792678081046`, -0.3958828965965615, \ -0.07042635995207241}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "61", StandardForm], {-0.2015647430644281, -0.36002514353184917`, \ -0.10363082970464196`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "62", StandardForm], {-0.2137584375610156, -0.3458684173557953, \ -0.13210997979477973`}, Background->GrayLevel[1]], Text3DBox[ FormBox["63", StandardForm], {0.3958828965965613, -0.07042635995207266, 0.10768792678081107`}, Background->GrayLevel[1]], Text3DBox[ FormBox["64", StandardForm], { 0.4240725185716702, 0, 0.033886538319964986`}, Background->GrayLevel[1]], Text3DBox[ FormBox["65", StandardForm], {0.3958828965965614, 0.0704263599520727, 0.10768792678081072`}, Background->GrayLevel[1]], Text3DBox[ FormBox["66", StandardForm], {0.3600251435318492, 0.10363082970464206`, 0.2015647430644279}, Background->GrayLevel[1]], Text3DBox[ FormBox["67", StandardForm], {0.35235701244224593`, 0, 0.221640170887199}, Background->GrayLevel[1]], Text3DBox[ FormBox["68", StandardForm], { 0.36002514353184917`, -0.10363082970464216`, 0.20156474306442804`}, Background->GrayLevel[1]], Text3DBox[ FormBox["69", StandardForm], { 0.10768792678081084`, -0.39588289659656134`, -0.07042635995207258}, Background->GrayLevel[1]], Text3DBox[ FormBox["70", StandardForm], { 0.03388653831996501, -0.4240725185716702, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["71", StandardForm], {0, -0.42751687512203107`, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["72", StandardForm], {-0.42751687512203107`, 0, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["73", StandardForm], {-0.361826783097534, 0.223621249994312, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["74", StandardForm], {0, 0.4275168751220311, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "75", StandardForm], {-0.03388653831996485, 0.4240725185716703, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["76", StandardForm], {-0.10768792678081102`, 0.39588289659656134`, 0.0704263599520728}, Background->GrayLevel[1]], Text3DBox[ FormBox["77", StandardForm], { 0, -0.03388653831996488, -0.4240725185716703}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "78", StandardForm], {-0.07042635995207289, -0.10768792678081097`, \ -0.39588289659656134`}, Background->GrayLevel[1]], Text3DBox[ FormBox["79", StandardForm], {0, 0, -0.4275168751220311}, Background->GrayLevel[1]], Text3DBox[ FormBox["80", StandardForm], {0.22250777550724227`, 0.3261386052118841, -0.1584604004674212}, Background->GrayLevel[1]], Text3DBox[ FormBox["81", StandardForm], {0.28819496981575027`, 0.2446690856614349, -0.1742427257093623}, Background->GrayLevel[1]], Text3DBox[ FormBox["82", StandardForm], {0.326138605211884, 0.1584604004674214, -0.22250777550724204`}, Background->GrayLevel[1]], Text3DBox[ FormBox["83", StandardForm], {0.2446690856614343, 0.1742427257093626, -0.28819496981575055`}, Background->GrayLevel[1]], Text3DBox[ FormBox["84", StandardForm], {0.158460400467421, 0.2225077755072422, -0.3261386052118843}, Background->GrayLevel[1]], Text3DBox[ FormBox["85", StandardForm], {0.17424272570936197`, 0.2881949698157499, -0.2446690856614357}, Background->GrayLevel[1]], Text3DBox[ FormBox["86", StandardForm], {0.07042635995207294, 0.10768792678081099`, 0.3958828965965613}, Background->GrayLevel[1]], Text3DBox[ FormBox["87", StandardForm], {0, 0.0338865383199648, 0.4240725185716703}, Background->GrayLevel[1]], Text3DBox[ FormBox["88", StandardForm], {0, 0, 0.4275168751220311}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "89", StandardForm], {-0.32613860521188426`, -0.15846040046742105`, 0.22250777550724218`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "90", StandardForm], {-0.28819496981575016`, -0.24466908566143525`, 0.17424272570936208`}, Background->GrayLevel[1]], Text3DBox[ FormBox["91", StandardForm], {-0.22250777550724204`, -0.3261386052118845, 0.15846040046742094`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "92", StandardForm], {-0.17424272570936244`, -0.28819496981575066`, 0.2446690856614344}, Background->GrayLevel[1]], Text3DBox[ FormBox["93", StandardForm], {-0.15846040046742133`, -0.222507775507242, 0.3261386052118842}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "94", StandardForm], {-0.24466908566143497`, -0.17424272570936225`, 0.2881949698157503}, Background->GrayLevel[1]], Text3DBox[ FormBox["95", StandardForm], { 0.361826783097534, -0.22362124999431185`, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["96", StandardForm], {0.42751687512203107`, 0, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "97", StandardForm], {-0.361826783097534, -0.22362124999431213`, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "98", StandardForm], {-0.34586841735579543`, -0.13210997979477968`, \ -0.2137584375610155}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "99", StandardForm], {-0.32613860521188426`, -0.1584604004674211, \ -0.22250777550724218`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "100", StandardForm], {-0.28819496981575027`, -0.24466908566143503`, \ -0.1742427257093622}, Background->GrayLevel[1]], Text3DBox[ FormBox["101", StandardForm], {-0.21375843756101534`, 0.34586841735579554`, 0.13210997979477968`}, Background->GrayLevel[1]], Text3DBox[ FormBox["102", StandardForm], {-0.22250777550724204`, 0.3261386052118842, 0.15846040046742133`}, Background->GrayLevel[1]], Text3DBox[ FormBox["103", StandardForm], {-0.1742427257093619, 0.28819496981575016`, 0.2446690856614355}, Background->GrayLevel[1]], Text3DBox[ FormBox["104", StandardForm], {0.2881949698157504, 0.24466908566143464`, 0.1742427257093625}, Background->GrayLevel[1]], Text3DBox[ FormBox["105", StandardForm], {0.3261386052118841, 0.15846040046742121`, 0.22250777550724218`}, Background->GrayLevel[1]], Text3DBox[ FormBox["106", StandardForm], {0.3458684173557952, 0.13210997979477995`, 0.21375843756101556`}, Background->GrayLevel[1]], Text3DBox[ FormBox["107", StandardForm], { 0.361826783097534, 0.22362124999431207`, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["108", StandardForm], {-0.28819496981575043`, 0.24466908566143464`, -0.17424272570936236`}, Background->GrayLevel[1]], Text3DBox[ FormBox["109", StandardForm], {-0.2225077755072422, 0.3261386052118842, -0.15846040046742105`}, Background->GrayLevel[1]], Text3DBox[ FormBox["110", StandardForm], {-0.17424272570936208`, 0.28819496981575016`, -0.24466908566143522`}, Background->GrayLevel[1]], Text3DBox[ FormBox["111", StandardForm], {-0.15846040046742096`, 0.22250777550724213`, -0.32613860521188437`}, Background->GrayLevel[1]], Text3DBox[ FormBox["112", StandardForm], {0.13210997979477976`, 0.2137584375610157, -0.3458684173557953}, Background->GrayLevel[1]], Text3DBox[ FormBox["113", StandardForm], {0.2881949698157503, -0.24466908566143508`, 0.17424272570936203`}, Background->GrayLevel[1]], Text3DBox[ FormBox["114", StandardForm], {0.1584604004674209, -0.22250777550724224`, 0.3261386052118843}, Background->GrayLevel[1]], Text3DBox[ FormBox["115", StandardForm], {0.1742427257093619, -0.2881949698157498, 0.24466908566143578`}, Background->GrayLevel[1]], Text3DBox[ FormBox["116", StandardForm], { 0.22250777550724227`, -0.32613860521188415`, 0.15846040046742105`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "117", StandardForm], {-0.1321099797947799, -0.21375843756101545`, 0.34586841735579527`}, Background->GrayLevel[1]], Text3DBox[ FormBox["118", StandardForm], { 0.17424272570936222`, -0.2881949698157505, -0.2446690856614347}, Background->GrayLevel[1]], Text3DBox[ FormBox["119", StandardForm], { 0.22250777550724204`, -0.32613860521188437`, -0.15846040046742096`}, Background->GrayLevel[1]], Text3DBox[ FormBox["120", StandardForm], { 0.21375843756101554`, -0.3458684173557953, -0.13210997979477976`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "121", StandardForm], {-0.174242725709362, -0.28819496981575, \ -0.24466908566143555`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "122", StandardForm], {-0.22250777550724216`, -0.32613860521188426`, \ -0.1584604004674211}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "123", StandardForm], {-0.24466908566143541`, -0.17424272570936197`, \ -0.28819496981575016`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "124", StandardForm], {-0.158460400467421, -0.2225077755072422, \ -0.3261386052118843}, Background->GrayLevel[1]], Text3DBox[ FormBox["125", StandardForm], { 0, -0.03388653831996478, 0.4240725185716703}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "126", StandardForm], {-0.07042635995207261, -0.10768792678081077`, 0.3958828965965614}, Background->GrayLevel[1]], Text3DBox[ FormBox["127", StandardForm], {0.17424272570936236`, 0.2881949698157504, 0.24466908566143478`}, Background->GrayLevel[1]], Text3DBox[ FormBox["128", StandardForm], {0.15846040046742127`, 0.222507775507242, 0.32613860521188426`}, Background->GrayLevel[1]], Text3DBox[ FormBox["129", StandardForm], {0.24466908566143486`, 0.1742427257093623, 0.2881949698157504}, Background->GrayLevel[1]], Text3DBox[ FormBox["130", StandardForm], {0.22250777550724202`, 0.32613860521188426`, 0.15846040046742127`}, Background->GrayLevel[1]], Text3DBox[ FormBox["131", StandardForm], {-0.10768792678081127`, 0.39588289659656123`, -0.07042635995207298}, Background->GrayLevel[1]], Text3DBox[ FormBox["132", StandardForm], { 0.10768792678081064`, -0.39588289659656145`, 0.07042635995207233}, Background->GrayLevel[1]], Text3DBox[ FormBox["133", StandardForm], { 0, 0.0338865383199649, -0.4240725185716703}, Background->GrayLevel[1]], Text3DBox[ FormBox["134", StandardForm], {0.07042635995207275, 0.10768792678081096`, -0.39588289659656134`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "135", StandardForm], {-0.1321099797947797, -0.2137584375610156, \ -0.3458684173557954}, Background->GrayLevel[1]], Text3DBox[ FormBox["136", StandardForm], {-0.2881949698157509, 0.24466908566143378`, 0.17424272570936267`}, Background->GrayLevel[1]], Text3DBox[ FormBox["137", StandardForm], {-0.15846040046742071`, 0.2225077755072421, 0.3261386052118845}, Background->GrayLevel[1]], Text3DBox[ FormBox["138", StandardForm], {0.13210997979477992`, 0.21375843756101545`, 0.34586841735579527`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "139", StandardForm], {-0.3458684173557952, -0.13210997979477995`, 0.2137584375610155}, Background->GrayLevel[1]], Text3DBox[ FormBox["140", StandardForm], {0.2137584375610156, -0.3458684173557952, 0.1321099797947799}, Background->GrayLevel[1]], Text3DBox[ FormBox["141", StandardForm], {0.34586841735579527`, 0.13210997979477987`, -0.21375843756101556`}, Background->GrayLevel[1]], Text3DBox[ FormBox["142", StandardForm], {-0.21375843756101545`, 0.3458684173557955, -0.13210997979477956`}, Background->GrayLevel[1]], Text3DBox[ FormBox["143", StandardForm], { 0.15846040046742105`, -0.22250777550724204`, -0.32613860521188437`}, Background->GrayLevel[1]], Text3DBox[ FormBox["144", StandardForm], { 0.28819496981575055`, -0.24466908566143458`, -0.1742427257093622}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "145", StandardForm], {-0.221640170887199, -0.3523570124422461, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "146", StandardForm], {-0.03388653831996487, -0.4240725185716703, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["147", StandardForm], { 0.22164017088719903`, 0.352357012442246, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["148", StandardForm], { 0.03388653831996474, 0.4240725185716703, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["149", StandardForm], {0.10363082970464202`, 0.201564743064428, -0.36002514353184917`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "150", StandardForm], {-0.10363082970464216`, -0.20156474306442798`, 0.36002514353184917`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "151", StandardForm], {-0.22164017088719903`, 0.35235701244224593`, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["152", StandardForm], {-0.20156474306442795`, 0.3600251435318492, -0.10363082970464223`}, Background->GrayLevel[1]], Text3DBox[ FormBox["153", StandardForm], {-0.07042635995207255, 0.1076879267808108, -0.3958828965965614}, Background->GrayLevel[1]], Text3DBox[ FormBox["154", StandardForm], { 0.07042635995207278, -0.10768792678081096`, 0.39588289659656134`}, Background->GrayLevel[1]], Text3DBox[ FormBox["155", StandardForm], {0.20156474306442806`, -0.3600251435318492, 0.103630829704642}, Background->GrayLevel[1]], Text3DBox[ FormBox["156", StandardForm], { 0.22164017088719898`, -0.35235701244224593`, 0}, Background->GrayLevel[1]], Text3DBox[ FormBox["157", StandardForm], {-0.07042635995207272, 0.10768792678081066`, 0.39588289659656134`}, Background->GrayLevel[1]], Text3DBox[ FormBox["158", StandardForm], { 0.201564743064428, -0.36002514353184917`, -0.10363082970464227`}, Background->GrayLevel[1]], Text3DBox[ FormBox["159", StandardForm], {-0.20156474306442806`, 0.36002514353184917`, 0.10363082970464223`}, Background->GrayLevel[1]], Text3DBox[ FormBox["160", StandardForm], { 0.07042635995207264, -0.10768792678081093`, -0.39588289659656134`}, Background->GrayLevel[1]], Text3DBox[ FormBox[ "161", StandardForm], {-0.10363082970464196`, -0.20156474306442795`, \ -0.3600251435318492}, Background->GrayLevel[1]], Text3DBox[ FormBox["162", StandardForm], {0.10363082970464213`, 0.20156474306442804`, 0.36002514353184917`}, Background->GrayLevel[1]]}}, ImageSize->{836.06640625, 833.}, ImageSizeRaw->Automatic, ViewAngle->0.47030072394368955`, ViewPoint->{1.826830454286287, -2.2435210602299556`, 1.754794501814048}, ViewVertical->{0.005144633088626339, -0.10984971107369973`, 0.9939348941089694}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[12]=",ExpressionUUID->"16A90924-6192-43AE-9269-1F90A1806967"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Midsphere", "[", "newi", "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[13]:=",ExpressionUUID->"1CCA6367-2E92-49DB-955B-E06C1BF5C54D"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[13]=",ExpressionUUID->"747BB912-A435-4AD7-9FA1-FA2951F34353"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "@", RowBox[{"PolyhedronGraph", "@", "newi"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[14]:=",ExpressionUUID->"C859DF9B-8DB4-4C1A-BCEA-BBD4AAAE0F77"], Cell[CellGroupData[{ Cell[BoxData["\<\"Reading CanonicalForms from raw GraphData file cache (first \ time only)...\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[14]:=",ExpressionUUID->"DC77CD06-ED96-4775-B0E2-3499E88D2C8F"], Cell[BoxData["\<\"Reading GraphData standard names from raw GraphData file \ cache (first time only)...\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[14]:=",ExpressionUUID->"699C7A45-A6D7-4B3D-B110-68359C1D7AF6"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Building default Association of length \"\>", "\[InvisibleSpace]", "12476", "\[InvisibleSpace]", "\<\"...\"\>"}], SequenceForm["Building default Association of length ", 12476, "..."], Editable->False]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[14]:=",ExpressionUUID->"205A6939-6754-499B-982B-AD891A1F38C1"] }, Open ]], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[14]=",ExpressionUUID->"3584261D-6B65-442C-BC33-A10BA635AF84"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"lengths", "=", RowBox[{"PolyhedronEdgeLengths", "[", "newi", "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[15]:=",ExpressionUUID->"36CC61BB-956C-4B28-87A2-9FCFAAEEED97"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0.1058355890140322`", ",", "0.03406113725870695`", ",", "0.10583558901403212`", ",", "0.23307005736302888`", ",", "0.2330700573630285`", ",", "0.19032914326519146`", ",", "0.2330700573630287`", ",", "0.19032914326519124`", ",", "0.1903291432651913`", ",", "0.10583558901403228`", ",", "0.1058355890140322`", ",", "0.10583558901403171`", ",", "0.1903291432651913`", ",", "0.1058355890140327`", ",", "0.03406113725870711`", ",", "0.10583558901403228`", ",", "0.10583558901403221`", ",", "0.034061137258706874`", ",", "0.2330700573630287`", ",", "0.034061137258706076`", ",", "0.034061137258707144`", ",", "0.10583558901403228`", ",", "0.10583558901403235`", ",", "0.19032914326519132`", ",", "0.2330700573630287`", ",", "0.1903291432651914`", ",", "0.2330700573630287`", ",", "0.19032914326519124`", ",", "0.19032914326519135`", ",", "0.23307005736302877`", ",", "0.23307005736302852`", ",", "0.19032914326519135`", ",", "0.19032914326519124`", ",", "0.23307005736302872`", ",", "0.23307005736302866`", ",", "0.23307005736302874`", ",", "0.03406113725870692`", ",", "0.03406113725870693`", ",", "0.10583558901403196`", ",", "0.19032914326519126`", ",", "0.1058355890140327`", ",", "0.1058355890140331`", ",", "0.10583558901403242`", ",", "0.034061137258706374`", ",", "0.23307005736302855`", ",", "0.1903291432651912`", ",", "0.23307005736302872`", ",", "0.23307005736302872`", ",", "0.1903291432651915`", ",", "0.23307005736302866`", ",", "0.19032914326519115`", ",", "0.23307005736302863`", ",", "0.10583558901403245`", ",", "0.10583558901403253`", ",", "0.03406113725870675`", ",", "0.23307005736302877`", ",", "0.19032914326519132`", ",", "0.1903291432651914`", ",", "0.23307005736302858`", ",", "0.23307005736302863`", ",", "0.03406113725870622`", ",", "0.034061137258707054`", ",", "0.10583558901403237`", ",", "0.10583558901403244`", ",", "0.1903291432651913`", ",", "0.23307005736302888`", ",", "0.19032914326519135`", ",", "0.23307005736302855`", ",", "0.19032914326519135`", ",", "0.10583558901403259`", ",", "0.10583558901403232`", ",", "0.10583558901403244`", ",", "0.03406113725870687`", ",", "0.10583558901403205`", ",", "0.19032914326519135`", ",", "0.10583558901403259`", ",", "0.03406113725870676`", ",", "0.10583558901403196`", ",", "0.23307005736302855`", ",", "0.03406113725870599`", ",", "0.034061137258706825`", ",", "0.1058355890140329`", ",", "0.10583558901403241`", ",", "0.10583558901403266`", ",", "0.10583558901403224`", ",", "0.10583558901403234`", ",", "0.10583558901403169`", ",", "0.10583558901403287`", ",", "0.03406113725870683`", ",", "0.10583558901403174`", ",", "0.1903291432651914`", ",", "0.23307005736302872`", ",", "0.034061137258706874`", ",", "0.10583558901403235`", ",", "0.10583558901403263`", ",", "0.1058355890140323`", ",", "0.10583558901403103`", ",", "0.03406113725870684`", ",", "0.23307005736302852`", ",", "0.19032914326519132`", ",", "0.2330700573630287`", ",", "0.19032914326519118`", ",", "0.1903291432651913`", ",", "0.23307005736302858`", ",", "0.03406113725870699`", ",", "0.23307005736302863`", ",", "0.10583558901403238`", ",", "0.10583558901403235`", ",", "0.19032914326519124`", ",", "0.19032914326519146`", ",", "0.19032914326519149`", ",", "0.2330700573630287`", ",", "0.034061137258707`", ",", "0.23307005736302863`", ",", "0.03406113725870706`", ",", "0.10583558901403146`", ",", "0.1058355890140328`", ",", "0.1903291432651912`", ",", "0.10583558901403294`", ",", "0.10583558901403216`", ",", "0.03406113725870689`", ",", "0.23307005736302852`", ",", "0.10583558901403226`", ",", "0.1903291432651913`", ",", "0.1058355890140323`", ",", "0.03406113725870687`", ",", "0.10583558901403206`", ",", "0.19032914326519124`", ",", "0.10583558901403242`", ",", "0.1058355890140323`", ",", "0.03406113725870676`", ",", "0.10583558901403238`", ",", "0.10583558901403206`", ",", "0.03406113725870689`", ",", "0.10583558901403173`", ",", "0.23307005736302855`", ",", "0.03406113725870674`", ",", "0.03406113725870695`", ",", "0.23307005736302866`", ",", "0.19032914326519132`", ",", "0.23307005736302877`", ",", "0.23307005736302874`", ",", "0.19032914326519135`", ",", "0.19032914326519135`", ",", "0.23307005736302855`", ",", "0.03406113725870673`", ",", "0.034061137258706624`", ",", "0.10583558901403245`", ",", "0.10583558901403232`", ",", "0.10583558901403245`", ",", "0.10583558901403214`", ",", "0.2330700573630287`", ",", "0.03406113725870676`", ",", "0.03406113725870719`", ",", "0.10583558901403313`", ",", "0.10583558901403214`", ",", "0.10583558901403185`", ",", "0.10583558901403284`", ",", "0.10583558901403169`", ",", "0.19032914326519135`", ",", "0.10583558901403148`", ",", "0.19032914326519107`", ",", "0.10583558901403257`", ",", "0.10583558901403217`", ",", "0.23307005736302877`", ",", "0.03406113725870668`", ",", "0.10583558901403231`", ",", "0.034061137258706575`", ",", "0.10583558901403275`", ",", "0.19032914326519124`", ",", "0.10583558901403224`", ",", "0.10583558901403181`", ",", "0.10583558901403303`", ",", "0.10583558901403206`", ",", "0.23307005736302855`", ",", "0.1903291432651912`", ",", "0.23307005736302866`", ",", "0.23307005736302872`", ",", "0.23307005736302852`", ",", "0.2330700573630286`", ",", "0.19032914326519143`", ",", "0.2330700573630288`", ",", "0.23307005736302863`", ",", "0.03406113725870667`", ",", "0.23307005736302872`", ",", "0.034061137258706964`", ",", "0.10583558901403244`", ",", "0.19032914326519126`", ",", "0.10583558901403224`", ",", "0.2330700573630285`", ",", "0.23307005736302885`", ",", "0.03406113725870645`", ",", "0.034061137258707234`", ",", "0.10583558901403273`", ",", "0.19032914326519113`", ",", "0.10583558901403202`", ",", "0.10583558901403178`", ",", "0.19032914326519146`", ",", "0.03406113725870678`", ",", "0.10583558901403228`", ",", "0.23307005736302874`", ",", "0.034061137258707117`", ",", "0.19032914326519138`", ",", "0.23307005736302874`", ",", "0.23307005736302866`", ",", "0.10583558901403198`", ",", "0.1058355890140326`", ",", "0.03406113725870709`", ",", "0.1903291432651913`", ",", "0.10583558901403273`", ",", "0.0340611372587065`", ",", "0.10583558901403212`", ",", "0.23307005736302883`", ",", "0.03406113725870667`", ",", "0.03406113725870693`", ",", "0.19032914326519115`", ",", "0.10583558901403206`", ",", "0.1058355890140325`", ",", "0.1903291432651913`", ",", "0.10583558901403135`", ",", "0.10583558901403338`", ",", "0.23307005736302885`", ",", "0.03406113725870686`", ",", "0.034061137258706874`", ",", "0.1903291432651912`", ",", "0.10583558901403216`", ",", "0.03406113725870662`", ",", "0.10583558901403292`", ",", "0.23307005736302863`", ",", "0.034061137258706665`", ",", "0.10583558901403164`", ",", "0.034061137258706825`", ",", "0.10583558901403305`", ",", "0.19032914326519118`", ",", "0.10583558901403183`", ",", "0.10583558901403302`", ",", "0.03406113725870666`", ",", "0.10583558901403245`", ",", "0.19032914326519138`", ",", "0.10583558901403219`", ",", "0.10583558901403191`", ",", "0.1058355890140326`", ",", "0.19032914326519135`", ",", "0.10583558901403198`", ",", "0.034061137258706776`", ",", "0.10583558901403271`", ",", "0.10583558901403277`", ",", "0.19032914326519135`", ",", "0.10583558901403277`", ",", "0.03406113725870678`", ",", "0.10583558901403234`", ",", "0.1903291432651913`", ",", "0.10583558901403227`", ",", "0.2330700573630287`", ",", "0.034061137258706776`", ",", "0.10583558901403364`", ",", "0.10583558901403269`", ",", "0.2330700573630285`", ",", "0.03406113725870676`", ",", "0.0340611372587069`", ",", "0.23307005736302866`", ",", "0.23307005736302863`", ",", "0.23307005736302872`", ",", "0.03406113725870668`", ",", "0.03406113725870706`", ",", "0.2330700573630287`", ",", "0.2330700573630287`", ",", "0.03406113725870679`", ",", "0.1058355890140328`", ",", "0.10583558901403176`", ",", "0.19032914326519115`", ",", "0.10583558901403224`", ",", "0.19032914326519135`", ",", "0.10583558901403174`", ",", "0.10583558901403223`", ",", "0.1903291432651913`", ",", "0.10583558901403191`", ",", "0.10583558901403223`", ",", "0.10583558901403253`", ",", "0.19032914326519132`", ",", "0.10583558901403246`", ",", "0.1058355890140319`", ",", "0.03406113725870648`", ",", "0.19032914326519138`", ",", "0.10583558901403207`", ",", "0.1903291432651912`", ",", "0.10583558901403271`", ",", "0.03406113725870707`", ",", "0.10583558901403223`", ",", "0.19032914326519146`", ",", "0.10583558901403248`", ",", "0.10583558901403256`", ",", "0.1903291432651912`", ",", "0.10583558901403252`", ",", "0.10583558901403245`", ",", "0.19032914326519135`", ",", "0.10583558901403226`", ",", "0.10583558901403219`", ",", "0.034061137258706915`", ",", "0.10583558901403223`"}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[15]=",ExpressionUUID->"9041A0E8-B1FA-4974-A6DA-16CEECF4A1B5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Divide", "@@", RowBox[{"MinMax", "[", RowBox[{"%", "lengths"}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[16]:=",ExpressionUUID->"BB3C24DC-63A7-4801-B7EA-256E05C2316B"], Cell[BoxData["0.021357249574478814`"], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[16]=",ExpressionUUID->"807DBE4A-7C06-40D0-B242-FB05C8B5C73A"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Round", "[", RowBox[{ RowBox[{"10", "^", "12"}], "lengths"}], "]"}], "/", RowBox[{"10", "^", "12."}]}], "//", "Counts"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[17]:=",ExpressionUUID->"61F11A54-F138-4847-9283-ADB26DD08A71"], Cell[BoxData[ RowBox[{"\[LeftAssociation]", RowBox[{ RowBox[{"0.105835589014`", "\[Rule]", "120"}], ",", RowBox[{"0.034061137259`", "\[Rule]", "60"}], ",", RowBox[{"0.233070057363`", "\[Rule]", "60"}], ",", RowBox[{"0.190329143265`", "\[Rule]", "60"}]}], "\[RightAssociation]"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[17]=",ExpressionUUID->"1AC2C6ED-39AE-40CD-B322-379C06E04DA4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"newi", "[", RowBox[{"[", "1", "]"}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[18]:=",ExpressionUUID->"78472F92-2BC1-4D68-B90D-118EF378534F"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.22164017088719892`"}], ",", RowBox[{"-", "0.35235701244224593`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.10363082970464195`", ",", RowBox[{"-", "0.20156474306442784`"}], ",", RowBox[{"-", "0.36002514353184933`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.13210997979477976`", ",", RowBox[{"-", "0.21375843756101537`"}], ",", RowBox[{"-", "0.34586841735579543`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.361826783097534`"}], ",", RowBox[{"-", "0.22362124999431188`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3958828965965613`"}], ",", "0.07042635995207269`", ",", "0.10768792678081097`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.4240725185716703`"}], ",", "0", ",", "0.033886538319965076`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3958828965965615`"}], ",", RowBox[{"-", "0.07042635995207254`"}], ",", "0.1076879267808105`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3600251435318492`"}], ",", RowBox[{"-", "0.10363082970464205`"}], ",", "0.2015647430644279`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.352357012442246`"}], ",", "0", ",", "0.22164017088719898`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.36002514353184917`"}], ",", "0.103630829704642`", ",", "0.20156474306442804`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.13210997979478004`"}], ",", "0.21375843756101562`", ",", "0.3458684173557952`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10363082970464206`"}], ",", "0.201564743064428`", ",", "0.36002514353184917`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.22164017088719903`", ",", "0.35235701244224593`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.361826783097534`", ",", "0.223621249994312`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22362124999431204`"}], ",", "0", ",", RowBox[{"-", "0.361826783097534`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3458684173557953`"}], ",", "0.1321099797947797`", ",", RowBox[{"-", "0.21375843756101565`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.32613860521188415`"}], ",", "0.1584604004674211`", ",", RowBox[{"-", "0.22250777550724227`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24466908566143514`"}], ",", "0.17424272570936214`", ",", RowBox[{"-", "0.2881949698157502`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.10768792678081054`", ",", "0.3958828965965615`", ",", RowBox[{"-", "0.07042635995207244`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.20156474306442823`", ",", "0.36002514353184906`", ",", RowBox[{"-", "0.10363082970464225`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.21375843756101556`", ",", "0.34586841735579543`", ",", RowBox[{"-", "0.1321099797947796`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.3618267830975341`", ",", RowBox[{"-", "0.22362124999431188`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.24466908566143492`", ",", RowBox[{"-", "0.17424272570936225`"}], ",", "0.2881949698157503`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.3261386052118843`", ",", RowBox[{"-", "0.15846040046742108`"}], ",", "0.2225077755072421`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.3458684173557954`", ",", RowBox[{"-", "0.1321099797947798`"}], ",", "0.2137584375610155`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.2236212499943119`", ",", "0", ",", "0.361826783097534`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21375843756101565`"}], ",", RowBox[{"-", "0.3458684173557952`"}], ",", "0.13210997979478004`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2015647430644282`"}], ",", RowBox[{"-", "0.3600251435318491`"}], ",", "0.10363082970464207`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10768792678081109`"}], ",", RowBox[{"-", "0.3958828965965613`"}], ",", "0.0704263599520727`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.3618267830975341`"}], ",", "0.22362124999431188`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.36002514353184917`", ",", RowBox[{"-", "0.10363082970464206`"}], ",", RowBox[{"-", "0.20156474306442795`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.35235701244224593`", ",", "0", ",", RowBox[{"-", "0.22164017088719912`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.36002514353184917`", ",", "0.10363082970464219`", ",", RowBox[{"-", "0.20156474306442798`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3958828965965612`", ",", "0.07042635995207286`", ",", RowBox[{"-", "0.10768792678081116`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.42407251857167017`", ",", "0", ",", RowBox[{"-", "0.03388653831996488`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3958828965965614`", ",", RowBox[{"-", "0.07042635995207251`"}], ",", RowBox[{"-", "0.10768792678081068`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.1321099797947804`", ",", RowBox[{"-", "0.2137584375610157`"}], ",", "0.3458684173557951`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.10363082970464271`", ",", RowBox[{"-", "0.20156474306442818`"}], ",", "0.36002514353184895`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.2216401708871991`"}], ",", "0.3523570124422459`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3600251435318492`"}], ",", "0.103630829704642`", ",", RowBox[{"-", "0.20156474306442793`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.352357012442246`"}], ",", "0", ",", RowBox[{"-", "0.22164017088719898`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.36002514353184917`"}], ",", RowBox[{"-", "0.10363082970464212`"}], ",", RowBox[{"-", "0.20156474306442798`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3958828965965611`"}], ",", RowBox[{"-", "0.070426359952073`"}], ",", RowBox[{"-", "0.10768792678081146`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.4240725185716702`"}], ",", "0", ",", RowBox[{"-", "0.03388653831996495`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.39588289659656145`"}], ",", "0.07042635995207236`", ",", RowBox[{"-", "0.1076879267808106`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.13210997979477987`"}], ",", "0.21375843756101562`", ",", RowBox[{"-", "0.34586841735579527`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.22164017088719898`", ",", RowBox[{"-", "0.352357012442246`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10363082970464216`"}], ",", "0.2015647430644281`", ",", RowBox[{"-", "0.36002514353184917`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24466908566143492`"}], ",", "0.17424272570936214`", ",", "0.2881949698157504`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3261386052118842`"}], ",", "0.15846040046742105`", ",", "0.22250777550724224`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3458684173557953`"}], ",", "0.13210997979477973`", ",", "0.2137584375610156`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2236212499943121`"}], ",", "0", ",", "0.361826783097534`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.2137584375610156`", ",", "0.34586841735579527`", ",", "0.13210997979477987`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.2015647430644281`", ",", "0.36002514353184917`", ",", "0.103630829704642`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.10768792678081097`", ",", "0.39588289659656134`", ",", "0.07042635995207258`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.223621249994312`", ",", "0", ",", RowBox[{"-", "0.361826783097534`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.34586841735579527`", ",", RowBox[{"-", "0.13210997979477987`"}], ",", RowBox[{"-", "0.21375843756101562`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.326138605211884`", ",", RowBox[{"-", "0.15846040046742133`"}], ",", RowBox[{"-", "0.22250777550724235`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.24466908566143533`", ",", RowBox[{"-", "0.17424272570936222`"}], ",", RowBox[{"-", "0.28819496981575`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10768792678081046`"}], ",", RowBox[{"-", "0.3958828965965615`"}], ",", RowBox[{"-", "0.07042635995207241`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2015647430644281`"}], ",", RowBox[{"-", "0.36002514353184917`"}], ",", RowBox[{"-", "0.10363082970464196`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2137584375610156`"}], ",", RowBox[{"-", "0.3458684173557953`"}], ",", RowBox[{"-", "0.13210997979477973`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3958828965965613`", ",", RowBox[{"-", "0.07042635995207266`"}], ",", "0.10768792678081107`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.4240725185716702`", ",", "0", ",", "0.033886538319964986`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.3958828965965614`", ",", "0.0704263599520727`", ",", "0.10768792678081072`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.3600251435318492`", ",", "0.10363082970464206`", ",", "0.2015647430644279`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.35235701244224593`", ",", "0", ",", "0.221640170887199`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.36002514353184917`", ",", RowBox[{"-", "0.10363082970464216`"}], ",", "0.20156474306442804`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.10768792678081084`", ",", RowBox[{"-", "0.39588289659656134`"}], ",", RowBox[{"-", "0.07042635995207258`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.03388653831996501`", ",", RowBox[{"-", "0.4240725185716702`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.42751687512203107`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.42751687512203107`"}], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.361826783097534`"}], ",", "0.223621249994312`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.4275168751220311`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.03388653831996485`"}], ",", "0.4240725185716703`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10768792678081102`"}], ",", "0.39588289659656134`", ",", "0.0704263599520728`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.03388653831996488`"}], ",", RowBox[{"-", "0.4240725185716703`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.07042635995207289`"}], ",", RowBox[{"-", "0.10768792678081097`"}], ",", RowBox[{"-", "0.39588289659656134`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "0.4275168751220311`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.22250777550724227`", ",", "0.3261386052118841`", ",", RowBox[{"-", "0.1584604004674212`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.28819496981575027`", ",", "0.2446690856614349`", ",", RowBox[{"-", "0.1742427257093623`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.326138605211884`", ",", "0.1584604004674214`", ",", RowBox[{"-", "0.22250777550724204`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.2446690856614343`", ",", "0.1742427257093626`", ",", RowBox[{"-", "0.28819496981575055`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.158460400467421`", ",", "0.2225077755072422`", ",", RowBox[{"-", "0.3261386052118843`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.17424272570936197`", ",", "0.2881949698157499`", ",", RowBox[{"-", "0.2446690856614357`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.07042635995207294`", ",", "0.10768792678081099`", ",", "0.3958828965965613`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.0338865383199648`", ",", "0.4240725185716703`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0.4275168751220311`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.32613860521188426`"}], ",", RowBox[{"-", "0.15846040046742105`"}], ",", "0.22250777550724218`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.28819496981575016`"}], ",", RowBox[{"-", "0.24466908566143525`"}], ",", "0.17424272570936208`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22250777550724204`"}], ",", RowBox[{"-", "0.3261386052118845`"}], ",", "0.15846040046742094`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.17424272570936244`"}], ",", RowBox[{"-", "0.28819496981575066`"}], ",", "0.2446690856614344`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.15846040046742133`"}], ",", RowBox[{"-", "0.222507775507242`"}], ",", "0.3261386052118842`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24466908566143497`"}], ",", RowBox[{"-", "0.17424272570936225`"}], ",", "0.2881949698157503`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.361826783097534`", ",", RowBox[{"-", "0.22362124999431185`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.42751687512203107`", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.361826783097534`"}], ",", RowBox[{"-", "0.22362124999431213`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.34586841735579543`"}], ",", RowBox[{"-", "0.13210997979477968`"}], ",", RowBox[{"-", "0.2137584375610155`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.32613860521188426`"}], ",", RowBox[{"-", "0.1584604004674211`"}], ",", RowBox[{"-", "0.22250777550724218`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.28819496981575027`"}], ",", RowBox[{"-", "0.24466908566143503`"}], ",", RowBox[{"-", "0.1742427257093622`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21375843756101534`"}], ",", "0.34586841735579554`", ",", "0.13210997979477968`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22250777550724204`"}], ",", "0.3261386052118842`", ",", "0.15846040046742133`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.1742427257093619`"}], ",", "0.28819496981575016`", ",", "0.2446690856614355`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.2881949698157504`", ",", "0.24466908566143464`", ",", "0.1742427257093625`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.3261386052118841`", ",", "0.15846040046742121`", ",", "0.22250777550724218`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.3458684173557952`", ",", "0.13210997979477995`", ",", "0.21375843756101556`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.361826783097534`", ",", "0.22362124999431207`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.28819496981575043`"}], ",", "0.24466908566143464`", ",", RowBox[{"-", "0.17424272570936236`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2225077755072422`"}], ",", "0.3261386052118842`", ",", RowBox[{"-", "0.15846040046742105`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.17424272570936208`"}], ",", "0.28819496981575016`", ",", RowBox[{"-", "0.24466908566143522`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.15846040046742096`"}], ",", "0.22250777550724213`", ",", RowBox[{"-", "0.32613860521188437`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.13210997979477976`", ",", "0.2137584375610157`", ",", RowBox[{"-", "0.3458684173557953`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.2881949698157503`", ",", RowBox[{"-", "0.24466908566143508`"}], ",", "0.17424272570936203`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.1584604004674209`", ",", RowBox[{"-", "0.22250777550724224`"}], ",", "0.3261386052118843`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.1742427257093619`", ",", RowBox[{"-", "0.2881949698157498`"}], ",", "0.24466908566143578`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.22250777550724227`", ",", RowBox[{"-", "0.32613860521188415`"}], ",", "0.15846040046742105`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.1321099797947799`"}], ",", RowBox[{"-", "0.21375843756101545`"}], ",", "0.34586841735579527`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.17424272570936222`", ",", RowBox[{"-", "0.2881949698157505`"}], ",", RowBox[{"-", "0.2446690856614347`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.22250777550724204`", ",", RowBox[{"-", "0.32613860521188437`"}], ",", RowBox[{"-", "0.15846040046742096`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.21375843756101554`", ",", RowBox[{"-", "0.3458684173557953`"}], ",", RowBox[{"-", "0.13210997979477976`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.174242725709362`"}], ",", RowBox[{"-", "0.28819496981575`"}], ",", RowBox[{"-", "0.24466908566143555`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22250777550724216`"}], ",", RowBox[{"-", "0.32613860521188426`"}], ",", RowBox[{"-", "0.1584604004674211`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.24466908566143541`"}], ",", RowBox[{"-", "0.17424272570936197`"}], ",", RowBox[{"-", "0.28819496981575016`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.158460400467421`"}], ",", RowBox[{"-", "0.2225077755072422`"}], ",", RowBox[{"-", "0.3261386052118843`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "0.03388653831996478`"}], ",", "0.4240725185716703`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.07042635995207261`"}], ",", RowBox[{"-", "0.10768792678081077`"}], ",", "0.3958828965965614`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.17424272570936236`", ",", "0.2881949698157504`", ",", "0.24466908566143478`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.15846040046742127`", ",", "0.222507775507242`", ",", "0.32613860521188426`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.24466908566143486`", ",", "0.1742427257093623`", ",", "0.2881949698157504`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.22250777550724202`", ",", "0.32613860521188426`", ",", "0.15846040046742127`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10768792678081127`"}], ",", "0.39588289659656123`", ",", RowBox[{"-", "0.07042635995207298`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.10768792678081064`", ",", RowBox[{"-", "0.39588289659656145`"}], ",", "0.07042635995207233`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0.0338865383199649`", ",", RowBox[{"-", "0.4240725185716703`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.07042635995207275`", ",", "0.10768792678081096`", ",", RowBox[{"-", "0.39588289659656134`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.1321099797947797`"}], ",", RowBox[{"-", "0.2137584375610156`"}], ",", RowBox[{"-", "0.3458684173557954`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2881949698157509`"}], ",", "0.24466908566143378`", ",", "0.17424272570936267`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.15846040046742071`"}], ",", "0.2225077755072421`", ",", "0.3261386052118845`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.13210997979477992`", ",", "0.21375843756101545`", ",", "0.34586841735579527`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3458684173557952`"}], ",", RowBox[{"-", "0.13210997979477995`"}], ",", "0.2137584375610155`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.2137584375610156`", ",", RowBox[{"-", "0.3458684173557952`"}], ",", "0.1321099797947799`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.34586841735579527`", ",", "0.13210997979477987`", ",", RowBox[{"-", "0.21375843756101556`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.21375843756101545`"}], ",", "0.3458684173557955`", ",", RowBox[{"-", "0.13210997979477956`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.15846040046742105`", ",", RowBox[{"-", "0.22250777550724204`"}], ",", RowBox[{"-", "0.32613860521188437`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.28819496981575055`", ",", RowBox[{"-", "0.24466908566143458`"}], ",", RowBox[{"-", "0.1742427257093622`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.221640170887199`"}], ",", RowBox[{"-", "0.3523570124422461`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.03388653831996487`"}], ",", RowBox[{"-", "0.4240725185716703`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.22164017088719903`", ",", "0.352357012442246`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.03388653831996474`", ",", "0.4240725185716703`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0.10363082970464202`", ",", "0.201564743064428`", ",", RowBox[{"-", "0.36002514353184917`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10363082970464216`"}], ",", RowBox[{"-", "0.20156474306442798`"}], ",", "0.36002514353184917`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.22164017088719903`"}], ",", "0.35235701244224593`", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.20156474306442795`"}], ",", "0.3600251435318492`", ",", RowBox[{"-", "0.10363082970464223`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.07042635995207255`"}], ",", "0.1076879267808108`", ",", RowBox[{"-", "0.3958828965965614`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.07042635995207278`", ",", RowBox[{"-", "0.10768792678081096`"}], ",", "0.39588289659656134`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.20156474306442806`", ",", RowBox[{"-", "0.3600251435318492`"}], ",", "0.103630829704642`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.22164017088719898`", ",", RowBox[{"-", "0.35235701244224593`"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.07042635995207272`"}], ",", "0.10768792678081066`", ",", "0.39588289659656134`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.201564743064428`", ",", RowBox[{"-", "0.36002514353184917`"}], ",", RowBox[{"-", "0.10363082970464227`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.20156474306442806`"}], ",", "0.36002514353184917`", ",", "0.10363082970464223`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.07042635995207264`", ",", RowBox[{"-", "0.10768792678081093`"}], ",", RowBox[{"-", "0.39588289659656134`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.10363082970464196`"}], ",", RowBox[{"-", "0.20156474306442795`"}], ",", RowBox[{"-", "0.3600251435318492`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.10363082970464213`", ",", "0.20156474306442804`", ",", "0.36002514353184917`"}], "}"}]}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[18]=",ExpressionUUID->"39921AD9-BE5E-43EC-9B4A-52AD1335E7CA"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Sort", "[", RowBox[{"newi", "[", RowBox[{"[", "2", "]"}], "]"}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[19]:=",ExpressionUUID->"8AB00571-D5D3-4DE4-80BB-23978934FC0B"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2", ",", "3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "143", ",", "118", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "69", ",", "70", ",", "71"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "71", ",", "146", ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "52", ",", "157", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "11", ",", "12", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "18", ",", "111", ",", "46"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "46", ",", "48", ",", "153"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "15", ",", "41", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "40", ",", "45", ",", "73"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "73", ",", "108", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "15", ",", "16", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"20", ",", "21", ",", "22", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"21", ",", "80", ",", "85", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{"22", ",", "74", ",", "148", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"22", ",", "85", ",", "84", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"22", ",", "110", ",", "109", ",", "142"}], "}"}], ",", RowBox[{"{", RowBox[{"23", ",", "26", ",", "37", ",", "114"}], "}"}], ",", RowBox[{"{", RowBox[{"24", ",", "25", ",", "26", ",", "23"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "24", ",", "113", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{"26", ",", "106", ",", "105", ",", "129"}], "}"}], ",", RowBox[{"{", RowBox[{"26", ",", "129", ",", "128", ",", "138"}], "}"}], ",", RowBox[{"{", RowBox[{"26", ",", "138", ",", "162", ",", "86"}], "}"}], ",", RowBox[{"{", RowBox[{"27", ",", "97", ",", "145", ",", "28"}], "}"}], ",", RowBox[{"{", RowBox[{"30", ",", "27", ",", "28", ",", "29"}], "}"}], ",", RowBox[{"{", RowBox[{"30", ",", "140", ",", "116", ",", "115"}], "}"}], ",", RowBox[{"{", RowBox[{"31", ",", "57", ",", "56", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"36", ",", "95", ",", "57", ",", "31"}], "}"}], ",", RowBox[{"{", RowBox[{"38", ",", "39", ",", "30", ",", "37"}], "}"}], ",", RowBox[{"{", RowBox[{"41", ",", "15", ",", "98", ",", "42"}], "}"}], ",", RowBox[{"{", RowBox[{"43", ",", "42", ",", "98", ",", "97"}], "}"}], ",", RowBox[{"{", RowBox[{"43", ",", "97", ",", "72", ",", "44"}], "}"}], ",", RowBox[{"{", RowBox[{"46", ",", "111", ",", "110", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{"47", ",", "22", ",", "112", ",", "149"}], "}"}], ",", RowBox[{"{", RowBox[{"48", ",", "46", ",", "22", ",", "47"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "52", ",", "11", ",", "137"}], "}"}], ",", RowBox[{"{", RowBox[{"50", ",", "51", ",", "52", ",", "49"}], "}"}], ",", RowBox[{"{", RowBox[{"51", ",", "73", ",", "5", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "9", ",", "8", ",", "139"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "51", ",", "10", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "88", ",", "87", ",", "157"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "126", ",", "125", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "139", ",", "89", ",", "94"}], "}"}], ",", RowBox[{"{", RowBox[{"54", ",", "55", ",", "14", ",", "53"}], "}"}], ",", RowBox[{"{", RowBox[{"56", ",", "3", ",", "2", ",", "160"}], "}"}], ",", RowBox[{"{", RowBox[{"56", ",", "79", ",", "133", ",", "134"}], "}"}], ",", RowBox[{"{", RowBox[{"56", ",", "134", ",", "149", ",", "112"}], "}"}], ",", RowBox[{"{", RowBox[{"57", ",", "95", ",", "144", ",", "58"}], "}"}], ",", RowBox[{"{", RowBox[{"59", ",", "56", ",", "57", ",", "58"}], "}"}], ",", RowBox[{"{", RowBox[{"59", ",", "143", ",", "3", ",", "56"}], "}"}], ",", RowBox[{"{", RowBox[{"62", ",", "4", ",", "60", ",", "61"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "65", ",", "107", ",", "106"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "106", ",", "26", ",", "67"}], "}"}], ",", RowBox[{"{", RowBox[{"67", ",", "26", ",", "25", ",", "68"}], "}"}], ",", RowBox[{"{", RowBox[{"69", ",", "4", ",", "120", ",", "158"}], "}"}], ",", RowBox[{"{", RowBox[{"70", ",", "132", ",", "30", ",", "71"}], "}"}], ",", RowBox[{"{", RowBox[{"71", ",", "30", ",", "29", ",", "146"}], "}"}], ",", RowBox[{"{", RowBox[{"72", ",", "97", ",", "7", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "45", ",", "44", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "72", ",", "6", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "101", ",", "159", ",", "151"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "136", ",", "102", ",", "101"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "151", ",", "152", ",", "142"}], "}"}], ",", RowBox[{"{", RowBox[{"74", ",", "14", ",", "55", ",", "148"}], "}"}], ",", RowBox[{"{", RowBox[{"75", ",", "74", ",", "22", ",", "131"}], "}"}], ",", RowBox[{"{", RowBox[{"76", ",", "14", ",", "74", ",", "75"}], "}"}], ",", RowBox[{"{", RowBox[{"77", ",", "79", ",", "56", ",", "160"}], "}"}], ",", RowBox[{"{", RowBox[{"78", ",", "15", ",", "79", ",", "77"}], "}"}], ",", RowBox[{"{", RowBox[{"79", ",", "15", ",", "153", ",", "133"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "107", ",", "141", ",", "82"}], "}"}], ",", RowBox[{"{", RowBox[{"83", ",", "56", ",", "112", ",", "84"}], "}"}], ",", RowBox[{"{", RowBox[{"88", ",", "26", ",", "86", ",", "87"}], "}"}], ",", RowBox[{"{", RowBox[{"88", ",", "125", ",", "154", ",", "26"}], "}"}], ",", RowBox[{"{", RowBox[{"90", ",", "97", ",", "27", ",", "91"}], "}"}], ",", RowBox[{"{", RowBox[{"92", ",", "30", ",", "117", ",", "93"}], "}"}], ",", RowBox[{"{", RowBox[{"92", ",", "91", ",", "27", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"95", ",", "36", ",", "35", ",", "96"}], "}"}], ",", RowBox[{"{", RowBox[{"95", ",", "63", ",", "68", ",", "25"}], "}"}], ",", RowBox[{"{", RowBox[{"95", ",", "96", ",", "64", ",", "63"}], "}"}], ",", RowBox[{"{", RowBox[{"95", ",", "113", ",", "116", ",", "140"}], "}"}], ",", RowBox[{"{", RowBox[{"96", ",", "35", ",", "34", ",", "107"}], "}"}], ",", RowBox[{"{", RowBox[{"96", ",", "107", ",", "65", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "62", ",", "61", ",", "145"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "90", ",", "89", ",", "139"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "98", ",", "99", ",", "100"}], "}"}], ",", RowBox[{"{", RowBox[{"97", ",", "100", ",", "122", ",", "62"}], "}"}], ",", RowBox[{"{", RowBox[{"98", ",", "15", ",", "123", ",", "99"}], "}"}], ",", RowBox[{"{", RowBox[{"101", ",", "102", ",", "103", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"107", ",", "21", ",", "20", ",", "147"}], "}"}], ",", RowBox[{"{", RowBox[{"107", ",", "34", ",", "33", ",", "141"}], "}"}], ",", RowBox[{"{", RowBox[{"107", ",", "81", ",", "80", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{"107", ",", "104", ",", "105", ",", "106"}], "}"}], ",", RowBox[{"{", RowBox[{"107", ",", "147", ",", "54", ",", "53"}], "}"}], ",", RowBox[{"{", RowBox[{"108", ",", "73", ",", "142", ",", "109"}], "}"}], ",", RowBox[{"{", RowBox[{"115", ",", "114", ",", "37", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"117", ",", "52", ",", "94", ",", "93"}], "}"}], ",", RowBox[{"{", RowBox[{"118", ",", "119", ",", "120", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"120", ",", "95", ",", "156", ",", "158"}], "}"}], ",", RowBox[{"{", RowBox[{"120", ",", "119", ",", "144", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{"121", ",", "4", ",", "62", ",", "122"}], "}"}], ",", RowBox[{"{", RowBox[{"123", ",", "15", ",", "135", ",", "124"}], "}"}], ",", RowBox[{"{", RowBox[{"124", ",", "135", ",", "4", ",", "121"}], "}"}], ",", RowBox[{"{", RowBox[{"126", ",", "52", ",", "117", ",", "150"}], "}"}], ",", RowBox[{"{", RowBox[{"127", ",", "14", ",", "138", ",", "128"}], "}"}], ",", RowBox[{"{", RowBox[{"127", ",", "130", ",", "53", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"130", ",", "104", ",", "107", ",", "53"}], "}"}], ",", RowBox[{"{", RowBox[{"131", ",", "22", ",", "142", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{"132", ",", "155", ",", "140", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"135", ",", "15", ",", "78", ",", "161"}], "}"}], ",", RowBox[{"{", RowBox[{"135", ",", "161", ",", "1", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"136", ",", "73", ",", "51", ",", "50"}], "}"}], ",", RowBox[{"{", RowBox[{"137", ",", "11", ",", "14", ",", "103"}], "}"}], ",", RowBox[{"{", RowBox[{"138", ",", "14", ",", "13", ",", "162"}], "}"}], ",", RowBox[{"{", RowBox[{"139", ",", "8", ",", "7", ",", "97"}], "}"}], ",", RowBox[{"{", RowBox[{"140", ",", "155", ",", "156", ",", "95"}], "}"}], ",", RowBox[{"{", RowBox[{"141", ",", "33", ",", "32", ",", "56"}], "}"}], ",", RowBox[{"{", RowBox[{"141", ",", "56", ",", "83", ",", "82"}], "}"}], ",", RowBox[{"{", RowBox[{"150", ",", "117", ",", "30", ",", "39"}], "}"}], ",", RowBox[{"{", RowBox[{"154", ",", "38", ",", "37", ",", "26"}], "}"}], ",", RowBox[{"{", RowBox[{"159", ",", "101", ",", "14", ",", "76"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "9", ",", "10", ",", "5", ",", "6", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"34", ",", "35", ",", "36", ",", "31", ",", "32", ",", "33"}], "}"}], ",", RowBox[{"{", RowBox[{"45", ",", "40", ",", "41", ",", "42", ",", "43", ",", "44"}], "}"}], ",", RowBox[{"{", RowBox[{"48", ",", "47", ",", "149", ",", "134", ",", "133", ",", "153"}], "}"}], ",", RowBox[{"{", RowBox[{"54", ",", "147", ",", "20", ",", "19", ",", "148", ",", "55"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "66", ",", "67", ",", "68", ",", "63", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"70", ",", "69", ",", "158", ",", "156", ",", "155", ",", "132"}], "}"}], ",", RowBox[{"{", RowBox[{"80", ",", "81", ",", "82", ",", "83", ",", "84", ",", "85"}], "}"}], ",", RowBox[{"{", RowBox[{"90", ",", "91", ",", "92", ",", "93", ",", "94", ",", "89"}], "}"}], ",", RowBox[{"{", RowBox[{"102", ",", "136", ",", "50", ",", "49", ",", "137", ",", "103"}], "}"}], ",", RowBox[{"{", RowBox[{"110", ",", "111", ",", "18", ",", "17", ",", "108", ",", "109"}], "}"}], ",", RowBox[{"{", RowBox[{"113", ",", "24", ",", "23", ",", "114", ",", "115", ",", "116"}], "}"}], ",", RowBox[{"{", RowBox[{ "123", ",", "124", ",", "121", ",", "122", ",", "100", ",", "99"}], "}"}], ",", RowBox[{"{", RowBox[{"126", ",", "150", ",", "39", ",", "38", ",", "154", ",", "125"}], "}"}], ",", RowBox[{"{", RowBox[{ "130", ",", "127", ",", "128", ",", "129", ",", "105", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"143", ",", "59", ",", "58", ",", "144", ",", "119", ",", "118"}], "}"}], ",", RowBox[{"{", RowBox[{"145", ",", "61", ",", "60", ",", "146", ",", "29", ",", "28"}], "}"}], ",", RowBox[{"{", RowBox[{"151", ",", "159", ",", "76", ",", "75", ",", "131", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{"157", ",", "87", ",", "86", ",", "162", ",", "13", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"161", ",", "78", ",", "77", ",", "160", ",", "2", ",", "1"}], "}"}]}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[19]=",ExpressionUUID->"FF3614A9-E15C-44E7-BFAB-1EF7E29D352B"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"AbsoluteThickness", "[", ".1", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Opacity", "[", ".8", "]"}], ",", "newi"}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[20]:=",ExpressionUUID->"7976BE70-CB22-4640-8FF3-B04A0A4ACEBD"], Cell[BoxData[ Graphics3DBox[ {AbsoluteThickness[ 0.1], {Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.4370160244488211, 0.5558929702514211, 0}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.4370160244488211, 0.5558929702514211, 0}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}}]], Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.4370160244488211, 0.5558929702514211, 0}, { 0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.4370160244488211, 0.5558929702514211, 0}, { 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[ 1, 2]}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[ 1, 2]}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.2312188477625563, -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}}, {{ 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}}, {{ 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {0.43701602444882104`, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0, -0.4370160244488211, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0, 0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, { 0, -0.4370160244488211, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, { 0, 0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, { 0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.5558929702514211, 0, -0.4370160244488211}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{ 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, \ {-0.5558929702514211, 0, -0.4370160244488211}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.5558929702514211, 0, -0.4370160244488211}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {-0.5558929702514211, 0, -0.4370160244488211}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, { 0.2312188477625563, 0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.2312188477625563, -0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, { 0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {0, -0.4370160244488211, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, { 0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {0, -0.4370160244488211, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, { 0, -0.4370160244488211, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, { 0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.5558929702514211, 0, -0.4370160244488211}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {-0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{ 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.5558929702514211, 0, -0.4370160244488211}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.5558929702514211, 0, -0.4370160244488211}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}}, {{-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {-0.5558929702514211, 0, 0.43701602444882104`}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}}, {{-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.5558929702514211, 0, -0.4370160244488211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, { 0, 0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, { 0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, 0.43701602444882104`, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, -0.4370160244488211, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, -0.4370160244488211, -0.5558929702514211}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0, -0.4370160244488211, -0.5558929702514211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, -0.4370160244488211, -0.5558929702514211}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, 0.43701602444882104`, 0.5558929702514211}, {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0, 0.43701602444882104`, 0.5558929702514211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, 0.43701602444882104`, 0.5558929702514211}, {-0.2312188477625563, -0.52533376545453, 0.4129918634945738}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}}, {{ 0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, -0.4370160244488211}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, -0.4370160244488211}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.5558929702514211, 0, -0.4370160244488211}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.5558929702514211, 0, -0.4370160244488211}, {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.5558929702514211, 0, 0.43701602444882104`}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.5558929702514211, 0, 0.43701602444882104`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, 0.43701602444882104`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, 0.43701602444882104`}, {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0, -0.4370160244488211, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}}, {{ 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}}, {{ 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.4370160244488211, 0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^ Rational[ 1, 2]}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, 0.43701602444882104`, -0.5558929702514211}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, -0.4370160244488211, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, -0.4370160244488211, 0.5558929702514211}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, 0.43701602444882104`, -0.5558929702514211}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}}, {{ 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[ 1, 2]}}, {{-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[ 1, 2]}}, {{-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}}, {{-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, 0.43701602444882104`}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.5558929702514211, 0, 0.43701602444882104`}, {0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.5558929702514211, 0, 0.43701602444882104`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{-0.5558929702514211, 0, 0.43701602444882104`}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.5558929702514211, 0, -0.4370160244488211}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.5558929702514211, 0, -0.4370160244488211}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, -0.4370160244488211}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.5558929702514211, 0, -0.4370160244488211}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.4129918634945738, \ -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}}, {{ 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.4370160244488211, \ -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}}, {{ 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.4370160244488211, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, \ {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}}, {{ 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{-0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {0.52533376545453, -0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {-0.4370160244488211, \ -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}}, {{ 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}}, {{0.52533376545453, -0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.4370160244488211, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.4370160244488211, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{ 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.4370160244488211, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}}, {{-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.4129918634945738, \ -0.2312188477625563, -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}}, {{ 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}}, {{ 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}}, {{0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}}]], Line3DBox[ NCache[{{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}}, {{-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {-0.4370160244488211, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.43701602444882104`, 0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}}]], Line3DBox[ NCache[{{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{ 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.43701602444882104`, 0.5558929702514211, 0}}]]}, {Opacity[0.8], PolyhedronBox[{{0, -0.22164017088719892`, -0.35235701244224593`}, { 0.10363082970464195`, -0.20156474306442784`, -0.36002514353184933`}, { 0.13210997979477976`, -0.21375843756101537`, -0.34586841735579543`}, { 0, -0.361826783097534, -0.22362124999431188`}, {-0.3958828965965613, 0.07042635995207269, 0.10768792678081097`}, {-0.4240725185716703, 0, 0.033886538319965076`}, {-0.3958828965965615, -0.07042635995207254, 0.1076879267808105}, {-0.3600251435318492, -0.10363082970464205`, 0.2015647430644279}, {-0.352357012442246, 0, 0.22164017088719898`}, {-0.36002514353184917`, 0.103630829704642, 0.20156474306442804`}, {-0.13210997979478004`, 0.21375843756101562`, 0.3458684173557952}, {-0.10363082970464206`, 0.201564743064428, 0.36002514353184917`}, { 0, 0.22164017088719903`, 0.35235701244224593`}, { 0, 0.361826783097534, 0.223621249994312}, {-0.22362124999431204`, 0, -0.361826783097534}, {-0.3458684173557953, 0.1321099797947797, -0.21375843756101565`}, {-0.32613860521188415`, 0.1584604004674211, -0.22250777550724227`}, {-0.24466908566143514`, 0.17424272570936214`, -0.2881949698157502}, {0.10768792678081054`, 0.3958828965965615, -0.07042635995207244}, {0.20156474306442823`, 0.36002514353184906`, -0.10363082970464225`}, {0.21375843756101556`, 0.34586841735579543`, -0.1321099797947796}, { 0, 0.3618267830975341, -0.22362124999431188`}, { 0.24466908566143492`, -0.17424272570936225`, 0.2881949698157503}, { 0.3261386052118843, -0.15846040046742108`, 0.2225077755072421}, { 0.3458684173557954, -0.1321099797947798, 0.2137584375610155}, { 0.2236212499943119, 0, 0.361826783097534}, {-0.21375843756101565`, -0.3458684173557952, 0.13210997979478004`}, {-0.2015647430644282, -0.3600251435318491, 0.10363082970464207`}, {-0.10768792678081109`, -0.3958828965965613, 0.0704263599520727}, {0, -0.3618267830975341, 0.22362124999431188`}, { 0.36002514353184917`, -0.10363082970464206`, -0.20156474306442795`}, { 0.35235701244224593`, 0, -0.22164017088719912`}, {0.36002514353184917`, 0.10363082970464219`, -0.20156474306442798`}, {0.3958828965965612, 0.07042635995207286, -0.10768792678081116`}, { 0.42407251857167017`, 0, -0.03388653831996488}, { 0.3958828965965614, -0.07042635995207251, -0.10768792678081068`}, { 0.1321099797947804, -0.2137584375610157, 0.3458684173557951}, { 0.10363082970464271`, -0.20156474306442818`, 0.36002514353184895`}, { 0, -0.2216401708871991, 0.3523570124422459}, {-0.3600251435318492, 0.103630829704642, -0.20156474306442793`}, {-0.352357012442246, 0, -0.22164017088719898`}, {-0.36002514353184917`, \ -0.10363082970464212`, -0.20156474306442798`}, {-0.3958828965965611, \ -0.070426359952073, -0.10768792678081146`}, {-0.4240725185716702, 0, -0.03388653831996495}, {-0.39588289659656145`, 0.07042635995207236, -0.1076879267808106}, {-0.13210997979477987`, 0.21375843756101562`, -0.34586841735579527`}, { 0, 0.22164017088719898`, -0.352357012442246}, {-0.10363082970464216`, 0.2015647430644281, -0.36002514353184917`}, {-0.24466908566143492`, 0.17424272570936214`, 0.2881949698157504}, {-0.3261386052118842, 0.15846040046742105`, 0.22250777550724224`}, {-0.3458684173557953, 0.13210997979477973`, 0.2137584375610156}, {-0.2236212499943121, 0, 0.361826783097534}, { 0.2137584375610156, 0.34586841735579527`, 0.13210997979477987`}, { 0.2015647430644281, 0.36002514353184917`, 0.103630829704642}, { 0.10768792678081097`, 0.39588289659656134`, 0.07042635995207258}, { 0.223621249994312, 0, -0.361826783097534}, { 0.34586841735579527`, -0.13210997979477987`, -0.21375843756101562`}, { 0.326138605211884, -0.15846040046742133`, -0.22250777550724235`}, { 0.24466908566143533`, -0.17424272570936222`, -0.28819496981575}, \ {-0.10768792678081046`, -0.3958828965965615, -0.07042635995207241}, \ {-0.2015647430644281, -0.36002514353184917`, -0.10363082970464196`}, \ {-0.2137584375610156, -0.3458684173557953, -0.13210997979477973`}, { 0.3958828965965613, -0.07042635995207266, 0.10768792678081107`}, { 0.4240725185716702, 0, 0.033886538319964986`}, {0.3958828965965614, 0.0704263599520727, 0.10768792678081072`}, {0.3600251435318492, 0.10363082970464206`, 0.2015647430644279}, { 0.35235701244224593`, 0, 0.221640170887199}, { 0.36002514353184917`, -0.10363082970464216`, 0.20156474306442804`}, { 0.10768792678081084`, -0.39588289659656134`, -0.07042635995207258}, { 0.03388653831996501, -0.4240725185716702, 0}, { 0, -0.42751687512203107`, 0}, {-0.42751687512203107`, 0, 0}, {-0.361826783097534, 0.223621249994312, 0}, { 0, 0.4275168751220311, 0}, {-0.03388653831996485, 0.4240725185716703, 0}, {-0.10768792678081102`, 0.39588289659656134`, 0.0704263599520728}, { 0, -0.03388653831996488, -0.4240725185716703}, {-0.07042635995207289, \ -0.10768792678081097`, -0.39588289659656134`}, {0, 0, -0.4275168751220311}, { 0.22250777550724227`, 0.3261386052118841, -0.1584604004674212}, { 0.28819496981575027`, 0.2446690856614349, -0.1742427257093623}, { 0.326138605211884, 0.1584604004674214, -0.22250777550724204`}, { 0.2446690856614343, 0.1742427257093626, -0.28819496981575055`}, { 0.158460400467421, 0.2225077755072422, -0.3261386052118843}, { 0.17424272570936197`, 0.2881949698157499, -0.2446690856614357}, { 0.07042635995207294, 0.10768792678081099`, 0.3958828965965613}, { 0, 0.0338865383199648, 0.4240725185716703}, { 0, 0, 0.4275168751220311}, {-0.32613860521188426`, \ -0.15846040046742105`, 0.22250777550724218`}, {-0.28819496981575016`, -0.24466908566143525`, 0.17424272570936208`}, {-0.22250777550724204`, -0.3261386052118845, 0.15846040046742094`}, {-0.17424272570936244`, -0.28819496981575066`, 0.2446690856614344}, {-0.15846040046742133`, -0.222507775507242, 0.3261386052118842}, {-0.24466908566143497`, -0.17424272570936225`, 0.2881949698157503}, {0.361826783097534, -0.22362124999431185`, 0}, { 0.42751687512203107`, 0, 0}, {-0.361826783097534, -0.22362124999431213`, 0}, {-0.34586841735579543`, -0.13210997979477968`, \ -0.2137584375610155}, {-0.32613860521188426`, -0.1584604004674211, \ -0.22250777550724218`}, {-0.28819496981575027`, -0.24466908566143503`, \ -0.1742427257093622}, {-0.21375843756101534`, 0.34586841735579554`, 0.13210997979477968`}, {-0.22250777550724204`, 0.3261386052118842, 0.15846040046742133`}, {-0.1742427257093619, 0.28819496981575016`, 0.2446690856614355}, {0.2881949698157504, 0.24466908566143464`, 0.1742427257093625}, {0.3261386052118841, 0.15846040046742121`, 0.22250777550724218`}, {0.3458684173557952, 0.13210997979477995`, 0.21375843756101556`}, { 0.361826783097534, 0.22362124999431207`, 0}, {-0.28819496981575043`, 0.24466908566143464`, -0.17424272570936236`}, {-0.2225077755072422, 0.3261386052118842, -0.15846040046742105`}, {-0.17424272570936208`, 0.28819496981575016`, -0.24466908566143522`}, {-0.15846040046742096`, 0.22250777550724213`, -0.32613860521188437`}, {0.13210997979477976`, 0.2137584375610157, -0.3458684173557953}, { 0.2881949698157503, -0.24466908566143508`, 0.17424272570936203`}, { 0.1584604004674209, -0.22250777550724224`, 0.3261386052118843}, { 0.1742427257093619, -0.2881949698157498, 0.24466908566143578`}, { 0.22250777550724227`, -0.32613860521188415`, 0.15846040046742105`}, {-0.1321099797947799, -0.21375843756101545`, 0.34586841735579527`}, { 0.17424272570936222`, -0.2881949698157505, -0.2446690856614347}, { 0.22250777550724204`, -0.32613860521188437`, -0.15846040046742096`}, { 0.21375843756101554`, -0.3458684173557953, -0.13210997979477976`}, \ {-0.174242725709362, -0.28819496981575, -0.24466908566143555`}, \ {-0.22250777550724216`, -0.32613860521188426`, -0.1584604004674211}, \ {-0.24466908566143541`, -0.17424272570936197`, -0.28819496981575016`}, \ {-0.158460400467421, -0.2225077755072422, -0.3261386052118843}, { 0, -0.03388653831996478, 0.4240725185716703}, {-0.07042635995207261, -0.10768792678081077`, 0.3958828965965614}, {0.17424272570936236`, 0.2881949698157504, 0.24466908566143478`}, {0.15846040046742127`, 0.222507775507242, 0.32613860521188426`}, {0.24466908566143486`, 0.1742427257093623, 0.2881949698157504}, {0.22250777550724202`, 0.32613860521188426`, 0.15846040046742127`}, {-0.10768792678081127`, 0.39588289659656123`, -0.07042635995207298}, { 0.10768792678081064`, -0.39588289659656145`, 0.07042635995207233}, { 0, 0.0338865383199649, -0.4240725185716703}, {0.07042635995207275, 0.10768792678081096`, -0.39588289659656134`}, {-0.1321099797947797, \ -0.2137584375610156, -0.3458684173557954}, {-0.2881949698157509, 0.24466908566143378`, 0.17424272570936267`}, {-0.15846040046742071`, 0.2225077755072421, 0.3261386052118845}, {0.13210997979477992`, 0.21375843756101545`, 0.34586841735579527`}, {-0.3458684173557952, -0.13210997979477995`, 0.2137584375610155}, {0.2137584375610156, -0.3458684173557952, 0.1321099797947799}, {0.34586841735579527`, 0.13210997979477987`, -0.21375843756101556`}, {-0.21375843756101545`, 0.3458684173557955, -0.13210997979477956`}, { 0.15846040046742105`, -0.22250777550724204`, -0.32613860521188437`}, { 0.28819496981575055`, -0.24466908566143458`, -0.1742427257093622}, \ {-0.221640170887199, -0.3523570124422461, 0}, {-0.03388653831996487, -0.4240725185716703, 0}, { 0.22164017088719903`, 0.352357012442246, 0}, { 0.03388653831996474, 0.4240725185716703, 0}, {0.10363082970464202`, 0.201564743064428, -0.36002514353184917`}, {-0.10363082970464216`, \ -0.20156474306442798`, 0.36002514353184917`}, {-0.22164017088719903`, 0.35235701244224593`, 0}, {-0.20156474306442795`, 0.3600251435318492, -0.10363082970464223`}, {-0.07042635995207255, 0.1076879267808108, -0.3958828965965614}, { 0.07042635995207278, -0.10768792678081096`, 0.39588289659656134`}, { 0.20156474306442806`, -0.3600251435318492, 0.103630829704642}, { 0.22164017088719898`, -0.35235701244224593`, 0}, {-0.07042635995207272, 0.10768792678081066`, 0.39588289659656134`}, { 0.201564743064428, -0.36002514353184917`, -0.10363082970464227`}, \ {-0.20156474306442806`, 0.36002514353184917`, 0.10363082970464223`}, { 0.07042635995207264, -0.10768792678081093`, -0.39588289659656134`}, \ {-0.10363082970464196`, -0.20156474306442795`, -0.3600251435318492}, { 0.10363082970464213`, 0.20156474306442804`, 0.36002514353184917`}}, {{ 18, 15, 16, 17}, {16, 40, 45, 73}, {16, 15, 41, 40}, {15, 18, 111, 46}, {73, 136, 102, 101}, {107, 81, 80, 21}, {107, 21, 20, 147}, {41, 15, 98, 42}, {43, 42, 98, 97}, {123, 15, 135, 124}, {15, 46, 48, 153}, { 46, 111, 110, 22}, {48, 46, 22, 47}, {45, 40, 41, 42, 43, 44}, {73, 45, 44, 72}, {43, 97, 72, 44}, {136, 73, 51, 50}, {50, 51, 52, 49}, {49, 52, 11, 137}, {73, 101, 159, 151}, {159, 101, 14, 76}, {76, 14, 74, 75}, { 75, 74, 22, 131}, {16, 73, 108, 17}, {151, 159, 76, 75, 131, 152}, {73, 151, 152, 142}, {131, 22, 142, 152}, {95, 36, 35, 96}, {96, 35, 34, 107}, {107, 34, 33, 141}, {36, 95, 57, 31}, {135, 15, 78, 161}, {78, 15, 79, 77}, {59, 143, 3, 56}, {21, 80, 85, 22}, {20, 21, 22, 19}, {22, 74, 148, 19}, {54, 147, 20, 19, 148, 55}, {74, 14, 55, 148}, {54, 55, 14, 53}, {127, 130, 53, 14}, {107, 147, 54, 53}, {130, 104, 107, 53}, {66, 65, 107, 106}, {52, 9, 8, 139}, {102, 136, 50, 49, 137, 103}, {101, 102, 103, 14}, {137, 11, 14, 103}, {110, 111, 18, 17, 108, 109}, {22, 110, 109, 142}, {108, 73, 142, 109}, {96, 107, 65, 64}, {95, 96, 64, 63}, { 66, 106, 26, 67}, {126, 52, 117, 150}, {52, 126, 125, 88}, {34, 35, 36, 31, 32, 33}, {31, 57, 56, 32}, {141, 33, 32, 56}, {124, 135, 4, 121}, { 1, 2, 3, 4}, {135, 161, 1, 4}, {161, 78, 77, 160, 2, 1}, {56, 3, 2, 160}, {77, 79, 56, 160}, {81, 107, 141, 82}, {141, 56, 83, 82}, {79, 15, 153, 133}, {56, 79, 133, 134}, {48, 47, 149, 134, 133, 153}, {47, 22, 112, 149}, {56, 134, 149, 112}, {80, 81, 82, 83, 84, 85}, {83, 56, 112, 84}, {22, 85, 84, 112}, {107, 104, 105, 106}, {26, 106, 105, 129}, {90, 97, 27, 91}, {51, 73, 5, 10}, {52, 51, 10, 9}, {139, 8, 7, 97}, {25, 24, 113, 95}, {24, 25, 26, 23}, {4, 69, 70, 71}, {92, 91, 27, 30}, {70, 132, 30, 71}, {150, 117, 30, 39}, {126, 150, 39, 38, 154, 125}, {88, 125, 154, 26}, {98, 15, 123, 99}, {97, 98, 99, 100}, {123, 124, 121, 122, 100, 99}, {97, 100, 122, 62}, {121, 4, 62, 122}, {97, 62, 61, 145}, {27, 97, 145, 28}, {59, 56, 57, 58}, {3, 143, 118, 4}, {118, 119, 120, 4}, {52, 88, 87, 157}, {11, 52, 157, 12}, {130, 127, 128, 129, 105, 104}, {127, 14, 138, 128}, {26, 129, 128, 138}, {92, 30, 117, 93}, { 117, 52, 94, 93}, {90, 91, 92, 93, 94, 89}, {97, 90, 89, 139}, {52, 139, 89, 94}, {8, 9, 10, 5, 6, 7}, {73, 72, 6, 5}, {72, 97, 7, 6}, {65, 66, 67, 68, 63, 64}, {95, 63, 68, 25}, {67, 26, 25, 68}, {132, 155, 140, 30}, {4, 71, 146, 60}, {62, 4, 60, 61}, {145, 61, 60, 146, 29, 28}, {71, 30, 29, 146}, {30, 27, 28, 29}, {143, 59, 58, 144, 119, 118}, {120, 119, 144, 95}, {57, 95, 144, 58}, {69, 4, 120, 158}, {26, 138, 162, 86}, {88, 26, 86, 87}, {157, 87, 86, 162, 13, 12}, {138, 14, 13, 162}, { 14, 11, 12, 13}, {113, 24, 23, 114, 115, 116}, {30, 140, 116, 115}, {95, 113, 116, 140}, {154, 38, 37, 26}, {23, 26, 37, 114}, {38, 39, 30, 37}, {115, 114, 37, 30}, {70, 69, 158, 156, 155, 132}, {140, 155, 156, 95}, {120, 95, 156, 158}}]}}, Boxed->False]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[20]=",ExpressionUUID->"45942F98-7198-4654-B9F4-693F5808D295"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Plane intersections numerically", "Subsubsection",ExpressionUUID->"199F16F7-8A0A-4738-91CF-7C5D324DDC10"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", RowBox[{"polygons", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[21]:=",ExpressionUUID->"7642CDD9-6795-404F-BB0C-F235193029DA"], Cell[BoxData["160"], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[21]=",ExpressionUUID->"8A0FBEA8-CEE0-46C3-91B1-C694F9494C52"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Binomial", "[", RowBox[{"%", ",", "3"}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[22]:=",ExpressionUUID->"27492E35-D931-4564-B535-F7E1367089BE"], Cell[BoxData["669920"], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[22]=",ExpressionUUID->"B81F7742-DE7C-40C6-BEFC-CA16E62D1D81"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Length", "[", RowBox[{"nintersections", "=", RowBox[{"ThreePlaneIntersection", "/@", RowBox[{"Subsets", "[", RowBox[{ RowBox[{"N", "[", RowBox[{"polygons", ",", "20"}], "]"}], ",", RowBox[{"{", "3", "}"}]}], "]"}]}]}], "]"}], "//", "Timing"}]], "Input",\ CellLabel-> "(V14.0.0-Devel (2)) \ In[23]:=",ExpressionUUID->"49F2AAFE-3BD0-41C0-A022-60AB314E8320"], Cell[BoxData[ RowBox[{"{", RowBox[{"601.638963`", ",", "669920"}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[23]=",ExpressionUUID->"A2912346-AB2F-4669-8F1B-8AC27D613D20"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"groupednorms", "=", RowBox[{"Mean", "/@", RowBox[{ RowBox[{"SplitBy", "[", RowBox[{ RowBox[{"SortBy", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"#", ",", RowBox[{"Round", "[", RowBox[{"1*^12", "#"}], "]"}]}], "}"}], "&"}], "/@", RowBox[{"Chop", "[", RowBox[{"Norm", "/@", RowBox[{"int", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], ",", "Last"}], "]"}], ",", "Last"}], "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "All", ",", "1"}], "]"}], "]"}]}]}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[24]:=",ExpressionUUID->"C6C4D5E7-99B9-469C-9CA4-7B0D5657C8C6"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0.41626893899032696`", ",", "0.42535289397831566`", ",", "0.4254242570505716`", ",", "0.4275168751220308`"}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[24]=",ExpressionUUID->"CA9EDFA8-FD1F-43F5-8C3F-116C029C038D"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"normineqs", "[", RowBox[{"l_", ",", RowBox[{"dx_", ":", "1.*^-6"}]}], "]"}], ":=", RowBox[{"Function", "[", RowBox[{"Evaluate", "[", RowBox[{"Or", "@@", RowBox[{"(", RowBox[{ RowBox[{"Function", "[", RowBox[{"f", ",", RowBox[{ RowBox[{"f", "-", "dx"}], "<=", RowBox[{"Norm", "[", "#", "]"}], "<=", RowBox[{"f", "+", "dx"}]}]}], "]"}], "/@", "l"}], ")"}]}], "]"}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[25]:=",ExpressionUUID->"955C7F29-2256-4A5A-93F3-B3EAFC4A7833"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Length", "[", RowBox[{"pos", "=", RowBox[{ RowBox[{"Position", "[", RowBox[{"nintersections", ",", RowBox[{ RowBox[{"Point", "[", "x_", "]"}], "/;", RowBox[{ RowBox[{"normineqs", "[", "groupednorms", "]"}], "[", "x", "]"}]}]}], "]"}], "//", "Flatten"}]}], "]"}], "//", "Quiet"}], "//", "Timing"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[26]:=",ExpressionUUID->"3C3589CE-1A8D-40FB-8361-7A010A6BBCC6"], Cell[BoxData[ RowBox[{"{", RowBox[{"9.438483`", ",", "1920"}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[26]=",ExpressionUUID->"AF5491ED-8C55-4523-9193-6E8FECA9F65E"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Length", "[", RowBox[{"intersections", "=", RowBox[{"ThreePlaneIntersection", "/@", RowBox[{ RowBox[{"Subsets", "[", RowBox[{"polygons", ",", RowBox[{"{", "3", "}"}]}], "]"}], "[", RowBox[{"[", "pos", "]"}], "]"}]}]}], "]"}], "//", "Timing"}]], "Input",\ CellLabel-> "(V14.0.0-Devel (2)) \ In[27]:=",ExpressionUUID->"4A2498C2-1A1F-4BA5-82D2-16EEB4DF7059"], Cell[BoxData[ RowBox[{"{", RowBox[{"770.388669`", ",", "1920"}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[27]=",ExpressionUUID->"8AF270B5-72A7-491B-8D27-4C2BC0B9909B"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", RowBox[{"pts", "=", RowBox[{"Cases", "[", RowBox[{"intersections", ",", RowBox[{ RowBox[{"Point", "[", "x_", "]"}], "\[RuleDelayed]", RowBox[{"Flatten", "[", "x", "]"}]}]}], "]"}]}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[28]:=",ExpressionUUID->"3CE2D876-6748-4917-8439-D25A5EB15DE3"], Cell[BoxData["1920"], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[28]=",ExpressionUUID->"844F8400-6CC7-4912-AFBC-3B56646A3396"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"AbsolutePointSize", "[", "5", "]"}], ",", RowBox[{"Point", "[", RowBox[{"N", "[", "pts", "]"}], "]"}], ",", RowBox[{"Opacity", "[", ".2", "]"}], ",", "p"}], "}"}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[29]:=",ExpressionUUID->"A2480E5A-9ACC-42D7-968E-B33E6DBD94AC"], Cell[BoxData[ Graphics3DBox[ {AbsolutePointSize[5], Point3DBox[CompressedData[" 1:eJyNnXe4FkW29QEJoug4JhwxIKKOiAIqmBrLQJSMKCAgEhVEskiSLFkURXIQ EMygEoU+pwiHIElyBkVUQB0TjGEc9d779vqV9kae75t/eGbbp9/urqpde6+1 9q4rmneo2ypPrly5+hXIleu0//03X/M3fvvKvxP3u+Lswdf9c5fvXmlB7mnT Nvhr31/xfO/i86KesveRvd62aPiB29dEfcz1ufS/wbLPNPbOsjeS/Y0nZmZt f2pr3Er2Tub6+bL3k71Yzmk/bRizOO4re3PZW+f80vyan7PjJ2RvZe7D8/eX fcOAPLVvarEs6md+d37pkWfnm7ctain7PbK3y9x/U9Rf9pHm/s/Ivt7Ye8h+ i+wtMvc5GD0r+3Pc/9jDH2w4e3Y0VPbSst+79cr7X6+YO2uX7P+umNjv+Xbz 5Ed2z4/HyD5A1w95fs6O9yrmROtlv6hyYt/92onGZS/PjrvLvknXnzZ3wd82 frrcLaxVcdmO+7f711+OC+b+4UPd50Q0Q9efpftM7LMo32PjFkYjZH/VvG9T 2XvIvvSJve1HFlgTXVIssReRvcrvU2Z/ftXqqJd5/p71Om4eOWSJmzYge8pH Gz7w3VyNz2efsctfvKnBjv8cXeZmra2S1aHxej9pfe2qC4rt9E/r+hG6vo2u H67rn9P143X9GavrHY1+Wxu/1WTxgPkPb/B3lCj/RN5nd/rKuv49Xd9e10/8 8d35E9quj/fr+tt1fS59t436bp303c6ouvWlISMPxHYcu2TGd3XUWPbaso/R eP0k+2HZ/5nM86i37A/K3kTzcLTs98u+9osX+n/del10j77zJNmfOXbRQ/23 rYjb6vrCZryekv1p2e9M5lUY9yayN24wpebihZujbNnnyT5u9oYrRg7Y4Wp0 OG3FsRcXxB0y33Gzzzf7pibN9u1xVQ+fdeLRYrH/osH7XW64bKFf0qLXLVc9 uMcVdavu6lbgPd9o3HuTOoxe6rt2mfC33MX3OZ7r/eWLRrzYcLovpPtUTu7j ijVM7jMwGWd3pZkv7+n+x+7M3N+VG5/c/5Zk3NysxUX6VPr1SHxA4zlS97k7 uY9/Q/eRP4wGpP2bS/zhyjAuA2XnufEnXWQvqvkwTvYJsldI/GfcTfY2sssf Rg+l/ZLrdOVpxXP1zgn+Vn7PLXvo8tNmrNgSf5D2ky5/Mj/9pvT8dNN6r2r+ TYutca/0PHTX/Lt4rfPv3Rnht2+X/cepVfOO+u7j+FXZP5D9kReqr213fEN4 njqya73Hm4om9m2yt90xpcb07h8Hv/es7PffsXXjb43WR1Nlryt7yeQ7x4/J 3oH7ZOb/1Bh/+x/Zz898543xk7I3k/3hMkcG3nfTznikuc+EN5a0eyXaEuPP 68m+JrMvvBM9Y75zGc2jz5L55aeXT+bXTM2X9vI7rTUfV8iPdJIf2bMx8S+j ZH9R9jfkd+7SOnhf939Z95+v+z+l+7fQ/Rtn9oXvon16zkpVkuespH2he9pv uC+L5HbPzDweMY69ZD+7VIFx/xixORoi+wOyb0n2i6id7JHsyT6YHTEuq2Xf cfnvH0+8+kRcR/7nDj3PAr3vZL1vEb3vZH1//Mws3efVzP6yM35Z9uOyFy9U 6qVo76FooOyDZD9Lz8843sX6ynyHnHigWb9tNA/fkX2E7DfdWuQfe578LBov e0fmldZRrHU0QetoueYJ/kF+2E1M+8NI/tBpf3OrLyi+Z8nC/fEjyd+5wbLf IL/ytOwNZW+U+d5zokmyz5V9USZOmRcNlx3/sava5G55Ll4aax27O2XPzly/ Mqohey3Wmas159HFJ4iD3GOyf6D36yh7VHln164fbXeD/7vvhvZVcvzzLbv2 L9Zrgxtz+vRCdep86Ca1vfOrl2qs9jdmj6r9QaetTvuGq5zxc0eiybrPBbKv WNjknVbXfh69Kzt+68it/97d//5P4wayKz5y9c7ZV6zQsFX4A4d/3d3ltFGt h+6MH5X9n/hFfR/tt+462cde2bfh9XNejSbKzrq/P7OeDsX3J/PX1cfPNWx3 6IwfN0bdzfP0n/r2NVe3OxQNkr2l7F21zzO+XzLuu5+5a+Rjv0Xy966K7Osy 62xOuE8p2esn4x53kf0h2ZP9/JMwLg8l68p1TtaVb5usN1dV18/Td9B+5a6W ffD5a8vm6356+XtlH6r79NB9eus+jMvLivue1/WKo91jmfddSLzjFHe79ok9 Gmnm52WFln6+aM3XkeJiV1H2ioo75L/d27KPy7/5sx0f7Ytfl72J/MptPf5+ cbGFecrvM/NH/i9853Z6r9J6rz56r5aaz5U1nwdqPnfVfZ7I+Ilc5TvoPm3N uujEfC6YzH+n+X+D5v+V7DOab9rf3LhT+Idamfm9IJY/ccSHnR89Pn/SvxZF yncccWBtxQ/tZW8s+6z0vubk3zx+pHXav/hzMvvm21Ejvpfs4+97ZOzES97F 37oask/LvM8i4gE3W3bFG25t4icd8bCeMxpmnvPJzPpZHo9K+yk/PvH/wd9p Hfqf+30ypmG97FjxgyN/rJ1Zt1vip5J4w30ru/Hzbn4qvs0J/oj4Nn8m3tsc PS57nVReOTX4l2WyJ/73cBjXR2SfmPk+u6KXZFd86KdqXF6RfaqJ87ua8a2R xBsuf8skns2vePmVJB5wigfcg4pbWa9NNN8v0HzvKTvre5jsryXxhits7j9J 9++h+zfQ/XMycV2BrLPlH4sm69BXULzRXM8vv+OfyOQ1r5CfulyyVx6Rq2Cj 0/+Yz9qv/RTt+/hr8pQeiZ+NH5Z9lOz9M8/zY7STdaj8dLjed5Te91K9r4n3 2Of8kMSfxqxn8uIknnw7xt+RZ92n53/JzFvif9ZjX9mJe58zzz8rE7cfCt8B fOAMraM5Wkfk4yb+dw/r+u6JP/HxsYZv37Lqraib8i/W8RmZef1x1D4dF/ub hOuAT/AeTU1+Cf5xrvyEyQ88ecyLsoOvZGnfqSf7aNkXZN77u3i27OA0G+RX td/5GxP/7J9N/LO7L/HPvnoSb/hBib91RRJ/6/Erib/ZFfP8v1T8s587EPAt 8uyChc86v1q1HSGPwe9mfbqpYc6D2yP5f99T9sMt826Y8PZ+1qu/VvYlmfed ybzwj7LuE38ZTZH9MtnLvlWue/lFu6OLFC8/aeYRcWUL9oHMuIxivoTv/KT2 2WayL5T9w0y88XU8OZ1f+i2KN3hfxSG+ofCzTgYnuP6DwY0a9djNPuObKo6/ VXH8TMX34BzzFWe20fUFZP8hkx/kzdom+3Dd5wndZ6TuUx0/qniD971V9lZJ fBXb73N3oZtKH68+L8Tj4ElbMnHmzljxXsA5qipO4HpwtcRvfRozjlfKzx1d /dWr543Ll3Wxxgs/J/8X8iSb75EHPqD5XFHzuZLmM7hp4idyZb1uxot1AW56 VPO/juZ/fs3/+3T9ZM033re3/EOW8Q8lMut/ZsgTwAH+mdhtvOFqah8njgSX YL6yv5PPNFT8yr5GXrYgwVfjeul4wy1KcIxofjqucEPd9n7VL89h3RKHuGUP HZiyuNG2kLdovblSen7hWk44pOub+M8QX3H9O/JTxIvEo+C9xKn3mfclH+hD PK24SHmray/7nkw+9kf82pj4Ungv+0tJ8o2lC/779NGC5UvKLrzUtX7sti+f r/BhNCHt/91zwg+/vyIV/7iDWufcnzzkIuWz87S/vKh89snsn3r+N/4u5F3C D90UrUP2uxHmOxA3dpa9aeb5j8W1i6XnTxLfvxIzLuAwwu/8OMUdPRV3VNK+ 3U37ufASV1TXz9L1vXR9OxPfD9P1Br914IBddf3Tuv4Rc/1uXV9B1xfUd1uh 79ZW322t8tjFeq8yeq/CCS4R8nzm+XCN1ybZL0niFrc2s86fD/OZedJUeAvx KvlVP33navrOJWTfkRn3g+wH7jYzXuSZ4HhJPPxKJHzSVTPXL0rHsa53Ot6I 5U9c/gSn9T99kuC0RRKc1h0SnnWt8FjhXG5Ygvf6Obfm3zbn+1mx8F53fFbq Pl54rxPe69tr/F/X+B/T/W9P7u87K26+Szj9ve3yVivV/Ah4v+uj+5QVjrZK 9zFxFzyIg1fqmI5X5GdWxuyjL5nvZnilYFf+5S9N+5nY8ErOxIfwR+5GxTGG b9I8ORhwVPJh8Uqxxt0zHy4sOHp4hw8KZVXhvZL9z90j3Ex+wz+j602cDH/k xDfFmifwTe6H+5PvO174ZV+t02W3f3POy8UOBT6F9TWmecvSbTb9gB/2O9P4 SAzfNEZ24Sxxk3S85Vpm/OQ09p3w/RN857u4rfZvcJBxij+e1D49QX6gpuw9 0nyT+0nvpTzJD9J7HV+R68TVF34Zv6HfvUT376L4DDyf/cvkfQGnFR8U59Fz /mjmD3GJ4lHwGtdez0n+90MGt98cK5/11+v6qvoOd+v+rVN+IOTF8D6utOYb eYLiJ+c1jns1juU0jgYHCLxDmeuHXLf9wNJ4ju4Djtnlr3kf93flpZu1rrvI b5wlPuiuNB/k4Jtqp/kmF+m5xmf8+tJIvI8boHF7Qn7gHbOfVJefmSj77y1S eTJ8gBv7XLtcHUvsCXh7A/KyBN8g7wt5V+f27fM/0PZYiEf3pPGNsN41LoE/ PZrmU7yT3wavFm/iV2bi/k0BJxfP4gtk8sBlgR8hPxSfEvKuPMqjP1TcTF5H PpvwKZ/H5DPkLWu0f/H85Kejjmwp0jX3x4EPrUfeld5PA38qv+6FP/hmGocV 4kfWpvkR3zezD/4csV7erpKO7/En4F3tE1wiWme+23ThTo+l16l/TH4G/0N+ MlvP2VbPCU6yXDzRd2meiLgk8NCTFH8skr2Z7EeSvMETp72X5h18U10/Utef qfsUUh5LnrBYz3nxxBZn1q6VP+s+fZ+6+j4fKT4kT5af8aM1XmPS6zTghCPS /vYkfQV28jT2tfKyD1WcDO8jnsWv0LzNkR3cUrhH2GfBYdiXzkzwDfAnv0j2 q07f8NWYgv8invXEpz0zeOqawCvCC7F/4v9yyz49w8d+Ak/hDb8AXhX43jsX 5C2Xa8lB8EJ/ueziHWwe6hJc5QA8TuBdLR/LvieeKBZPRN4nnigb3NTD7yxO 8Jagc7lXdvFBsfggb/DtEO8MFr/zbJrf8bcLP+8t/Hy08ln422Td7Ax6FvIk kz+Bn7h7M/nlq2H+Pi77S5n5+G3AqeBl1s1c+EvfF9ZHltcVjxD8XDfzu/hF 4inhjhG6IXhUy69ynwNVq3266eLvotfN88C74m/WKZ4qVDThRcUrhbjGxjvk B8Q1j5h5QhxEHAe/8GaCy8Lj4F9czzQf5OvK3sLY79Z95gm3QddQQXbxPiEe vFJ8x61pviPwpcIxyhN3wGeJB4mJTx/W83yzMZWH+WaaV3dpXvXTvII/Wqf5 yX41SXxKTelPOgrfaKv1AF9QL7XO50RjZb8m9X03ReTv8HPwWPCs8HDiHaJH 0ryDM/qZwIMa/wYf4ereXXpGnmMHAi9DXi/eIfBM78p++uBjFerX+Srwkazb icJ9wGHI14yOKOTjL8jPk/fhX/IofpNuxHVR/DbP8AK1FTfdQVyW5hHc0d/e +qbds+dkwddWU15QwfBzzLP2invhR8h/J2v+gSOVNOsZ/Ap8yes5ie9q6Dl/ 0XPaOO4p5f89NR9zFE8PlP0x2fPLbvRy4PPuDcOz3KbrD4vPBu9Cd9Evs253 RXtl/1x2o9ODj3Amjgrz2eSbbobs7tBpL+4dvjLgeDYPhUewuBZ4F/4xR/MW 3ED8hSsqHebTZrzkh710DvhV93oq3swOPIb8qvDIbfAU4Ba+t/gfxSmumOwJ jng44IIGhwe/deD2uxKdQODZasoufJ54Fl7bX5LhqQ+iA3LE75sTfUWkuDjw kDdqX2bciFOa6X25fprs31ZftHtQ+ePxa7L3ll28SZgvBgf+Qw8gHHh0mgdx 8Cbj07wJ+gT/y++7Fn5cYDm4d+B1G5TMl9P97HWBHyPOfUD+knFB91pYequJ ZhybSxdmeWzF4wF/5X3ria9hPgg/C3wgfOwtilt7J/holngTd6OuH5voBAJO qXgv8JPc5zXZR667uX/2P/bF3GeH7JOSfRneBPxYPMvquJl5TvEp4fm/FY9g +A73hOJ1dKkj5C9ay/5Amk8JvCh6ZPEp7nnZxY+gg3bwAg3SvIB7Ste3Eb/A fEM3Lb4gjOOzep7z9Tw5ep66mldVNa8qaF4Z/i7uzLoTTuiFEz4lnPAC5TVZ afzZCycPfoH5WibhKYnnAu/5WYaH2xDe3+YjfC/yaHA21id8SRnpvogH2rOe hXsorwHnlx7gYPAv8I7thbPBdytPQL9dHjt6afD8Kea9jP7NfSO7cP74V9n3 sz4NHtpd+ehy4TPgHeicE/z5RJjfC808HvaX835hwLFZt20zz+/BIYP+4aVv r2hc4rWV8aVaV/C+AxV3TtR86pXWA/oxaZzft9R7oXd4Wu91tvIlqxu5UHh7 C9mVP/i14s+kb3TgM8Lh4yWyC4cX/z0n8P7c/2E95yY9Zwc9J/MNXqOyrl8m Heyt+g5XyF5Hele+v/B2D85m8Hnf5OtdB4YO+Tjg14yj0ffCR/iV0gNv1H2e 4X3TeHuEvhq96VTpTYWz+W+Fw3+bxuHRdftjaZzfl9dzNbl+4ezXr1gWoa9v Z/CRN42e9SnFZ+Apxwxu0kF4ylrpJsnbWe9VhYOhb0dXA5+K3hWe9TPF+Vca PIH5Q/0C82ek4rTPyX80T+4STjlB35V50E728cZeY/Poqh0nbYynZebPSfZo hrH/2CD9vRmHb5K4IUI/wfrakNZrBrwxS3kdOgz2gxba18En0XksET8L7oAO 6kbhnZ9qfG4TLltA4898+V7PmUfx9se6vqKub6X3XWDe94h0FeR14Iofabyu kT3gcvKf4ClN0/tZwKmY/8v0HR6QHT/G7zcx9sE3Xzzi8vrHYr7Pr9rXnxYv zPd5iHhF+eBa4bQdNU/m6XvW1vXEcy3N+uQ5yFcnGzv54RhjJ/+pa+zVZR9g 7OXJHyqn7ZqXrlpmfKZE2CsZf4p9s/LehuY+L6fvE2PvZeLrZF/fFuKFZqf4 Dren5mt2jB6T77hOfoE8lri+uPAz4p0XZV8oPIw8ijjgtwx/sz4mbmA9zJfO j+vXsd40ruTntt6MOJr1llf1JOQrts6N/Bydy5DMPF4TeFzia/Q+b6XzSS99 cYjfhQv4UR26/++n/TDk211Yz5n8bXdEXHKu7GOkt1U9XtDJbU3wthAnCjfy NZO8Ieip8acPyF6XfKXSn9fDvJj3ZT9O8rwt4XtONd/nC9nrVP6zXz6CH3Tv 6/ofVK/Cd8Dvz1N+ID/raph5PsjwUDny48QZxIWTNS7wUDUPp/fHXMJBtsjf 3QwfbfAscC6j5/HE7eh6rN6nnuLwCrofcXhT7f+/z0niAtWlufXiD4gPThd+ ob/z5n6urJ6jpH7/cuF9rfS9kn+zosX6jrLHssfYwZlYt+3TfsRt1nxinv1b dsb1iOzgcG0VdzNvqI84rDqVa2V/WXb4n07p9eYeV1wgvZbLln2D9gfiWXB+ 5gN5CXxpnNEH5oR5Fvh25fvopqlDStbb2rD+/27uD04m/tLtT+//od6hkPLu +mn8Af42xPX3mecB1wFfjLaWG1av/Nagswbf7iJdEnrb04WT/UPzOJ/mN/zz QOlZhpvrHzL64q90fZb4zDbaPybKPlHr6gXznHwf/Phc6UWWaH1207pV/qH6 s0XRXt2/mHDHuT83azgm17foToOObH1mHr4ZcAmrR6Eukfc9+/Vkvt1H/K75 X03rgv1Pfs1t1Lxqyv6k8T1L/gI/onjH3ZXwRyHfJ9+uq3XOejV1Bw4c/jr5 jwsMTt9U/qaS7ocfGiD8soCpZ92S1vEH/RN1Ei0MTl9Pz3Gafv+w/NYp/IY/ hd8IcWu29H3wyeRVto72Q+FCxcRzNhbPgi4UvHGUifc/k9+4Tnbq1Mkn0P0a fWZ5eB/wAPwG/Cf7BHpA+ETi1rDfyE78YdZpyG+MbjHoArgPulzygyJpPUT4 3ecz+PHmGB0KcRJ8BfV2/czzwJfB01YwdeddzPOgQ66t/G2F8rcvlAfwu/Ah S3geXf+B8k+v68FXF2ld71R8XZG8XHoEnof4vYN4funs/ogrlfeSD1Mvonw9 aqf7U3dieKHw/TsIFxn9/7j/MF1v/IY/hd+A5/UbpUtFL0ZeVVzji04OPfNe 1cFRz43uH9wG/2XmN3Fx4O3wO+hXD+v9S5h9xazD4E9Zh3WFexQWnzpe38XG WdgHGjv5MvGasUfTjB29D/vl7fKz4r8DTwAvbusbqfO9NNlfI+nign6yvtYD eQb+upB0EeBF6ACHjk/NY3e59kXWJ37/Vj3nbM37len6eEe+vNi8L+NN3PCE fpd8+TLZK8nOugXnHCL7I1o/02TXfHWX6TvUSudhQc/GfkY8hK6GujD4YPJl k9e6K9sn660Oear26dnqB9LMfGdwGct7kYfXNXby+YrGTv35ZGNXnsu+EezK c73y3GBnvdp8GT3FAHMf5d3+anOfaen7hHyZdUzcWlq6dvCdhub+o8319fXd +W58R+FoQTdWju8rPIh9DJ0I6we9KXr60zI89P6gX5C+Bz190MMxD8iX0fHA F6LjZ3+727wXOhfiXPZDnh897mNfHZy7eMKBiHE39bhBB0kcvVb1uMK7Q/8C 4fih/wu6g9JJvoyOP9TPT/2mxHlliv8r6Dsrm+dn38C/sN+OPsU8Qa9E3jAp U7e2PDwnfDlxDbqVUeY+xEG15X/vSnRyQZ9KvM/+9p6Z/+8qX56u+WnzZXDP pcKTlS97dCLkeWedPjfv8Zl74+/T+KBjH/tc+/w7wp87ym+eIv8NdTRV0/mv Jw7KNvGI8gb6Alh8xv/2/3n9lPR6CXb00BavGHaK6xmvF419uviEs8QzDDJ9 aBrIvpG+Eul568c/u3DNzd9viWbJ/h7xi3Sc6G7gad6Srg29zwPmeUal12mI o1nvxK2rMvvoy0GHRb0r+RzrfYHs1APzPWuZ32VdNE1dvyv0dSL+Ql9AH5OL ZKfODx0ZOJvWb3SG1sUM5Q01pfNinaKDXHneg+/WbLQ3rmd0k7doHakOx0/X 9Vfqd2fKvl32E8KjOmscv5LeaaXG8VLN81qa54M1z8Gvx+s+t4tHZH6CK66Q H1P9if+b8LENSf3fSTyB6i+jclpHE7WOamgdkW/ZPOxX8gwzXnwH+Etwv8Zm nnB9ybQ/D3bGsYWxk8f8qPj3YuXNel53s97jOb3HWOWhJfRdW+u7rknreXwr rSfV4TlTn8f4uIG6/geNG3WejA+6E+o80bWin5DuJOjVmI/SrwT+xcn+ovTk 9EN7QfYiJu4n35um5xyr57xM72XzQK63dYP413V6L+v/yBesn+uhfdL6xRbS rVl/bOt+mY/rVKfKfo7f2q96y7O0/s7T+uun/Z+8NPAAJk+rb+bRCPO7xXS/ UUkdeaz9El2VX6F5D/6Lf9wlnQK6g9rmd8iHDJ4QeAv8r3DLGNzyFDhD4M8P RqXqrp62Fv/iPpVd8f4fegGjp0RnCZ+En6KO8MuUfw99lYIuAP/F7441flP+ 1P2q3+2n39V+Rt+ugI+T98B7V0/6uuDHHet/lfrzoddgn6YfA7gueE4/xX8v mO+8SfV59GlAf7UzM+8OxtRNFpIdHQd6M/AKi5eqP4n/OdH5lCcv7Cf/MU7+ 9E7hZPRVsXU66ktD/7+AJ3cw84r5Rh8+rZto0SnmG9+Hdaz1HfRm+EX5Sy9/ GcbrmPDnvBov9qEl2j/gn2rJf5ZL+2H3pvyMk5+ZIh35IuGK79AvT7jja8IZ L0j3Wwq6Nlv3P0C/M03fGT16X+VX35z+f/Vt/4VHIJ5wWtfwCCEubyF9EH6L vHb66uHNZ2/eHfyx4RdCPRz9n4QrxuCK4CjoEdAp0Adun9Y1/ukz2WdkdECf h+csKz3W6rTO1M/R9ZdoXVNH8KvsLaVnAc/UPHF91EcIf3mfvttvmfl8fhY8 eSf9ruLRoA/7/ZMUju2I78kPl2TiszjgmTY/x3/Tv62tnpM8kzrIM5U/gO+R Fy1WPkm+Cs6/TuuaesQbdH074XXE/eRd1DsSd9aUbp/6SPJnxUmugYk70O0t 1/chXj83lU/+gROStxfflmfJhA5bw/O8I/uUar5Jzrk/xXz/qWa+MY7oc9cp 30YX86bWmV1/jFc+ExeQ996Q9AELOLP1X/3S8VXwF/iRpeINntM6pn5potb5 fxNe0s3XddSR2PoS9fvw6FbRs4a+Smlewz2i53Man776O/Cm38y8Qx92vbHD T84xdvC1W4wdPUBk7OidbT4OP17O2NE/TDB21Xc51v1rml+10nUcroHs6Fup g1mRrD/8StCLr1I+iK6R9UT/RHjCbql1vCH0U1Cc6nqKr0dXhx/dn9HxxKHf TQezjukvAF96Q0an8XnQFVxnvgP6BHCkJ9V3DVz7KdaBdCD0k6OuaGwGPzkU 0b8JXEL6B9aZu0n+Y6/qFuCZ1+h6dPn0G8O/9hNfbftf8Py2noQ49XGNY0GN 4xCNI/3zhmhdjNI8r0m8Kf9UQzpo3ot9ZqV0IOjHx8neRf0d0OtT5y89TGzW udP6d9qvAp/Pe71NvGnsxE09jZ3+UOyr8P9XyX6HuZ44CHyvj+L+vAY3V5zi Jstf3W3eQ37Qyw864pAHFIepn40brHEYrPu00n3u0X066Ppquv4j9XdZpryJ uB/dAH0GXzLz+jPp3IxO1e3KxAFHY+E3oU+i9PHgi075EX7cn2G+B310Rug5 C+m9Niiey2OuP6lvnfwr+SDPif8zeks3VnbyQfgFeCJbx/SR7Kp/AG8O85E+ icwX6uVKFkziOeLdUsI1TR/voPNorzprnudVM7/wi/A1VQ0OAs9udPUBlxys fQ1eHN5cPLgXD+7hwW2faP6usn6vvtH1/CA81Et38bVwUvbrXq/e/1r93IdD 3ah0Yy7RjR2x/axU37ct6B+JV03e5I/qd8dJvwFvS1wn/UYs/YbH3zVL/EvA D/jO4kMdfCj1tra/svR2rpH6bYJX0qfE9iHOLX8tvUcsvUfgFehPTHwl3Z77 XeuMONPWRVEnS/wpHjzgDZeY64m7rB6a+Er5o9XbhPfl/j3M84hfpe+d/zKN m3twIPr1fqT96WpdD98jnjD04+K5xbu6iRoX8P0a0mOgRyZukI4l6KPFL4c6 VcMvh7wI/0D+w3OwX0mPHfIl4WbSgf0YHZIdfZjR+Qee4RJ9lxP6LnyveprH 6MpvuTPFw56kZ7f10oYvDnXRhi+O6aMCX3yu+FPwvVlm3oCbEX89o3X+jZ6z kp6T8WOeGZ43Fs/r4Xknq/8k/capk0cvzboiHxbPG4vnDfXnCZ/7aaR6zLCu uiqfgWejrr6a+Hp40fCe6s/5UVoXDS8c1uFD5vvAg8G/wTendbA7A86BjtTG 4fAX6ksX6kiNDjZea/CSSeL1wOGMzjbggvAXP6o/KXEveCF9BYif0QetV/5K fGt12sTJ6K7hAY3e4g/ddToOD7qeLub73Ki+j6fQRePngu43v3hevid1WYq3 Q3yDXvr3C/+vD8WqUJcFzm9426CXhrftY8YLXri/GZdr1bcOvQV8EzwjOOtY 831eM/OHOPzM9PkCod9UA+GaNwvvvEO8j3jS0FcXnnSBdBul1Ef1VvGYi4xO luchX4AngF+zOhh4VXh78lFT/8L5Ds7Uv5RHjwG+LD1PfIXs8If71b+9od77 Br236V8U8G5whDPM9ysuHcsic87DRsXpec25ELYOlvlIPSHr29SzhPwGHuwq 9Ydn3lH/Sf0teQm8wE96znlpfY5XHUqoszV1KPE1Zv09ovMF8Aec50L/efBo U4cS8k70asfUn39VOh/yF2m/Y91Tl4e/nWJ0QdLVxLfgV4QX429tfYn0NsSF 4X3Z58nfuyq+h8eyOhn2J/qavat4E/2a0VGEcwjS+qGcoGegD/3adF1DiH+p a4B/BF9Un2twCb9Wdvwt9ULEv6ZO4aR96FHzPKYOIuy71EGgV7H9Wmw8sThd hwIvFfr608+mL99B+IY9n4M+MafqNwd+nM4P1gQ+r5W5nu8MrkLdCnoA4jbq IOizMs3cBx58lezwSCf+WgfijxL/KT4YKlyF/ID4cr78LfHc9YqT2il+svpi nodxQZdNvcnEtI4lpu7D4ongjBZ/JG9uIdzzZ+GcG8RfqJ7CqZ7CUU/Bf2+X 1lejy3amD0rYVy4dnzonxL2h9dpD+SD1rOwPv1QceO8P//mjTzn9EJJ+deuD X39F9q0XFC51zrV7QlzC794jfxnrd6+TX1ms/GuX9Pbw2AfVJ4c+l7buFF09 cUPNpP99qL8g/kjimO2hLws8l+EvHDpY6m6l4w1xmHT+YR9gfyAfBIcgXqG+ nLqA9DlgIV8zdU0rQ58E+tAdNrpU9gGjow59FUy+GerO2QfQRVJ3dL7Rk7Iv mXwwfB/2N+JRq99Cn3uKfBCcGn1yTF2ieBx4VfrR+r9X/vPzzAl8E/WK10jX iJ+yOhLyZe0r8LNBP4e+YK76IJH3XC6+Nducw4Pe5QHhLvA49XX9Hl1PffcK 3T9Hfhk9P/Ohm/qyo3dEt7ReuBR6mgsYXz0/fracvg/nrcFbndD19GPDn16u 639ZXL5xlepfBnuZyn+OI6eG84tu1Hu1SPPy/n3Fd0+qfx66KPFEzCsPr6c6 HW/qdDznIRicz+scjaAzI+/sKjzslTSPFH73LJOX0y+hunBH+mXir04IRxQf 7Q3fHfCoU/DIfoT871nC4+Cx9K8bKrwOPgt+u4aZP631fRsKd6XfwQijh/hd OgnLrxM/q77Gt0jjz5zj4BvpPl+n9UiB5zF6pKDrJk+lDw7xLXok25dHeEXo s0N9FzqfIkbPwfNbnYHREZ1U34meAz97hP1MegjiZ+pN0a9Rx4U+xtZPgttW l07ldOU1YzTv0cfRtxndnNW7oIMx+GD4blZPQ1y9W/+/rHDqunqOVzV+xYTL z9G4SpcbzndaK54OvII+UHWkn2TfQ49QTM8BL7PdxF3oNegni76RfE/6Roe+ 8VHDT6Enog8L9Xb0IyO+KGziQOqON8hO3zvLJ1KXfd1f81++uK7/SfzXZ9Ld kPei9xb/FT2YPs8IntRTb0p9YckvCp/TZdC+cO4QvIXRtYZ+avg/9EoPmPcF /wEvM/Vnjr6SOv8q1L8aXjKML/ffpj7y8DGcvwQOY/lcnkd9UZ3tI9zYvC92 eFjwwQe1D197ivc1fXcd5zzCw41I84noS8Nzoi990+gnmmjcXpC9v+yR7D+m 46qA31ZR/Fw/red0Pt3nDT0n/F3o42n4u3AOhOHvTsKflz4x6I7bin0Ri6cN /bfpH7pQdnhp8JOvZ6WfH//J/Q3vFs7xpG5LesugT0K/gP+U/w/n94G3oJuB d7N1pOQ5i2ZNXPjZr3/PUj8JX1b52WTpVKh3gWc25zdxvog7oniaPBU84BLh z+R58En5FI8UlL/eLj3oOI1fYe2v0zWu6KfQb6JzsDraopm+sH/opOinZXDU k+r/iE/X4N8VX+8nvtP+0V956xA958/ap9fqOSek54e/MN1H7SS9tNXFopc9 ha47PoWe3Gk/8kfVxyTSucLcx+jJY/qS1UnXHTjyaPpH50hnAj9G/I4OBN0W uBI6EOoIyMOMzgRcxaMzYbzIL6Xzj0yfd3T+4XnIn1RHwPleQd/OeYzMP1t3 yzmRx824gM9Qj4Cegfftaa4vJrs9L8rqs6VvP0nXXiOtxwjnAXOffewHyr/g yb3sM9RXDF0LPBJ/Tz6LzobzpcmXVV+Bji7g8q3+Wi/n8spPh/P2tB9bfQm6 k+66vqWuJ84dap6TOJR+uTo3I+iWrV6E51TfyNDPlfeSrtV1lT4GHJQ6tLmK f4mvrY6HfZq4TXrLUF9bXu81I62fPElvxO/eavraE18TJyX4zLGAGyjvQz9p +1W6XzM4z76Ab6B/mZLWB56kpyEvUX2LqyY+Cb0aeOsSwxsZXWLgK677a72f W5TWQ6APRCfspRMO53Nw/uiMv5w/m8N5R8yXL9SHjPNAJmXOAdgXlxPeMcz0 6SI+seea56NPpPwnugPyFvaRavIzzC/80pPC31mXVseNzn14Ch96Je6hvol9 zHsxDg+b56TPYk9z/fj0/A120wfW1vUEnT72DunxP6nfkfQRnIMe4uR7zb7J /CUPpL4JfMvW303S+umufWmQ9qVe6fnu0T3CS15r7tPO/C7xwHkaX+rC6ilf Qz+k+Mnnj24+saZMh8j2uaihPGWaeR7wj7LpfoZ+sPoTs581LnDjmnm7cyLL v25N4qagbwLv3S3dODpU4pW+woHJN8jXf1PfV95H/l/9Ag/F68w8WKP8h+cZ qHVqcJLAUzWUbmey+V475CfJA9X/1LdTPjZN/pD4g/PVGVd4S6MXCs/f0fBa rIep6XPOQ13J9en++e4WjQv9B4drXOBF4VfIizj/90Xx1uAH+MkVOsdM57GH 88FMnxDwUmfwUlfpFOeVHNI+W13nFDvNV/QyHdPnJDjOqf5FfATnfaFHMn0/ wLedwTPpW+kK3Xx0btcF2wMv2lvfifPOX1Ofzm7pc0ZdL61b+Lavfy8884e9 e9ARuVj2otLLjEvPQ1dB9Z+djV14eOhDYOvhmedf6rsdEM4/XfZ/6LnpL9pP /SiJK8y6C30EOIeTeJH+RQe0Hqn/Iz83vEzIF1vrfAT4vBzwlKtzn114ye54 gezwrKYeyi/U+NLPS+MbeErDm4R6/gmKA+Fxn9E4DTV9TcM5RVqPfcx3KCEd CTjz8zx/4UT/Qb5UPayLVD1dyI+98AvytAs0Lks1LppnQUdXWfurxjfU35p1 5+Hhy3zR+JdNz+4P9bHwBabfl1f/9cBfLCPfUNxg1mM4/3Gp+oNeonyV84Q7 mb49rxocGZzZ1sHCL9C/j3N1yGfIN15Wnk0epXPzvM4z8m/In43RePaW3x0s v4sOhvMYG6THMTzP8PQ4hv7n9EdAzwQvDl/OvkNfCcZd59SFvorUyXMO9nid 58DvH5b/wy9OVPw2yvT/MvGMt/nNbcXS9nUPtruo2Rvf4A/CPOW8RntuyccZ +/roQdnh9zk3kfnexvyu3svb90KfMN5cz/kVU8z14AO2PgJ/UMPYwV/OM3b4 eqvn5zugb10jfJLvWVb2gRnedQX9cUK9lM6tzKI+yeoKOEeN80my5Xc4NxWd SSnhsepvx3m54T7k7+h56wkPBzfgnAnOn6DfC7qRR9W36FrlI+cK54KnN+dF OfCZDlo/z+g9pmpdca6q4nTfS3G3+vL7i/Q78E6c00y+wvnN9K2dlB5P+raj 4wo4zUzxnV3T8yjEm0ZfGvoDdzL2HeJlWYfoke5VfMD3rmz8gtHphH5Y6F3x a5vkLx5NzzufpXWNf9368MCaj9+8N15h+n3rfHN3neKdLP39kC5tqq6t8k5M f3367t8lXMvqQhuqHw74B+cVn5HuFxHOl9ih/nDUPbbTeL+iefuxnv/21P6w L8TR15u+uCtlZ/zmJDxCfFD2eeb7Lpfd9jOZqe/DOZacb2LqtgKe1t+8L/ch rt9p8jLiL3j+ovo+xN3oS5drPlndBLwJfcm7ad/jXED63tn8Dj9Q1dj7mPna Uedgs/+Dp1XWOeTMV/k9z/m1nGPHOfSvqE60m+kHQX964o7m2k/f1XcH36tu npN9/n5jJ+6zetE+Zj3wPVmH6H6X6Hr66oFvJ/2dRoW6Ur7/eZm4eFmoY6Zv Xwudi8n9qWun7o84yPZjod+R6mR88auLVpmU/XyoT7XnLkwz34E8g756K8z1 1IPOMPXg7Kec7zFUvNtR6b5Kqr/undL319D5T53MfjtW+rDD49K6KXg9+Cyd 83fSOUk8J/hfZ2Mn/7Z6PPhEWx9q9OShfxTnG0+Vf6GPAueLltI6f1lxHXWX 4IKt9fz23G4zrwLPyLzCD1Dnsfw/i9cfLflopPwjnPfMvEXfVN28Vx9jR58J btHdXM/zDJI9r3TmXM+5VuT9q2WnLudN+U/OnyZvmyqdPHw0OGUt8ZhbpAv7 wjyPl7+aYOqXwTPC+WbK+5lHP2l+NdH8UjwQcLse2t9Vz+GLmrqqV02e3Ffz QPM56mTiYnBT6kTBU7nextE6dy1Cz8B5bJ0zcWvuk+pHcwnH13lyod70aCa/ 3R10Y/Dt60wfRfLVTYor0G8Q51bCH5xiHsFvoyNWXUXAg5ind8vfg0cSbypf 8LeafGGB1s1Irady8uvCUfynes/vlRdUk/8B/9B5PuWJn+BxNyR5AfoKXzg1 Dw8FvbT1A220vidqvMdr//lUz5/GgfYRJwQ9s4kTyGvddfLPnG96vek3uDId RzrikCX6PsP0fcAr6ctkdQLwrbYeDryB8+ZXSGfCfj3RXE9eW9XYwV3Q6x4U nyjdrG9j+hITLxfTuWT8PfFprURfGvJx9lfVk4Q+YuS/q4VXPJseb8sT+JWy zxKuEvpnaT/7SfgbfdjpSzP/joE9z6y6OZx3OTl9Hk7QBXFuLeeQd0qPH+cj heenrqa76uR5386KZ4ZqHxmr8QYvWiYcWH429Cch/kNXSV+An6Ufpk4AvqmC 1iXvNUf1pI1MX1/6gVOPgo6xlcb1N/WxZ7w539vomUMdm+rbQr66R/oO+qzR f4264cHq+0R/N/JJ+h5TzzBXz19Pumt05+gviuicONbDFH3X/ulzpB1+ebLJ 64kTbJ9S8HK+a73M/vVG4NnoL7FAPBs6Mc5BvFfjQJxDXQP6WfDd/uZ3yYMa GTv1Vs8ZO3iwrQdRPb4z9ficO+rof9Tf8DjEG6WF0zdN9+VyX8s/0//B9vmE tyJ/px5EOhXOc7L1EQ7/w/kUC9PnSJJn+W6KLy2/xjpraPwEOl/i5ErSsQ4y duIf5p36fOr8vU1BR4z/eF7xFfe359l0Sa/LYKd+degp7LaO0upc0b/qnDrf 2ui1wGHgYfBPuU1f9v7K3/Ef5ryx4HfJU6ijVL/ggDvynOALZfGvwhfR+W08 5/E+e27eHM7Xoi6+hOoJOUeHuPmfem7mB3U1NYU3YTdxIX02nfRAblQGL9sa 4q9n5N/yzU35t6Av5PziwOPQJ0zrBB6Uec+5eeT51OmX0r5GvMb6ob9gyEPk p+7W/J6leb9U33FaUk8cz9X17zBfVya6AuJ48r1lx7s2Lfv19qih7OjkG2ke c+7RPMXDHykePl/nRBxL7aefhzrSp7Wf6ruxn4ZzQoeq7wHXjzTzA792v74j 57vSh6WT8JpD6hsmXVfAm5J61MOxff5BqjvKo+dn/n2YwU9Xsy+4koZn5Fw0 1XdJB7Ap4OTwj8+mz30N/fY5lx48ooThl3VOL/0f/AHh2uTV6v+t/p7zwjla 2ld8gUzetSycMy58ypm+eaH+29TRhP5aeXX+NXF2FcW1sxYX6VPp1yOcT3gS fo0e83TZk3qlLwNeb+vciC/Bb+0527w364P9FLwVPoq4Cf/8lPkd4izyaPTP 8AJXmOuJp0oq7kCPbnWWnNMBD0b8VUr9kRj/9Pnqq8N+wTiskv7hSPq8wJBH 0I+ji+FN0NMvZ/5KZ4gfAqeqrP0LHRbnMFQXTwsuYc8LY1+2ukfwxpLm+vO1 718iPQb9QK2+n36m+HX6Mj4oP40eCt1LHuk3iFvYr8epf/L7mo93GFy6ufRC Q41eqEX6/MLAi8NX9lddK3V538v+rnRlnBNO34jWwtHZj+DXp8Cv6/7EW1Zf znnm9pxz9sE7qhe/+IOrP4ZvDTg161q8ZzjnzPRLcdnC2UtkcIL9sXjPgIOb dR3OX61Y6KbSx6tvC3p35cmePJl9pFRqvw+8YTg/njwBHCPpa5WbcytCv/nn tJ5u0jobJpykaCZeD3oreFaXncyv8jrnwp8m+zrT94Pvbs+bn6C4XrxJwF/R Vbys83rR8xJHE4/DBz6Umh8hrg91xuJTqAsB/3ZL0uezh3Nhwe3BdcmjyQsu NesO3dQkYydOaWb6F3Feu/I5v0b5PvEIui9wRfxJJXN/4kby+F3iIzam/Z4H LwX3DnGjdEDsY8S94LHw7RMMDz81PW88+B74CXjAXOEk3J99lbpv+v8Tz08W Dsl5NZ+Z9yUPVn7suyk/7peel0H3BL8jP+kGiIfl+1NvQh09OCr7V135Q/wt +FUzrTN0lzOM3pI4Vzi8A4cnHpxi9jv0b+h9wP/p10DcSp7FOWDZ5j7Eg/8S vqrv4/CLNn6351ijY2uTPgc28G9jtG9crP0EvTz7kt2vvtV53pyri45+Q9o/ BN0f5173VN6PLlX4ZziPhufkPG/2T/Sn9LFi3TAvOBcc/JY4m/Pa4T/hi+AN pHNy8IbEa+T78HfEfTeacUGfQr3/1cKHxPd58X0Ovg/9yF5dv1/rmnnOfFgm HBm/DD8Cj0keWlZ5KH1C4aHBvd5Tf411po4Xfu96xaH4w2XS8XJ+QVq3kk29 dYi76TuEPqG/Wdf4MfwS55zCm9rzEOEFs9PnoIRzsGuZc+EHyr+X0fjpPOWT zlUFT7lBf/+k6Qe+TvHoHdJt0O9mvNbbctNnQLomtyHJa4IeXnXK7qpERxv0 3uAvpl96OCeGfAp+ER3oj6aP+Mg0jhZ0TcS7pYQT8d3p08+59YP0HQsozqGv xGFdX0V5XAPlcV/JL7OO4UfB96gjsn36Rwvvog91b+EkfI8LU35vW0TfVuoU h2qcLkqfF+72C+9iXybvaKJ8Wn24nO3Twvm/pc36ZR8RXuTKCCfg/E97Lij8 HP2HWA/kU7vN/Tl/hD7TnD8CPmbrEAuqjxx8EPFiSY0rfi/ou7VOiBfp8zTN 6H0bmPVG/yrW4TXSNaJfQDdBnPulWdfwWKpPC/Vl4LQ7zPXftosev6/IR+Ec DL43+ib65oHvjs88/yehvyG8NOelwNvXM+uKcYD/ou82dunCwzmNw0x/Eeq4 6OeHX8L/p8853Bb6FNY07wuPE5vr5UdDH7xrUvMpDuuW/i70Wx1l6uDbS+/Q 3Vw/08wD6qbBRUJeLDv4ObpjntOe48p7oRPvY67nfGl77rT1v/hlzhWx540Q t9p6Ef6l7w/5BHhvP/P9Ex5rXuiTBJ7SI/18f9TtGj09OnvWO+cHUo+hdQpv G3SonM+Dvob+F1mZ83G3h3M0iZfZ56yuhzwW3Jc+cPQH6ZNeF17rK/TFYn0l OqAj4Ry60Gda/oTriTvwD9SR09dxrPw7PAnx5jXChbETp9wkew/zXvBhfB/O M+8sHRP7Iri4npP4i/PehUstD3EgOtAHpYeG/3nMjPOg9HzgHPKAq5If/A9w aDBm "]], {Opacity[0.2], PolyhedronBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]]}}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[29]=",ExpressionUUID->"7018E205-8E9F-4869-B165-0112E5876CBA"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Length", "[", RowBox[{"pts2", "=", RowBox[{"DeleteDuplicates", "[", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"ToAlgebraicRoot", "[", RowBox[{"#", ",", RowBox[{"\"\\"", "\[Rule]", "False"}]}], "]"}], "&"}], ",", "pts", ",", RowBox[{"{", "2", "}"}]}], "]"}], "]"}]}], "]"}], "//", "Quiet"}], "//", "Timing"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[30]:=",ExpressionUUID->"26AB8E19-0DA0-41B8-9145-8D6DE86B37F9"], Cell[BoxData[ RowBox[{"{", RowBox[{"790.040809`", ",", "222"}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[30]=",ExpressionUUID->"622B7647-F907-4EF8-B16C-B8D80E694279"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", "grouped", "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[31]:=",ExpressionUUID->"540E4A82-FF5D-4AAA-9B76-527BB1277258"], Cell[BoxData["162"], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[31]=",ExpressionUUID->"B86D6480-A006-439F-AD95-1173ED7216AA"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"AbsolutePointSize", "[", "5", "]"}], ",", RowBox[{"Point", "[", "pts2", "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", "0", "]"}], ",", "p"}], "}"}], ",", "Red", ",", RowBox[{"ConvexHullRegion", "[", "pts2", "]"}]}], "}"}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[32]:=",ExpressionUUID->"147424AB-B912-49C0-B1D3-93AA68589E38"], Cell[BoxData[ Graphics3DBox[ {AbsolutePointSize[5], Point3DBox[ NCache[{{0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0], 0, Root[ 1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0], 0, Root[ 1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0], 0, Root[ 1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0], 0, Root[ 1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0], 0}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0], 0}, { 0, Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { 0, Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { 0, Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { 0, Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}}, {{ 0, -0.361826783097534, -0.223621249994312}, { 0.13979495303225822`, -0.31761688019218703`, -0.2496949479621023}, { 0.10363082970464206`, -0.20156474306442804`, -0.36002514353184917`}, { 0.13210997979477979`, -0.21375843756101556`, -0.3458684173557953}, { 0, -0.22164017088719903`, -0.352357012442246}, { 0.336092980391733, 0, -0.26421995958955957`}, { 0.40401491262181777`, -0.10989999492984406`, -0.08639803242963075}, { 0.3958828965965613, -0.07042635995207269, -0.10768792678081102`}, { 0.4240725185716702, 0, -0.03388653831996497}, {0.40401491262181777`, 0.10989999492984406`, -0.08639803242963075}, {0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, {0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, { 0.352357012442246, 0, -0.22164017088719903`}, { 0.36002514353184917`, -0.10363082970464206`, -0.20156474306442804`}, { 0, -0.361826783097534, 0.223621249994312}, {-0.13979495303225822`, -0.31761688019218703`, 0.2496949479621023}, {-0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, {-0.20156474306442804`, -0.36002514353184917`, 0.10363082970464206`}, {-0.21375843756101556`, -0.3458684173557953, 0.13210997979477979`}, {0.336092980391733, 0, 0.26421995958955957`}, { 0.223621249994312, 0, 0.361826783097534}, { 0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, { 0.24466908566143497`, -0.17424272570936228`, 0.2881949698157503}, { 0.3458684173557953, -0.13210997979477979`, 0.21375843756101556`}, { 0, 0.361826783097534, -0.223621249994312}, {0.13979495303225822`, 0.31761688019218703`, -0.2496949479621023}, {0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, {0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, {0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, {-0.336092980391733, 0, -0.26421995958955957`}, {-0.223621249994312, 0, -0.361826783097534}, {-0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, {-0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, {-0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, { 0, 0.361826783097534, 0.223621249994312}, {-0.13979495303225822`, 0.31761688019218703`, 0.2496949479621023}, {-0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}, {-0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, { 0, 0.22164017088719903`, 0.352357012442246}, {-0.336092980391733, 0, 0.26421995958955957`}, {-0.40401491262181777`, 0.10989999492984406`, 0.08639803242963075}, {-0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, {-0.4240725185716702, 0, 0.03388653831996497}, {-0.40401491262181777`, -0.10989999492984406`, 0.08639803242963075}, {-0.36002514353184917`, -0.10363082970464206`, 0.20156474306442804`}, {-0.3958828965965613, -0.07042635995207269, 0.10768792678081102`}, {-0.352357012442246, 0, 0.22164017088719903`}, {-0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, {0.13979495303225822`, -0.31761688019218703`, 0.2496949479621023}, {0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, {0, -0.22164017088719903`, 0.352357012442246}, { 0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, { 0.4240725185716702, 0, 0.03388653831996497}, { 0.3958828965965613, -0.07042635995207269, 0.10768792678081102`}, { 0.40401491262181777`, 0.10989999492984406`, 0.08639803242963075}, { 0.40401491262181777`, -0.10989999492984406`, 0.08639803242963075}, { 0.352357012442246, 0, 0.22164017088719903`}, {0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, { 0.36002514353184917`, -0.10363082970464206`, 0.20156474306442804`}, { 0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, {-0.13979495303225822`, -0.31761688019218703`, \ -0.2496949479621023}, {-0.20156474306442804`, -0.36002514353184917`, \ -0.10363082970464206`}, {-0.10768792678081102`, -0.3958828965965613, \ -0.07042635995207269}, {-0.21375843756101556`, -0.3458684173557953, \ -0.13210997979477979`}, {0.223621249994312, 0, -0.361826783097534}, { 0.24466908566143497`, -0.17424272570936228`, -0.2881949698157503}, { 0.3261386052118842, -0.15846040046742113`, -0.22250777550724216`}, { 0.3458684173557953, -0.13210997979477979`, -0.21375843756101556`}, { 0.13979495303225822`, 0.31761688019218703`, 0.2496949479621023}, { 0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, { 0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, { 0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {-0.223621249994312, 0, 0.361826783097534}, {-0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, {-0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, {-0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {-0.13979495303225822`, 0.31761688019218703`, -0.2496949479621023}, {-0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, { 0, 0.22164017088719903`, -0.352357012442246}, {-0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, {-0.4240725185716702, 0, -0.03388653831996497}, {-0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, {-0.40401491262181777`, \ -0.10989999492984406`, -0.08639803242963075}, {-0.40401491262181777`, 0.10989999492984406`, -0.08639803242963075}, {-0.352357012442246, 0, -0.22164017088719903`}, {-0.36002514353184917`, \ -0.10363082970464206`, -0.20156474306442804`}, {-0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, {-0.3958828965965613, \ -0.07042635995207269, -0.10768792678081102`}, { 0.03388653831996497, -0.4240725185716702, 0}, { 0, -0.4275168751220311, 0}, {-0.08639803242963075, -0.40401491262181777`, \ -0.10989999492984406`}, { 0.10768792678081102`, -0.3958828965965613, -0.07042635995207269}, { 0.361826783097534, -0.223621249994312, 0}, { 0.4275168751220311, 0, 0}, {-0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, {-0.24466908566143497`, -0.17424272570936228`, 0.2881949698157503}, {-0.2881949698157503, -0.24466908566143497`, 0.17424272570936228`}, {-0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, {-0.2496949479621023, -0.13979495303225822`, 0.31761688019218703`}, {-0.31761688019218703`, -0.2496949479621023, 0.13979495303225822`}, {-0.22250777550724216`, -0.3261386052118842, 0.15846040046742113`}, {-0.17424272570936228`, -0.2881949698157503, 0.24466908566143497`}, {0, 0, 0.4275168751220311}, { 0.10989999492984406`, -0.08639803242963075, 0.40401491262181777`}, { 0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, { 0, 0.03388653831996497, 0.4240725185716702}, {0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, {0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, {0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, {0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, {0.2496949479621023, 0.13979495303225822`, -0.31761688019218703`}, {0.31761688019218703`, 0.2496949479621023, -0.13979495303225822`}, {0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, {0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, { 0, 0, -0.4275168751220311}, {-0.10989999492984406`, 0.08639803242963075, -0.40401491262181777`}, {-0.07042635995207269, \ -0.10768792678081102`, -0.3958828965965613}, { 0, -0.03388653831996497, -0.4240725185716702}, {-0.03388653831996497, 0.4240725185716702, 0}, {0, 0.4275168751220311, 0}, { 0.08639803242963075, 0.40401491262181777`, 0.10989999492984406`}, {-0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, {-0.361826783097534, 0.223621249994312, 0}, {-0.4275168751220311, 0, 0}, {-0.2881949698157503, -0.24466908566143497`, \ -0.17424272570936228`}, {-0.3261386052118842, -0.15846040046742113`, \ -0.22250777550724216`}, {-0.361826783097534, -0.223621249994312, 0}, {-0.3458684173557953, -0.13210997979477979`, \ -0.21375843756101556`}, { 0.22250777550724216`, -0.3261386052118842, -0.15846040046742113`}, { 0.17424272570936228`, -0.2881949698157503, -0.24466908566143497`}, { 0.21375843756101556`, -0.3458684173557953, -0.13210997979477979`}, { 0.08639803242963075, -0.40401491262181777`, -0.10989999492984406`}, \ {-0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, {-0.10989999492984406`, -0.08639803242963075, 0.40401491262181777`}, {0.22250777550724216`, -0.3261386052118842, 0.15846040046742113`}, {0.17424272570936228`, -0.2881949698157503, 0.24466908566143497`}, {0.31761688019218703`, -0.2496949479621023, 0.13979495303225822`}, {0.2496949479621023, -0.13979495303225822`, 0.31761688019218703`}, {0.2881949698157503, -0.24466908566143497`, 0.17424272570936228`}, {0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, {0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, {0.10989999492984406`, 0.08639803242963075, -0.40401491262181777`}, {-0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, {-0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, {-0.31761688019218703`, 0.2496949479621023, -0.13979495303225822`}, {-0.2496949479621023, 0.13979495303225822`, -0.31761688019218703`}, {-0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, {-0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, {0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, {0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, { 0.361826783097534, 0.223621249994312, 0}, {0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {-0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {-0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, {-0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {-0.08639803242963075, 0.40401491262181777`, 0.10989999492984406`}, {-0.15846040046742113`, -0.22250777550724216`, \ -0.3261386052118842}, {-0.24466908566143497`, -0.17424272570936228`, \ -0.2881949698157503}, {-0.2496949479621023, -0.13979495303225822`, \ -0.31761688019218703`}, {-0.17424272570936228`, -0.2881949698157503, \ -0.24466908566143497`}, {-0.31761688019218703`, -0.2496949479621023, \ -0.13979495303225822`}, {-0.22250777550724216`, -0.3261386052118842, \ -0.15846040046742113`}, {0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, { 0, 0.03388653831996497, -0.4240725185716702}, { 0.10989999492984406`, -0.08639803242963075, -0.40401491262181777`}, \ {-0.08639803242963075, -0.40401491262181777`, 0.10989999492984406`}, { 0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, { 0.08639803242963075, 0.40401491262181777`, -0.10989999492984406`}, {-0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, {0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, {0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, {0.2496949479621023, 0.13979495303225822`, 0.31761688019218703`}, {0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, {0.31761688019218703`, 0.2496949479621023, 0.13979495303225822`}, {0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {-0.07042635995207269, -0.10768792678081102`, 0.3958828965965613}, { 0, -0.03388653831996497, 0.4240725185716702}, {-0.10989999492984406`, 0.08639803242963075, 0.40401491262181777`}, {-0.13210997979477979`, -0.21375843756101556`, \ -0.3458684173557953}, {-0.10989999492984406`, -0.08639803242963075, \ -0.40401491262181777`}, { 0.2881949698157503, -0.24466908566143497`, -0.17424272570936228`}, { 0.2496949479621023, -0.13979495303225822`, -0.31761688019218703`}, { 0.31761688019218703`, -0.2496949479621023, -0.13979495303225822`}, { 0.15846040046742113`, -0.22250777550724216`, -0.3261386052118842}, \ {-0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, {-0.08639803242963075, 0.40401491262181777`, -0.10989999492984406`}, {0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, { 0.21375843756101556`, -0.3458684173557953, 0.13210997979477979`}, { 0.08639803242963075, -0.40401491262181777`, 0.10989999492984406`}, {-0.3458684173557953, -0.13210997979477979`, 0.21375843756101556`}, {0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, {0.10989999492984406`, 0.08639803242963075, 0.40401491262181777`}, {-0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, {-0.2496949479621023, 0.13979495303225822`, 0.31761688019218703`}, {-0.31761688019218703`, 0.2496949479621023, 0.13979495303225822`}, {-0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, {-0.26421995958955957`, -0.336092980391733, 0}, {-0.22164017088719903`, -0.352357012442246, 0}, {-0.03388653831996497, -0.4240725185716702, 0}, { 0.26421995958955957`, -0.336092980391733, 0}, {-0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, {0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, { 0.26421995958955957`, 0.336092980391733, 0}, { 0.22164017088719903`, 0.352357012442246, 0}, { 0.03388653831996497, 0.4240725185716702, 0}, {-0.26421995958955957`, 0.336092980391733, 0}, { 0, -0.26421995958955957`, -0.336092980391733}, { 0.22164017088719903`, -0.352357012442246, 0}, { 0.20156474306442804`, -0.36002514353184917`, 0.10363082970464206`}, { 0, -0.26421995958955957`, 0.336092980391733}, { 0.07042635995207269, -0.10768792678081102`, 0.3958828965965613}, { 0, 0.26421995958955957`, -0.336092980391733}, {-0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, { 0, 0.26421995958955957`, 0.336092980391733}, {-0.22164017088719903`, 0.352357012442246, 0}, {-0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, { 0.07042635995207269, -0.10768792678081102`, -0.3958828965965613}, \ {-0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, { 0.20156474306442804`, -0.36002514353184917`, -0.10363082970464206`}, \ {-0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, {-0.10363082970464206`, -0.20156474306442804`, \ -0.36002514353184917`}, {0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}}]], {Opacity[0], PolyhedronBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]]}, {RGBColor[1, 0, 0], PolyhedronBox[ NCache[{{0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { 0, Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]}, { Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0], 0, Root[ 1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0], 0, Root[ 1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0], 0}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { 0, Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0], 0, Root[ 1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0], 0, Root[ 1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]}, { 0, Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0], 0}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0], 0}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { 0, Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0], 0}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}}, {{ 0, -0.361826783097534, -0.223621249994312}, { 0, -0.26421995958955957`, -0.336092980391733}, { 0.13979495303225822`, -0.31761688019218703`, -0.2496949479621023}, \ {-0.13979495303225822`, -0.31761688019218703`, -0.2496949479621023}, \ {-0.08639803242963075, -0.40401491262181777`, -0.10989999492984406`}, \ {-0.223621249994312, 0, -0.361826783097534}, {-0.2496949479621023, -0.13979495303225822`, \ -0.31761688019218703`}, {-0.336092980391733, 0, -0.26421995958955957`}, {-0.40401491262181777`, 0.10989999492984406`, -0.08639803242963075}, {-0.4240725185716702, 0, -0.03388653831996497}, {-0.4275168751220311, 0, 0}, {-0.40401491262181777`, 0.10989999492984406`, 0.08639803242963075}, {-0.13210997979477979`, -0.21375843756101556`, \ -0.3458684173557953}, { 0.08639803242963075, -0.40401491262181777`, -0.10989999492984406`}, { 0, -0.4275168751220311, 0}, {-0.2496949479621023, -0.13979495303225822`, 0.31761688019218703`}, {-0.223621249994312, 0, 0.361826783097534}, {-0.336092980391733, 0, 0.26421995958955957`}, {-0.21375843756101556`, -0.3458684173557953, 0.13210997979477979`}, {-0.08639803242963075, -0.40401491262181777`, 0.10989999492984406`}, {-0.13979495303225822`, -0.31761688019218703`, 0.2496949479621023}, {0.08639803242963075, -0.40401491262181777`, 0.10989999492984406`}, {-0.21375843756101556`, -0.3458684173557953, \ -0.13210997979477979`}, {-0.03388653831996497, -0.4240725185716702, 0}, { 0.4240725185716702, 0, 0.03388653831996497}, { 0.40401491262181777`, -0.10989999492984406`, 0.08639803242963075}, { 0.4275168751220311, 0, 0}, {-0.3458684173557953, -0.13210997979477979`, \ -0.21375843756101556`}, {-0.3261386052118842, -0.15846040046742113`, \ -0.22250777550724216`}, {-0.4240725185716702, 0, 0.03388653831996497}, {-0.10989999492984406`, -0.08639803242963075, \ -0.40401491262181777`}, {-0.15846040046742113`, -0.22250777550724216`, \ -0.3261386052118842}, {-0.3458684173557953, -0.13210997979477979`, 0.21375843756101556`}, {-0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, {-0.20156474306442804`, -0.36002514353184917`, 0.10363082970464206`}, {-0.26421995958955957`, -0.336092980391733, 0}, {-0.22250777550724216`, -0.3261386052118842, 0.15846040046742113`}, {0.03388653831996497, -0.4240725185716702, 0}, { 0, -0.26421995958955957`, 0.336092980391733}, { 0, -0.361826783097534, 0.223621249994312}, { 0.13979495303225822`, -0.31761688019218703`, 0.2496949479621023}, {-0.20156474306442804`, -0.36002514353184917`, \ -0.10363082970464206`}, {-0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, {-0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, {0.2496949479621023, -0.13979495303225822`, 0.31761688019218703`}, {0.3458684173557953, -0.13210997979477979`, 0.21375843756101556`}, {0.336092980391733, 0, 0.26421995958955957`}, { 0.2496949479621023, -0.13979495303225822`, -0.31761688019218703`}, { 0.223621249994312, 0, -0.361826783097534}, { 0.336092980391733, 0, -0.26421995958955957`}, { 0, 0.361826783097534, -0.223621249994312}, {0.08639803242963075, 0.40401491262181777`, -0.10989999492984406`}, {0.13979495303225822`, 0.31761688019218703`, -0.2496949479621023}, { 0, 0.26421995958955957`, -0.336092980391733}, {-0.13979495303225822`, 0.31761688019218703`, -0.2496949479621023}, {-0.08639803242963075, 0.40401491262181777`, 0.10989999492984406`}, {0.08639803242963075, 0.40401491262181777`, 0.10989999492984406`}, { 0, 0.4275168751220311, 0}, { 0.03388653831996497, 0.4240725185716702, 0}, {0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {0.31761688019218703`, 0.2496949479621023, 0.13979495303225822`}, { 0.26421995958955957`, 0.336092980391733, 0}, {0.13979495303225822`, 0.31761688019218703`, 0.2496949479621023}, { 0.223621249994312, 0, 0.361826783097534}, {-0.40401491262181777`, -0.10989999492984406`, \ -0.08639803242963075}, {-0.10989999492984406`, 0.08639803242963075, -0.40401491262181777`}, { 0, 0, -0.4275168751220311}, {-0.2496949479621023, 0.13979495303225822`, -0.31761688019218703`}, {-0.08639803242963075, 0.40401491262181777`, -0.10989999492984406`}, {-0.31761688019218703`, 0.2496949479621023, 0.13979495303225822`}, {-0.361826783097534, 0.223621249994312, 0}, {-0.26421995958955957`, 0.336092980391733, 0}, {-0.31761688019218703`, 0.2496949479621023, -0.13979495303225822`}, { 0, -0.03388653831996497, -0.4240725185716702}, {-0.10363082970464206`, \ -0.20156474306442804`, -0.36002514353184917`}, {-0.40401491262181777`, \ -0.10989999492984406`, 0.08639803242963075}, { 0.21375843756101556`, -0.3458684173557953, 0.13210997979477979`}, {-0.22250777550724216`, -0.3261386052118842, \ -0.15846040046742113`}, {0.10989999492984406`, -0.08639803242963075, 0.40401491262181777`}, {0, -0.03388653831996497, 0.4240725185716702}, { 0, 0, 0.4275168751220311}, {0.10989999492984406`, 0.08639803242963075, 0.40401491262181777`}, {-0.10989999492984406`, -0.08639803242963075, 0.40401491262181777`}, {-0.10989999492984406`, 0.08639803242963075, 0.40401491262181777`}, {-0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, {0.36002514353184917`, -0.10363082970464206`, 0.20156474306442804`}, {0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, {0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, {0.10989999492984406`, 0.08639803242963075, -0.40401491262181777`}, {0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, {0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, { 0.361826783097534, 0.223621249994312, 0}, {0.31761688019218703`, 0.2496949479621023, -0.13979495303225822`}, {0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, {0.2496949479621023, 0.13979495303225822`, 0.31761688019218703`}, {0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, { 0, 0.361826783097534, 0.223621249994312}, { 0, 0.26421995958955957`, 0.336092980391733}, {-0.13979495303225822`, 0.31761688019218703`, 0.2496949479621023}, {0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, { 0, 0.03388653831996497, 0.4240725185716702}, {-0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, {-0.36002514353184917`, -0.10363082970464206`, \ -0.20156474306442804`}, {-0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, {-0.31761688019218703`, \ -0.2496949479621023, -0.13979495303225822`}, { 0, 0.03388653831996497, -0.4240725185716702}, {-0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, {-0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, {-0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, {-0.03388653831996497, 0.4240725185716702, 0}, {-0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {-0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, {-0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {-0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, {-0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, { 0.10989999492984406`, -0.08639803242963075, -0.40401491262181777`}, { 0.3458684173557953, -0.13210997979477979`, -0.21375843756101556`}, { 0.3261386052118842, -0.15846040046742113`, -0.22250777550724216`}, \ {-0.36002514353184917`, -0.10363082970464206`, 0.20156474306442804`}, {-0.31761688019218703`, -0.2496949479621023, 0.13979495303225822`}, {0.22250777550724216`, -0.3261386052118842, 0.15846040046742113`}, {0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, {0.2496949479621023, 0.13979495303225822`, -0.31761688019218703`}, {0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, {0.40401491262181777`, 0.10989999492984406`, 0.08639803242963075}, {0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, {0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, {0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, {0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, {0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, {-0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}, {0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}, {-0.2496949479621023, 0.13979495303225822`, 0.31761688019218703`}, {-0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, {-0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, {-0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, {-0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {-0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, {-0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, { 0.13210997979477979`, -0.21375843756101556`, -0.3458684173557953}, { 0.36002514353184917`, -0.10363082970464206`, -0.20156474306442804`}, \ {-0.361826783097534, -0.223621249994312, 0}, { 0.20156474306442804`, -0.36002514353184917`, 0.10363082970464206`}, { 0.26421995958955957`, -0.336092980391733, 0}, { 0.21375843756101556`, -0.3458684173557953, -0.13210997979477979`}, { 0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, { 0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, { 0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, { 0.40401491262181777`, 0.10989999492984406`, -0.08639803242963075}, { 0.4240725185716702, 0, -0.03388653831996497}, {0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, {-0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, { 0.10363082970464206`, -0.20156474306442804`, -0.36002514353184917`}, { 0.15846040046742113`, -0.22250777550724216`, -0.3261386052118842}, { 0.20156474306442804`, -0.36002514353184917`, -0.10363082970464206`}, { 0.31761688019218703`, -0.2496949479621023, -0.13979495303225822`}, { 0.361826783097534, -0.223621249994312, 0}, { 0.40401491262181777`, -0.10989999492984406`, -0.08639803242963075}, { 0.31761688019218703`, -0.2496949479621023, 0.13979495303225822`}, { 0.22250777550724216`, -0.3261386052118842, -0.15846040046742113`}}], {{ 1, 2, 3}, {2, 1, 4}, {1, 5, 4}, {6, 7, 8}, {9, 10, 11}, {12, 9, 11}, { 13, 2, 4}, {14, 1, 3}, {5, 14, 15}, {14, 5, 1}, {16, 17, 18}, {19, 20, 21}, {22, 20, 15}, {5, 23, 4}, {20, 24, 15}, {24, 5, 15}, {25, 26, 27}, {7, 28, 8}, {29, 28, 7}, {30, 12, 11}, {6, 31, 7}, {31, 13, 7}, { 32, 13, 4}, {13, 32, 7}, {33, 16, 18}, {33, 34, 16}, {35, 19, 36}, {19, 35, 20}, {37, 19, 21}, {14, 38, 15}, {38, 22, 15}, {39, 40, 41}, {20, 40, 21}, {40, 39, 21}, {22, 40, 20}, {40, 22, 41}, {23, 42, 36}, {42, 23, 5}, {35, 36, 42, 5, 24, 20}, {39, 43, 21}, {44, 43, 39}, {45, 46, 47}, {48, 49, 50}, {51, 52, 53}, {51, 54, 55}, {54, 51, 53}, {56, 57, 58}, {59, 52, 58}, {57, 59, 58}, {60, 61, 62}, {60, 57, 63}, {64, 45, 47}, {10, 65, 11}, {31, 66, 67}, {66, 31, 6}, {68, 6, 8}, {68, 66, 6}, { 69, 51, 55}, {52, 69, 58}, {51, 69, 52}, {70, 71, 12}, {12, 71, 9}, {71, 70, 72}, {73, 71, 72}, {71, 73, 9}, {74, 31, 67}, {13, 75, 2}, {31, 75, 13}, {76, 30, 11}, {65, 76, 11}, {22, 77, 41}, {23, 78, 4}, {64, 79, 45}, {80, 79, 81}, {79, 82, 81}, {79, 64, 82}, {83, 17, 16}, {83, 43, 44}, {43, 83, 16}, {83, 80, 81}, {83, 84, 17}, {84, 83, 81}, {43, 85, 21}, {85, 43, 16}, {46, 86, 47}, {86, 46, 26}, {87, 46, 45}, {88, 89, 90}, {88, 54, 53}, {54, 88, 90}, {91, 88, 53}, {92, 93, 62}, {61, 92, 62}, {52, 94, 53}, {93, 94, 62}, {64, 95, 82}, {96, 95, 47}, {95, 64, 47}, {97, 96, 47}, {57, 98, 63}, {98, 99, 63}, {99, 98, 100}, {56, 98, 57}, {98, 56, 100}, {101, 60, 63}, {60, 101, 61}, {102, 60, 62}, {60, 102, 57}, {82, 103, 81}, {103, 84, 81}, {104, 99, 100}, {65, 105, 28}, { 28, 105, 8}, {10, 9, 106, 8, 105, 65}, {107, 23, 36}, {107, 78, 23}, { 107, 28, 29}, {107, 65, 28}, {29, 7, 32, 4, 78, 107}, {108, 89, 67}, { 66, 108, 67}, {106, 109, 8}, {68, 109, 110}, {109, 68, 8}, {109, 106, 9}, {109, 73, 110}, {73, 109, 9}, {54, 111, 55}, {68, 111, 66}, {112, 56, 58}, {69, 112, 58}, {56, 113, 100}, {70, 113, 72}, {114, 115, 12}, { 70, 115, 116}, {115, 70, 12}, {115, 114, 18}, {117, 69, 55}, {117, 73, 72}, {118, 49, 48}, {49, 118, 89}, {89, 118, 67}, {118, 74, 67}, {119, 48, 50}, {119, 120, 48}, {121, 33, 18}, {121, 76, 33}, {12, 30, 76, 121, 18, 114}, {19, 122, 36}, {37, 122, 19}, {33, 122, 34}, {76, 122, 33}, { 16, 34, 122, 37, 21, 85}, {77, 123, 41}, {124, 39, 41}, {79, 124, 45}, { 125, 49, 89}, {125, 88, 91}, {88, 125, 89}, {49, 125, 50}, {125, 126, 50}, {127, 25, 27}, {127, 92, 61}, {96, 127, 61}, {97, 127, 96}, {26, 25, 127, 97, 47, 86}, {126, 128, 50}, {94, 129, 62}, {129, 94, 52}, {52, 59, 57, 102, 62, 129}, {94, 130, 53}, {130, 94, 93}, {131, 96, 61}, { 131, 95, 96}, {101, 63, 132, 95, 131, 61}, {104, 133, 99}, {133, 104, 84}, {134, 99, 133, 84, 103, 82}, {17, 135, 18}, {115, 135, 116}, {135, 115, 18}, {84, 135, 17}, {104, 135, 84}, {136, 111, 54}, {111, 136, 66}, {54, 90, 89, 108, 66, 136}, {111, 137, 55}, {137, 111, 68}, {113, 138, 72}, {138, 113, 56}, {113, 139, 100}, {139, 113, 70}, {140, 117, 55}, {117, 140, 73}, {68, 110, 73, 140, 55, 137}, {141, 117, 72}, {117, 141, 69}, {56, 112, 69, 141, 72, 138}, {2, 142, 3}, {142, 118, 48}, { 143, 119, 50}, {144, 107, 36}, {144, 76, 65}, {107, 144, 65}, {144, 122, 76}, {122, 144, 36}, {145, 146, 77}, {145, 77, 22}, {147, 14, 3}, {148, 124, 41}, {124, 148, 45}, {124, 149, 39}, {149, 124, 79}, {83, 44, 39, 149, 79, 80}, {126, 150, 93}, {125, 150, 126}, {91, 53, 130, 93, 150, 125}, {92, 151, 93}, {151, 126, 93}, {151, 128, 126}, {151, 127, 27}, { 127, 151, 92}, {152, 151, 27}, {153, 99, 134}, {153, 132, 63}, {99, 153, 63}, {82, 153, 134}, {95, 153, 82}, {132, 153, 95}, {154, 104, 100}, { 154, 135, 104}, {70, 116, 135, 154, 100, 139}, {155, 142, 2}, {142, 155, 118}, {31, 74, 118, 155, 2, 75}, {142, 156, 3}, {156, 142, 48}, {147, 157, 14}, {157, 147, 146}, {22, 38, 14, 157, 146, 145}, {119, 158, 120}, {158, 159, 146}, {147, 158, 146}, {160, 152, 27}, {26, 160, 27}, { 159, 160, 26}, {143, 160, 119}, {158, 160, 159}, {160, 158, 119}, {128, 151, 152, 160, 143, 50}, {161, 123, 77}, {146, 161, 77}, {159, 161, 146}, {87, 161, 46}, {46, 161, 26}, {161, 159, 26}, {41, 123, 161, 87, 45, 148}, {162, 147, 3}, {162, 158, 147}, {48, 120, 158, 162, 3, 156}}]}}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[32]=",ExpressionUUID->"F97EA310-A872-4C7A-A96E-B778833ACB2C"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", RowBox[{"polyhedra", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[39]:=",ExpressionUUID->"87ED75A9-6061-4E0A-BCFE-5778C64CCE43"], Cell[BoxData["20"], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[39]=",ExpressionUUID->"41A94F9F-C863-4D3B-A793-00526C9B401B"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"inside", "=", RowBox[{"Select", "[", RowBox[{"pts2", ",", RowBox[{ RowBox[{"AllTrue", "[", RowBox[{"polyhedra", ",", RowBox[{"Function", "[", RowBox[{"poly", ",", RowBox[{"RegionMember", "[", RowBox[{"poly", ",", "#"}], "]"}]}], "]"}]}], "]"}], "&"}]}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[40]:=",ExpressionUUID->"88472D65-CF00-4836-8048-30F7C3BCC1AA"], Cell[BoxData[ TemplateBox[<|"shortenedBoxes" -> TagBox[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.22362124999431198801858045044355094433`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13210997979477978603313204075675457716`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.21375843756101556292215093435515882447`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.34586841735579532119970735948299989104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3458684173557953}, "NumericalApproximation"], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.22164017088719903392224352955963695422`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.35235701244224598704946060934162233025`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.424\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42407251857167022057737426621315535158`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"668", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"428", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4240725185716702}, "NumericalApproximation"], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.03388653831996497195477857644618779887`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"876", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4492", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9584", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.03388653831996497}, "NumericalApproximation"], Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.35235701244224598704946060934162233025`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.22164017088719903392224352955963695422`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22362124999431198801858045044355094433`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]]}], "}"}], ",", TemplateBox[{"138"}, "OutputSizeLimit`Skeleton"], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22164017088719903392224352955963695422`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.35235701244224598704946060934162233025`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.22164017088719903392224352955963695422`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.35235701244224598704946060934162233025`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]]}], "}"}]}], "}"}], Short[#, 8]& ], "line" -> 40, "sessionID" -> 21685216490520442858, "byteCount" -> 480288, "size" -> 8, "stored" -> False, "expr" -> Missing["NotAvailable", "NewSessionID"], "wrap" -> OutputSizeLimit`Defer, "version" -> 1|>, "OutputSizeLimitTemplate"]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[40]=",ExpressionUUID->"29CEF56D-6467-442E-98EB-36FFD6ECD444"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", "inside", "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[41]:=",ExpressionUUID->"FE3672B7-F793-4A0B-9178-A44863E96AA4"], Cell[BoxData["162"], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[41]=",ExpressionUUID->"EEF24EBF-43A9-4278-829C-58C19E824F27"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"SimplifyNumericallyDistinct", "[", RowBox[{ RowBox[{"Norm", "/@", "pts2"}], ",", RowBox[{"\"\\"", "\[Rule]", "RootReduce"}]}], "]"}], "//", "Union"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[42]:=",ExpressionUUID->"F447C371-F27E-4ED5-9858-81EC5A6370D4"], Cell[BoxData[ RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.416\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.41626893899032618717725995338696520776`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1409", "-", RowBox[{"8760", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4376", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4320", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4162689389903262}, "NumericalApproximation"], Root[1409 - 8760 #^2 + 4376 #^4 - 4320 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.428\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42751687512203112584430186871031764895`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"408", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1792", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4275168751220311}, "NumericalApproximation"], Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.425\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42542425705057068663350605675077531487`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"761", "-", RowBox[{"5272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"8088", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"13152", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4254242570505707}, "NumericalApproximation"], Root[761 - 5272 #^2 + 8088 #^4 - 13152 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.425\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42535289397831599345067843387369066477`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"200", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1720", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"10400", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.425352893978316}, "NumericalApproximation"], Root[25 - 200 #^2 + 1720 #^4 - 10400 #^6 + 15376 #^8& , 3, 0]]}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[42]=",ExpressionUUID->"398520A7-2D01-4AFC-8766-93D600A75E9B"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"SimplifyNumericallyDistinct", "[", RowBox[{ RowBox[{"Norm", "/@", "inside"}], ",", RowBox[{"\"\\"", "\[Rule]", "RootReduce"}]}], "]"}], "//", "Union"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[43]:=",ExpressionUUID->"C7B0C8C1-5899-47E2-85BD-00AF9BE01749"], Cell[BoxData[ RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.416\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.41626893899032618717725995338696520776`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1409", "-", RowBox[{"8760", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4376", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4320", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4162689389903262}, "NumericalApproximation"], Root[1409 - 8760 #^2 + 4376 #^4 - 4320 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.428\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42751687512203112584430186871031764895`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"408", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1792", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4275168751220311}, "NumericalApproximation"], Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.425\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42542425705057068663350605675077531487`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"761", "-", RowBox[{"5272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"8088", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"13152", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4254242570505707}, "NumericalApproximation"], Root[761 - 5272 #^2 + 8088 #^4 - 13152 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.425\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42535289397831599345067843387369066477`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"200", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1720", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"10400", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.425352893978316}, "NumericalApproximation"], Root[25 - 200 #^2 + 1720 #^4 - 10400 #^6 + 15376 #^8& , 3, 0]]}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[43]=",ExpressionUUID->"FFB6EFA2-416C-4AE6-B6B2-346D68EED96D"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"outside", "=", RowBox[{"Complement", "[", RowBox[{"pts2", ",", "inside"}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[44]:=",ExpressionUUID->"4DB5C020-1458-45C3-91A1-7D532DD12777"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.264\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26421995958955957206626408151350915432`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1168", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.26421995958955957`}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.336\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.33609298039173302052873282264044973999`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"68", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"624", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.336092980391733}, "NumericalApproximation"], Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.264\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26421995958955957206626408151350915432`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1168", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.26421995958955957`}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.336\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.33609298039173302052873282264044973999`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"68", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"624", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.336092980391733}, "NumericalApproximation"], Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.264\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26421995958955957206626408151350915432`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1168", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.26421995958955957`}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.336\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.33609298039173302052873282264044973999`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"68", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"624", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.336092980391733}, "NumericalApproximation"], Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.264\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26421995958955957206626408151350915432`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1168", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.26421995958955957`}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.336\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.33609298039173302052873282264044973999`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"68", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"624", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.336092980391733}, "NumericalApproximation"], Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.264\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26421995958955957206626408151350915432`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1168", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.26421995958955957`}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.336\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.33609298039173302052873282264044973999`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"68", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"624", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.336092980391733}, "NumericalApproximation"], Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.264\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26421995958955957206626408151350915432`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1168", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.26421995958955957`}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.336\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.33609298039173302052873282264044973999`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"68", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"624", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.336092980391733}, "NumericalApproximation"], Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.264\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26421995958955957206626408151350915432`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1168", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.26421995958955957`}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.336\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.33609298039173302052873282264044973999`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"68", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"624", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.336092980391733}, "NumericalApproximation"], Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.264\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26421995958955957206626408151350915432`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1168", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.26421995958955957`}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.336\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.33609298039173302052873282264044973999`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"68", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"624", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.336092980391733}, "NumericalApproximation"], Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.336\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.33609298039173302052873282264044973999`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"68", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"624", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.336092980391733}, "NumericalApproximation"], Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.264\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26421995958955957206626408151350915432`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1168", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.26421995958955957`}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.336\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.33609298039173302052873282264044973999`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"68", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"624", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.336092980391733}, "NumericalApproximation"], Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.264\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26421995958955957206626408151350915432`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1168", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.26421995958955957`}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.336\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.33609298039173302052873282264044973999`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"68", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"624", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.336092980391733}, "NumericalApproximation"], Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.264\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26421995958955957206626408151350915432`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1168", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.26421995958955957`}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.336\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.33609298039173302052873282264044973999`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"68", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"624", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.336092980391733}, "NumericalApproximation"], Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.264\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26421995958955957206626408151350915432`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1168", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.26421995958955957`}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13979495303225822344650453032954828814`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.31761688019218703438184547849232330918`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24969494796210228715338530491862911731`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13979495303225822344650453032954828814`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.31761688019218703438184547849232330918`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24969494796210228715338530491862911731`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13979495303225822344650453032954828814`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.31761688019218703438184547849232330918`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24969494796210228715338530491862911731`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13979495303225822344650453032954828814`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.31761688019218703438184547849232330918`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24969494796210228715338530491862911731`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13979495303225822344650453032954828814`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.31761688019218703438184547849232330918`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24969494796210228715338530491862911731`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13979495303225822344650453032954828814`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.31761688019218703438184547849232330918`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24969494796210228715338530491862911731`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13979495303225822344650453032954828814`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.31761688019218703438184547849232330918`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24969494796210228715338530491862911731`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13979495303225822344650453032954828814`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.31761688019218703438184547849232330918`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24969494796210228715338530491862911731`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.08639803242963074725313532553627737798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40401491262181776775719299621414393187`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10989999492984406370688077458908082917`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.08639803242963074725313532553627737798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40401491262181776775719299621414393187`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10989999492984406370688077458908082917`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.08639803242963074725313532553627737798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40401491262181776775719299621414393187`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10989999492984406370688077458908082917`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.08639803242963074725313532553627737798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40401491262181776775719299621414393187`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10989999492984406370688077458908082917`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.08639803242963074725313532553627737798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40401491262181776775719299621414393187`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10989999492984406370688077458908082917`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.08639803242963074725313532553627737798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40401491262181776775719299621414393187`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10989999492984406370688077458908082917`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.08639803242963074725313532553627737798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40401491262181776775719299621414393187`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10989999492984406370688077458908082917`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.08639803242963074725313532553627737798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40401491262181776775719299621414393187`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10989999492984406370688077458908082917`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40401491262181776775719299621414393187`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10989999492984406370688077458908082917`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.08639803242963074725313532553627737798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40401491262181776775719299621414393187`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10989999492984406370688077458908082917`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.08639803242963074725313532553627737798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40401491262181776775719299621414393187`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10989999492984406370688077458908082917`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.08639803242963074725313532553627737798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40401491262181776775719299621414393187`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10989999492984406370688077458908082917`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.08639803242963074725313532553627737798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40401491262181776775719299621414393187`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10989999492984406370688077458908082917`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.08639803242963074725313532553627737798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40401491262181776775719299621414393187`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10989999492984406370688077458908082917`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.08639803242963074725313532553627737798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40401491262181776775719299621414393187`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10989999492984406370688077458908082917`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.08639803242963074725313532553627737798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40401491262181776775719299621414393187`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10989999492984406370688077458908082917`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.08639803242963074725313532553627737798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10989999492984406370688077458908082917`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.08639803242963074725313532553627737798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40401491262181776775719299621414393187`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10989999492984406370688077458908082917`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.08639803242963074725313532553627737798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40401491262181776775719299621414393187`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10989999492984406370688077458908082917`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.08639803242963074725313532553627737798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40401491262181776775719299621414393187`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10989999492984406370688077458908082917`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.08639803242963074725313532553627737798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40401491262181776775719299621414393187`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10989999492984406370688077458908082917`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.08639803242963074725313532553627737798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40401491262181776775719299621414393187`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10989999492984406370688077458908082917`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.08639803242963074725313532553627737798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40401491262181776775719299621414393187`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10989999492984406370688077458908082917`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.08639803242963074725313532553627737798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.40401491262181776775719299621414393187`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10989999492984406370688077458908082917`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"64", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1488", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6016", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10989999492984406`}, "NumericalApproximation"], Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0864\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.08639803242963074725313532553627737798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"152", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15232", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.08639803242963075}, "NumericalApproximation"], Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.404\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.40401491262181776775719299621414393187`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"496", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7424", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.40401491262181777`}, "NumericalApproximation"], Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.31761688019218703438184547849232330918`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24969494796210228715338530491862911731`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13979495303225822344650453032954828814`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.31761688019218703438184547849232330918`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24969494796210228715338530491862911731`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13979495303225822344650453032954828814`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.31761688019218703438184547849232330918`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24969494796210228715338530491862911731`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13979495303225822344650453032954828814`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.31761688019218703438184547849232330918`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24969494796210228715338530491862911731`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13979495303225822344650453032954828814`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.31761688019218703438184547849232330918`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24969494796210228715338530491862911731`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13979495303225822344650453032954828814`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.31761688019218703438184547849232330918`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24969494796210228715338530491862911731`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13979495303225822344650453032954828814`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.31761688019218703438184547849232330918`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24969494796210228715338530491862911731`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13979495303225822344650453032954828814`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.31761688019218703438184547849232330918`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24969494796210228715338530491862911731`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13979495303225822344650453032954828814`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24969494796210228715338530491862911731`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13979495303225822344650453032954828814`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.31761688019218703438184547849232330918`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24969494796210228715338530491862911731`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13979495303225822344650453032954828814`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.31761688019218703438184547849232330918`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24969494796210228715338530491862911731`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13979495303225822344650453032954828814`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.31761688019218703438184547849232330918`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24969494796210228715338530491862911731`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13979495303225822344650453032954828814`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.31761688019218703438184547849232330918`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24969494796210228715338530491862911731`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13979495303225822344650453032954828814`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.31761688019218703438184547849232330918`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24969494796210228715338530491862911731`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13979495303225822344650453032954828814`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.31761688019218703438184547849232330918`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24969494796210228715338530491862911731`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13979495303225822344650453032954828814`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.31761688019218703438184547849232330918`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.250\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24969494796210228715338530491862911731`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"736", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3456", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.2496949479621023}, "NumericalApproximation"], Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.140\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13979495303225822344650453032954828814`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"88", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"21248", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13979495303225822`}, "NumericalApproximation"], Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.318\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.31761688019218703438184547849232330918`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"304", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3968", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"30976", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.31761688019218703`}, "NumericalApproximation"], Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]]}], "}"}]}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[44]=",ExpressionUUID->"53F43C77-069C-4680-B7CF-872AD0596E9A"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".2", "]"}], ",", "int"}], "}"}], ",", RowBox[{"AbsolutePointSize", "[", "5", "]"}], ",", RowBox[{"Point", "[", "inside", "]"}], ",", "Red", ",", RowBox[{"Point", "[", "outside", "]"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[48]:=",ExpressionUUID->"99E6E93A-99BD-4C47-97BC-0C6A5D694D0E"], Cell[BoxData[ Graphics3DBox[{ {Opacity[0.2], PolyhedronBox[CompressedData[" 1:eJx1WWtQFcYVvhrjq2oLmlSNMQGxZdKajnaaZHB1sVGLTYzI1KhgEAimShVQ gfiIeKU+eKlXgxbkISAiZggiYoK6ZdFQH42x1kkM1oymtjXWoY4aH4lVaaf7 ndWz3vrnDvfu4zvnfOc756xBCSlRszp7PJ5xnTyexzz0b7cIjG3Kaow9ruOf GzWvy9rTuvevUk/mr9kvC7OaS88fP6YXyYkXq3t+rlNOTPvszqUWmXU04vcp Mz7WmR9HTtgbfFqbc3wiM6jP6h+Ffq5njt/baevW47p74tIXh75+Rl8d9Yfw jG4Nsuh3DcUpGw7I7IVF3+0Uctbsa9mm9hz8MO/d6RWyF9b/w6zXb2N9Bu7v Z3DpLQaXJLzmfi36GTtkOtYHwI6tWL/Y4Nd5Br9cYvDLJ3BuGdZhvzTnVqon cW6cuQ/f1yuvsVfOMPbKN2G3+T1bkT/egZ/mwX/58N/IX5xOSzv/qf7l3bPP J0e0ygWJaSuClx7Xd7pX9Jo8+U/69pzR7ZsmHpbPNq+LPDb/lF4Cf8BP8hz8 VA3cC4F7COzJgZ2Ik5wD+w2+crEM+BOA+7q5V/7b3KuDzb1ytMEpJxiceq7B KZfh3Pk4dw3uw3mSGAY/WLvhd414yO3gWRri9iTiVmHstTy6Bh6ZU/eLFfDv NNxHcaN4luBcHrcq4omm9YNxXynWd4V/7+K+auBYbXhr7TpqeKt7Yv3fEI+V tB72rYPdi+CvsbivCvfNZ3xrFQOAL5bhrhXLYW8s7M1weF6M81heeA+rvtxe PQD+IXsfh3+7jjb4FfCveThPPSWqBfZ+B+vb4J9MrF/o5NdSpg9VlA9yJsuT RgX9kQnAPQj4Kng+Ej9tXgwBPwXyKAJ5NB/8pLxLRhxygSuR3Z9KumV/B24J e6SDQ5K/Sc96IP6XGD+bFPgppyJecSwvChTF07mP/KdfQt5FIe/SoQ+depg8 vYM8HQR9SEMcSEe/AB+B38a/D/wLe7XjJ/ilxupXPNdzeQXnlsN+nheLxBno OeUF5e0arueUp5L0nOeptrwgvxMvSM8pD8mPbwDneh4XjbjoNuBazXhdqMxn pMr+nz8efM/5v1H8Efzn67zi1A+jzrz2sxU2njGIc1lI4AsTfDk4v0IZf5+V F54ae/vnokpV4rwc+C9yzq2G7b4aVYI4Eq++YbzKtnlIdfQ+7Cvi+3QC47nV YfydJcznOpEDe1B/ZBh4NxG8C0KeXUN9uAfeET+nIO+SwM8vsK57ksnTH4Cf 47EuFfegruhryOeBuKeP4bfubPRIbkE8iX8Gd76oQDyzGf/Wwd+lCnY59ajG 5vsorhs6BbieAd770JubwEf2jcG+sbCns7FTh2LfedhPeTsb+6BT8gbOdess t6NSNMO+5Y5udjmbPOmDZQspbli/WUXXx0xM2LRJLEWck7A+PLhjc3tYpqB+ bS6v13oU70PIDxR3fQt4vwXeFdjnhW7hPOsfwXVLXsE++FV2g34Z3D5bFyhO pOuX4Mcu4BHx8jWcS/GiPi4DOGzfg3Oh97LzhuWvZDy9XoXALjq/A/hSHfzE i5sO/nvwxzj8Pg84JPwYw/hWQX2i7Z/RD9j6RPH/Bud+Db69zOuZpj4M/pQD YEcA/En5O9Kph2mI9yrEjepNPNOHQpsXqCtyKM6/DFxJjp1kf7ZjTwqrI7W2 T3ud+kynbvVAvifDTpePXfD7NR4H0hMbN9ITc2+Reo/rJOIRB30osPmT6L9v l5ehq7nQVapnHU7/8S/wKBL+Rr6TvsirXDftvjnOOtpPOk28HdSydbBXlTv1 6T3ROCzzwqTLqU6dyhZ/h27UAXc34H4c/d0n8Av2ybbqN76+vHCK8Uv4IeuX b0MPhS7YsFhRnpIOgd92vymD1Wo31TOmSx7Ppb475+7YYudDOydFBvYoDjla IFZA36mvPM3qXbWtq7x/2i3IH/drx8n6XVXiilPfB5/754nevbajzmWaT+8O qgu2LpLOkh9v4P5Cp4/4P3WE5jrbT2Eu0rzPjbN2/Bj8PQZe9IS+CWe+Qp1x +sYHeZoOPVnl9K00X2U4cxnVhbnAFf382cKX25eoXD4Pa+iFnZcIN825NDfO xt83kr2NORe8wu2bocNWd5bj99l8DrVzNOlDhNNPkN6gj5AXnXpE800Cew/I Fsrpk8z3deod7gfbb/b3N+d7P1JV/vqMLz9Q/L4T6nvAweNeYP0Xz+6rtPwJ RB/svD84c+sB8X3gi2Xn2PjY/riU9/syieHxCdhv+4rpD//uPYh8V2qZ0//j fo4r/KSgOZv6+iDgcOdVc24Dzj8iFjs8Mt8nihbub30ROpyPfIQOw559it59 aO4lfr7FziXd91Jf5dQFn+jL38HkLa4Dth8n/vyGz5GqHPFz5/InOK8sPymP eR3er/i6QrJPR/M6ZevqW+z7coqbvA6/ZTlzajzj1T56H7D6wO1aqVxehiC+ /fzaVS2cfKE53/KU8yGS3tccvh8U5Q6PwSu512/89ol2xGuz/znIfY+yc7DD X83zpcDqRQz73uOh+Z7bX6Mo3gOd90eyI4rhKbHvBOSfGeyeenqn07PYPp/i /joiyI/c3jjB574GW4egU8RP0k/paSy8m1T8rNUtft5+2w+c5PXW4ghwdHQJ 7FrA8aMu77HvU9yPeeIQ71Mor/WvHT3L5LzC900qwHlXeqGreO7AdJ/wcrvo HOW8hwJnquL5ad+xnPc5JZ6mdzu232vv4/nrpfyVvI4ctv7jeVhLPKQ+wM4V NG/Q78lsn6J4ufmnaT/jo/ewSnR4Rn73X2crBfEqC+fjPVaTfdHcn/adPoH5 zyd+i3vGsPX5FvdUZtciVZbX+OKYIevpPUTyPtinWnpP65awfaN934jzP+/Y 9aPjZv+0blWufTf4cthf5oeVZKgyR2+4PeW2Lzb+axW5D/e/3kZR7/edgt6d Ch+Ji9Mn0z2C9dv/9SPeoyThDX9shmfp8DWIx2ZV56//aSnHvQ2C98FV2Ndk +U39HvXZF+9u61h5wot1O525wyfoPZz2u/4mf7m/U91JZzw8oshuRxflLHZu zSN4yb/kR+Llq6zPaVX+89Ly03lHbwGeSqsTpMcO73H/RlsHeL39UND6CEcP zOdBmwdRTp7GOnazd8zwOnUVfMhlcX0fc12z2uaPh95i9cpfowoKcnbQfAmc jVZXed3JdtZFmvPjWtRMh69UP5KT4tsubXtT7HH4GDr5qUX9I9MF2U98/MlL u5rrLlB9qLLzaP+v9p+ovrpWlDl2tDp1AuchXjWP6G/zzrblHSP2OnPgLvHM 3VMVtcf22v6Y6sDBmxnL6gIU1Vc5E/Ec/0nT9RFT8x6Zi0mPh2QM+ypqZ7W9 f/i5obeDwjZa3hFfqZ69Xxq69s9J+xTVy8C6ScNTP2uwcwXpbliXTz8q37XP 9iU0T0e33rtSN7BW+O/LlLWLv3c8+P85qlv0eas9vSkw5l3CT3OojhvxdnD/ kVNsfNc2e2JSXy0S/Wn+cXTdnQP+A+Fy2UE= "], {{1, 2, 3, 4}, {11, 12, 13, 14}, {15, 16, 17, 18}, {19, 20, 21, 22}, {23, 24, 25, 26}, {27, 28, 29, 30}, {37, 38, 39, 40}, {47, 48, 49, 50}, {51, 52, 53, 54}, {55, 56, 57, 14}, {59, 60, 61, 62}, {63, 64, 65, 66}, {66, 74, 75, 76}, {46, 45, 78, 79}, {80, 81, 82, 14}, {83, 84, 85, 86}, {93, 94, 95, 26}, {68, 67, 104, 105}, {106, 107, 108, 109}, {110, 111, 112, 14}, {114, 115, 116, 117}, {91, 90, 122, 123}, {128, 54, 102, 101}, {130, 131, 132, 4}, {138, 95, 54, 141}, {79, 78, 6, 5}, {149, 81, 80, 152}, {36, 35, 105, 104}, {156, 30, 76, 75}, {86, 161, 162, 122}, { 164, 137, 136, 85}, {26, 144, 143, 169}, {98, 97, 170, 171}, {172, 127, 126, 40}, {174, 175, 89, 88}, {120, 119, 176, 177}, {79, 166, 111, 110}, {107, 43, 42, 15}, {123, 122, 162, 188}, {71, 70, 116, 26}, {191, 141, 129, 128}, {132, 131, 179, 193}, {134, 137, 164, 66}, {195, 196, 176, 79}, {169, 143, 142, 198}, {175, 174, 34, 33}, {171, 170, 8, 7}, { 207, 208, 209, 172}, {42, 41, 16, 15}, {54, 213, 12, 11}, {72, 71, 26, 25}, {99, 98, 171, 27}, {174, 88, 87, 21}, {223, 224, 3, 2}, {225, 164, 85, 84}, {129, 9, 8, 170}, {229, 93, 26, 169}, {172, 209, 124, 127}, { 176, 119, 118, 182}, {175, 33, 32, 234}, {128, 101, 100, 235}, {221, 195, 79, 110}, {92, 91, 123, 22}, {117, 116, 70, 69}, {107, 106, 44, 43}, {216, 132, 209, 208}, {135, 65, 106, 109}, {145, 114, 117, 55}, { 200, 15, 47, 50}, {32, 31, 60, 234}, {205, 38, 37, 96}, {129, 53, 10, 9}, {167, 51, 54, 11}, {100, 99, 27, 235}, {124, 209, 25, 24}, {87, 92, 22, 21}, {182, 118, 17, 16}, {59, 62, 178, 3}, {106, 65, 64, 180}, {47, 121, 120, 48}, {117, 183, 56, 55}, {79, 5, 10, 53}, {60, 31, 36, 104}, { 126, 125, 37, 40}, {200, 161, 86, 85}, {95, 138, 205, 26}, {80, 184, 19, 152}, {117, 69, 68, 105}, {181, 76, 30, 29}, {78, 45, 44, 106}, {135, 134, 66, 65}, {166, 79, 53, 52}, {142, 145, 55, 14}, {15, 18, 121, 47}, {37, 125, 23, 26}, {179, 61, 60, 104}, {106, 180, 28, 27}, {112, 167, 11, 14}, {247, 21, 20, 183}, {41, 46, 79, 16}, {104, 67, 72, 25}, { 178, 130, 4, 3}, {106, 7, 6, 78}, {184, 80, 14, 57}, {117, 105, 35, 34}, {224, 223, 83, 86}, {95, 94, 213, 54}, {181, 63, 66, 76}, {229, 169, 198, 13}, {176, 196, 149, 152}, {90, 89, 175, 122}, {156, 207, 172, 157}, {129, 170, 97, 102}, {164, 225, 1, 4}, {123, 188, 49, 48}, {82, 221, 110, 14}, {144, 96, 116, 115}, {132, 216, 74, 4}, {136, 108, 107, 85}, {39, 191, 128, 40}, {5, 6, 7, 8, 9, 10}, {31, 32, 33, 34, 35, 36}, {41, 42, 43, 44, 45, 46}, {67, 68, 69, 70, 71, 72}, {87, 88, 89, 90, 91, 92}, {97, 98, 99, 100, 101, 102}, {118, 119, 120, 121, 18, 17}, {124, 24, 23, 125, 126, 127}, {134, 135, 109, 108, 136, 137}, {142, 143, 144, 115, 114, 145}, {166, 52, 51, 167, 112, 111}, {178, 62, 61, 179, 131, 130}, {180, 64, 63, 181, 29, 28}, {183, 20, 19, 184, 57, 56}, {188, 162, 161, 200, 50, 49}, {138, 141, 191, 39, 38, 205}, {216, 208, 207, 156, 75, 74}, {149, 196, 195, 221, 82, 81}, {213, 94, 93, 229, 13, 12}, {223, 2, 1, 225, 84, 83}}]}, {AbsolutePointSize[5], Point3DBox[ NCache[{{0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}}, {{ 0, -0.361826783097534, -0.223621249994312}, { 0.10363082970464206`, -0.20156474306442804`, -0.36002514353184917`}, { 0.13210997979477979`, -0.21375843756101556`, -0.3458684173557953}, { 0, -0.22164017088719903`, -0.352357012442246}, { 0.3958828965965613, -0.07042635995207269, -0.10768792678081102`}, { 0.4240725185716702, 0, -0.03388653831996497}, {0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, {0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, { 0.352357012442246, 0, -0.22164017088719903`}, { 0.36002514353184917`, -0.10363082970464206`, -0.20156474306442804`}, { 0, -0.361826783097534, 0.223621249994312}, {-0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, {-0.20156474306442804`, -0.36002514353184917`, 0.10363082970464206`}, {-0.21375843756101556`, -0.3458684173557953, 0.13210997979477979`}, {0.223621249994312, 0, 0.361826783097534}, { 0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, { 0.24466908566143497`, -0.17424272570936228`, 0.2881949698157503}, { 0.3458684173557953, -0.13210997979477979`, 0.21375843756101556`}, { 0, 0.361826783097534, -0.223621249994312}, {0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, {0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, {0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, {-0.223621249994312, 0, -0.361826783097534}, {-0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, {-0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, {-0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, { 0, 0.361826783097534, 0.223621249994312}, {-0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}, {-0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, { 0, 0.22164017088719903`, 0.352357012442246}, {-0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, {-0.4240725185716702, 0, 0.03388653831996497}, {-0.36002514353184917`, -0.10363082970464206`, 0.20156474306442804`}, {-0.3958828965965613, -0.07042635995207269, 0.10768792678081102`}, {-0.352357012442246, 0, 0.22164017088719903`}, {-0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, {0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, {0, -0.22164017088719903`, 0.352357012442246}, { 0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, { 0.4240725185716702, 0, 0.03388653831996497}, { 0.3958828965965613, -0.07042635995207269, 0.10768792678081102`}, { 0.352357012442246, 0, 0.22164017088719903`}, {0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, { 0.36002514353184917`, -0.10363082970464206`, 0.20156474306442804`}, { 0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, {-0.20156474306442804`, -0.36002514353184917`, \ -0.10363082970464206`}, {-0.10768792678081102`, -0.3958828965965613, \ -0.07042635995207269}, {-0.21375843756101556`, -0.3458684173557953, \ -0.13210997979477979`}, {0.223621249994312, 0, -0.361826783097534}, { 0.24466908566143497`, -0.17424272570936228`, -0.2881949698157503}, { 0.3261386052118842, -0.15846040046742113`, -0.22250777550724216`}, { 0.3458684173557953, -0.13210997979477979`, -0.21375843756101556`}, { 0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, { 0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, { 0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {-0.223621249994312, 0, 0.361826783097534}, {-0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, {-0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, {-0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {-0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, { 0, 0.22164017088719903`, -0.352357012442246}, {-0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, {-0.4240725185716702, 0, -0.03388653831996497}, {-0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, {-0.352357012442246, 0, -0.22164017088719903`}, {-0.36002514353184917`, \ -0.10363082970464206`, -0.20156474306442804`}, {-0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, {-0.3958828965965613, \ -0.07042635995207269, -0.10768792678081102`}, { 0.03388653831996497, -0.4240725185716702, 0}, { 0, -0.4275168751220311, 0}, { 0.10768792678081102`, -0.3958828965965613, -0.07042635995207269}, { 0.361826783097534, -0.223621249994312, 0}, { 0.4275168751220311, 0, 0}, {-0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, {-0.24466908566143497`, -0.17424272570936228`, 0.2881949698157503}, {-0.2881949698157503, -0.24466908566143497`, 0.17424272570936228`}, {-0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, {-0.22250777550724216`, -0.3261386052118842, 0.15846040046742113`}, {-0.17424272570936228`, -0.2881949698157503, 0.24466908566143497`}, {0, 0, 0.4275168751220311}, { 0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, { 0, 0.03388653831996497, 0.4240725185716702}, {0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, {0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, {0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, {0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, {0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, {0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, { 0, 0, -0.4275168751220311}, {-0.07042635995207269, \ -0.10768792678081102`, -0.3958828965965613}, { 0, -0.03388653831996497, -0.4240725185716702}, {-0.03388653831996497, 0.4240725185716702, 0}, { 0, 0.4275168751220311, 0}, {-0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, {-0.361826783097534, 0.223621249994312, 0}, {-0.4275168751220311, 0, 0}, {-0.2881949698157503, -0.24466908566143497`, \ -0.17424272570936228`}, {-0.3261386052118842, -0.15846040046742113`, \ -0.22250777550724216`}, {-0.361826783097534, -0.223621249994312, 0}, {-0.3458684173557953, -0.13210997979477979`, \ -0.21375843756101556`}, { 0.22250777550724216`, -0.3261386052118842, -0.15846040046742113`}, { 0.17424272570936228`, -0.2881949698157503, -0.24466908566143497`}, { 0.21375843756101556`, -0.3458684173557953, -0.13210997979477979`}, \ {-0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, { 0.22250777550724216`, -0.3261386052118842, 0.15846040046742113`}, { 0.17424272570936228`, -0.2881949698157503, 0.24466908566143497`}, { 0.2881949698157503, -0.24466908566143497`, 0.17424272570936228`}, { 0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, { 0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, {-0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, {-0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, {-0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, {-0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, {0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, {0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, { 0.361826783097534, 0.223621249994312, 0}, {0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {-0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {-0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, {-0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {-0.15846040046742113`, -0.22250777550724216`, \ -0.3261386052118842}, {-0.24466908566143497`, -0.17424272570936228`, \ -0.2881949698157503}, {-0.17424272570936228`, -0.2881949698157503, \ -0.24466908566143497`}, {-0.22250777550724216`, -0.3261386052118842, \ -0.15846040046742113`}, {0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, { 0, 0.03388653831996497, -0.4240725185716702}, { 0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, {-0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, {0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, {0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, {0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, {0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {-0.07042635995207269, -0.10768792678081102`, 0.3958828965965613}, { 0, -0.03388653831996497, 0.4240725185716702}, {-0.13210997979477979`, -0.21375843756101556`, \ -0.3458684173557953}, { 0.2881949698157503, -0.24466908566143497`, -0.17424272570936228`}, { 0.15846040046742113`, -0.22250777550724216`, -0.3261386052118842}, \ {-0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, { 0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, { 0.21375843756101556`, -0.3458684173557953, 0.13210997979477979`}, {-0.3458684173557953, -0.13210997979477979`, 0.21375843756101556`}, {0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, {-0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, {-0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, {-0.22164017088719903`, -0.352357012442246, 0}, {-0.03388653831996497, -0.4240725185716702, 0}, {-0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, {0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, { 0.22164017088719903`, 0.352357012442246, 0}, { 0.03388653831996497, 0.4240725185716702, 0}, { 0.22164017088719903`, -0.352357012442246, 0}, { 0.20156474306442804`, -0.36002514353184917`, 0.10363082970464206`}, { 0.07042635995207269, -0.10768792678081102`, 0.3958828965965613}, {-0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, {-0.22164017088719903`, 0.352357012442246, 0}, {-0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, { 0.07042635995207269, -0.10768792678081102`, -0.3958828965965613}, \ {-0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, { 0.20156474306442804`, -0.36002514353184917`, -0.10363082970464206`}, \ {-0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, {-0.10363082970464206`, -0.20156474306442804`, \ -0.36002514353184917`}, {0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}}]], {RGBColor[1, 0, 0], Point3DBox[ NCache[{{0, Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0], Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0]}, { 0, Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0]}, { 0, Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0]}, { 0, Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0], 0}, { Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0], 0}, { Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0], 0}, { Root[1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0], Root[ 1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0], 0, Root[ 1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0]}, { Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 2, 0], 0, Root[ 1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0], 0, Root[ 1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 2, 0]}, { Root[1 + 4 #^2 - 68 #^4 - 624 #^6 + 1936 #^8& , 3, 0], 0, Root[ 1 - 28 #^2 + 268 #^4 - 1168 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 64 #^2 - 1488 #^4 - 6016 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 152 #^2 + 2528 #^4 - 15232 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 24 #^2 + 496 #^4 - 7424 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0]}, { Root[1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 1, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 2, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 736 #^4 - 3456 #^6 + 30976 #^8& , 4, 0], Root[ 1 - 88 #^2 + 2288 #^4 - 21248 #^6 + 30976 #^8& , 3, 0], Root[ 1 - 32 #^2 + 304 #^4 - 3968 #^6 + 30976 #^8& , 4, 0]}}, {{ 0, -0.26421995958955957`, -0.336092980391733}, { 0, -0.26421995958955957`, 0.336092980391733}, { 0, 0.26421995958955957`, -0.336092980391733}, { 0, 0.26421995958955957`, 0.336092980391733}, {-0.26421995958955957`, -0.336092980391733, 0}, {-0.26421995958955957`, 0.336092980391733, 0}, { 0.26421995958955957`, -0.336092980391733, 0}, { 0.26421995958955957`, 0.336092980391733, 0}, {-0.336092980391733, 0, -0.26421995958955957`}, {-0.336092980391733, 0, 0.26421995958955957`}, { 0.336092980391733, 0, -0.26421995958955957`}, { 0.336092980391733, 0, 0.26421995958955957`}, {-0.13979495303225822`, \ -0.31761688019218703`, -0.2496949479621023}, {-0.13979495303225822`, \ -0.31761688019218703`, 0.2496949479621023}, {-0.13979495303225822`, 0.31761688019218703`, -0.2496949479621023}, {-0.13979495303225822`, 0.31761688019218703`, 0.2496949479621023}, { 0.13979495303225822`, -0.31761688019218703`, -0.2496949479621023}, { 0.13979495303225822`, -0.31761688019218703`, 0.2496949479621023}, { 0.13979495303225822`, 0.31761688019218703`, -0.2496949479621023}, { 0.13979495303225822`, 0.31761688019218703`, 0.2496949479621023}, {-0.08639803242963075, -0.40401491262181777`, \ -0.10989999492984406`}, {-0.08639803242963075, -0.40401491262181777`, 0.10989999492984406`}, {-0.08639803242963075, 0.40401491262181777`, -0.10989999492984406`}, {-0.08639803242963075, 0.40401491262181777`, 0.10989999492984406`}, { 0.08639803242963075, -0.40401491262181777`, -0.10989999492984406`}, { 0.08639803242963075, -0.40401491262181777`, 0.10989999492984406`}, { 0.08639803242963075, 0.40401491262181777`, -0.10989999492984406`}, { 0.08639803242963075, 0.40401491262181777`, 0.10989999492984406`}, {-0.40401491262181777`, -0.10989999492984406`, \ -0.08639803242963075}, {-0.40401491262181777`, -0.10989999492984406`, 0.08639803242963075}, {-0.40401491262181777`, 0.10989999492984406`, -0.08639803242963075}, {-0.40401491262181777`, 0.10989999492984406`, 0.08639803242963075}, { 0.40401491262181777`, -0.10989999492984406`, -0.08639803242963075}, { 0.40401491262181777`, -0.10989999492984406`, 0.08639803242963075}, { 0.40401491262181777`, 0.10989999492984406`, -0.08639803242963075}, { 0.40401491262181777`, 0.10989999492984406`, 0.08639803242963075}, {-0.10989999492984406`, -0.08639803242963075, \ -0.40401491262181777`}, {-0.10989999492984406`, -0.08639803242963075, 0.40401491262181777`}, {-0.10989999492984406`, 0.08639803242963075, -0.40401491262181777`}, {-0.10989999492984406`, 0.08639803242963075, 0.40401491262181777`}, { 0.10989999492984406`, -0.08639803242963075, -0.40401491262181777`}, { 0.10989999492984406`, -0.08639803242963075, 0.40401491262181777`}, { 0.10989999492984406`, 0.08639803242963075, -0.40401491262181777`}, { 0.10989999492984406`, 0.08639803242963075, 0.40401491262181777`}, {-0.31761688019218703`, -0.2496949479621023, \ -0.13979495303225822`}, {-0.31761688019218703`, -0.2496949479621023, 0.13979495303225822`}, {-0.31761688019218703`, 0.2496949479621023, -0.13979495303225822`}, {-0.31761688019218703`, 0.2496949479621023, 0.13979495303225822`}, { 0.31761688019218703`, -0.2496949479621023, -0.13979495303225822`}, { 0.31761688019218703`, -0.2496949479621023, 0.13979495303225822`}, { 0.31761688019218703`, 0.2496949479621023, -0.13979495303225822`}, { 0.31761688019218703`, 0.2496949479621023, 0.13979495303225822`}, {-0.2496949479621023, -0.13979495303225822`, \ -0.31761688019218703`}, {-0.2496949479621023, -0.13979495303225822`, 0.31761688019218703`}, {-0.2496949479621023, 0.13979495303225822`, -0.31761688019218703`}, {-0.2496949479621023, 0.13979495303225822`, 0.31761688019218703`}, { 0.2496949479621023, -0.13979495303225822`, -0.31761688019218703`}, { 0.2496949479621023, -0.13979495303225822`, 0.31761688019218703`}, { 0.2496949479621023, 0.13979495303225822`, -0.31761688019218703`}, { 0.2496949479621023, 0.13979495303225822`, 0.31761688019218703`}}]]}}}, Boxed->False, ImageSize->{360., 360.}, ImageSizeRaw->Automatic, ViewAngle->0.2899337273595085, ViewPoint->{-0.3838860181808641, -3.2997724979075715`, 0.6435316519784138}, ViewVertical->{-0.31251971983316984`, -0.4018868456868054, 0.860708073611086}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[48]=",ExpressionUUID->"F3943F96-57AD-4035-874A-281C841E45E9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"hull", "=", RowBox[{"ConvexHullRegion", "[", "inside", "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[49]:=",ExpressionUUID->"44AF860B-3367-42EC-80EC-9E9DFCAB4CB8"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, {0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, {0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}}, {{52, 10, 5, 72}, {10, 52, 49, 9}, {41, 72, 73, 40}, {11, 127, 152, 140}, {65, 67, 26, 23}, {67, 64, 95, 26}, {23, 25, 113, 62}, {5, 10, 9, 7, 8, 6}, {72, 5, 6, 73}, {73, 6, 8, 116}, {66, 65, 23, 100}, {68, 66, 100, 99}, {123, 121, 135, 1}, {135, 121, 122, 23}, {65, 66, 68, 63, 64, 67}, {68, 99, 96, 63}, {95, 64, 63, 96}, {99, 14, 78, 76}, {97, 124, 48, 99}, {123, 1, 48, 124}, {40, 73, 116, 45}, {41, 40, 45, 43, 42, 44}, {1, 71, 69, 70}, {127, 11, 70, 69}, {140, 152, 151, 72}, {49, 52, 51, 50}, {52, 72, 136, 51}, {50, 51, 136, 101, 102, 137}, {102, 101, 103, 1}, {136, 72, 103, 101}, {7, 9, 49, 139}, {8, 7, 139, 116}, {23, 62, 60, 154}, {23, 154, 126, 89}, {83, 84, 49, 109}, {124, 97, 98, 122, 121, 123}, {99, 100, 98, 97}, {100, 23, 122, 98}, {95, 96, 32, 31}, { 96, 99, 34, 32}, {104, 56, 75, 74}, {35, 33, 141, 56}, {34, 99, 141, 33}, {56, 160, 28, 29}, {142, 15, 130, 129}, {142, 129, 131, 27}, {53, 54, 27, 55}, {104, 74, 79, 11}, {78, 14, 11, 79}, {70, 11, 12, 146}, { 11, 14, 13, 12}, {16, 107, 72, 18}, {72, 41, 44, 18}, {17, 16, 18, 15}, {44, 42, 15, 18}, {140, 72, 107, 105}, {11, 140, 105, 106}, {16, 17, 108, 106, 105, 107}, {17, 15, 39, 108}, {11, 106, 108, 39}, {39, 15, 153, 37}, {11, 39, 37, 38}, {2, 157, 49, 3}, {50, 137, 3, 49}, {4, 2, 3, 1}, {137, 102, 1, 3}, {152, 127, 69, 71, 159, 151}, {71, 1, 103, 159}, {72, 151, 159, 103}, {62, 113, 111, 19}, {148, 61, 19, 109}, {60, 62, 19, 61}, {154, 60, 61, 148, 125, 126}, {109, 49, 125, 148}, {89, 126, 125, 49}, {49, 157, 91, 89}, {23, 89, 91, 90}, {2, 4, 161, 90, 91, 157}, {1, 135, 161, 4}, {135, 23, 90, 161}, {76, 78, 79, 74, 75, 77}, {99, 76, 77, 141}, {75, 56, 141, 77}, {53, 55, 116, 149}, {160, 56, 80, 82}, {82, 80, 15, 81}, {15, 142, 162, 81}, {150, 20, 19, 93}, { 27, 54, 150, 93}, {32, 34, 33, 35, 36, 31}, {27, 119, 144, 29}, {119, 27, 120, 118}, {48, 1, 47, 46}, {1, 70, 146, 47}, {146, 12, 13, 145, 46, 47}, {99, 48, 46, 145}, {14, 99, 145, 13}, {153, 15, 80, 134}, {80, 56, 133, 134}, {38, 37, 153, 134, 133, 147}, {11, 38, 147, 104}, {56, 104, 147, 133}, {23, 26, 24, 25}, {26, 95, 112, 24}, {113, 25, 24, 112, 110, 111}, {112, 95, 138, 110}, {19, 111, 110, 138}, {138, 95, 155, 156}, {155, 95, 120, 158}, {42, 43, 117, 15}, {130, 15, 117, 115}, {43, 45, 116, 117}, {115, 117, 116, 114}, {28, 160, 82, 81, 162, 30}, {29, 28, 30, 27}, {142, 27, 30, 162}, {35, 56, 59, 36}, {95, 31, 36, 59}, { 59, 56, 57, 58}, {56, 29, 144, 57}, {144, 119, 118, 143, 58, 57}, {95, 59, 58, 143}, {118, 120, 95, 143}, {93, 19, 128, 92}, {19, 138, 156, 128}, {156, 155, 158, 94, 92, 128}, {27, 93, 92, 94}, {120, 27, 94, 158}, {129, 130, 115, 114, 132, 131}, {27, 131, 132, 55}, {116, 55, 132, 114}, {139, 49, 84, 86}, {83, 109, 19, 88}, {88, 19, 22, 87}, {54, 53, 149, 21, 20, 150}, {19, 20, 21, 22}, {149, 116, 22, 21}, {84, 83, 88, 87, 85, 86}, {87, 22, 116, 85}, {116, 139, 86, 85}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}}, {{ 0, -0.361826783097534, -0.223621249994312}, { 0.10363082970464206`, -0.20156474306442804`, \ -0.36002514353184917`}, { 0.13210997979477979`, -0.21375843756101556`, \ -0.3458684173557953}, {0, -0.22164017088719903`, -0.352357012442246}, { 0.3958828965965613, -0.07042635995207269, \ -0.10768792678081102`}, {0.4240725185716702, 0, -0.03388653831996497}, { 0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, { 0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, { 0.352357012442246, 0, -0.22164017088719903`}, { 0.36002514353184917`, -0.10363082970464206`, \ -0.20156474306442804`}, { 0, -0.361826783097534, 0.223621249994312}, {-0.10768792678081102`, \ -0.3958828965965613, 0.07042635995207269}, {-0.20156474306442804`, \ -0.36002514353184917`, 0.10363082970464206`}, {-0.21375843756101556`, \ -0.3458684173557953, 0.13210997979477979`}, { 0.223621249994312, 0, 0.361826783097534}, { 0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, { 0.24466908566143497`, -0.17424272570936228`, 0.2881949698157503}, { 0.3458684173557953, -0.13210997979477979`, 0.21375843756101556`}, { 0, 0.361826783097534, -0.223621249994312}, { 0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, { 0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, { 0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, \ {-0.223621249994312, 0, -0.361826783097534}, {-0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, \ {-0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, \ {-0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, { 0, 0.361826783097534, 0.223621249994312}, {-0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}, {-0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, { 0, 0.22164017088719903`, 0.352357012442246}, {-0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, {-0.4240725185716702, 0, 0.03388653831996497}, {-0.36002514353184917`, \ -0.10363082970464206`, 0.20156474306442804`}, {-0.3958828965965613, \ -0.07042635995207269, 0.10768792678081102`}, {-0.352357012442246, 0, 0.22164017088719903`}, {-0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, { 0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, { 0, -0.22164017088719903`, 0.352357012442246}, { 0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, { 0.4240725185716702, 0, 0.03388653831996497}, { 0.3958828965965613, -0.07042635995207269, 0.10768792678081102`}, { 0.352357012442246, 0, 0.22164017088719903`}, { 0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, { 0.36002514353184917`, -0.10363082970464206`, 0.20156474306442804`}, {0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, {-0.20156474306442804`, \ -0.36002514353184917`, -0.10363082970464206`}, {-0.10768792678081102`, \ -0.3958828965965613, -0.07042635995207269}, {-0.21375843756101556`, \ -0.3458684173557953, -0.13210997979477979`}, { 0.223621249994312, 0, -0.361826783097534}, { 0.24466908566143497`, -0.17424272570936228`, \ -0.2881949698157503}, { 0.3261386052118842, -0.15846040046742113`, \ -0.22250777550724216`}, { 0.3458684173557953, -0.13210997979477979`, \ -0.21375843756101556`}, {0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, {0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, { 0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {-0.223621249994312, 0, 0.361826783097534}, {-0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, {-0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, {-0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {-0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, { 0, 0.22164017088719903`, -0.352357012442246}, \ {-0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, \ {-0.4240725185716702, 0, -0.03388653831996497}, {-0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, \ {-0.352357012442246, 0, -0.22164017088719903`}, {-0.36002514353184917`, \ -0.10363082970464206`, -0.20156474306442804`}, {-0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, \ {-0.3958828965965613, -0.07042635995207269, -0.10768792678081102`}, { 0.03388653831996497, -0.4240725185716702, 0}, { 0, -0.4275168751220311, 0}, { 0.10768792678081102`, -0.3958828965965613, \ -0.07042635995207269}, {0.361826783097534, -0.223621249994312, 0}, { 0.4275168751220311, 0, 0}, {-0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, {-0.24466908566143497`, \ -0.17424272570936228`, 0.2881949698157503}, {-0.2881949698157503, \ -0.24466908566143497`, 0.17424272570936228`}, {-0.3261386052118842, \ -0.15846040046742113`, 0.22250777550724216`}, {-0.22250777550724216`, \ -0.3261386052118842, 0.15846040046742113`}, {-0.17424272570936228`, \ -0.2881949698157503, 0.24466908566143497`}, {0, 0, 0.4275168751220311}, { 0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, { 0, 0.03388653831996497, 0.4240725185716702}, { 0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, { 0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, { 0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, { 0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, { 0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, { 0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, { 0, 0, -0.4275168751220311}, {-0.07042635995207269, \ -0.10768792678081102`, -0.3958828965965613}, { 0, -0.03388653831996497, -0.4240725185716702}, \ {-0.03388653831996497, 0.4240725185716702, 0}, { 0, 0.4275168751220311, 0}, {-0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, {-0.361826783097534, 0.223621249994312, 0}, {-0.4275168751220311, 0, 0}, {-0.2881949698157503, -0.24466908566143497`, \ -0.17424272570936228`}, {-0.3261386052118842, -0.15846040046742113`, \ -0.22250777550724216`}, {-0.361826783097534, -0.223621249994312, 0}, {-0.3458684173557953, -0.13210997979477979`, \ -0.21375843756101556`}, { 0.22250777550724216`, -0.3261386052118842, \ -0.15846040046742113`}, { 0.17424272570936228`, -0.2881949698157503, \ -0.24466908566143497`}, { 0.21375843756101556`, -0.3458684173557953, \ -0.13210997979477979`}, {-0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, { 0.22250777550724216`, -0.3261386052118842, 0.15846040046742113`}, { 0.17424272570936228`, -0.2881949698157503, 0.24466908566143497`}, { 0.2881949698157503, -0.24466908566143497`, 0.17424272570936228`}, { 0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, {0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, \ {-0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, \ {-0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, \ {-0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, \ {-0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, { 0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, {0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, { 0.361826783097534, 0.223621249994312, 0}, { 0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {-0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {-0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, {-0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {-0.15846040046742113`, \ -0.22250777550724216`, -0.3261386052118842}, {-0.24466908566143497`, \ -0.17424272570936228`, -0.2881949698157503}, {-0.17424272570936228`, \ -0.2881949698157503, -0.24466908566143497`}, {-0.22250777550724216`, \ -0.3261386052118842, -0.15846040046742113`}, {0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, { 0, 0.03388653831996497, -0.4240725185716702}, { 0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, {-0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, { 0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, {0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, { 0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, {0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {-0.07042635995207269, \ -0.10768792678081102`, 0.3958828965965613}, { 0, -0.03388653831996497, 0.4240725185716702}, {-0.13210997979477979`, \ -0.21375843756101556`, -0.3458684173557953}, { 0.2881949698157503, -0.24466908566143497`, \ -0.17424272570936228`}, { 0.15846040046742113`, -0.22250777550724216`, \ -0.3261386052118842}, {-0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, { 0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, { 0.21375843756101556`, -0.3458684173557953, 0.13210997979477979`}, {-0.3458684173557953, \ -0.13210997979477979`, 0.21375843756101556`}, {0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, {-0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, {-0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, {-0.22164017088719903`, \ -0.352357012442246, 0}, {-0.03388653831996497, -0.4240725185716702, 0}, {-0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, {0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, { 0.22164017088719903`, 0.352357012442246, 0}, { 0.03388653831996497, 0.4240725185716702, 0}, { 0.22164017088719903`, -0.352357012442246, 0}, { 0.20156474306442804`, -0.36002514353184917`, 0.10363082970464206`}, { 0.07042635995207269, -0.10768792678081102`, 0.3958828965965613}, {-0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, \ {-0.22164017088719903`, 0.352357012442246, 0}, {-0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, { 0.07042635995207269, -0.10768792678081102`, \ -0.3958828965965613}, {-0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, { 0.20156474306442804`, -0.36002514353184917`, \ -0.10363082970464206`}, {-0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, {-0.10363082970464206`, \ -0.20156474306442804`, -0.36002514353184917`}, {0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}}], {{52, 10, 5, 72}, {10, 52, 49, 9}, {41, 72, 73, 40}, {11, 127, 152, 140}, { 65, 67, 26, 23}, {67, 64, 95, 26}, {23, 25, 113, 62}, {5, 10, 9, 7, 8, 6}, {72, 5, 6, 73}, {73, 6, 8, 116}, {66, 65, 23, 100}, {68, 66, 100, 99}, {123, 121, 135, 1}, {135, 121, 122, 23}, {65, 66, 68, 63, 64, 67}, {68, 99, 96, 63}, {95, 64, 63, 96}, {99, 14, 78, 76}, {97, 124, 48, 99}, {123, 1, 48, 124}, { 40, 73, 116, 45}, {41, 40, 45, 43, 42, 44}, {1, 71, 69, 70}, { 127, 11, 70, 69}, {140, 152, 151, 72}, {49, 52, 51, 50}, {52, 72, 136, 51}, {50, 51, 136, 101, 102, 137}, {102, 101, 103, 1}, {136, 72, 103, 101}, {7, 9, 49, 139}, {8, 7, 139, 116}, { 23, 62, 60, 154}, {23, 154, 126, 89}, {83, 84, 49, 109}, {124, 97, 98, 122, 121, 123}, {99, 100, 98, 97}, {100, 23, 122, 98}, {95, 96, 32, 31}, {96, 99, 34, 32}, {104, 56, 75, 74}, { 35, 33, 141, 56}, {34, 99, 141, 33}, {56, 160, 28, 29}, {142, 15, 130, 129}, {142, 129, 131, 27}, {53, 54, 27, 55}, {104, 74, 79, 11}, {78, 14, 11, 79}, {70, 11, 12, 146}, {11, 14, 13, 12}, {16, 107, 72, 18}, {72, 41, 44, 18}, {17, 16, 18, 15}, { 44, 42, 15, 18}, {140, 72, 107, 105}, {11, 140, 105, 106}, { 16, 17, 108, 106, 105, 107}, {17, 15, 39, 108}, {11, 106, 108, 39}, {39, 15, 153, 37}, {11, 39, 37, 38}, {2, 157, 49, 3}, { 50, 137, 3, 49}, {4, 2, 3, 1}, {137, 102, 1, 3}, {152, 127, 69, 71, 159, 151}, {71, 1, 103, 159}, {72, 151, 159, 103}, { 62, 113, 111, 19}, {148, 61, 19, 109}, {60, 62, 19, 61}, {154, 60, 61, 148, 125, 126}, {109, 49, 125, 148}, {89, 126, 125, 49}, {49, 157, 91, 89}, {23, 89, 91, 90}, {2, 4, 161, 90, 91, 157}, {1, 135, 161, 4}, {135, 23, 90, 161}, {76, 78, 79, 74, 75, 77}, {99, 76, 77, 141}, {75, 56, 141, 77}, {53, 55, 116, 149}, {160, 56, 80, 82}, {82, 80, 15, 81}, {15, 142, 162, 81}, {150, 20, 19, 93}, {27, 54, 150, 93}, {32, 34, 33, 35, 36, 31}, {27, 119, 144, 29}, {119, 27, 120, 118}, {48, 1, 47, 46}, {1, 70, 146, 47}, {146, 12, 13, 145, 46, 47}, {99, 48, 46, 145}, {14, 99, 145, 13}, {153, 15, 80, 134}, {80, 56, 133, 134}, {38, 37, 153, 134, 133, 147}, {11, 38, 147, 104}, {56, 104, 147, 133}, {23, 26, 24, 25}, {26, 95, 112, 24}, {113, 25, 24, 112, 110, 111}, {112, 95, 138, 110}, {19, 111, 110, 138}, {138, 95, 155, 156}, {155, 95, 120, 158}, {42, 43, 117, 15}, {130, 15, 117, 115}, {43, 45, 116, 117}, {115, 117, 116, 114}, {28, 160, 82, 81, 162, 30}, {29, 28, 30, 27}, {142, 27, 30, 162}, {35, 56, 59, 36}, {95, 31, 36, 59}, {59, 56, 57, 58}, {56, 29, 144, 57}, {144, 119, 118, 143, 58, 57}, {95, 59, 58, 143}, {118, 120, 95, 143}, {93, 19, 128, 92}, {19, 138, 156, 128}, {156, 155, 158, 94, 92, 128}, {27, 93, 92, 94}, { 120, 27, 94, 158}, {129, 130, 115, 114, 132, 131}, {27, 131, 132, 55}, {116, 55, 132, 114}, {139, 49, 84, 86}, {83, 109, 19, 88}, {88, 19, 22, 87}, {54, 53, 149, 21, 20, 150}, {19, 20, 21, 22}, {149, 116, 22, 21}, {84, 83, 88, 87, 85, 86}, { 87, 22, 116, 85}, {116, 139, 86, 85}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["162", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["140", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}}, {{ 0, -0.361826783097534, -0.223621249994312}, { 0.10363082970464206`, -0.20156474306442804`, \ -0.36002514353184917`}, { 0.13210997979477979`, -0.21375843756101556`, \ -0.3458684173557953}, {0, -0.22164017088719903`, -0.352357012442246}, { 0.3958828965965613, -0.07042635995207269, \ -0.10768792678081102`}, {0.4240725185716702, 0, -0.03388653831996497}, { 0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, { 0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, { 0.352357012442246, 0, -0.22164017088719903`}, { 0.36002514353184917`, -0.10363082970464206`, \ -0.20156474306442804`}, { 0, -0.361826783097534, 0.223621249994312}, {-0.10768792678081102`, \ -0.3958828965965613, 0.07042635995207269}, {-0.20156474306442804`, \ -0.36002514353184917`, 0.10363082970464206`}, {-0.21375843756101556`, \ -0.3458684173557953, 0.13210997979477979`}, { 0.223621249994312, 0, 0.361826783097534}, { 0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, { 0.24466908566143497`, -0.17424272570936228`, 0.2881949698157503}, { 0.3458684173557953, -0.13210997979477979`, 0.21375843756101556`}, { 0, 0.361826783097534, -0.223621249994312}, { 0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, { 0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, { 0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, \ {-0.223621249994312, 0, -0.361826783097534}, {-0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, \ {-0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, \ {-0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, { 0, 0.361826783097534, 0.223621249994312}, {-0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}, {-0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, { 0, 0.22164017088719903`, 0.352357012442246}, {-0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, {-0.4240725185716702, 0, 0.03388653831996497}, {-0.36002514353184917`, \ -0.10363082970464206`, 0.20156474306442804`}, {-0.3958828965965613, \ -0.07042635995207269, 0.10768792678081102`}, {-0.352357012442246, 0, 0.22164017088719903`}, {-0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, { 0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, { 0, -0.22164017088719903`, 0.352357012442246}, { 0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, { 0.4240725185716702, 0, 0.03388653831996497}, { 0.3958828965965613, -0.07042635995207269, 0.10768792678081102`}, { 0.352357012442246, 0, 0.22164017088719903`}, { 0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, { 0.36002514353184917`, -0.10363082970464206`, 0.20156474306442804`}, {0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, {-0.20156474306442804`, \ -0.36002514353184917`, -0.10363082970464206`}, {-0.10768792678081102`, \ -0.3958828965965613, -0.07042635995207269}, {-0.21375843756101556`, \ -0.3458684173557953, -0.13210997979477979`}, { 0.223621249994312, 0, -0.361826783097534}, { 0.24466908566143497`, -0.17424272570936228`, \ -0.2881949698157503}, { 0.3261386052118842, -0.15846040046742113`, \ -0.22250777550724216`}, { 0.3458684173557953, -0.13210997979477979`, \ -0.21375843756101556`}, {0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, {0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, { 0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {-0.223621249994312, 0, 0.361826783097534}, {-0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, {-0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, {-0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {-0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, { 0, 0.22164017088719903`, -0.352357012442246}, \ {-0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, \ {-0.4240725185716702, 0, -0.03388653831996497}, {-0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, \ {-0.352357012442246, 0, -0.22164017088719903`}, {-0.36002514353184917`, \ -0.10363082970464206`, -0.20156474306442804`}, {-0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, \ {-0.3958828965965613, -0.07042635995207269, -0.10768792678081102`}, { 0.03388653831996497, -0.4240725185716702, 0}, { 0, -0.4275168751220311, 0}, { 0.10768792678081102`, -0.3958828965965613, \ -0.07042635995207269}, {0.361826783097534, -0.223621249994312, 0}, { 0.4275168751220311, 0, 0}, {-0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, {-0.24466908566143497`, \ -0.17424272570936228`, 0.2881949698157503}, {-0.2881949698157503, \ -0.24466908566143497`, 0.17424272570936228`}, {-0.3261386052118842, \ -0.15846040046742113`, 0.22250777550724216`}, {-0.22250777550724216`, \ -0.3261386052118842, 0.15846040046742113`}, {-0.17424272570936228`, \ -0.2881949698157503, 0.24466908566143497`}, {0, 0, 0.4275168751220311}, { 0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, { 0, 0.03388653831996497, 0.4240725185716702}, { 0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, { 0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, { 0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, { 0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, { 0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, { 0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, { 0, 0, -0.4275168751220311}, {-0.07042635995207269, \ -0.10768792678081102`, -0.3958828965965613}, { 0, -0.03388653831996497, -0.4240725185716702}, \ {-0.03388653831996497, 0.4240725185716702, 0}, { 0, 0.4275168751220311, 0}, {-0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, {-0.361826783097534, 0.223621249994312, 0}, {-0.4275168751220311, 0, 0}, {-0.2881949698157503, -0.24466908566143497`, \ -0.17424272570936228`}, {-0.3261386052118842, -0.15846040046742113`, \ -0.22250777550724216`}, {-0.361826783097534, -0.223621249994312, 0}, {-0.3458684173557953, -0.13210997979477979`, \ -0.21375843756101556`}, { 0.22250777550724216`, -0.3261386052118842, \ -0.15846040046742113`}, { 0.17424272570936228`, -0.2881949698157503, \ -0.24466908566143497`}, { 0.21375843756101556`, -0.3458684173557953, \ -0.13210997979477979`}, {-0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, { 0.22250777550724216`, -0.3261386052118842, 0.15846040046742113`}, { 0.17424272570936228`, -0.2881949698157503, 0.24466908566143497`}, { 0.2881949698157503, -0.24466908566143497`, 0.17424272570936228`}, { 0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, {0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, \ {-0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, \ {-0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, \ {-0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, \ {-0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, { 0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, {0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, { 0.361826783097534, 0.223621249994312, 0}, { 0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {-0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {-0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, {-0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {-0.15846040046742113`, \ -0.22250777550724216`, -0.3261386052118842}, {-0.24466908566143497`, \ -0.17424272570936228`, -0.2881949698157503}, {-0.17424272570936228`, \ -0.2881949698157503, -0.24466908566143497`}, {-0.22250777550724216`, \ -0.3261386052118842, -0.15846040046742113`}, {0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, { 0, 0.03388653831996497, -0.4240725185716702}, { 0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, {-0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, { 0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, {0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, { 0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, {0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {-0.07042635995207269, \ -0.10768792678081102`, 0.3958828965965613}, { 0, -0.03388653831996497, 0.4240725185716702}, {-0.13210997979477979`, \ -0.21375843756101556`, -0.3458684173557953}, { 0.2881949698157503, -0.24466908566143497`, \ -0.17424272570936228`}, { 0.15846040046742113`, -0.22250777550724216`, \ -0.3261386052118842}, {-0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, { 0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, { 0.21375843756101556`, -0.3458684173557953, 0.13210997979477979`}, {-0.3458684173557953, \ -0.13210997979477979`, 0.21375843756101556`}, {0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, {-0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, {-0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, {-0.22164017088719903`, \ -0.352357012442246, 0}, {-0.03388653831996497, -0.4240725185716702, 0}, {-0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, {0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, { 0.22164017088719903`, 0.352357012442246, 0}, { 0.03388653831996497, 0.4240725185716702, 0}, { 0.22164017088719903`, -0.352357012442246, 0}, { 0.20156474306442804`, -0.36002514353184917`, 0.10363082970464206`}, { 0.07042635995207269, -0.10768792678081102`, 0.3958828965965613}, {-0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, \ {-0.22164017088719903`, 0.352357012442246, 0}, {-0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, { 0.07042635995207269, -0.10768792678081102`, \ -0.3958828965965613}, {-0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, { 0.20156474306442804`, -0.36002514353184917`, \ -0.10363082970464206`}, {-0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, {-0.10363082970464206`, \ -0.20156474306442804`, -0.36002514353184917`}, {0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}}], {{52, 10, 5, 72}, {10, 52, 49, 9}, {41, 72, 73, 40}, {11, 127, 152, 140}, { 65, 67, 26, 23}, {67, 64, 95, 26}, {23, 25, 113, 62}, {5, 10, 9, 7, 8, 6}, {72, 5, 6, 73}, {73, 6, 8, 116}, {66, 65, 23, 100}, {68, 66, 100, 99}, {123, 121, 135, 1}, {135, 121, 122, 23}, {65, 66, 68, 63, 64, 67}, {68, 99, 96, 63}, {95, 64, 63, 96}, {99, 14, 78, 76}, {97, 124, 48, 99}, {123, 1, 48, 124}, { 40, 73, 116, 45}, {41, 40, 45, 43, 42, 44}, {1, 71, 69, 70}, { 127, 11, 70, 69}, {140, 152, 151, 72}, {49, 52, 51, 50}, {52, 72, 136, 51}, {50, 51, 136, 101, 102, 137}, {102, 101, 103, 1}, {136, 72, 103, 101}, {7, 9, 49, 139}, {8, 7, 139, 116}, { 23, 62, 60, 154}, {23, 154, 126, 89}, {83, 84, 49, 109}, {124, 97, 98, 122, 121, 123}, {99, 100, 98, 97}, {100, 23, 122, 98}, {95, 96, 32, 31}, {96, 99, 34, 32}, {104, 56, 75, 74}, { 35, 33, 141, 56}, {34, 99, 141, 33}, {56, 160, 28, 29}, {142, 15, 130, 129}, {142, 129, 131, 27}, {53, 54, 27, 55}, {104, 74, 79, 11}, {78, 14, 11, 79}, {70, 11, 12, 146}, {11, 14, 13, 12}, {16, 107, 72, 18}, {72, 41, 44, 18}, {17, 16, 18, 15}, { 44, 42, 15, 18}, {140, 72, 107, 105}, {11, 140, 105, 106}, { 16, 17, 108, 106, 105, 107}, {17, 15, 39, 108}, {11, 106, 108, 39}, {39, 15, 153, 37}, {11, 39, 37, 38}, {2, 157, 49, 3}, { 50, 137, 3, 49}, {4, 2, 3, 1}, {137, 102, 1, 3}, {152, 127, 69, 71, 159, 151}, {71, 1, 103, 159}, {72, 151, 159, 103}, { 62, 113, 111, 19}, {148, 61, 19, 109}, {60, 62, 19, 61}, {154, 60, 61, 148, 125, 126}, {109, 49, 125, 148}, {89, 126, 125, 49}, {49, 157, 91, 89}, {23, 89, 91, 90}, {2, 4, 161, 90, 91, 157}, {1, 135, 161, 4}, {135, 23, 90, 161}, {76, 78, 79, 74, 75, 77}, {99, 76, 77, 141}, {75, 56, 141, 77}, {53, 55, 116, 149}, {160, 56, 80, 82}, {82, 80, 15, 81}, {15, 142, 162, 81}, {150, 20, 19, 93}, {27, 54, 150, 93}, {32, 34, 33, 35, 36, 31}, {27, 119, 144, 29}, {119, 27, 120, 118}, {48, 1, 47, 46}, {1, 70, 146, 47}, {146, 12, 13, 145, 46, 47}, {99, 48, 46, 145}, {14, 99, 145, 13}, {153, 15, 80, 134}, {80, 56, 133, 134}, {38, 37, 153, 134, 133, 147}, {11, 38, 147, 104}, {56, 104, 147, 133}, {23, 26, 24, 25}, {26, 95, 112, 24}, {113, 25, 24, 112, 110, 111}, {112, 95, 138, 110}, {19, 111, 110, 138}, {138, 95, 155, 156}, {155, 95, 120, 158}, {42, 43, 117, 15}, {130, 15, 117, 115}, {43, 45, 116, 117}, {115, 117, 116, 114}, {28, 160, 82, 81, 162, 30}, {29, 28, 30, 27}, {142, 27, 30, 162}, {35, 56, 59, 36}, {95, 31, 36, 59}, {59, 56, 57, 58}, {56, 29, 144, 57}, {144, 119, 118, 143, 58, 57}, {95, 59, 58, 143}, {118, 120, 95, 143}, {93, 19, 128, 92}, {19, 138, 156, 128}, {156, 155, 158, 94, 92, 128}, {27, 93, 92, 94}, { 120, 27, 94, 158}, {129, 130, 115, 114, 132, 131}, {27, 131, 132, 55}, {116, 55, 132, 114}, {139, 49, 84, 86}, {83, 109, 19, 88}, {88, 19, 22, 87}, {54, 53, 149, 21, 20, 150}, {19, 20, 21, 22}, {149, 116, 22, 21}, {84, 83, 88, 87, 85, 86}, { 87, 22, 116, 85}, {116, 139, 86, 85}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["162", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["140", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, {0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, {0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}}, {{52, 10, 5, 72}, {10, 52, 49, 9}, {41, 72, 73, 40}, {11, 127, 152, 140}, {65, 67, 26, 23}, {67, 64, 95, 26}, {23, 25, 113, 62}, {5, 10, 9, 7, 8, 6}, {72, 5, 6, 73}, {73, 6, 8, 116}, {66, 65, 23, 100}, {68, 66, 100, 99}, {123, 121, 135, 1}, {135, 121, 122, 23}, {65, 66, 68, 63, 64, 67}, {68, 99, 96, 63}, {95, 64, 63, 96}, {99, 14, 78, 76}, {97, 124, 48, 99}, {123, 1, 48, 124}, {40, 73, 116, 45}, {41, 40, 45, 43, 42, 44}, {1, 71, 69, 70}, {127, 11, 70, 69}, {140, 152, 151, 72}, {49, 52, 51, 50}, {52, 72, 136, 51}, { 50, 51, 136, 101, 102, 137}, {102, 101, 103, 1}, {136, 72, 103, 101}, {7, 9, 49, 139}, {8, 7, 139, 116}, {23, 62, 60, 154}, {23, 154, 126, 89}, {83, 84, 49, 109}, {124, 97, 98, 122, 121, 123}, {99, 100, 98, 97}, {100, 23, 122, 98}, {95, 96, 32, 31}, {96, 99, 34, 32}, {104, 56, 75, 74}, {35, 33, 141, 56}, {34, 99, 141, 33}, {56, 160, 28, 29}, {142, 15, 130, 129}, {142, 129, 131, 27}, {53, 54, 27, 55}, {104, 74, 79, 11}, {78, 14, 11, 79}, { 70, 11, 12, 146}, {11, 14, 13, 12}, {16, 107, 72, 18}, {72, 41, 44, 18}, { 17, 16, 18, 15}, {44, 42, 15, 18}, {140, 72, 107, 105}, {11, 140, 105, 106}, {16, 17, 108, 106, 105, 107}, {17, 15, 39, 108}, {11, 106, 108, 39}, {39, 15, 153, 37}, {11, 39, 37, 38}, {2, 157, 49, 3}, {50, 137, 3, 49}, {4, 2, 3, 1}, {137, 102, 1, 3}, {152, 127, 69, 71, 159, 151}, {71, 1, 103, 159}, {72, 151, 159, 103}, {62, 113, 111, 19}, {148, 61, 19, 109}, { 60, 62, 19, 61}, {154, 60, 61, 148, 125, 126}, {109, 49, 125, 148}, {89, 126, 125, 49}, {49, 157, 91, 89}, {23, 89, 91, 90}, {2, 4, 161, 90, 91, 157}, {1, 135, 161, 4}, {135, 23, 90, 161}, {76, 78, 79, 74, 75, 77}, {99, 76, 77, 141}, {75, 56, 141, 77}, {53, 55, 116, 149}, {160, 56, 80, 82}, { 82, 80, 15, 81}, {15, 142, 162, 81}, {150, 20, 19, 93}, {27, 54, 150, 93}, {32, 34, 33, 35, 36, 31}, {27, 119, 144, 29}, {119, 27, 120, 118}, { 48, 1, 47, 46}, {1, 70, 146, 47}, {146, 12, 13, 145, 46, 47}, {99, 48, 46, 145}, {14, 99, 145, 13}, {153, 15, 80, 134}, {80, 56, 133, 134}, {38, 37, 153, 134, 133, 147}, {11, 38, 147, 104}, {56, 104, 147, 133}, {23, 26, 24, 25}, {26, 95, 112, 24}, {113, 25, 24, 112, 110, 111}, {112, 95, 138, 110}, {19, 111, 110, 138}, {138, 95, 155, 156}, {155, 95, 120, 158}, {42, 43, 117, 15}, {130, 15, 117, 115}, {43, 45, 116, 117}, {115, 117, 116, 114}, {28, 160, 82, 81, 162, 30}, {29, 28, 30, 27}, {142, 27, 30, 162}, { 35, 56, 59, 36}, {95, 31, 36, 59}, {59, 56, 57, 58}, {56, 29, 144, 57}, { 144, 119, 118, 143, 58, 57}, {95, 59, 58, 143}, {118, 120, 95, 143}, {93, 19, 128, 92}, {19, 138, 156, 128}, {156, 155, 158, 94, 92, 128}, {27, 93, 92, 94}, {120, 27, 94, 158}, {129, 130, 115, 114, 132, 131}, {27, 131, 132, 55}, {116, 55, 132, 114}, {139, 49, 84, 86}, {83, 109, 19, 88}, {88, 19, 22, 87}, {54, 53, 149, 21, 20, 150}, {19, 20, 21, 22}, {149, 116, 22, 21}, {84, 83, 88, 87, 85, 86}, {87, 22, 116, 85}, {116, 139, 86, 85}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[49]=",ExpressionUUID->"0DB6A029-8CF6-4813-9CC1-A859931DC84E"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".5", "]"}], ",", "hull"}], "}"}], ",", RowBox[{"Point", "[", "inside", "]"}]}], "}"}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[50]:=",ExpressionUUID->"E3EE621E-9723-48B9-911E-2C6F72A8AF86"], Cell[BoxData[ Graphics3DBox[{ {Opacity[0.5], PolyhedronBox[ NCache[{{0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}}, {{ 0, -0.361826783097534, -0.223621249994312}, { 0.10363082970464206`, -0.20156474306442804`, -0.36002514353184917`}, { 0.13210997979477979`, -0.21375843756101556`, -0.3458684173557953}, { 0, -0.22164017088719903`, -0.352357012442246}, { 0.3958828965965613, -0.07042635995207269, -0.10768792678081102`}, { 0.4240725185716702, 0, -0.03388653831996497}, {0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, {0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, { 0.352357012442246, 0, -0.22164017088719903`}, { 0.36002514353184917`, -0.10363082970464206`, -0.20156474306442804`}, { 0, -0.361826783097534, 0.223621249994312}, {-0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, {-0.20156474306442804`, -0.36002514353184917`, 0.10363082970464206`}, {-0.21375843756101556`, -0.3458684173557953, 0.13210997979477979`}, {0.223621249994312, 0, 0.361826783097534}, { 0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, { 0.24466908566143497`, -0.17424272570936228`, 0.2881949698157503}, { 0.3458684173557953, -0.13210997979477979`, 0.21375843756101556`}, { 0, 0.361826783097534, -0.223621249994312}, {0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, {0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, {0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, {-0.223621249994312, 0, -0.361826783097534}, {-0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, {-0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, {-0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, { 0, 0.361826783097534, 0.223621249994312}, {-0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}, {-0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, { 0, 0.22164017088719903`, 0.352357012442246}, {-0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, {-0.4240725185716702, 0, 0.03388653831996497}, {-0.36002514353184917`, -0.10363082970464206`, 0.20156474306442804`}, {-0.3958828965965613, -0.07042635995207269, 0.10768792678081102`}, {-0.352357012442246, 0, 0.22164017088719903`}, {-0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, {0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, {0, -0.22164017088719903`, 0.352357012442246}, { 0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, { 0.4240725185716702, 0, 0.03388653831996497}, { 0.3958828965965613, -0.07042635995207269, 0.10768792678081102`}, { 0.352357012442246, 0, 0.22164017088719903`}, {0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, { 0.36002514353184917`, -0.10363082970464206`, 0.20156474306442804`}, { 0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, {-0.20156474306442804`, -0.36002514353184917`, \ -0.10363082970464206`}, {-0.10768792678081102`, -0.3958828965965613, \ -0.07042635995207269}, {-0.21375843756101556`, -0.3458684173557953, \ -0.13210997979477979`}, {0.223621249994312, 0, -0.361826783097534}, { 0.24466908566143497`, -0.17424272570936228`, -0.2881949698157503}, { 0.3261386052118842, -0.15846040046742113`, -0.22250777550724216`}, { 0.3458684173557953, -0.13210997979477979`, -0.21375843756101556`}, { 0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, { 0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, { 0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {-0.223621249994312, 0, 0.361826783097534}, {-0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, {-0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, {-0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {-0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, { 0, 0.22164017088719903`, -0.352357012442246}, {-0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, {-0.4240725185716702, 0, -0.03388653831996497}, {-0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, {-0.352357012442246, 0, -0.22164017088719903`}, {-0.36002514353184917`, \ -0.10363082970464206`, -0.20156474306442804`}, {-0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, {-0.3958828965965613, \ -0.07042635995207269, -0.10768792678081102`}, { 0.03388653831996497, -0.4240725185716702, 0}, { 0, -0.4275168751220311, 0}, { 0.10768792678081102`, -0.3958828965965613, -0.07042635995207269}, { 0.361826783097534, -0.223621249994312, 0}, { 0.4275168751220311, 0, 0}, {-0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, {-0.24466908566143497`, -0.17424272570936228`, 0.2881949698157503}, {-0.2881949698157503, -0.24466908566143497`, 0.17424272570936228`}, {-0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, {-0.22250777550724216`, -0.3261386052118842, 0.15846040046742113`}, {-0.17424272570936228`, -0.2881949698157503, 0.24466908566143497`}, {0, 0, 0.4275168751220311}, { 0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, { 0, 0.03388653831996497, 0.4240725185716702}, {0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, {0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, {0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, {0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, {0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, {0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, { 0, 0, -0.4275168751220311}, {-0.07042635995207269, \ -0.10768792678081102`, -0.3958828965965613}, { 0, -0.03388653831996497, -0.4240725185716702}, {-0.03388653831996497, 0.4240725185716702, 0}, { 0, 0.4275168751220311, 0}, {-0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, {-0.361826783097534, 0.223621249994312, 0}, {-0.4275168751220311, 0, 0}, {-0.2881949698157503, -0.24466908566143497`, \ -0.17424272570936228`}, {-0.3261386052118842, -0.15846040046742113`, \ -0.22250777550724216`}, {-0.361826783097534, -0.223621249994312, 0}, {-0.3458684173557953, -0.13210997979477979`, \ -0.21375843756101556`}, { 0.22250777550724216`, -0.3261386052118842, -0.15846040046742113`}, { 0.17424272570936228`, -0.2881949698157503, -0.24466908566143497`}, { 0.21375843756101556`, -0.3458684173557953, -0.13210997979477979`}, \ {-0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, { 0.22250777550724216`, -0.3261386052118842, 0.15846040046742113`}, { 0.17424272570936228`, -0.2881949698157503, 0.24466908566143497`}, { 0.2881949698157503, -0.24466908566143497`, 0.17424272570936228`}, { 0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, { 0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, {-0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, {-0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, {-0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, {-0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, {0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, {0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, { 0.361826783097534, 0.223621249994312, 0}, {0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {-0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {-0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, {-0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {-0.15846040046742113`, -0.22250777550724216`, \ -0.3261386052118842}, {-0.24466908566143497`, -0.17424272570936228`, \ -0.2881949698157503}, {-0.17424272570936228`, -0.2881949698157503, \ -0.24466908566143497`}, {-0.22250777550724216`, -0.3261386052118842, \ -0.15846040046742113`}, {0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, { 0, 0.03388653831996497, -0.4240725185716702}, { 0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, {-0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, {0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, {0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, {0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, {0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {-0.07042635995207269, -0.10768792678081102`, 0.3958828965965613}, { 0, -0.03388653831996497, 0.4240725185716702}, {-0.13210997979477979`, -0.21375843756101556`, \ -0.3458684173557953}, { 0.2881949698157503, -0.24466908566143497`, -0.17424272570936228`}, { 0.15846040046742113`, -0.22250777550724216`, -0.3261386052118842}, \ {-0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, { 0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, { 0.21375843756101556`, -0.3458684173557953, 0.13210997979477979`}, {-0.3458684173557953, -0.13210997979477979`, 0.21375843756101556`}, {0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, {-0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, {-0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, {-0.22164017088719903`, -0.352357012442246, 0}, {-0.03388653831996497, -0.4240725185716702, 0}, {-0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, {0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, { 0.22164017088719903`, 0.352357012442246, 0}, { 0.03388653831996497, 0.4240725185716702, 0}, { 0.22164017088719903`, -0.352357012442246, 0}, { 0.20156474306442804`, -0.36002514353184917`, 0.10363082970464206`}, { 0.07042635995207269, -0.10768792678081102`, 0.3958828965965613}, {-0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, {-0.22164017088719903`, 0.352357012442246, 0}, {-0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, { 0.07042635995207269, -0.10768792678081102`, -0.3958828965965613}, \ {-0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, { 0.20156474306442804`, -0.36002514353184917`, -0.10363082970464206`}, \ {-0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, {-0.10363082970464206`, -0.20156474306442804`, \ -0.36002514353184917`}, {0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}}], {{52, 10, 5, 72}, {10, 52, 49, 9}, {41, 72, 73, 40}, {11, 127, 152, 140}, {65, 67, 26, 23}, {67, 64, 95, 26}, {23, 25, 113, 62}, {5, 10, 9, 7, 8, 6}, {72, 5, 6, 73}, {73, 6, 8, 116}, {66, 65, 23, 100}, {68, 66, 100, 99}, {123, 121, 135, 1}, {135, 121, 122, 23}, {65, 66, 68, 63, 64, 67}, {68, 99, 96, 63}, {95, 64, 63, 96}, {99, 14, 78, 76}, {97, 124, 48, 99}, {123, 1, 48, 124}, {40, 73, 116, 45}, { 41, 40, 45, 43, 42, 44}, {1, 71, 69, 70}, {127, 11, 70, 69}, {140, 152, 151, 72}, {49, 52, 51, 50}, {52, 72, 136, 51}, {50, 51, 136, 101, 102, 137}, {102, 101, 103, 1}, {136, 72, 103, 101}, {7, 9, 49, 139}, {8, 7, 139, 116}, {23, 62, 60, 154}, {23, 154, 126, 89}, {83, 84, 49, 109}, { 124, 97, 98, 122, 121, 123}, {99, 100, 98, 97}, {100, 23, 122, 98}, {95, 96, 32, 31}, {96, 99, 34, 32}, {104, 56, 75, 74}, {35, 33, 141, 56}, { 34, 99, 141, 33}, {56, 160, 28, 29}, {142, 15, 130, 129}, {142, 129, 131, 27}, {53, 54, 27, 55}, {104, 74, 79, 11}, {78, 14, 11, 79}, {70, 11, 12, 146}, {11, 14, 13, 12}, {16, 107, 72, 18}, {72, 41, 44, 18}, { 17, 16, 18, 15}, {44, 42, 15, 18}, {140, 72, 107, 105}, {11, 140, 105, 106}, {16, 17, 108, 106, 105, 107}, {17, 15, 39, 108}, {11, 106, 108, 39}, {39, 15, 153, 37}, {11, 39, 37, 38}, {2, 157, 49, 3}, {50, 137, 3, 49}, {4, 2, 3, 1}, {137, 102, 1, 3}, {152, 127, 69, 71, 159, 151}, {71, 1, 103, 159}, {72, 151, 159, 103}, {62, 113, 111, 19}, {148, 61, 19, 109}, {60, 62, 19, 61}, {154, 60, 61, 148, 125, 126}, {109, 49, 125, 148}, {89, 126, 125, 49}, {49, 157, 91, 89}, {23, 89, 91, 90}, {2, 4, 161, 90, 91, 157}, {1, 135, 161, 4}, {135, 23, 90, 161}, {76, 78, 79, 74, 75, 77}, {99, 76, 77, 141}, {75, 56, 141, 77}, {53, 55, 116, 149}, { 160, 56, 80, 82}, {82, 80, 15, 81}, {15, 142, 162, 81}, {150, 20, 19, 93}, {27, 54, 150, 93}, {32, 34, 33, 35, 36, 31}, {27, 119, 144, 29}, { 119, 27, 120, 118}, {48, 1, 47, 46}, {1, 70, 146, 47}, {146, 12, 13, 145, 46, 47}, {99, 48, 46, 145}, {14, 99, 145, 13}, {153, 15, 80, 134}, {80, 56, 133, 134}, {38, 37, 153, 134, 133, 147}, {11, 38, 147, 104}, {56, 104, 147, 133}, {23, 26, 24, 25}, {26, 95, 112, 24}, {113, 25, 24, 112, 110, 111}, {112, 95, 138, 110}, {19, 111, 110, 138}, {138, 95, 155, 156}, {155, 95, 120, 158}, {42, 43, 117, 15}, {130, 15, 117, 115}, {43, 45, 116, 117}, {115, 117, 116, 114}, {28, 160, 82, 81, 162, 30}, {29, 28, 30, 27}, {142, 27, 30, 162}, {35, 56, 59, 36}, {95, 31, 36, 59}, {59, 56, 57, 58}, {56, 29, 144, 57}, {144, 119, 118, 143, 58, 57}, {95, 59, 58, 143}, {118, 120, 95, 143}, {93, 19, 128, 92}, {19, 138, 156, 128}, {156, 155, 158, 94, 92, 128}, {27, 93, 92, 94}, {120, 27, 94, 158}, {129, 130, 115, 114, 132, 131}, {27, 131, 132, 55}, {116, 55, 132, 114}, {139, 49, 84, 86}, {83, 109, 19, 88}, {88, 19, 22, 87}, { 54, 53, 149, 21, 20, 150}, {19, 20, 21, 22}, {149, 116, 22, 21}, {84, 83, 88, 87, 85, 86}, {87, 22, 116, 85}, {116, 139, 86, 85}}]}, Point3DBox[ NCache[{{0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[ 1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[ 1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[ 1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[ 1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[ 1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[ 1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[ 1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[ 1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[ 1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}}, {{ 0, -0.361826783097534, -0.223621249994312}, { 0.10363082970464206`, -0.20156474306442804`, -0.36002514353184917`}, { 0.13210997979477979`, -0.21375843756101556`, -0.3458684173557953}, { 0, -0.22164017088719903`, -0.352357012442246}, { 0.3958828965965613, -0.07042635995207269, -0.10768792678081102`}, { 0.4240725185716702, 0, -0.03388653831996497}, {0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, {0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, { 0.352357012442246, 0, -0.22164017088719903`}, { 0.36002514353184917`, -0.10363082970464206`, -0.20156474306442804`}, { 0, -0.361826783097534, 0.223621249994312}, {-0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, {-0.20156474306442804`, -0.36002514353184917`, 0.10363082970464206`}, {-0.21375843756101556`, -0.3458684173557953, 0.13210997979477979`}, {0.223621249994312, 0, 0.361826783097534}, { 0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, { 0.24466908566143497`, -0.17424272570936228`, 0.2881949698157503}, { 0.3458684173557953, -0.13210997979477979`, 0.21375843756101556`}, { 0, 0.361826783097534, -0.223621249994312}, {0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, {0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, {0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, {-0.223621249994312, 0, -0.361826783097534}, {-0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, {-0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, {-0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, { 0, 0.361826783097534, 0.223621249994312}, {-0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}, {-0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, { 0, 0.22164017088719903`, 0.352357012442246}, {-0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, {-0.4240725185716702, 0, 0.03388653831996497}, {-0.36002514353184917`, -0.10363082970464206`, 0.20156474306442804`}, {-0.3958828965965613, -0.07042635995207269, 0.10768792678081102`}, {-0.352357012442246, 0, 0.22164017088719903`}, {-0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, {0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, {0, -0.22164017088719903`, 0.352357012442246}, { 0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, { 0.4240725185716702, 0, 0.03388653831996497}, { 0.3958828965965613, -0.07042635995207269, 0.10768792678081102`}, { 0.352357012442246, 0, 0.22164017088719903`}, {0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, { 0.36002514353184917`, -0.10363082970464206`, 0.20156474306442804`}, { 0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, {-0.20156474306442804`, -0.36002514353184917`, \ -0.10363082970464206`}, {-0.10768792678081102`, -0.3958828965965613, \ -0.07042635995207269}, {-0.21375843756101556`, -0.3458684173557953, \ -0.13210997979477979`}, {0.223621249994312, 0, -0.361826783097534}, { 0.24466908566143497`, -0.17424272570936228`, -0.2881949698157503}, { 0.3261386052118842, -0.15846040046742113`, -0.22250777550724216`}, { 0.3458684173557953, -0.13210997979477979`, -0.21375843756101556`}, { 0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, { 0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, { 0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {-0.223621249994312, 0, 0.361826783097534}, {-0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, {-0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, {-0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {-0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, { 0, 0.22164017088719903`, -0.352357012442246}, {-0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, {-0.4240725185716702, 0, -0.03388653831996497}, {-0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, {-0.352357012442246, 0, -0.22164017088719903`}, {-0.36002514353184917`, \ -0.10363082970464206`, -0.20156474306442804`}, {-0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, {-0.3958828965965613, \ -0.07042635995207269, -0.10768792678081102`}, { 0.03388653831996497, -0.4240725185716702, 0}, { 0, -0.4275168751220311, 0}, { 0.10768792678081102`, -0.3958828965965613, -0.07042635995207269}, { 0.361826783097534, -0.223621249994312, 0}, { 0.4275168751220311, 0, 0}, {-0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, {-0.24466908566143497`, -0.17424272570936228`, 0.2881949698157503}, {-0.2881949698157503, -0.24466908566143497`, 0.17424272570936228`}, {-0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, {-0.22250777550724216`, -0.3261386052118842, 0.15846040046742113`}, {-0.17424272570936228`, -0.2881949698157503, 0.24466908566143497`}, {0, 0, 0.4275168751220311}, {0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, { 0, 0.03388653831996497, 0.4240725185716702}, {0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, {0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, {0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, {0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, {0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, {0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, { 0, 0, -0.4275168751220311}, {-0.07042635995207269, \ -0.10768792678081102`, -0.3958828965965613}, { 0, -0.03388653831996497, -0.4240725185716702}, {-0.03388653831996497, 0.4240725185716702, 0}, { 0, 0.4275168751220311, 0}, {-0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, {-0.361826783097534, 0.223621249994312, 0}, {-0.4275168751220311, 0, 0}, {-0.2881949698157503, -0.24466908566143497`, \ -0.17424272570936228`}, {-0.3261386052118842, -0.15846040046742113`, \ -0.22250777550724216`}, {-0.361826783097534, -0.223621249994312, 0}, {-0.3458684173557953, -0.13210997979477979`, \ -0.21375843756101556`}, { 0.22250777550724216`, -0.3261386052118842, -0.15846040046742113`}, { 0.17424272570936228`, -0.2881949698157503, -0.24466908566143497`}, { 0.21375843756101556`, -0.3458684173557953, -0.13210997979477979`}, \ {-0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, { 0.22250777550724216`, -0.3261386052118842, 0.15846040046742113`}, { 0.17424272570936228`, -0.2881949698157503, 0.24466908566143497`}, { 0.2881949698157503, -0.24466908566143497`, 0.17424272570936228`}, { 0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, { 0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, {-0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, {-0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, {-0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, {-0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, {0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, {0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, { 0.361826783097534, 0.223621249994312, 0}, {0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {-0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {-0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, {-0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {-0.15846040046742113`, -0.22250777550724216`, \ -0.3261386052118842}, {-0.24466908566143497`, -0.17424272570936228`, \ -0.2881949698157503}, {-0.17424272570936228`, -0.2881949698157503, \ -0.24466908566143497`}, {-0.22250777550724216`, -0.3261386052118842, \ -0.15846040046742113`}, {0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, { 0, 0.03388653831996497, -0.4240725185716702}, { 0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, {-0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, {0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, {0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, {0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, {0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {-0.07042635995207269, -0.10768792678081102`, 0.3958828965965613}, { 0, -0.03388653831996497, 0.4240725185716702}, {-0.13210997979477979`, -0.21375843756101556`, \ -0.3458684173557953}, { 0.2881949698157503, -0.24466908566143497`, -0.17424272570936228`}, { 0.15846040046742113`, -0.22250777550724216`, -0.3261386052118842}, \ {-0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, { 0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, { 0.21375843756101556`, -0.3458684173557953, 0.13210997979477979`}, {-0.3458684173557953, -0.13210997979477979`, 0.21375843756101556`}, {0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, {-0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, {-0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, {-0.22164017088719903`, -0.352357012442246, 0}, {-0.03388653831996497, -0.4240725185716702, 0}, {-0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, {0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, { 0.22164017088719903`, 0.352357012442246, 0}, { 0.03388653831996497, 0.4240725185716702, 0}, { 0.22164017088719903`, -0.352357012442246, 0}, { 0.20156474306442804`, -0.36002514353184917`, 0.10363082970464206`}, { 0.07042635995207269, -0.10768792678081102`, 0.3958828965965613}, {-0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, {-0.22164017088719903`, 0.352357012442246, 0}, {-0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, { 0.07042635995207269, -0.10768792678081102`, -0.3958828965965613}, \ {-0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, { 0.20156474306442804`, -0.36002514353184917`, -0.10363082970464206`}, \ {-0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, {-0.10363082970464206`, -0.20156474306442804`, \ -0.36002514353184917`}, {0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}}]]}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[50]=",ExpressionUUID->"2EAD61D7-5393-4382-A375-C8B66B8B8CC2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vexact", "=", "inside"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[51]:=",ExpressionUUID->"85FA4DC0-DE32-4C4D-8D78-FA54AEFB6472"], Cell[BoxData[ TemplateBox[<|"shortenedBoxes" -> TagBox[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.22362124999431198801858045044355094433`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13210997979477978603313204075675457716`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.21375843756101556292215093435515882447`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.34586841735579532119970735948299989104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3458684173557953}, "NumericalApproximation"], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.22164017088719903392224352955963695422`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.35235701244224598704946060934162233025`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.424\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42407251857167022057737426621315535158`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"668", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"428", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4240725185716702}, "NumericalApproximation"], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.03388653831996497195477857644618779887`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"876", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4492", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9584", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.03388653831996497}, "NumericalApproximation"], Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.35235701244224598704946060934162233025`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.22164017088719903392224352955963695422`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22362124999431198801858045044355094433`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]]}], "}"}], ",", TemplateBox[{"138"}, "OutputSizeLimit`Skeleton"], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22164017088719903392224352955963695422`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.35235701244224598704946060934162233025`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.22164017088719903392224352955963695422`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.35235701244224598704946060934162233025`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]]}], "}"}]}], "}"}], Short[#, 8]& ], "line" -> 51, "sessionID" -> 21685216490520442858, "byteCount" -> 480288, "size" -> 8, "stored" -> False, "expr" -> Missing["NotAvailable", "NewSessionID"], "wrap" -> OutputSizeLimit`Defer, "version" -> 1|>, "OutputSizeLimitTemplate"]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[51]=",ExpressionUUID->"45620B68-32FD-48BF-B584-F28168E69728"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Exact interior", "Subsubsection",ExpressionUUID->"F325C4F3-6694-479B-B5A8-16C518BFE6DA"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"inthull", "=", RowBox[{"ConvexHullRegion", "[", RowBox[{"Union", "@", "vexact"}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[52]:=",ExpressionUUID->"78A01419-EB6B-456F-889A-E69E2EE0ADDE"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, {0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}}, {{ 45, 95, 147, 13}, {99, 49, 13, 151}, {53, 117, 141, 135}, {117, 59, 132, 141}, {135, 67, 125, 157}, {73, 17, 9, 21, 77, 3}, {9, 17, 135, 1}, {9, 1, 137, 21}, {17, 73, 155, 135}, {73, 3, 13, 155}, {132, 59, 103, 81}, {81, 103, 57, 131}, {117, 53, 115, 57, 103, 59}, {53, 135, 139, 115}, {131, 57, 115, 139}, {124, 30, 14, 156}, {124, 156, 136, 66}, {77, 21, 137, 159}, {3, 77, 159, 13}, {63, 134, 82, 105}, {105, 82, 133, 61}, {61, 133, 143, 119}, {22, 78, 160, 138}, {78, 4, 14, 160}, {134, 63, 121, 145}, {135, 157, 75, 19}, {1, 135, 19, 11}, {129, 71, 137, 161}, {54, 136, 142, 118}, {155, 13, 29, 123}, {135, 155, 123, 65}, {38, 108, 30, 124, 66, 88}, {66, 136, 140, 88}, {88, 140, 131, 38}, {147, 95, 25, 131}, {108, 38, 131, 148}, {131, 25, 96, 148}, {30, 108, 148, 14}, {45, 13, 7, 83}, {139, 135, 65, 87}, {131, 139, 87, 37}, {123, 29, 107, 37, 87, 65}, {13, 147, 107, 29}, {147, 131, 37, 107}, {22, 138, 2, 10}, {10, 2, 136, 18}, {4, 78, 22, 10, 18, 74}, { 156, 14, 4, 74}, {136, 156, 74, 18}, {138, 56, 122, 146}, {136, 20, 76, 158}, {136, 2, 12, 20}, {13, 159, 127, 33}, {159, 137, 69, 127}, {105, 61, 119, 55, 121, 63}, {145, 121, 55, 137}, {119, 143, 137, 55}, {70, 92, 144, 138}, {144, 92, 42, 133}, {99, 151, 133, 27}, {42, 112, 152, 133}, {27, 133, 152, 100}, {112, 34, 14, 152}, {13, 49, 85, 7}, {92, 70, 128, 34, 112, 42}, {160, 14, 34, 128}, {138, 160, 128, 70}, {69, 137, 143, 91}, {143, 133, 41, 91}, {33, 127, 69, 91, 41, 111}, {151, 13, 33, 111}, {133, 151, 111, 41}, {157, 125, 31, 15}, {79, 5, 15, 161}, {75, 157, 15, 5}, {19, 75, 5, 79, 23, 11}, {161, 137, 23, 79}, { 137, 1, 11, 23}, {132, 40, 110, 150}, {131, 140, 116, 58}, {136, 54, 116, 140}, {118, 142, 132, 60}, {95, 45, 83, 46, 96, 25}, {148, 96, 46, 14}, {83, 7, 14, 46}, {144, 133, 62, 120}, {56, 138, 144, 120}, {146, 122, 64, 134}, {86, 51, 15, 8}, {110, 32, 16, 150}, {86, 8, 16, 52}, { 158, 76, 6, 16}, {76, 20, 12, 24, 80, 6}, {2, 138, 24, 12}, {49, 99, 27, 100, 50, 85}, {100, 152, 14, 50}, {7, 85, 50, 14}, {16, 32, 126, 158}, {136, 158, 126, 68}, {110, 40, 90, 68, 126, 32}, {40, 132, 142, 90}, {142, 136, 68, 90}, {54, 118, 60, 104, 58, 116}, {81, 131, 58, 104}, {132, 81, 104, 60}, {122, 56, 120, 62, 106, 64}, {133, 82, 106, 62}, {82, 134, 64, 106}, {102, 52, 16, 154}, {36, 114, 154, 16}, {28, 102, 154, 134}, {6, 80, 162, 16}, {130, 36, 16, 162}, {80, 24, 138, 162}, {154, 114, 44, 134}, {146, 134, 44, 94}, {36, 130, 72, 94, 44, 114}, {130, 162, 138, 72}, {138, 146, 94, 72}, {135, 141, 89, 67}, { 141, 132, 39, 89}, {125, 67, 89, 39, 109, 31}, {15, 31, 109, 149}, {39, 132, 149, 109}, {15, 149, 97, 47}, {8, 15, 47, 84}, {43, 113, 153, 134}, {129, 161, 15, 35}, {153, 113, 35, 15}, {149, 132, 26, 97}, {132, 150, 98, 26}, {84, 47, 97, 26, 98, 48}, {16, 8, 84, 48}, {150, 16, 48, 98}, {71, 129, 35, 113, 43, 93}, {137, 71, 93, 145}, {134, 145, 93, 43}, {52, 102, 28, 101, 51, 86}, {15, 51, 101, 153}, {28, 134, 153, 101}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}}, {{0, 0, -0.4275168751220311}, { 0, 0, 0.4275168751220311}, { 0, -0.22164017088719903`, -0.352357012442246}, { 0, -0.22164017088719903`, 0.352357012442246}, { 0, 0.22164017088719903`, -0.352357012442246}, { 0, 0.22164017088719903`, 0.352357012442246}, { 0, -0.4275168751220311, 0}, {0, 0.4275168751220311, 0}, { 0, -0.03388653831996497, -0.4240725185716702}, { 0, -0.03388653831996497, 0.4240725185716702}, { 0, 0.03388653831996497, -0.4240725185716702}, { 0, 0.03388653831996497, 0.4240725185716702}, { 0, -0.361826783097534, -0.223621249994312}, { 0, -0.361826783097534, 0.223621249994312}, { 0, 0.361826783097534, -0.223621249994312}, { 0, 0.361826783097534, 0.223621249994312}, {-0.07042635995207269, \ -0.10768792678081102`, -0.3958828965965613}, {-0.07042635995207269, \ -0.10768792678081102`, 0.3958828965965613}, {-0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, \ {-0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, { 0.07042635995207269, -0.10768792678081102`, \ -0.3958828965965613}, {0.07042635995207269, -0.10768792678081102`, 0.3958828965965613}, {0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, { 0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, {-0.22164017088719903`, \ -0.352357012442246, 0}, {-0.22164017088719903`, 0.352357012442246, 0}, { 0.22164017088719903`, -0.352357012442246, 0}, { 0.22164017088719903`, 0.352357012442246, 0}, {-0.17424272570936228`, -0.2881949698157503, \ -0.24466908566143497`}, {-0.17424272570936228`, -0.2881949698157503, 0.24466908566143497`}, {-0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, \ {-0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, { 0.17424272570936228`, -0.2881949698157503, \ -0.24466908566143497`}, {0.17424272570936228`, -0.2881949698157503, 0.24466908566143497`}, {0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, { 0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, {-0.2881949698157503, \ -0.24466908566143497`, -0.17424272570936228`}, {-0.2881949698157503, \ -0.24466908566143497`, 0.17424272570936228`}, {-0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, \ {-0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, { 0.2881949698157503, -0.24466908566143497`, \ -0.17424272570936228`}, {0.2881949698157503, -0.24466908566143497`, 0.17424272570936228`}, {0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, { 0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, {-0.10768792678081102`, \ -0.3958828965965613, -0.07042635995207269}, {-0.10768792678081102`, \ -0.3958828965965613, 0.07042635995207269}, {-0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, \ {-0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, { 0.10768792678081102`, -0.3958828965965613, \ -0.07042635995207269}, {0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, {0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, { 0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, {-0.352357012442246, 0, -0.22164017088719903`}, {-0.352357012442246, 0, 0.22164017088719903`}, { 0.352357012442246, 0, -0.22164017088719903`}, { 0.352357012442246, 0, 0.22164017088719903`}, {-0.3958828965965613, \ -0.07042635995207269, -0.10768792678081102`}, {-0.3958828965965613, \ -0.07042635995207269, 0.10768792678081102`}, {-0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, \ {-0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, { 0.3958828965965613, -0.07042635995207269, \ -0.10768792678081102`}, {0.3958828965965613, -0.07042635995207269, 0.10768792678081102`}, {0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, { 0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, {-0.24466908566143497`, \ -0.17424272570936228`, -0.2881949698157503}, {-0.24466908566143497`, \ -0.17424272570936228`, 0.2881949698157503}, {-0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, \ {-0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, { 0.24466908566143497`, -0.17424272570936228`, \ -0.2881949698157503}, {0.24466908566143497`, -0.17424272570936228`, 0.2881949698157503}, {0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, { 0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, {-0.10363082970464206`, \ -0.20156474306442804`, -0.36002514353184917`}, {-0.10363082970464206`, \ -0.20156474306442804`, 0.36002514353184917`}, {-0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, \ {-0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}, { 0.10363082970464206`, -0.20156474306442804`, \ -0.36002514353184917`}, {0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, {0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, { 0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}, {-0.4275168751220311, 0, 0}, { 0.4275168751220311, 0, 0}, {-0.03388653831996497, -0.4240725185716702, 0}, {-0.03388653831996497, 0.4240725185716702, 0}, { 0.03388653831996497, -0.4240725185716702, 0}, { 0.03388653831996497, 0.4240725185716702, 0}, {-0.3261386052118842, -0.15846040046742113`, \ -0.22250777550724216`}, {-0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, {-0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, \ {-0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, { 0.3261386052118842, -0.15846040046742113`, \ -0.22250777550724216`}, {0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, {0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, { 0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, {-0.20156474306442804`, \ -0.36002514353184917`, -0.10363082970464206`}, {-0.20156474306442804`, \ -0.36002514353184917`, 0.10363082970464206`}, {-0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, \ {-0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, { 0.20156474306442804`, -0.36002514353184917`, \ -0.10363082970464206`}, {0.20156474306442804`, -0.36002514353184917`, 0.10363082970464206`}, {0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, { 0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, {-0.4240725185716702, 0, -0.03388653831996497}, {-0.4240725185716702, 0, 0.03388653831996497}, { 0.4240725185716702, 0, -0.03388653831996497}, { 0.4240725185716702, 0, 0.03388653831996497}, {-0.22250777550724216`, \ -0.3261386052118842, -0.15846040046742113`}, {-0.22250777550724216`, \ -0.3261386052118842, 0.15846040046742113`}, {-0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, \ {-0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, { 0.22250777550724216`, -0.3261386052118842, \ -0.15846040046742113`}, {0.22250777550724216`, -0.3261386052118842, 0.15846040046742113`}, {0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, { 0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {-0.36002514353184917`, \ -0.10363082970464206`, -0.20156474306442804`}, {-0.36002514353184917`, \ -0.10363082970464206`, 0.20156474306442804`}, {-0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, \ {-0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, { 0.36002514353184917`, -0.10363082970464206`, \ -0.20156474306442804`}, {0.36002514353184917`, -0.10363082970464206`, 0.20156474306442804`}, {0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, { 0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, {-0.15846040046742113`, \ -0.22250777550724216`, -0.3261386052118842}, {-0.15846040046742113`, \ -0.22250777550724216`, 0.3261386052118842}, {-0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, \ {-0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, { 0.15846040046742113`, -0.22250777550724216`, \ -0.3261386052118842}, {0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, {0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, { 0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, {-0.361826783097534, -0.223621249994312, 0}, {-0.361826783097534, 0.223621249994312, 0}, { 0.361826783097534, -0.223621249994312, 0}, { 0.361826783097534, 0.223621249994312, 0}, {-0.223621249994312, 0, -0.361826783097534}, {-0.223621249994312, 0, 0.361826783097534}, { 0.223621249994312, 0, -0.361826783097534}, { 0.223621249994312, 0, 0.361826783097534}, {-0.3458684173557953, \ -0.13210997979477979`, -0.21375843756101556`}, {-0.3458684173557953, \ -0.13210997979477979`, 0.21375843756101556`}, {-0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, \ {-0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, { 0.3458684173557953, -0.13210997979477979`, \ -0.21375843756101556`}, {0.3458684173557953, -0.13210997979477979`, 0.21375843756101556`}, {0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, { 0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {-0.21375843756101556`, \ -0.3458684173557953, -0.13210997979477979`}, {-0.21375843756101556`, \ -0.3458684173557953, 0.13210997979477979`}, {-0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, \ {-0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, { 0.21375843756101556`, -0.3458684173557953, \ -0.13210997979477979`}, {0.21375843756101556`, -0.3458684173557953, 0.13210997979477979`}, {0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, { 0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {-0.13210997979477979`, \ -0.21375843756101556`, -0.3458684173557953}, {-0.13210997979477979`, \ -0.21375843756101556`, 0.3458684173557953}, {-0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, \ {-0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, { 0.13210997979477979`, -0.21375843756101556`, \ -0.3458684173557953}, {0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, {0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, { 0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}}], {{45, 95, 147, 13}, {99, 49, 13, 151}, {53, 117, 141, 135}, {117, 59, 132, 141}, {135, 67, 125, 157}, {73, 17, 9, 21, 77, 3}, {9, 17, 135, 1}, {9, 1, 137, 21}, {17, 73, 155, 135}, {73, 3, 13, 155}, {132, 59, 103, 81}, {81, 103, 57, 131}, {117, 53, 115, 57, 103, 59}, {53, 135, 139, 115}, {131, 57, 115, 139}, {124, 30, 14, 156}, {124, 156, 136, 66}, {77, 21, 137, 159}, {3, 77, 159, 13}, {63, 134, 82, 105}, {105, 82, 133, 61}, {61, 133, 143, 119}, {22, 78, 160, 138}, {78, 4, 14, 160}, {134, 63, 121, 145}, {135, 157, 75, 19}, {1, 135, 19, 11}, {129, 71, 137, 161}, {54, 136, 142, 118}, {155, 13, 29, 123}, {135, 155, 123, 65}, {38, 108, 30, 124, 66, 88}, {66, 136, 140, 88}, {88, 140, 131, 38}, { 147, 95, 25, 131}, {108, 38, 131, 148}, {131, 25, 96, 148}, { 30, 108, 148, 14}, {45, 13, 7, 83}, {139, 135, 65, 87}, {131, 139, 87, 37}, {123, 29, 107, 37, 87, 65}, {13, 147, 107, 29}, {147, 131, 37, 107}, {22, 138, 2, 10}, {10, 2, 136, 18}, {4, 78, 22, 10, 18, 74}, {156, 14, 4, 74}, {136, 156, 74, 18}, {138, 56, 122, 146}, {136, 20, 76, 158}, {136, 2, 12, 20}, {13, 159, 127, 33}, {159, 137, 69, 127}, {105, 61, 119, 55, 121, 63}, {145, 121, 55, 137}, {119, 143, 137, 55}, {70, 92, 144, 138}, {144, 92, 42, 133}, {99, 151, 133, 27}, {42, 112, 152, 133}, {27, 133, 152, 100}, {112, 34, 14, 152}, {13, 49, 85, 7}, {92, 70, 128, 34, 112, 42}, {160, 14, 34, 128}, { 138, 160, 128, 70}, {69, 137, 143, 91}, {143, 133, 41, 91}, { 33, 127, 69, 91, 41, 111}, {151, 13, 33, 111}, {133, 151, 111, 41}, {157, 125, 31, 15}, {79, 5, 15, 161}, {75, 157, 15, 5}, {19, 75, 5, 79, 23, 11}, {161, 137, 23, 79}, {137, 1, 11, 23}, {132, 40, 110, 150}, {131, 140, 116, 58}, {136, 54, 116, 140}, {118, 142, 132, 60}, {95, 45, 83, 46, 96, 25}, {148, 96, 46, 14}, {83, 7, 14, 46}, {144, 133, 62, 120}, {56, 138, 144, 120}, {146, 122, 64, 134}, {86, 51, 15, 8}, {110, 32, 16, 150}, {86, 8, 16, 52}, {158, 76, 6, 16}, {76, 20, 12, 24, 80, 6}, {2, 138, 24, 12}, {49, 99, 27, 100, 50, 85}, {100, 152, 14, 50}, {7, 85, 50, 14}, {16, 32, 126, 158}, {136, 158, 126, 68}, {110, 40, 90, 68, 126, 32}, {40, 132, 142, 90}, {142, 136, 68, 90}, {54, 118, 60, 104, 58, 116}, {81, 131, 58, 104}, {132, 81, 104, 60}, {122, 56, 120, 62, 106, 64}, {133, 82, 106, 62}, {82, 134, 64, 106}, {102, 52, 16, 154}, {36, 114, 154, 16}, {28, 102, 154, 134}, {6, 80, 162, 16}, {130, 36, 16, 162}, {80, 24, 138, 162}, {154, 114, 44, 134}, {146, 134, 44, 94}, {36, 130, 72, 94, 44, 114}, {130, 162, 138, 72}, {138, 146, 94, 72}, {135, 141, 89, 67}, {141, 132, 39, 89}, {125, 67, 89, 39, 109, 31}, {15, 31, 109, 149}, {39, 132, 149, 109}, {15, 149, 97, 47}, {8, 15, 47, 84}, {43, 113, 153, 134}, {129, 161, 15, 35}, {153, 113, 35, 15}, {149, 132, 26, 97}, {132, 150, 98, 26}, {84, 47, 97, 26, 98, 48}, {16, 8, 84, 48}, {150, 16, 48, 98}, {71, 129, 35, 113, 43, 93}, {137, 71, 93, 145}, {134, 145, 93, 43}, {52, 102, 28, 101, 51, 86}, { 15, 51, 101, 153}, {28, 134, 153, 101}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["162", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["140", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, { 0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, { 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[ 121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[ 1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[ 121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[ 1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[ 1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[ 1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[ 1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}}, {{0, 0, -0.4275168751220311}, { 0, 0, 0.4275168751220311}, { 0, -0.22164017088719903`, -0.352357012442246}, { 0, -0.22164017088719903`, 0.352357012442246}, { 0, 0.22164017088719903`, -0.352357012442246}, { 0, 0.22164017088719903`, 0.352357012442246}, { 0, -0.4275168751220311, 0}, {0, 0.4275168751220311, 0}, { 0, -0.03388653831996497, -0.4240725185716702}, { 0, -0.03388653831996497, 0.4240725185716702}, { 0, 0.03388653831996497, -0.4240725185716702}, { 0, 0.03388653831996497, 0.4240725185716702}, { 0, -0.361826783097534, -0.223621249994312}, { 0, -0.361826783097534, 0.223621249994312}, { 0, 0.361826783097534, -0.223621249994312}, { 0, 0.361826783097534, 0.223621249994312}, {-0.07042635995207269, \ -0.10768792678081102`, -0.3958828965965613}, {-0.07042635995207269, \ -0.10768792678081102`, 0.3958828965965613}, {-0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, \ {-0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, { 0.07042635995207269, -0.10768792678081102`, \ -0.3958828965965613}, {0.07042635995207269, -0.10768792678081102`, 0.3958828965965613}, {0.07042635995207269, 0.10768792678081102`, -0.3958828965965613}, { 0.07042635995207269, 0.10768792678081102`, 0.3958828965965613}, {-0.22164017088719903`, \ -0.352357012442246, 0}, {-0.22164017088719903`, 0.352357012442246, 0}, { 0.22164017088719903`, -0.352357012442246, 0}, { 0.22164017088719903`, 0.352357012442246, 0}, {-0.17424272570936228`, -0.2881949698157503, \ -0.24466908566143497`}, {-0.17424272570936228`, -0.2881949698157503, 0.24466908566143497`}, {-0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, \ {-0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, { 0.17424272570936228`, -0.2881949698157503, \ -0.24466908566143497`}, {0.17424272570936228`, -0.2881949698157503, 0.24466908566143497`}, {0.17424272570936228`, 0.2881949698157503, -0.24466908566143497`}, { 0.17424272570936228`, 0.2881949698157503, 0.24466908566143497`}, {-0.2881949698157503, \ -0.24466908566143497`, -0.17424272570936228`}, {-0.2881949698157503, \ -0.24466908566143497`, 0.17424272570936228`}, {-0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, \ {-0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, { 0.2881949698157503, -0.24466908566143497`, \ -0.17424272570936228`}, {0.2881949698157503, -0.24466908566143497`, 0.17424272570936228`}, {0.2881949698157503, 0.24466908566143497`, -0.17424272570936228`}, { 0.2881949698157503, 0.24466908566143497`, 0.17424272570936228`}, {-0.10768792678081102`, \ -0.3958828965965613, -0.07042635995207269}, {-0.10768792678081102`, \ -0.3958828965965613, 0.07042635995207269}, {-0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, \ {-0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, { 0.10768792678081102`, -0.3958828965965613, \ -0.07042635995207269}, {0.10768792678081102`, -0.3958828965965613, 0.07042635995207269}, {0.10768792678081102`, 0.3958828965965613, -0.07042635995207269}, { 0.10768792678081102`, 0.3958828965965613, 0.07042635995207269}, {-0.352357012442246, 0, -0.22164017088719903`}, {-0.352357012442246, 0, 0.22164017088719903`}, { 0.352357012442246, 0, -0.22164017088719903`}, { 0.352357012442246, 0, 0.22164017088719903`}, {-0.3958828965965613, \ -0.07042635995207269, -0.10768792678081102`}, {-0.3958828965965613, \ -0.07042635995207269, 0.10768792678081102`}, {-0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, \ {-0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, { 0.3958828965965613, -0.07042635995207269, \ -0.10768792678081102`}, {0.3958828965965613, -0.07042635995207269, 0.10768792678081102`}, {0.3958828965965613, 0.07042635995207269, -0.10768792678081102`}, { 0.3958828965965613, 0.07042635995207269, 0.10768792678081102`}, {-0.24466908566143497`, \ -0.17424272570936228`, -0.2881949698157503}, {-0.24466908566143497`, \ -0.17424272570936228`, 0.2881949698157503}, {-0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, \ {-0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, { 0.24466908566143497`, -0.17424272570936228`, \ -0.2881949698157503}, {0.24466908566143497`, -0.17424272570936228`, 0.2881949698157503}, {0.24466908566143497`, 0.17424272570936228`, -0.2881949698157503}, { 0.24466908566143497`, 0.17424272570936228`, 0.2881949698157503}, {-0.10363082970464206`, \ -0.20156474306442804`, -0.36002514353184917`}, {-0.10363082970464206`, \ -0.20156474306442804`, 0.36002514353184917`}, {-0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, \ {-0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}, { 0.10363082970464206`, -0.20156474306442804`, \ -0.36002514353184917`}, {0.10363082970464206`, -0.20156474306442804`, 0.36002514353184917`}, {0.10363082970464206`, 0.20156474306442804`, -0.36002514353184917`}, { 0.10363082970464206`, 0.20156474306442804`, 0.36002514353184917`}, {-0.4275168751220311, 0, 0}, { 0.4275168751220311, 0, 0}, {-0.03388653831996497, -0.4240725185716702, 0}, {-0.03388653831996497, 0.4240725185716702, 0}, { 0.03388653831996497, -0.4240725185716702, 0}, { 0.03388653831996497, 0.4240725185716702, 0}, {-0.3261386052118842, -0.15846040046742113`, \ -0.22250777550724216`}, {-0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, {-0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, \ {-0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, { 0.3261386052118842, -0.15846040046742113`, \ -0.22250777550724216`}, {0.3261386052118842, -0.15846040046742113`, 0.22250777550724216`}, {0.3261386052118842, 0.15846040046742113`, -0.22250777550724216`}, { 0.3261386052118842, 0.15846040046742113`, 0.22250777550724216`}, {-0.20156474306442804`, \ -0.36002514353184917`, -0.10363082970464206`}, {-0.20156474306442804`, \ -0.36002514353184917`, 0.10363082970464206`}, {-0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, \ {-0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, { 0.20156474306442804`, -0.36002514353184917`, \ -0.10363082970464206`}, {0.20156474306442804`, -0.36002514353184917`, 0.10363082970464206`}, {0.20156474306442804`, 0.36002514353184917`, -0.10363082970464206`}, { 0.20156474306442804`, 0.36002514353184917`, 0.10363082970464206`}, {-0.4240725185716702, 0, -0.03388653831996497}, {-0.4240725185716702, 0, 0.03388653831996497}, { 0.4240725185716702, 0, -0.03388653831996497}, { 0.4240725185716702, 0, 0.03388653831996497}, {-0.22250777550724216`, \ -0.3261386052118842, -0.15846040046742113`}, {-0.22250777550724216`, \ -0.3261386052118842, 0.15846040046742113`}, {-0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, \ {-0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, { 0.22250777550724216`, -0.3261386052118842, \ -0.15846040046742113`}, {0.22250777550724216`, -0.3261386052118842, 0.15846040046742113`}, {0.22250777550724216`, 0.3261386052118842, -0.15846040046742113`}, { 0.22250777550724216`, 0.3261386052118842, 0.15846040046742113`}, {-0.36002514353184917`, \ -0.10363082970464206`, -0.20156474306442804`}, {-0.36002514353184917`, \ -0.10363082970464206`, 0.20156474306442804`}, {-0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, \ {-0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, { 0.36002514353184917`, -0.10363082970464206`, \ -0.20156474306442804`}, {0.36002514353184917`, -0.10363082970464206`, 0.20156474306442804`}, {0.36002514353184917`, 0.10363082970464206`, -0.20156474306442804`}, { 0.36002514353184917`, 0.10363082970464206`, 0.20156474306442804`}, {-0.15846040046742113`, \ -0.22250777550724216`, -0.3261386052118842}, {-0.15846040046742113`, \ -0.22250777550724216`, 0.3261386052118842}, {-0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, \ {-0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, { 0.15846040046742113`, -0.22250777550724216`, \ -0.3261386052118842}, {0.15846040046742113`, -0.22250777550724216`, 0.3261386052118842}, {0.15846040046742113`, 0.22250777550724216`, -0.3261386052118842}, { 0.15846040046742113`, 0.22250777550724216`, 0.3261386052118842}, {-0.361826783097534, -0.223621249994312, 0}, {-0.361826783097534, 0.223621249994312, 0}, { 0.361826783097534, -0.223621249994312, 0}, { 0.361826783097534, 0.223621249994312, 0}, {-0.223621249994312, 0, -0.361826783097534}, {-0.223621249994312, 0, 0.361826783097534}, { 0.223621249994312, 0, -0.361826783097534}, { 0.223621249994312, 0, 0.361826783097534}, {-0.3458684173557953, \ -0.13210997979477979`, -0.21375843756101556`}, {-0.3458684173557953, \ -0.13210997979477979`, 0.21375843756101556`}, {-0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, \ {-0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, { 0.3458684173557953, -0.13210997979477979`, \ -0.21375843756101556`}, {0.3458684173557953, -0.13210997979477979`, 0.21375843756101556`}, {0.3458684173557953, 0.13210997979477979`, -0.21375843756101556`}, { 0.3458684173557953, 0.13210997979477979`, 0.21375843756101556`}, {-0.21375843756101556`, \ -0.3458684173557953, -0.13210997979477979`}, {-0.21375843756101556`, \ -0.3458684173557953, 0.13210997979477979`}, {-0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, \ {-0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, { 0.21375843756101556`, -0.3458684173557953, \ -0.13210997979477979`}, {0.21375843756101556`, -0.3458684173557953, 0.13210997979477979`}, {0.21375843756101556`, 0.3458684173557953, -0.13210997979477979`}, { 0.21375843756101556`, 0.3458684173557953, 0.13210997979477979`}, {-0.13210997979477979`, \ -0.21375843756101556`, -0.3458684173557953}, {-0.13210997979477979`, \ -0.21375843756101556`, 0.3458684173557953}, {-0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, \ {-0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}, { 0.13210997979477979`, -0.21375843756101556`, \ -0.3458684173557953}, {0.13210997979477979`, -0.21375843756101556`, 0.3458684173557953}, {0.13210997979477979`, 0.21375843756101556`, -0.3458684173557953}, { 0.13210997979477979`, 0.21375843756101556`, 0.3458684173557953}}], {{45, 95, 147, 13}, {99, 49, 13, 151}, {53, 117, 141, 135}, {117, 59, 132, 141}, {135, 67, 125, 157}, {73, 17, 9, 21, 77, 3}, {9, 17, 135, 1}, {9, 1, 137, 21}, {17, 73, 155, 135}, {73, 3, 13, 155}, {132, 59, 103, 81}, {81, 103, 57, 131}, {117, 53, 115, 57, 103, 59}, {53, 135, 139, 115}, {131, 57, 115, 139}, {124, 30, 14, 156}, {124, 156, 136, 66}, {77, 21, 137, 159}, {3, 77, 159, 13}, {63, 134, 82, 105}, {105, 82, 133, 61}, {61, 133, 143, 119}, {22, 78, 160, 138}, {78, 4, 14, 160}, {134, 63, 121, 145}, {135, 157, 75, 19}, {1, 135, 19, 11}, {129, 71, 137, 161}, {54, 136, 142, 118}, {155, 13, 29, 123}, {135, 155, 123, 65}, {38, 108, 30, 124, 66, 88}, {66, 136, 140, 88}, {88, 140, 131, 38}, { 147, 95, 25, 131}, {108, 38, 131, 148}, {131, 25, 96, 148}, { 30, 108, 148, 14}, {45, 13, 7, 83}, {139, 135, 65, 87}, {131, 139, 87, 37}, {123, 29, 107, 37, 87, 65}, {13, 147, 107, 29}, {147, 131, 37, 107}, {22, 138, 2, 10}, {10, 2, 136, 18}, {4, 78, 22, 10, 18, 74}, {156, 14, 4, 74}, {136, 156, 74, 18}, {138, 56, 122, 146}, {136, 20, 76, 158}, {136, 2, 12, 20}, {13, 159, 127, 33}, {159, 137, 69, 127}, {105, 61, 119, 55, 121, 63}, {145, 121, 55, 137}, {119, 143, 137, 55}, {70, 92, 144, 138}, {144, 92, 42, 133}, {99, 151, 133, 27}, {42, 112, 152, 133}, {27, 133, 152, 100}, {112, 34, 14, 152}, {13, 49, 85, 7}, {92, 70, 128, 34, 112, 42}, {160, 14, 34, 128}, { 138, 160, 128, 70}, {69, 137, 143, 91}, {143, 133, 41, 91}, { 33, 127, 69, 91, 41, 111}, {151, 13, 33, 111}, {133, 151, 111, 41}, {157, 125, 31, 15}, {79, 5, 15, 161}, {75, 157, 15, 5}, {19, 75, 5, 79, 23, 11}, {161, 137, 23, 79}, {137, 1, 11, 23}, {132, 40, 110, 150}, {131, 140, 116, 58}, {136, 54, 116, 140}, {118, 142, 132, 60}, {95, 45, 83, 46, 96, 25}, {148, 96, 46, 14}, {83, 7, 14, 46}, {144, 133, 62, 120}, {56, 138, 144, 120}, {146, 122, 64, 134}, {86, 51, 15, 8}, {110, 32, 16, 150}, {86, 8, 16, 52}, {158, 76, 6, 16}, {76, 20, 12, 24, 80, 6}, {2, 138, 24, 12}, {49, 99, 27, 100, 50, 85}, {100, 152, 14, 50}, {7, 85, 50, 14}, {16, 32, 126, 158}, {136, 158, 126, 68}, {110, 40, 90, 68, 126, 32}, {40, 132, 142, 90}, {142, 136, 68, 90}, {54, 118, 60, 104, 58, 116}, {81, 131, 58, 104}, {132, 81, 104, 60}, {122, 56, 120, 62, 106, 64}, {133, 82, 106, 62}, {82, 134, 64, 106}, {102, 52, 16, 154}, {36, 114, 154, 16}, {28, 102, 154, 134}, {6, 80, 162, 16}, {130, 36, 16, 162}, {80, 24, 138, 162}, {154, 114, 44, 134}, {146, 134, 44, 94}, {36, 130, 72, 94, 44, 114}, {130, 162, 138, 72}, {138, 146, 94, 72}, {135, 141, 89, 67}, {141, 132, 39, 89}, {125, 67, 89, 39, 109, 31}, {15, 31, 109, 149}, {39, 132, 149, 109}, {15, 149, 97, 47}, {8, 15, 47, 84}, {43, 113, 153, 134}, {129, 161, 15, 35}, {153, 113, 35, 15}, {149, 132, 26, 97}, {132, 150, 98, 26}, {84, 47, 97, 26, 98, 48}, {16, 8, 84, 48}, {150, 16, 48, 98}, {71, 129, 35, 113, 43, 93}, {137, 71, 93, 145}, {134, 145, 93, 43}, {52, 102, 28, 101, 51, 86}, { 15, 51, 101, 153}, {28, 134, 153, 101}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["162", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["140", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]}, {0, 0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]}, {0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0}, {0, Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]}, {0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]}, {0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0}, { Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]}, { Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]}, { Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0], 0, Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]}, { Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0], 0, 0}, { Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0], 0, 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0}, { Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]}, { Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]}, { Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]}, { Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0], 0, Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]}, { Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0}, { Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]}, { Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0], 0, Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]}, { Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]}}, {{45, 95, 147, 13}, {99, 49, 13, 151}, {53, 117, 141, 135}, {117, 59, 132, 141}, {135, 67, 125, 157}, {73, 17, 9, 21, 77, 3}, {9, 17, 135, 1}, {9, 1, 137, 21}, {17, 73, 155, 135}, {73, 3, 13, 155}, {132, 59, 103, 81}, {81, 103, 57, 131}, {117, 53, 115, 57, 103, 59}, {53, 135, 139, 115}, {131, 57, 115, 139}, {124, 30, 14, 156}, {124, 156, 136, 66}, {77, 21, 137, 159}, { 3, 77, 159, 13}, {63, 134, 82, 105}, {105, 82, 133, 61}, {61, 133, 143, 119}, {22, 78, 160, 138}, {78, 4, 14, 160}, {134, 63, 121, 145}, {135, 157, 75, 19}, {1, 135, 19, 11}, {129, 71, 137, 161}, {54, 136, 142, 118}, {155, 13, 29, 123}, {135, 155, 123, 65}, {38, 108, 30, 124, 66, 88}, {66, 136, 140, 88}, {88, 140, 131, 38}, {147, 95, 25, 131}, {108, 38, 131, 148}, {131, 25, 96, 148}, {30, 108, 148, 14}, {45, 13, 7, 83}, {139, 135, 65, 87}, {131, 139, 87, 37}, {123, 29, 107, 37, 87, 65}, {13, 147, 107, 29}, {147, 131, 37, 107}, {22, 138, 2, 10}, {10, 2, 136, 18}, {4, 78, 22, 10, 18, 74}, {156, 14, 4, 74}, {136, 156, 74, 18}, {138, 56, 122, 146}, { 136, 20, 76, 158}, {136, 2, 12, 20}, {13, 159, 127, 33}, {159, 137, 69, 127}, {105, 61, 119, 55, 121, 63}, {145, 121, 55, 137}, {119, 143, 137, 55}, {70, 92, 144, 138}, {144, 92, 42, 133}, {99, 151, 133, 27}, {42, 112, 152, 133}, {27, 133, 152, 100}, {112, 34, 14, 152}, {13, 49, 85, 7}, {92, 70, 128, 34, 112, 42}, {160, 14, 34, 128}, {138, 160, 128, 70}, {69, 137, 143, 91}, {143, 133, 41, 91}, {33, 127, 69, 91, 41, 111}, {151, 13, 33, 111}, {133, 151, 111, 41}, {157, 125, 31, 15}, {79, 5, 15, 161}, {75, 157, 15, 5}, {19, 75, 5, 79, 23, 11}, {161, 137, 23, 79}, {137, 1, 11, 23}, { 132, 40, 110, 150}, {131, 140, 116, 58}, {136, 54, 116, 140}, {118, 142, 132, 60}, {95, 45, 83, 46, 96, 25}, {148, 96, 46, 14}, {83, 7, 14, 46}, { 144, 133, 62, 120}, {56, 138, 144, 120}, {146, 122, 64, 134}, {86, 51, 15, 8}, {110, 32, 16, 150}, {86, 8, 16, 52}, {158, 76, 6, 16}, {76, 20, 12, 24, 80, 6}, {2, 138, 24, 12}, {49, 99, 27, 100, 50, 85}, {100, 152, 14, 50}, {7, 85, 50, 14}, {16, 32, 126, 158}, {136, 158, 126, 68}, {110, 40, 90, 68, 126, 32}, {40, 132, 142, 90}, {142, 136, 68, 90}, {54, 118, 60, 104, 58, 116}, {81, 131, 58, 104}, {132, 81, 104, 60}, {122, 56, 120, 62, 106, 64}, {133, 82, 106, 62}, {82, 134, 64, 106}, {102, 52, 16, 154}, {36, 114, 154, 16}, {28, 102, 154, 134}, {6, 80, 162, 16}, {130, 36, 16, 162}, {80, 24, 138, 162}, {154, 114, 44, 134}, {146, 134, 44, 94}, {36, 130, 72, 94, 44, 114}, {130, 162, 138, 72}, {138, 146, 94, 72}, {135, 141, 89, 67}, {141, 132, 39, 89}, {125, 67, 89, 39, 109, 31}, {15, 31, 109, 149}, {39, 132, 149, 109}, {15, 149, 97, 47}, {8, 15, 47, 84}, {43, 113, 153, 134}, {129, 161, 15, 35}, {153, 113, 35, 15}, {149, 132, 26, 97}, { 132, 150, 98, 26}, {84, 47, 97, 26, 98, 48}, {16, 8, 84, 48}, {150, 16, 48, 98}, {71, 129, 35, 113, 43, 93}, {137, 71, 93, 145}, {134, 145, 93, 43}, {52, 102, 28, 101, 51, 86}, {15, 51, 101, 153}, {28, 134, 153, 101}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[52]=",ExpressionUUID->"4E267405-1800-4A63-B5A2-014539918544"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"v", "=", RowBox[{"inthull", "[", RowBox[{"[", "1", "]"}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[53]:=",ExpressionUUID->"18347F89-FEFC-4F08-B03A-3E565C3CB058"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.428\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.42751687512203112584430186871031764895`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"408", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1792", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4275168751220311}, "NumericalApproximation"], Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.428\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42751687512203112584430186871031764895`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"408", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1792", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4275168751220311}, "NumericalApproximation"], Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22164017088719903392224352955963695422`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.35235701244224598704946060934162233025`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22164017088719903392224352955963695422`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.35235701244224598704946060934162233025`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22164017088719903392224352955963695422`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.35235701244224598704946060934162233025`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22164017088719903392224352955963695422`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.35235701244224598704946060934162233025`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.428\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.42751687512203112584430186871031764895`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"408", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1792", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4275168751220311}, "NumericalApproximation"], Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.428\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42751687512203112584430186871031764895`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"408", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1792", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4275168751220311}, "NumericalApproximation"], Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.03388653831996497195477857644618779887`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"876", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4492", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9584", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.03388653831996497}, "NumericalApproximation"], Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.424\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.42407251857167022057737426621315535158`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"668", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"428", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4240725185716702}, "NumericalApproximation"], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.03388653831996497195477857644618779887`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"876", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4492", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9584", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.03388653831996497}, "NumericalApproximation"], Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.424\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42407251857167022057737426621315535158`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"668", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"428", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4240725185716702}, "NumericalApproximation"], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.03388653831996497195477857644618779887`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"876", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4492", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9584", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.03388653831996497}, "NumericalApproximation"], Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.424\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.42407251857167022057737426621315535158`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"668", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"428", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4240725185716702}, "NumericalApproximation"], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.03388653831996497195477857644618779887`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"876", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4492", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9584", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.03388653831996497}, "NumericalApproximation"], Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.424\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42407251857167022057737426621315535158`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"668", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"428", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4240725185716702}, "NumericalApproximation"], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22362124999431198801858045044355094433`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22362124999431198801858045044355094433`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22362124999431198801858045044355094433`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22362124999431198801858045044355094433`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.07042635995207269239415381889557465911`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10768792678081101632514560151321347803`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.39588289659656128449682910286355763674`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.07042635995207269239415381889557465911`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10768792678081101632514560151321347803`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.07042635995207269239415381889557465911`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.39588289659656128449682910286355763674`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.07042635995207269239415381889557465911`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10768792678081101632514560151321347803`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.39588289659656128449682910286355763674`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10768792678081101632514560151321347803`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.39588289659656128449682910286355763674`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22164017088719903392224352955963695422`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.35235701244224598704946060934162233025`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22164017088719903392224352955963695422`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.35235701244224598704946060934162233025`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22164017088719903392224352955963695422`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.35235701244224598704946060934162233025`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22164017088719903392224352955963695422`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.35235701244224598704946060934162233025`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17424272570936227833016118893283419311`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.28819496981575032368283473260817117989`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24466908566143497072431500782840885222`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17424272570936227833016118893283419311`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.28819496981575032368283473260817117989`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24466908566143497072431500782840885222`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17424272570936227833016118893283419311`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.28819496981575032368283473260817117989`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24466908566143497072431500782840885222`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17424272570936227833016118893283419311`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.28819496981575032368283473260817117989`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24466908566143497072431500782840885222`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17424272570936227833016118893283419311`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.28819496981575032368283473260817117989`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24466908566143497072431500782840885222`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17424272570936227833016118893283419311`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.28819496981575032368283473260817117989`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24466908566143497072431500782840885222`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17424272570936227833016118893283419311`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.28819496981575032368283473260817117989`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24466908566143497072431500782840885222`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17424272570936227833016118893283419311`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.28819496981575032368283473260817117989`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24466908566143497072431500782840885222`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.28819496981575032368283473260817117989`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24466908566143497072431500782840885222`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17424272570936227833016118893283419311`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.28819496981575032368283473260817117989`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24466908566143497072431500782840885222`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17424272570936227833016118893283419311`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.28819496981575032368283473260817117989`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24466908566143497072431500782840885222`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17424272570936227833016118893283419311`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.28819496981575032368283473260817117989`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24466908566143497072431500782840885222`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17424272570936227833016118893283419311`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.28819496981575032368283473260817117989`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24466908566143497072431500782840885222`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17424272570936227833016118893283419311`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.28819496981575032368283473260817117989`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24466908566143497072431500782840885222`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17424272570936227833016118893283419311`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.28819496981575032368283473260817117989`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24466908566143497072431500782840885222`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17424272570936227833016118893283419311`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.28819496981575032368283473260817117989`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24466908566143497072431500782840885222`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17424272570936227833016118893283419311`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10768792678081101632514560151321347803`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.39588289659656128449682910286355763674`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.07042635995207269239415381889557465911`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10768792678081101632514560151321347803`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.39588289659656128449682910286355763674`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10768792678081101632514560151321347803`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.07042635995207269239415381889557465911`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10768792678081101632514560151321347803`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.39588289659656128449682910286355763674`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.07042635995207269239415381889557465911`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.39588289659656128449682910286355763674`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.07042635995207269239415381889557465911`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.35235701244224598704946060934162233025`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22164017088719903392224352955963695422`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.35235701244224598704946060934162233025`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 2, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22164017088719903392224352955963695422`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.35235701244224598704946060934162233025`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22164017088719903392224352955963695422`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.352\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.35235701244224598704946060934162233025`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1036", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"556", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"496", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.352357012442246}, "NumericalApproximation"], Root[121 - 1036 #^2 + 556 #^4 - 496 #^6 + 16 #^8& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.222\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22164017088719903392224352955963695422`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"308", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3824", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.22164017088719903`}, "NumericalApproximation"], Root[1 + 4 #^2 - 308 #^4 - 3824 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.39588289659656128449682910286355763674`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.07042635995207269239415381889557465911`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10768792678081101632514560151321347803`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.39588289659656128449682910286355763674`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.07042635995207269239415381889557465911`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.39588289659656128449682910286355763674`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10768792678081101632514560151321347803`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.39588289659656128449682910286355763674`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.07042635995207269239415381889557465911`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10768792678081101632514560151321347803`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.07042635995207269239415381889557465911`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.10768792678081101632514560151321347803`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.396\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.39588289659656128449682910286355763674`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"176", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3958828965965613}, "NumericalApproximation"], Root[1 - 4 #^2 + 12 #^4 - 176 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0704\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.07042635995207269239415381889557465911`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"202", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"78", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"202", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.07042635995207269}, "NumericalApproximation"], Root[1 - 202 #^2 + 78 #^4 - 202 #^6 + #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.108\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10768792678081101632514560151321347803`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"92", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"912", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10768792678081102`}, "NumericalApproximation"], Root[1 - 92 #^2 + 508 #^4 - 912 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24466908566143497072431500782840885222`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17424272570936227833016118893283419311`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.28819496981575032368283473260817117989`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24466908566143497072431500782840885222`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17424272570936227833016118893283419311`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.28819496981575032368283473260817117989`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24466908566143497072431500782840885222`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17424272570936227833016118893283419311`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.28819496981575032368283473260817117989`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.24466908566143497072431500782840885222`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17424272570936227833016118893283419311`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.28819496981575032368283473260817117989`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24466908566143497072431500782840885222`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17424272570936227833016118893283419311`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.28819496981575032368283473260817117989`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24466908566143497072431500782840885222`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17424272570936227833016118893283419311`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.28819496981575032368283473260817117989`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24466908566143497072431500782840885222`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17424272570936227833016118893283419311`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.28819496981575032368283473260817117989`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.245\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.24466908566143497072431500782840885222`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"64", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.24466908566143497`}, "NumericalApproximation"], Root[1 - 16 #^2 - 8 #^4 - 64 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.174\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17424272570936227833016118893283419311`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"48", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"568", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2368", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.17424272570936228`}, "NumericalApproximation"], Root[1 - 48 #^2 + 568 #^4 - 2368 #^6 + 16 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.288\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.28819496981575032368283473260817117989`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"1592", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1784", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1888", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2881949698157503}, "NumericalApproximation"], Root[121 - 1592 #^2 + 1784 #^4 - 1888 #^6 + 16 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.20156474306442803690053722220909548923`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.36002514353184916773287227442779112607`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.20156474306442803690053722220909548923`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.36002514353184916773287227442779112607`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.20156474306442803690053722220909548923`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.36002514353184916773287227442779112607`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.20156474306442803690053722220909548923`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.36002514353184916773287227442779112607`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.428\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.42751687512203112584430186871031764895`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"408", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1792", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4275168751220311}, "NumericalApproximation"], Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 2, 0]], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.428\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42751687512203112584430186871031764895`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"408", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1792", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1936", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4275168751220311}, "NumericalApproximation"], Root[1 - 32 #^2 + 408 #^4 - 1792 #^6 + 1936 #^8& , 3, 0]], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.03388653831996497195477857644618779887`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"876", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4492", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9584", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.03388653831996497}, "NumericalApproximation"], Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.424\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.42407251857167022057737426621315535158`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"668", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"428", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4240725185716702}, "NumericalApproximation"], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.03388653831996497195477857644618779887`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"876", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4492", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9584", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.03388653831996497}, "NumericalApproximation"], Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.424\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42407251857167022057737426621315535158`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"668", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"428", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4240725185716702}, "NumericalApproximation"], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.03388653831996497195477857644618779887`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"876", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4492", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9584", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.03388653831996497}, "NumericalApproximation"], Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.424\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.42407251857167022057737426621315535158`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"668", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"428", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4240725185716702}, "NumericalApproximation"], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.03388653831996497195477857644618779887`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"876", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4492", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9584", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.03388653831996497}, "NumericalApproximation"], Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.424\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42407251857167022057737426621315535158`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"668", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"428", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4240725185716702}, "NumericalApproximation"], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.32613860521188420271698760188883170485`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15846040046742113083233505221869563684`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22250777550724215592126142837514635175`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.32613860521188420271698760188883170485`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15846040046742113083233505221869563684`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22250777550724215592126142837514635175`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.32613860521188420271698760188883170485`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15846040046742113083233505221869563684`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22250777550724215592126142837514635175`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.32613860521188420271698760188883170485`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15846040046742113083233505221869563684`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22250777550724215592126142837514635175`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.32613860521188420271698760188883170485`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15846040046742113083233505221869563684`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22250777550724215592126142837514635175`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.32613860521188420271698760188883170485`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15846040046742113083233505221869563684`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22250777550724215592126142837514635175`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.32613860521188420271698760188883170485`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15846040046742113083233505221869563684`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22250777550724215592126142837514635175`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.32613860521188420271698760188883170485`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15846040046742113083233505221869563684`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22250777550724215592126142837514635175`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.20156474306442803690053722220909548923`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.36002514353184916773287227442779112607`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.20156474306442803690053722220909548923`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.36002514353184916773287227442779112607`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.20156474306442803690053722220909548923`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.20156474306442803690053722220909548923`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.36002514353184916773287227442779112607`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.36002514353184916773287227442779112607`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.424\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.42407251857167022057737426621315535158`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"668", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"428", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4240725185716702}, "NumericalApproximation"], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.03388653831996497195477857644618779887`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"876", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4492", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9584", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.03388653831996497}, "NumericalApproximation"], Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.424\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.42407251857167022057737426621315535158`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"668", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"428", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4240725185716702}, "NumericalApproximation"], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 2, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.03388653831996497195477857644618779887`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"876", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4492", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9584", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.03388653831996497}, "NumericalApproximation"], Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.424\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42407251857167022057737426621315535158`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"668", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"428", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4240725185716702}, "NumericalApproximation"], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.03388653831996497195477857644618779887`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"876", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4492", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9584", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.03388653831996497}, "NumericalApproximation"], Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.424\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.42407251857167022057737426621315535158`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"121", "-", RowBox[{"668", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"428", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.4240725185716702}, "NumericalApproximation"], Root[121 - 668 #^2 + 428 #^4 - 3568 #^6 + 5776 #^8& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.03388653831996497195477857644618779887`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"876", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4492", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9584", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.03388653831996497}, "NumericalApproximation"], Root[1 - 876 #^2 + 4492 #^4 - 9584 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22250777550724215592126142837514635175`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.32613860521188420271698760188883170485`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15846040046742113083233505221869563684`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22250777550724215592126142837514635175`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.32613860521188420271698760188883170485`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15846040046742113083233505221869563684`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22250777550724215592126142837514635175`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.32613860521188420271698760188883170485`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15846040046742113083233505221869563684`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22250777550724215592126142837514635175`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.32613860521188420271698760188883170485`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15846040046742113083233505221869563684`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22250777550724215592126142837514635175`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.32613860521188420271698760188883170485`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15846040046742113083233505221869563684`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22250777550724215592126142837514635175`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.32613860521188420271698760188883170485`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15846040046742113083233505221869563684`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22250777550724215592126142837514635175`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.32613860521188420271698760188883170485`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15846040046742113083233505221869563684`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22250777550724215592126142837514635175`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.32613860521188420271698760188883170485`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15846040046742113083233505221869563684`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.36002514353184916773287227442779112607`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.20156474306442803690053722220909548923`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.36002514353184916773287227442779112607`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.36002514353184916773287227442779112607`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.20156474306442803690053722220909548923`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.36002514353184916773287227442779112607`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.20156474306442803690053722220909548923`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.20156474306442803690053722220909548923`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.360\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36002514353184916773287227442779112607`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"52", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"508", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2032", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.36002514353184917`}, "NumericalApproximation"], Root[1 - 52 #^2 + 508 #^4 - 2032 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.104\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.1036308297046420606735139813281421084`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"94", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"87", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"436", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10363082970464206`}, "NumericalApproximation"], Root[1 - 94 #^2 + 87 #^4 - 436 #^6 + 361 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.202\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20156474306442803690053722220909548923`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"44", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"636", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4144", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.20156474306442804`}, "NumericalApproximation"], Root[1 - 44 #^2 + 636 #^4 - 4144 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15846040046742113083233505221869563684`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22250777550724215592126142837514635175`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.32613860521188420271698760188883170485`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15846040046742113083233505221869563684`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22250777550724215592126142837514635175`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.32613860521188420271698760188883170485`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15846040046742113083233505221869563684`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22250777550724215592126142837514635175`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.32613860521188420271698760188883170485`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15846040046742113083233505221869563684`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22250777550724215592126142837514635175`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.32613860521188420271698760188883170485`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15846040046742113083233505221869563684`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22250777550724215592126142837514635175`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.32613860521188420271698760188883170485`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15846040046742113083233505221869563684`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22250777550724215592126142837514635175`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.32613860521188420271698760188883170485`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15846040046742113083233505221869563684`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22250777550724215592126142837514635175`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.32613860521188420271698760188883170485`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15846040046742113083233505221869563684`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"32", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"296", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"768", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.15846040046742113`}, "NumericalApproximation"], Root[1 - 32 #^2 - 296 #^4 - 768 #^6 + 5776 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.223\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22250777550724215592126142837514635175`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3328", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.22250777550724216`}, "NumericalApproximation"], Root[1 - 128 #^2 + 2328 #^4 - 3328 #^6 + 5776 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.326\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.32613860521188420271698760188883170485`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"56", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1336", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9056", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"5776", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3261386052118842}, "NumericalApproximation"], Root[1 - 56 #^2 + 1336 #^4 - 9056 #^6 + 5776 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22362124999431198801858045044355094433`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22362124999431198801858045044355094433`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22362124999431198801858045044355094433`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22362124999431198801858045044355094433`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22362124999431198801858045044355094433`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.22362124999431198801858045044355094433`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 2, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22362124999431198801858045044355094433`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.224\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.22362124999431198801858045044355094433`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"28", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"268", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2928", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.223621249994312}, "NumericalApproximation"], Root[1 - 28 #^2 + 268 #^4 - 2928 #^6 + 15376 #^8& , 3, 0]], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.362\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.3618267830975340215715618796821217984`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"12", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"748", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"7472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"15376", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.361826783097534}, "NumericalApproximation"], Root[1 - 12 #^2 + 748 #^4 - 7472 #^6 + 15376 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34586841735579532119970735948299989104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13210997979477978603313204075675457716`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21375843756101556292215093435515882447`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34586841735579532119970735948299989104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13210997979477978603313204075675457716`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21375843756101556292215093435515882447`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34586841735579532119970735948299989104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13210997979477978603313204075675457716`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21375843756101556292215093435515882447`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34586841735579532119970735948299989104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13210997979477978603313204075675457716`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21375843756101556292215093435515882447`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34586841735579532119970735948299989104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13210997979477978603313204075675457716`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21375843756101556292215093435515882447`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34586841735579532119970735948299989104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13210997979477978603313204075675457716`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21375843756101556292215093435515882447`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34586841735579532119970735948299989104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13210997979477978603313204075675457716`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21375843756101556292215093435515882447`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34586841735579532119970735948299989104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13210997979477978603313204075675457716`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21375843756101556292215093435515882447`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21375843756101556292215093435515882447`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34586841735579532119970735948299989104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13210997979477978603313204075675457716`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21375843756101556292215093435515882447`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34586841735579532119970735948299989104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13210997979477978603313204075675457716`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21375843756101556292215093435515882447`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34586841735579532119970735948299989104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13210997979477978603313204075675457716`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21375843756101556292215093435515882447`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34586841735579532119970735948299989104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13210997979477978603313204075675457716`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21375843756101556292215093435515882447`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34586841735579532119970735948299989104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13210997979477978603313204075675457716`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21375843756101556292215093435515882447`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34586841735579532119970735948299989104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13210997979477978603313204075675457716`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21375843756101556292215093435515882447`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34586841735579532119970735948299989104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13210997979477978603313204075675457716`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21375843756101556292215093435515882447`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34586841735579532119970735948299989104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13210997979477978603313204075675457716`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13210997979477978603313204075675457716`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21375843756101556292215093435515882447`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34586841735579532119970735948299989104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13210997979477978603313204075675457716`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21375843756101556292215093435515882447`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34586841735579532119970735948299989104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13210997979477978603313204075675457716`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21375843756101556292215093435515882447`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34586841735579532119970735948299989104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.13210997979477978603313204075675457716`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21375843756101556292215093435515882447`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34586841735579532119970735948299989104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13210997979477978603313204075675457716`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21375843756101556292215093435515882447`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34586841735579532119970735948299989104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13210997979477978603313204075675457716`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.21375843756101556292215093435515882447`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 2, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34586841735579532119970735948299989104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13210997979477978603313204075675457716`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21375843756101556292215093435515882447`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.34586841735579532119970735948299989104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.132\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.13210997979477978603313204075675457716`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"112", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4288", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"74752", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.13210997979477979`}, "NumericalApproximation"], Root[1 - 112 #^2 + 4288 #^4 - 74752 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.214\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.21375843756101556292215093435515882447`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"128", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6528", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"114688", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.21375843756101556`}, "NumericalApproximation"], Root[1 - 128 #^2 + 6528 #^4 - 114688 #^6 + 495616 #^8& , 3, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.346\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.34586841735579532119970735948299989104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"272", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"27328", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"269312", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"495616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.3458684173557953}, "NumericalApproximation"], Root[1 - 272 #^2 + 27328 #^4 - 269312 #^6 + 495616 #^8& , 3, 0]]}], "}"}]}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[53]=",ExpressionUUID->"83B867A3-4F11-40D8-A991-249845988B54"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"faces", "=", RowBox[{"Sort", "[", RowBox[{"inthull", "[", RowBox[{"[", "2", "]"}], "]"}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[54]:=",ExpressionUUID->"122F5C29-FA3B-45AE-9EEF-2C6487536E08"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "135", ",", "19", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "138", ",", "24", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "77", ",", "159", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "80", ",", "162", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "85", ",", "50", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "15", ",", "47", ",", "84"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "1", ",", "137", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "17", ",", "135", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "2", ",", "136", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "49", ",", "85", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "147", ",", "107", ",", "29"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "159", ",", "127", ",", "33"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "31", ",", "109", ",", "149"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "51", ",", "101", ",", "153"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "149", ",", "97", ",", "47"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "8", ",", "84", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "32", ",", "126", ",", "158"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "73", ",", "155", ",", "135"}], "}"}], ",", RowBox[{"{", RowBox[{"22", ",", "78", ",", "160", ",", "138"}], "}"}], ",", RowBox[{"{", RowBox[{"22", ",", "138", ",", "2", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"27", ",", "133", ",", "152", ",", "100"}], "}"}], ",", RowBox[{"{", RowBox[{"28", ",", "102", ",", "154", ",", "134"}], "}"}], ",", RowBox[{"{", RowBox[{"28", ",", "134", ",", "153", ",", "101"}], "}"}], ",", RowBox[{"{", RowBox[{"30", ",", "108", ",", "148", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"36", ",", "114", ",", "154", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"39", ",", "132", ",", "149", ",", "109"}], "}"}], ",", RowBox[{"{", RowBox[{"40", ",", "132", ",", "142", ",", "90"}], "}"}], ",", RowBox[{"{", RowBox[{"42", ",", "112", ",", "152", ",", "133"}], "}"}], ",", RowBox[{"{", RowBox[{"43", ",", "113", ",", "153", ",", "134"}], "}"}], ",", RowBox[{"{", RowBox[{"45", ",", "13", ",", "7", ",", "83"}], "}"}], ",", RowBox[{"{", RowBox[{"45", ",", "95", ",", "147", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"53", ",", "117", ",", "141", ",", "135"}], "}"}], ",", RowBox[{"{", RowBox[{"53", ",", "135", ",", "139", ",", "115"}], "}"}], ",", RowBox[{"{", RowBox[{"54", ",", "136", ",", "142", ",", "118"}], "}"}], ",", RowBox[{"{", RowBox[{"56", ",", "138", ",", "144", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"61", ",", "133", ",", "143", ",", "119"}], "}"}], ",", RowBox[{"{", RowBox[{"63", ",", "134", ",", "82", ",", "105"}], "}"}], ",", RowBox[{"{", RowBox[{"66", ",", "136", ",", "140", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"69", ",", "137", ",", "143", ",", "91"}], "}"}], ",", RowBox[{"{", RowBox[{"70", ",", "92", ",", "144", ",", "138"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "3", ",", "13", ",", "155"}], "}"}], ",", RowBox[{"{", RowBox[{"75", ",", "157", ",", "15", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"77", ",", "21", ",", "137", ",", "159"}], "}"}], ",", RowBox[{"{", RowBox[{"78", ",", "4", ",", "14", ",", "160"}], "}"}], ",", RowBox[{"{", RowBox[{"79", ",", "5", ",", "15", ",", "161"}], "}"}], ",", RowBox[{"{", RowBox[{"80", ",", "24", ",", "138", ",", "162"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "103", ",", "57", ",", "131"}], "}"}], ",", RowBox[{"{", RowBox[{"81", ",", "131", ",", "58", ",", "104"}], "}"}], ",", RowBox[{"{", RowBox[{"82", ",", "134", ",", "64", ",", "106"}], "}"}], ",", RowBox[{"{", RowBox[{"83", ",", "7", ",", "14", ",", "46"}], "}"}], ",", RowBox[{"{", RowBox[{"86", ",", "8", ",", "16", ",", "52"}], "}"}], ",", RowBox[{"{", RowBox[{"86", ",", "51", ",", "15", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"88", ",", "140", ",", "131", ",", "38"}], "}"}], ",", RowBox[{"{", RowBox[{"99", ",", "49", ",", "13", ",", "151"}], "}"}], ",", RowBox[{"{", RowBox[{"99", ",", "151", ",", "133", ",", "27"}], "}"}], ",", RowBox[{"{", RowBox[{"100", ",", "152", ",", "14", ",", "50"}], "}"}], ",", RowBox[{"{", RowBox[{"102", ",", "52", ",", "16", ",", "154"}], "}"}], ",", RowBox[{"{", RowBox[{"105", ",", "82", ",", "133", ",", "61"}], "}"}], ",", RowBox[{"{", RowBox[{"108", ",", "38", ",", "131", ",", "148"}], "}"}], ",", RowBox[{"{", RowBox[{"110", ",", "32", ",", "16", ",", "150"}], "}"}], ",", RowBox[{"{", RowBox[{"112", ",", "34", ",", "14", ",", "152"}], "}"}], ",", RowBox[{"{", RowBox[{"117", ",", "59", ",", "132", ",", "141"}], "}"}], ",", RowBox[{"{", RowBox[{"118", ",", "142", ",", "132", ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{"119", ",", "143", ",", "137", ",", "55"}], "}"}], ",", RowBox[{"{", RowBox[{"124", ",", "30", ",", "14", ",", "156"}], "}"}], ",", RowBox[{"{", RowBox[{"124", ",", "156", ",", "136", ",", "66"}], "}"}], ",", RowBox[{"{", RowBox[{"129", ",", "71", ",", "137", ",", "161"}], "}"}], ",", RowBox[{"{", RowBox[{"129", ",", "161", ",", "15", ",", "35"}], "}"}], ",", RowBox[{"{", RowBox[{"130", ",", "36", ",", "16", ",", "162"}], "}"}], ",", RowBox[{"{", RowBox[{"130", ",", "162", ",", "138", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"131", ",", "25", ",", "96", ",", "148"}], "}"}], ",", RowBox[{"{", RowBox[{"131", ",", "57", ",", "115", ",", "139"}], "}"}], ",", RowBox[{"{", RowBox[{"131", ",", "139", ",", "87", ",", "37"}], "}"}], ",", RowBox[{"{", RowBox[{"131", ",", "140", ",", "116", ",", "58"}], "}"}], ",", RowBox[{"{", RowBox[{"132", ",", "40", ",", "110", ",", "150"}], "}"}], ",", RowBox[{"{", RowBox[{"132", ",", "59", ",", "103", ",", "81"}], "}"}], ",", RowBox[{"{", RowBox[{"132", ",", "81", ",", "104", ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{"132", ",", "150", ",", "98", ",", "26"}], "}"}], ",", RowBox[{"{", RowBox[{"133", ",", "82", ",", "106", ",", "62"}], "}"}], ",", RowBox[{"{", RowBox[{"133", ",", "151", ",", "111", ",", "41"}], "}"}], ",", RowBox[{"{", RowBox[{"134", ",", "63", ",", "121", ",", "145"}], "}"}], ",", RowBox[{"{", RowBox[{"134", ",", "145", ",", "93", ",", "43"}], "}"}], ",", RowBox[{"{", RowBox[{"135", ",", "67", ",", "125", ",", "157"}], "}"}], ",", RowBox[{"{", RowBox[{"135", ",", "141", ",", "89", ",", "67"}], "}"}], ",", RowBox[{"{", RowBox[{"135", ",", "155", ",", "123", ",", "65"}], "}"}], ",", RowBox[{"{", RowBox[{"135", ",", "157", ",", "75", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"136", ",", "2", ",", "12", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"136", ",", "20", ",", "76", ",", "158"}], "}"}], ",", RowBox[{"{", RowBox[{"136", ",", "54", ",", "116", ",", "140"}], "}"}], ",", RowBox[{"{", RowBox[{"136", ",", "156", ",", "74", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"136", ",", "158", ",", "126", ",", "68"}], "}"}], ",", RowBox[{"{", RowBox[{"137", ",", "1", ",", "11", ",", "23"}], "}"}], ",", RowBox[{"{", RowBox[{"137", ",", "71", ",", "93", ",", "145"}], "}"}], ",", RowBox[{"{", RowBox[{"138", ",", "56", ",", "122", ",", "146"}], "}"}], ",", RowBox[{"{", RowBox[{"138", ",", "146", ",", "94", ",", "72"}], "}"}], ",", RowBox[{"{", RowBox[{"138", ",", "160", ",", "128", ",", "70"}], "}"}], ",", RowBox[{"{", RowBox[{"139", ",", "135", ",", "65", ",", "87"}], "}"}], ",", RowBox[{"{", RowBox[{"141", ",", "132", ",", "39", ",", "89"}], "}"}], ",", RowBox[{"{", RowBox[{"142", ",", "136", ",", "68", ",", "90"}], "}"}], ",", RowBox[{"{", RowBox[{"143", ",", "133", ",", "41", ",", "91"}], "}"}], ",", RowBox[{"{", RowBox[{"144", ",", "92", ",", "42", ",", "133"}], "}"}], ",", RowBox[{"{", RowBox[{"144", ",", "133", ",", "62", ",", "120"}], "}"}], ",", RowBox[{"{", RowBox[{"145", ",", "121", ",", "55", ",", "137"}], "}"}], ",", RowBox[{"{", RowBox[{"146", ",", "122", ",", "64", ",", "134"}], "}"}], ",", RowBox[{"{", RowBox[{"146", ",", "134", ",", "44", ",", "94"}], "}"}], ",", RowBox[{"{", RowBox[{"147", ",", "95", ",", "25", ",", "131"}], "}"}], ",", RowBox[{"{", RowBox[{"147", ",", "131", ",", "37", ",", "107"}], "}"}], ",", RowBox[{"{", RowBox[{"148", ",", "96", ",", "46", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"149", ",", "132", ",", "26", ",", "97"}], "}"}], ",", RowBox[{"{", RowBox[{"150", ",", "16", ",", "48", ",", "98"}], "}"}], ",", RowBox[{"{", RowBox[{"151", ",", "13", ",", "33", ",", "111"}], "}"}], ",", RowBox[{"{", RowBox[{"153", ",", "113", ",", "35", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"154", ",", "114", ",", "44", ",", "134"}], "}"}], ",", RowBox[{"{", RowBox[{"155", ",", "13", ",", "29", ",", "123"}], "}"}], ",", RowBox[{"{", RowBox[{"156", ",", "14", ",", "4", ",", "74"}], "}"}], ",", RowBox[{"{", RowBox[{"157", ",", "125", ",", "31", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"158", ",", "76", ",", "6", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"159", ",", "137", ",", "69", ",", "127"}], "}"}], ",", RowBox[{"{", RowBox[{"160", ",", "14", ",", "34", ",", "128"}], "}"}], ",", RowBox[{"{", RowBox[{"161", ",", "137", ",", "23", ",", "79"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "78", ",", "22", ",", "10", ",", "18", ",", "74"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "75", ",", "5", ",", "79", ",", "23", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "127", ",", "69", ",", "91", ",", "41", ",", "111"}], "}"}], ",", RowBox[{"{", RowBox[{"36", ",", "130", ",", "72", ",", "94", ",", "44", ",", "114"}], "}"}], ",", RowBox[{"{", RowBox[{"38", ",", "108", ",", "30", ",", "124", ",", "66", ",", "88"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "99", ",", "27", ",", "100", ",", "50", ",", "85"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "102", ",", "28", ",", "101", ",", "51", ",", "86"}], "}"}], ",", RowBox[{"{", RowBox[{"54", ",", "118", ",", "60", ",", "104", ",", "58", ",", "116"}], "}"}], ",", RowBox[{"{", RowBox[{"71", ",", "129", ",", "35", ",", "113", ",", "43", ",", "93"}], "}"}], ",", RowBox[{"{", RowBox[{"73", ",", "17", ",", "9", ",", "21", ",", "77", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"76", ",", "20", ",", "12", ",", "24", ",", "80", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"84", ",", "47", ",", "97", ",", "26", ",", "98", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{"92", ",", "70", ",", "128", ",", "34", ",", "112", ",", "42"}], "}"}], ",", RowBox[{"{", RowBox[{"95", ",", "45", ",", "83", ",", "46", ",", "96", ",", "25"}], "}"}], ",", RowBox[{"{", RowBox[{"105", ",", "61", ",", "119", ",", "55", ",", "121", ",", "63"}], "}"}], ",", RowBox[{"{", RowBox[{"110", ",", "40", ",", "90", ",", "68", ",", "126", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"117", ",", "53", ",", "115", ",", "57", ",", "103", ",", "59"}], "}"}], ",", RowBox[{"{", RowBox[{"122", ",", "56", ",", "120", ",", "62", ",", "106", ",", "64"}], "}"}], ",", RowBox[{"{", RowBox[{"123", ",", "29", ",", "107", ",", "37", ",", "87", ",", "65"}], "}"}], ",", RowBox[{"{", RowBox[{"125", ",", "67", ",", "89", ",", "39", ",", "109", ",", "31"}], "}"}]}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[54]=",ExpressionUUID->"B240C5D9-514E-4DF1-9962-872323B757E0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"SimplifyNumericallyDistinct", "[", RowBox[{"PolyhedronEdgeLengths", "[", "inthull", "]"}], "]"}], "//", "Counts"}], "//", "Quiet"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[55]:=",ExpressionUUID->"1A55B10C-8B39-41AF-A74E-0A4E2E6E2793"], Cell[BoxData[ RowBox[{"\[LeftAssociation]", RowBox[{ RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0341\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.03406113725870685282615113464999012649`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"25", "-", RowBox[{"21600", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"44390", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"172080", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"43681", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.03406113725870685}, "NumericalApproximation"], Root[25 - 21600 #^2 + 44390 #^4 - 172080 #^6 + 43681 #^8& , 3, 0]], "\[Rule]", "60"}], ",", RowBox[{ SqrtBox[ FractionBox["2", RowBox[{"4", "+", RowBox[{"9", " ", SqrtBox["5"]}], "+", RowBox[{"3", " ", SqrtBox[ RowBox[{ RowBox[{"-", "38"}], "+", RowBox[{"25", " ", SqrtBox["5"]}]}]]}]}]]], "\[Rule]", "60"}], ",", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.190\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.19032914326519134728954441015957854688`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"5584", "-", RowBox[{"161504", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"213000", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"273512", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"961", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.19032914326519135`}, "NumericalApproximation"], Root[5584 - 161504 #^2 + 213000 #^4 - 273512 #^6 + 961 #^8& , 3, 0]], "\[Rule]", "60"}], ",", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.106\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.10583558901403228302839920615951996297`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1024", "-", RowBox[{"90112", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"115680", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"89704", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"361", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.10583558901403228`}, "NumericalApproximation"], Root[1024 - 90112 #^2 - 115680 #^4 - 89704 #^6 + 361 #^8& , 3, 0]], "\[Rule]", "120"}]}], "\[RightAssociation]"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[55]=",ExpressionUUID->"5FFD0FD3-DFE4-4844-865D-3D79AFAF7931"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData["pname"], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[56]:=",ExpressionUUID->"BD66929B-4B21-4876-893C-657F02DC8CDD"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"OctahedronTwentyCompound\"\>", ",", "2"}], "}"}]], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[56]=",ExpressionUUID->"A3670949-98C2-439A-A25C-08A0A1560B35"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Concave", "Subsection",ExpressionUUID->"BBC3B674-E928-4C45-B525-2E24B9264801"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[12]:=",ExpressionUUID->"8AB4810F-6644-4E7D-84DB-CE96E69BF207"], Cell[BoxData["False"], "Output", CellLabel->"Out[12]=",ExpressionUUID->"9E5E69EF-F235-43D5-9408-E5EE62A63718"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Convex", "Subsection",ExpressionUUID->"C95F4BF7-3CFC-4BCD-8473-2D953549BFCF"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[13]:=",ExpressionUUID->"44E217F6-EDBD-4312-B65F-74C0EDE76C14"], Cell[BoxData["False"], "Output", CellLabel->"Out[13]=",ExpressionUUID->"57C83DE2-CACA-4EA6-862E-66683CDC1D4F"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"ConvexPolyhedronQ", "[", "p", "]"}], "//", "Timing"}]], "Input", CellLabel->"In[14]:=",ExpressionUUID->"55B33BAE-36C2-44A0-98A0-220B298BC963"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.003661`", ",", "False"}], "}"}]], "Output", CellLabel->"Out[14]=",ExpressionUUID->"E1246E28-D516-4F97-AB76-9D4BB2B8C4A7"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["ConvexHull", "Subsection",ExpressionUUID->"E69351AD-720C-47AC-B10E-900DB0B3E41C"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"convexhullname", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[15]:=",ExpressionUUID->"60C70714-B03B-428E-9F4F-D502A4530B29"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[15]=",ExpressionUUID->"FDC78C53-86BB-412A-BD77-9AB4D13B3CD6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ FractionBox[ RowBox[{"Max", "[", RowBox[{"Norm", "/@", RowBox[{"p", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], RowBox[{"Max", "[", RowBox[{"Norm", "/@", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"convexhullname", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]], "//", "FullSimplify"}], "//", "Quiet"}]], "Input", CellLabel->"In[16]:=",ExpressionUUID->"1A8F0486-DB5D-40B4-8F69-FF1ABA0C8785"], Cell[BoxData[ FractionBox["1", RowBox[{ SqrtBox["2"], " ", RowBox[{"Missing", "[", RowBox[{"Norm", "[", "\<\"NotAvailable\"\>", "]"}], "]"}]}]]], "Output", CellLabel->"Out[16]=",ExpressionUUID->"2E38E6D2-E953-43BD-98AC-2A409E232C13"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[17]:=",ExpressionUUID->"B114A4AF-636E-4159-965C-024E9E457E91"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[17]=",ExpressionUUID->"E709AADE-6BDB-4EDD-A6A8-18D7C5530F22"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[18]:=",ExpressionUUID->"E90F60C7-E338-412A-AF77-4ABF8B6B9DE5"], Cell[BoxData[ Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], Polygon3DBox[{{6, 42, 48}, {8, 43, 36}, {13, 58, 20}, {19, 57, 12}, {23, 60, 15}, {25, 37, 32}, {28, 51, 4}, {30, 39, 18}, {33, 55, 3}, {38, 26, 31}, {40, 29, 17}, {44, 9, 35}, {45, 53, 1}, {47, 41, 7}, {49, 10, 21}, { 50, 22, 11}, {52, 27, 5}, {54, 46, 14}, {56, 34, 2}, {59, 24, 16}, {1, 53, 10, 49}, {1, 57, 19, 45}, {3, 60, 23, 33}, {4, 55, 33, 28}, {5, 43, 8, 52}, {6, 59, 16, 42}, {7, 29, 40, 47}, {9, 48, 42, 35}, {11, 54, 14, 50}, {12, 51, 28, 19}, {15, 53, 45, 23}, {17, 58, 13, 40}, {20, 27, 52, 13}, {21, 31, 26, 49}, {25, 17, 29, 37}, {25, 32, 22, 50}, {35, 11, 22, 44}, {36, 41, 47, 8}, {38, 30, 18, 26}, {39, 12, 57, 18}, {41, 15, 60, 7}, {43, 21, 10, 36}, {48, 39, 30, 6}, {51, 9, 44, 4}, {54, 16, 24, 46}, {55, 32, 37, 3}, {56, 2, 38, 31}, {56, 5, 27, 34}, {58, 14, 46, 20}, {59, 2, 34, 24}, {4, 44, 22, 32, 55}, {11, 35, 42, 16, 54}, {13, 52, 8, 47, 40}, {19, 28, 33, 23, 45}, {26, 18, 57, 1, 49}, {27, 20, 46, 24, 34}, {38, 2, 59, 6, 30}, {39, 48, 9, 51, 12}, {50, 14, 58, 17, 25}, {53, 15, 41, 36, 10}, {56, 31, 21, 43, 5}, {60, 3, 37, 29, 7}}]]]], "Output", CellLabel->"Out[18]=",ExpressionUUID->"CA767E32-049D-437C-A1C9-52C69D9E69A4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"convexhull", "=", RowBox[{"ConvexHullRegion", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}]}]], "Input", CellLabel->"In[21]:=",ExpressionUUID->"CB8DB9AE-CB96-418A-A784-E4E8C435DB46"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{59, 24, 16}, {30, 39, 18}, {11, 54, 14, 50}, {13, 58, 20}, {44, 9, 35}, {38, 26, 31}, {56, 2, 38, 31}, {38, 30, 18, 26}, {52, 27, 5}, {20, 27, 52, 13}, {39, 48, 9, 51, 12}, {51, 9, 44, 4}, {39, 12, 57, 18}, {38, 2, 59, 6, 30}, {48, 39, 30, 6}, {50, 14, 58, 17, 25}, {54, 46, 14}, {58, 14, 46, 20}, {54, 16, 24, 46}, {50, 22, 11}, {25, 32, 22, 50}, {35, 11, 22, 44}, {56, 34, 2}, {59, 2, 34, 24}, {56, 5, 27, 34}, {27, 20, 46, 24, 34}, {56, 31, 21, 43, 5}, {26, 18, 57, 1, 49}, {21, 31, 26, 49}, {6, 42, 48}, {11, 35, 42, 16, 54}, {9, 48, 42, 35}, {6, 59, 16, 42}, {40, 29, 17}, {17, 58, 13, 40}, {4, 44, 22, 32, 55}, {41, 15, 60, 7}, {25, 37, 32}, {60, 3, 37, 29, 7}, {55, 32, 37, 3}, {25, 17, 29, 37}, {49, 10, 21}, {53, 15, 41, 36, 10}, {43, 21, 10, 36}, {1, 53, 10, 49}, {47, 41, 7}, {7, 29, 40, 47}, {33, 55, 3}, {8, 43, 36}, {5, 43, 8, 52}, {13, 52, 8, 47, 40}, {36, 41, 47, 8}, {19, 57, 12}, {23, 60, 15}, {3, 60, 23, 33}, {28, 51, 4}, {4, 55, 33, 28}, {12, 51, 28, 19}, {45, 53, 1}, { 1, 57, 19, 45}, {19, 28, 33, 23, 45}, {15, 53, 45, 23}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, \ -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, \ {0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, { 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, -0.4129918634945738}, { 0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, { 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, \ {-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, \ {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], {{59, 24, 16}, {30, 39, 18}, {11, 54, 14, 50}, {13, 58, 20}, {44, 9, 35}, {38, 26, 31}, {56, 2, 38, 31}, {38, 30, 18, 26}, {52, 27, 5}, {20, 27, 52, 13}, {39, 48, 9, 51, 12}, {51, 9, 44, 4}, { 39, 12, 57, 18}, {38, 2, 59, 6, 30}, {48, 39, 30, 6}, {50, 14, 58, 17, 25}, {54, 46, 14}, {58, 14, 46, 20}, {54, 16, 24, 46}, {50, 22, 11}, {25, 32, 22, 50}, {35, 11, 22, 44}, {56, 34, 2}, {59, 2, 34, 24}, {56, 5, 27, 34}, {27, 20, 46, 24, 34}, {56, 31, 21, 43, 5}, {26, 18, 57, 1, 49}, {21, 31, 26, 49}, {6, 42, 48}, {11, 35, 42, 16, 54}, {9, 48, 42, 35}, {6, 59, 16, 42}, {40, 29, 17}, {17, 58, 13, 40}, {4, 44, 22, 32, 55}, {41, 15, 60, 7}, {25, 37, 32}, {60, 3, 37, 29, 7}, {55, 32, 37, 3}, {25, 17, 29, 37}, {49, 10, 21}, {53, 15, 41, 36, 10}, {43, 21, 10, 36}, {1, 53, 10, 49}, {47, 41, 7}, {7, 29, 40, 47}, {33, 55, 3}, {8, 43, 36}, {5, 43, 8, 52}, {13, 52, 8, 47, 40}, {36, 41, 47, 8}, {19, 57, 12}, {23, 60, 15}, {3, 60, 23, 33}, {28, 51, 4}, {4, 55, 33, 28}, {12, 51, 28, 19}, {45, 53, 1}, {1, 57, 19, 45}, {19, 28, 33, 23, 45}, {15, 53, 45, 23}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["60", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["62", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, \ -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, \ {0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, { 0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, -0.4129918634945738}, { 0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, { 0.2312188477625563, 0.52533376545453, -0.4129918634945738}, \ {-0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, \ {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], {{59, 24, 16}, {30, 39, 18}, {11, 54, 14, 50}, {13, 58, 20}, {44, 9, 35}, {38, 26, 31}, {56, 2, 38, 31}, {38, 30, 18, 26}, {52, 27, 5}, {20, 27, 52, 13}, {39, 48, 9, 51, 12}, {51, 9, 44, 4}, { 39, 12, 57, 18}, {38, 2, 59, 6, 30}, {48, 39, 30, 6}, {50, 14, 58, 17, 25}, {54, 46, 14}, {58, 14, 46, 20}, {54, 16, 24, 46}, {50, 22, 11}, {25, 32, 22, 50}, {35, 11, 22, 44}, {56, 34, 2}, {59, 2, 34, 24}, {56, 5, 27, 34}, {27, 20, 46, 24, 34}, {56, 31, 21, 43, 5}, {26, 18, 57, 1, 49}, {21, 31, 26, 49}, {6, 42, 48}, {11, 35, 42, 16, 54}, {9, 48, 42, 35}, {6, 59, 16, 42}, {40, 29, 17}, {17, 58, 13, 40}, {4, 44, 22, 32, 55}, {41, 15, 60, 7}, {25, 37, 32}, {60, 3, 37, 29, 7}, {55, 32, 37, 3}, {25, 17, 29, 37}, {49, 10, 21}, {53, 15, 41, 36, 10}, {43, 21, 10, 36}, {1, 53, 10, 49}, {47, 41, 7}, {7, 29, 40, 47}, {33, 55, 3}, {8, 43, 36}, {5, 43, 8, 52}, {13, 52, 8, 47, 40}, {36, 41, 47, 8}, {19, 57, 12}, {23, 60, 15}, {3, 60, 23, 33}, {28, 51, 4}, {4, 55, 33, 28}, {12, 51, 28, 19}, {45, 53, 1}, {1, 57, 19, 45}, {19, 28, 33, 23, 45}, {15, 53, 45, 23}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["60", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["62", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{59, 24, 16}, {30, 39, 18}, {11, 54, 14, 50}, {13, 58, 20}, {44, 9, 35}, {38, 26, 31}, {56, 2, 38, 31}, {38, 30, 18, 26}, {52, 27, 5}, {20, 27, 52, 13}, { 39, 48, 9, 51, 12}, {51, 9, 44, 4}, {39, 12, 57, 18}, {38, 2, 59, 6, 30}, {48, 39, 30, 6}, {50, 14, 58, 17, 25}, {54, 46, 14}, {58, 14, 46, 20}, {54, 16, 24, 46}, {50, 22, 11}, {25, 32, 22, 50}, {35, 11, 22, 44}, { 56, 34, 2}, {59, 2, 34, 24}, {56, 5, 27, 34}, {27, 20, 46, 24, 34}, {56, 31, 21, 43, 5}, {26, 18, 57, 1, 49}, {21, 31, 26, 49}, {6, 42, 48}, {11, 35, 42, 16, 54}, {9, 48, 42, 35}, {6, 59, 16, 42}, {40, 29, 17}, {17, 58, 13, 40}, {4, 44, 22, 32, 55}, {41, 15, 60, 7}, {25, 37, 32}, {60, 3, 37, 29, 7}, {55, 32, 37, 3}, {25, 17, 29, 37}, {49, 10, 21}, {53, 15, 41, 36, 10}, {43, 21, 10, 36}, {1, 53, 10, 49}, {47, 41, 7}, {7, 29, 40, 47}, {33, 55, 3}, {8, 43, 36}, {5, 43, 8, 52}, {13, 52, 8, 47, 40}, {36, 41, 47, 8}, {19, 57, 12}, {23, 60, 15}, {3, 60, 23, 33}, {28, 51, 4}, {4, 55, 33, 28}, {12, 51, 28, 19}, {45, 53, 1}, {1, 57, 19, 45}, {19, 28, 33, 23, 45}, {15, 53, 45, 23}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel->"Out[21]=",ExpressionUUID->"68E06E77-5C0A-423B-9933-C0752C09DD25"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Counts", "[", RowBox[{"SimplifyNumericallyDistinct", "[", RowBox[{"PolyhedronEdgeLengths", "[", "convexhull", "]"}], "]"}], "]"}]], "Input", CellLabel->"In[22]:=",ExpressionUUID->"FA4F16BA-5F52-40B1-941B-D109449099AB"], Cell[BoxData[ RowBox[{"\[LeftAssociation]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], SqrtBox["2"]]}], "\[Rule]", "60"}], ",", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.286\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.28580221351369472504444502192200161517`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"14", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"22", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"6", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2858022135136947}, "NumericalApproximation"], Root[1 - 14 #^2 + 22 #^4 - 6 #^6 + #^8& , 3, 0]], "\[Rule]", "60"}]}], "\[RightAssociation]"}]], "Output", CellLabel->"Out[22]=",ExpressionUUID->"FDE1F107-A928-47AB-99FF-0C5D26886DE9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Keys", "[", "%", "]"}], "//", "N"}]], "Input",ExpressionUUID->\ "B5514790-6E83-45EA-BC99-5F728DE9A668"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.3635460314640349`", ",", "0.2858022135136947`"}], "}"}]], "Output", CellLabel->"Out[25]=",ExpressionUUID->"7AD13ECA-E3AD-4F25-BEA0-5584BFECD80B"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"v", "=", RowBox[{"PolyhedronCoordinates", "[", "convexhull", "]"}]}]], "Input", CellLabel->"In[20]:=",ExpressionUUID->"FA226062-278B-4F9E-88B7-23B7B1298EC7"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.43701602444882109432811034821497742087`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 2, 0]], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{"3", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{"3", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{"3", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"3", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "2"], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{"3", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"3", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.43701602444882109432811034821497742087`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 2, 0]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "2"], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.43701602444882109432811034821497742087`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}], ",", "0", ",", FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "2"]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{"3", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.43701602444882109432811034821497742087`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 2, 0]], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "2"], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}], ",", "0", ",", FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "2"]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.43701602444882109432811034821497742087`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{"3", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"3", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{"3", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.78615137775742327530537068014382384717`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 2, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"3", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{"3", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}]]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.786\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.78615137775742327530537068014382384717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["#1", "2"], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.7861513777574233}, "NumericalApproximation"], Root[-1 + #^2 + #^4& , 1, 0]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.437\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.43701602444882109432811034821497742087`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.4370160244488211}, "NumericalApproximation"], Root[1 - 6 #^2 + 4 #^4& , 2, 0]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"3", "-", SqrtBox["5"]}]], "2"], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}]]}], ",", "0"}], "}"}]}], "}"}]], "Output", CellLabel->"Out[20]=",ExpressionUUID->"07F6382D-31BA-4629-B1F1-31BA3B006014"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Sort", "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"convexhull", "[", RowBox[{"[", "2", "]"}], "]"}], "/.", RowBox[{"i_Integer", "\[RuleDelayed]", RowBox[{"v", "[", RowBox[{"[", "i", "]"}], "]"}]}]}], ")"}], "/.", RowBox[{"Thread", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "->", RowBox[{"Range", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}]}], "]"}]}], "]"}]], "Input", CellLabel->"In[21]:=",ExpressionUUID->"F887EF4E-8232-4C3D-B7AB-56B4C023C01B"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"6", ",", "42", ",", "48"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "43", ",", "36"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "58", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "57", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"23", ",", "60", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "37", ",", "32"}], "}"}], ",", RowBox[{"{", RowBox[{"28", ",", "51", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"30", ",", "39", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"33", ",", "55", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"38", ",", "26", ",", "31"}], "}"}], ",", RowBox[{"{", RowBox[{"40", ",", "29", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"44", ",", "9", ",", "35"}], "}"}], ",", RowBox[{"{", RowBox[{"45", ",", "53", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"47", ",", "41", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"49", ",", "10", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{"50", ",", "22", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"52", ",", "27", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"54", ",", "46", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"56", ",", "34", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"59", ",", "24", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "53", ",", "10", ",", "49"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "57", ",", "19", ",", "45"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "60", ",", "23", ",", "33"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "55", ",", "33", ",", "28"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "43", ",", "8", ",", "52"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "59", ",", "16", ",", "42"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "29", ",", "40", ",", "47"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "48", ",", "42", ",", "35"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "54", ",", "14", ",", "50"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "51", ",", "28", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "53", ",", "45", ",", "23"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "58", ",", "13", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"20", ",", "27", ",", "52", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"21", ",", "31", ",", "26", ",", "49"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "17", ",", "29", ",", "37"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "32", ",", "22", ",", "50"}], "}"}], ",", RowBox[{"{", RowBox[{"35", ",", "11", ",", "22", ",", "44"}], "}"}], ",", RowBox[{"{", RowBox[{"36", ",", "41", ",", "47", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"38", ",", "30", ",", "18", ",", "26"}], "}"}], ",", RowBox[{"{", RowBox[{"39", ",", "12", ",", "57", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"41", ",", "15", ",", "60", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"43", ",", "21", ",", "10", ",", "36"}], "}"}], ",", RowBox[{"{", RowBox[{"48", ",", "39", ",", "30", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"51", ",", "9", ",", "44", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"54", ",", "16", ",", "24", ",", "46"}], "}"}], ",", RowBox[{"{", RowBox[{"55", ",", "32", ",", "37", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"56", ",", "2", ",", "38", ",", "31"}], "}"}], ",", RowBox[{"{", RowBox[{"56", ",", "5", ",", "27", ",", "34"}], "}"}], ",", RowBox[{"{", RowBox[{"58", ",", "14", ",", "46", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"59", ",", "2", ",", "34", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "44", ",", "22", ",", "32", ",", "55"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "35", ",", "42", ",", "16", ",", "54"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "52", ",", "8", ",", "47", ",", "40"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "28", ",", "33", ",", "23", ",", "45"}], "}"}], ",", RowBox[{"{", RowBox[{"26", ",", "18", ",", "57", ",", "1", ",", "49"}], "}"}], ",", RowBox[{"{", RowBox[{"27", ",", "20", ",", "46", ",", "24", ",", "34"}], "}"}], ",", RowBox[{"{", RowBox[{"38", ",", "2", ",", "59", ",", "6", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"39", ",", "48", ",", "9", ",", "51", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"50", ",", "14", ",", "58", ",", "17", ",", "25"}], "}"}], ",", RowBox[{"{", RowBox[{"53", ",", "15", ",", "41", ",", "36", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"56", ",", "31", ",", "21", ",", "43", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"60", ",", "3", ",", "37", ",", "29", ",", "7"}], "}"}]}], "}"}]], "Output", CellLabel->"Out[21]=",ExpressionUUID->"19E61DCC-9281-44BD-9580-081155AD9805"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"FaceForm", "[", RowBox[{"Green", ",", "Red"}], "]"}], ",", "convexhull", ",", RowBox[{"MapIndexed", "[", RowBox[{ RowBox[{ RowBox[{"Text", "[", RowBox[{ RowBox[{"#2", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "#", ",", RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], ",", "v"}], "]"}]}], "}"}], "]"}]], "Input", CellLabel->"In[22]:=",ExpressionUUID->"AEF85ACD-D849-4ED3-8C74-34E9FBA5A809"], Cell[BoxData[ Graphics3DBox[ {FaceForm[RGBColor[0, 1, 0], RGBColor[1, 0, 0]], PolyhedronBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], {{59, 24, 16}, {30, 39, 18}, {11, 54, 14, 50}, {13, 58, 20}, {44, 9, 35}, {38, 26, 31}, {56, 2, 38, 31}, {38, 30, 18, 26}, {52, 27, 5}, {20, 27, 52, 13}, {39, 48, 9, 51, 12}, {51, 9, 44, 4}, {39, 12, 57, 18}, {38, 2, 59, 6, 30}, {48, 39, 30, 6}, {50, 14, 58, 17, 25}, {54, 46, 14}, {58, 14, 46, 20}, {54, 16, 24, 46}, {50, 22, 11}, {25, 32, 22, 50}, {35, 11, 22, 44}, {56, 34, 2}, {59, 2, 34, 24}, {56, 5, 27, 34}, {27, 20, 46, 24, 34}, {56, 31, 21, 43, 5}, { 26, 18, 57, 1, 49}, {21, 31, 26, 49}, {6, 42, 48}, {11, 35, 42, 16, 54}, {9, 48, 42, 35}, {6, 59, 16, 42}, {40, 29, 17}, {17, 58, 13, 40}, { 4, 44, 22, 32, 55}, {41, 15, 60, 7}, {25, 37, 32}, {60, 3, 37, 29, 7}, { 55, 32, 37, 3}, {25, 17, 29, 37}, {49, 10, 21}, {53, 15, 41, 36, 10}, { 43, 21, 10, 36}, {1, 53, 10, 49}, {47, 41, 7}, {7, 29, 40, 47}, {33, 55, 3}, {8, 43, 36}, {5, 43, 8, 52}, {13, 52, 8, 47, 40}, {36, 41, 47, 8}, { 19, 57, 12}, {23, 60, 15}, {3, 60, 23, 33}, {28, 51, 4}, {4, 55, 33, 28}, {12, 51, 28, 19}, {45, 53, 1}, {1, 57, 19, 45}, {19, 28, 33, 23, 45}, {15, 53, 45, 23}}], {Text3DBox[ FormBox["1", StandardForm], NCache[{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {-0.4370160244488211, 0.5558929702514211, 0}], Background->GrayLevel[1]], Text3DBox[ FormBox["2", StandardForm], NCache[{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[ 1, 2]}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}], Background->GrayLevel[1]], Text3DBox[ FormBox["3", StandardForm], NCache[{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}], Background->GrayLevel[1]], Text3DBox[ FormBox["4", StandardForm], NCache[{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}], Background->GrayLevel[1]], Text3DBox[ FormBox["5", StandardForm], NCache[{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[ 1, 2]}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}], Background->GrayLevel[1]], Text3DBox[ FormBox["6", StandardForm], NCache[{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}], Background->GrayLevel[1]], Text3DBox[ FormBox["7", StandardForm], NCache[{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { 0.52533376545453, 0.4129918634945738, -0.2312188477625563}], Background->GrayLevel[1]], Text3DBox[ FormBox["8", StandardForm], NCache[{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { 0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}], Background->GrayLevel[1]], Text3DBox[ FormBox["9", StandardForm], NCache[{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}], Background->GrayLevel[1]], Text3DBox[ FormBox["10", StandardForm], NCache[{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}], Background->GrayLevel[1]], Text3DBox[ FormBox["11", StandardForm], NCache[{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}], Background->GrayLevel[1]], Text3DBox[ FormBox["12", StandardForm], NCache[{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}], Background->GrayLevel[1]], Text3DBox[ FormBox["13", StandardForm], NCache[{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}], Background->GrayLevel[1]], Text3DBox[ FormBox["14", StandardForm], NCache[{Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { 0.43701602444882104`, -0.5558929702514211, 0}], Background->GrayLevel[1]], Text3DBox[ FormBox["15", StandardForm], NCache[{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}], Background->GrayLevel[1]], Text3DBox[ FormBox["16", StandardForm], NCache[{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}], Background->GrayLevel[1]], Text3DBox[ FormBox["17", StandardForm], NCache[{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}], Background->GrayLevel[1]], Text3DBox[ FormBox["18", StandardForm], NCache[{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}], Background->GrayLevel[1]], Text3DBox[ FormBox["19", StandardForm], NCache[{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}], Background->GrayLevel[1]], Text3DBox[ FormBox["20", StandardForm], NCache[{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}], Background->GrayLevel[1]], Text3DBox[ FormBox["21", StandardForm], NCache[{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}], Background->GrayLevel[1]], Text3DBox[ FormBox["22", StandardForm], NCache[{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}], Background->GrayLevel[1]], Text3DBox[ FormBox["23", StandardForm], NCache[{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}], Background->GrayLevel[1]], Text3DBox[ FormBox["24", StandardForm], NCache[{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}], Background->GrayLevel[1]], Text3DBox[ FormBox["25", StandardForm], NCache[{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}], Background->GrayLevel[1]], Text3DBox[ FormBox["26", StandardForm], NCache[{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}], Background->GrayLevel[1]], Text3DBox[ FormBox["27", StandardForm], NCache[{0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, -0.4370160244488211, -0.5558929702514211}], Background->GrayLevel[1]], Text3DBox[ FormBox["28", StandardForm], NCache[{0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, 0.43701602444882104`, 0.5558929702514211}], Background->GrayLevel[1]], Text3DBox[ FormBox["29", StandardForm], NCache[{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}], Background->GrayLevel[1]], Text3DBox[ FormBox["30", StandardForm], NCache[{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}], Background->GrayLevel[1]], Text3DBox[ FormBox["31", StandardForm], NCache[{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, {-0.5558929702514211, 0, -0.4370160244488211}], Background->GrayLevel[1]], Text3DBox[ FormBox["32", StandardForm], NCache[{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { 0.5558929702514211, 0, 0.43701602444882104`}], Background->GrayLevel[1]], Text3DBox[ FormBox["33", StandardForm], NCache[{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0.2312188477625563, 0.52533376545453, 0.4129918634945738}], Background->GrayLevel[1]], Text3DBox[ FormBox["34", StandardForm], NCache[{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^ Rational[ 1, 2])}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}], Background->GrayLevel[1]], Text3DBox[ FormBox["35", StandardForm], NCache[{0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, -0.4370160244488211, 0.5558929702514211}], Background->GrayLevel[1]], Text3DBox[ FormBox["36", StandardForm], NCache[{0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, 0.43701602444882104`, -0.5558929702514211}], Background->GrayLevel[1]], Text3DBox[ FormBox["37", StandardForm], NCache[{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}], Background->GrayLevel[1]], Text3DBox[ FormBox["38", StandardForm], NCache[{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[ 1, 2])}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}], Background->GrayLevel[1]], Text3DBox[ FormBox["39", StandardForm], NCache[{Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^ Rational[1, 2]}, {-0.5558929702514211, 0, 0.43701602444882104`}], Background->GrayLevel[1]], Text3DBox[ FormBox["40", StandardForm], NCache[{Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { 0.5558929702514211, 0, -0.4370160244488211}], Background->GrayLevel[1]], Text3DBox[ FormBox["41", StandardForm], NCache[{Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}], Background->GrayLevel[1]], Text3DBox[ FormBox["42", StandardForm], NCache[{Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {-0.2312188477625563, -0.52533376545453, 0.4129918634945738}], Background->GrayLevel[1]], Text3DBox[ FormBox["43", StandardForm], NCache[{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}], Background->GrayLevel[1]], Text3DBox[ FormBox["44", StandardForm], NCache[{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}], Background->GrayLevel[1]], Text3DBox[ FormBox["45", StandardForm], NCache[{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}], Background->GrayLevel[1]], Text3DBox[ FormBox["46", StandardForm], NCache[{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}], Background->GrayLevel[1]], Text3DBox[ FormBox["47", StandardForm], NCache[{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}], Background->GrayLevel[1]], Text3DBox[ FormBox["48", StandardForm], NCache[{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {-0.4129918634945738, -0.2312188477625563, 0.52533376545453}], Background->GrayLevel[1]], Text3DBox[ FormBox["49", StandardForm], NCache[{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}], Background->GrayLevel[1]], Text3DBox[ FormBox["50", StandardForm], NCache[{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}], Background->GrayLevel[1]], Text3DBox[ FormBox["51", StandardForm], NCache[{(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}], Background->GrayLevel[1]], Text3DBox[ FormBox["52", StandardForm], NCache[{(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}], Background->GrayLevel[1]], Text3DBox[ FormBox["53", StandardForm], NCache[{(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}], Background->GrayLevel[1]], Text3DBox[ FormBox["54", StandardForm], NCache[{(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}], Background->GrayLevel[1]], Text3DBox[ FormBox["55", StandardForm], NCache[{(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {0.4129918634945738, 0.2312188477625563, 0.52533376545453}], Background->GrayLevel[1]], Text3DBox[ FormBox["56", StandardForm], NCache[{Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^ Rational[ 1, 2])}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}], Background->GrayLevel[1]], Text3DBox[ FormBox["57", StandardForm], NCache[{(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}], Background->GrayLevel[1]], Text3DBox[ FormBox["58", StandardForm], NCache[{(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}], Background->GrayLevel[1]], Text3DBox[ FormBox["59", StandardForm], NCache[{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {-0.4370160244488211, -0.5558929702514211, 0}], Background->GrayLevel[1]], Text3DBox[ FormBox["60", StandardForm], NCache[{Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { 0.43701602444882104`, 0.5558929702514211, 0}], Background->GrayLevel[1]]}}]], "Output", CellLabel->"Out[22]=",ExpressionUUID->"34C9D175-EF2F-4DC9-9115-202E503F511C"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{"Red", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", "p"}], "}"}], "]"}], ",", RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{"Blue", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "}"}], "]"}]}], "}"}]], "Input", CellLabel->"In[23]:=",ExpressionUUID->"7B5D136E-C5C5-4DFA-B1B3-E57A264408B8"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ {RGBColor[1, 0, 0], Opacity[0.5], PolyhedronBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D+CkQhO IBSK0ABDCEwgMVHBJBlHSFwgcFHGJYVCACWglGlTlkMjKC0A2nRoy2Y4wPAo 4waM57McyvKAdX3WCzgG5VjAiSEnRTwDeBblxYiXQgEjBJwUKCDQqIjJIq6I XCTyoYQpEi5LXCjxkaoTqkGqSaamuaaTmkFoSa6lma6SukboZqlbhaEShkYa ZmFYpUk5Jm2bemEapUXZFu1YemkZhcv4Lhu4le3WjscEHut7lePVNkxkmCpw mOA4x4kSp3I8zPE4JWqeaFkClSSWUzVLtTyFchorletUnl0dd3VetWvXnlMf V33eTec3fdA8V/PebRe0vd8+d/teXRN0rd8NYTdGfeP3bdAPUT+GA5yHeBq6 aOjDEU5jPI9dOPbRsuXLni3PvLzTumXrnq/PtL7ztmTbmm9HuZ3FvuT7mu1H sZ/lUV1HfR9bcezlWd1nfZ1bee7F09xPez3L9Kzz21xve7/L/K7THyjCO3w= "]]}], ",", Graphics3DBox[ {RGBColor[0, 0, 1], Opacity[0.5], GraphicsComplex3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], Polygon3DBox[{{6, 42, 48}, {8, 43, 36}, {13, 58, 20}, {19, 57, 12}, {23, 60, 15}, {25, 37, 32}, {28, 51, 4}, {30, 39, 18}, {33, 55, 3}, {38, 26, 31}, {40, 29, 17}, {44, 9, 35}, {45, 53, 1}, {47, 41, 7}, {49, 10, 21}, {50, 22, 11}, {52, 27, 5}, {54, 46, 14}, {56, 34, 2}, {59, 24, 16}, {1, 53, 10, 49}, {1, 57, 19, 45}, {3, 60, 23, 33}, {4, 55, 33, 28}, {5, 43, 8, 52}, {6, 59, 16, 42}, {7, 29, 40, 47}, {9, 48, 42, 35}, {11, 54, 14, 50}, {12, 51, 28, 19}, {15, 53, 45, 23}, {17, 58, 13, 40}, {20, 27, 52, 13}, {21, 31, 26, 49}, {25, 17, 29, 37}, {25, 32, 22, 50}, {35, 11, 22, 44}, {36, 41, 47, 8}, {38, 30, 18, 26}, {39, 12, 57, 18}, {41, 15, 60, 7}, {43, 21, 10, 36}, {48, 39, 30, 6}, {51, 9, 44, 4}, {54, 16, 24, 46}, {55, 32, 37, 3}, {56, 2, 38, 31}, {56, 5, 27, 34}, {58, 14, 46, 20}, {59, 2, 34, 24}, {4, 44, 22, 32, 55}, { 11, 35, 42, 16, 54}, {13, 52, 8, 47, 40}, {19, 28, 33, 23, 45}, {26, 18, 57, 1, 49}, {27, 20, 46, 24, 34}, {38, 2, 59, 6, 30}, {39, 48, 9, 51, 12}, {50, 14, 58, 17, 25}, {53, 15, 41, 36, 10}, {56, 31, 21, 43, 5}, {60, 3, 37, 29, 7}}]]}]}], "}"}]], "Output", CellLabel->"Out[23]=",ExpressionUUID->"16694D9E-2DB8-4045-8988-E66E57DFE86C"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", "%", "]"}]], "Input", CellLabel->"In[24]:=",ExpressionUUID->"8A68AA50-28C1-4452-B50D-FAB61955740B"], Cell[BoxData[ Graphics3DBox[{ {RGBColor[1, 0, 0], Opacity[0.5], PolyhedronBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D+CkQhO IBSK0ABDCEwgMVHBJBlHSFwgcFHGJYVCACWglGlTlkMjKC0A2nRoy2Y4wPAo 4waM57McyvKAdX3WCzgG5VjAiSEnRTwDeBblxYiXQgEjBJwUKCDQqIjJIq6I XCTyoYQpEi5LXCjxkaoTqkGqSaamuaaTmkFoSa6lma6SukboZqlbhaEShkYa ZmFYpUk5Jm2bemEapUXZFu1YemkZhcv4Lhu4le3WjscEHut7lePVNkxkmCpw mOA4x4kSp3I8zPE4JWqeaFkClSSWUzVLtTyFchorletUnl0dd3VetWvXnlMf V33eTec3fdA8V/PebRe0vd8+d/teXRN0rd8NYTdGfeP3bdAPUT+GA5yHeBq6 aOjDEU5jPI9dOPbRsuXLni3PvLzTumXrnq/PtL7ztmTbmm9HuZ3FvuT7mu1H sZ/lUV1HfR9bcezlWd1nfZ1bee7F09xPez3L9Kzz21xve7/L/K7THyjCO3w= "]]}, {RGBColor[0, 0, 1], Opacity[0.5], GraphicsComplex3DBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], Polygon3DBox[{{6, 42, 48}, {8, 43, 36}, {13, 58, 20}, {19, 57, 12}, {23, 60, 15}, {25, 37, 32}, {28, 51, 4}, {30, 39, 18}, {33, 55, 3}, {38, 26, 31}, {40, 29, 17}, {44, 9, 35}, {45, 53, 1}, {47, 41, 7}, {49, 10, 21}, {50, 22, 11}, {52, 27, 5}, {54, 46, 14}, {56, 34, 2}, {59, 24, 16}, {1, 53, 10, 49}, {1, 57, 19, 45}, {3, 60, 23, 33}, {4, 55, 33, 28}, {5, 43, 8, 52}, {6, 59, 16, 42}, {7, 29, 40, 47}, {9, 48, 42, 35}, {11, 54, 14, 50}, {12, 51, 28, 19}, {15, 53, 45, 23}, {17, 58, 13, 40}, {20, 27, 52, 13}, {21, 31, 26, 49}, {25, 17, 29, 37}, {25, 32, 22, 50}, {35, 11, 22, 44}, {36, 41, 47, 8}, {38, 30, 18, 26}, {39, 12, 57, 18}, {41, 15, 60, 7}, {43, 21, 10, 36}, {48, 39, 30, 6}, {51, 9, 44, 4}, {54, 16, 24, 46}, {55, 32, 37, 3}, {56, 2, 38, 31}, {56, 5, 27, 34}, {58, 14, 46, 20}, {59, 2, 34, 24}, {4, 44, 22, 32, 55}, {11, 35, 42, 16, 54}, {13, 52, 8, 47, 40}, {19, 28, 33, 23, 45}, {26, 18, 57, 1, 49}, {27, 20, 46, 24, 34}, {38, 2, 59, 6, 30}, {39, 48, 9, 51, 12}, { 50, 14, 58, 17, 25}, {53, 15, 41, 36, 10}, {56, 31, 21, 43, 5}, {60, 3, 37, 29, 7}}]]}}, ImageSize->{360., 360.}, ImageSizeRaw->Automatic, ViewAngle->0.47030072394368955`, ViewPoint->{1.4322382673719734`, -1.1486094515229959`, 2.8424267577806415`}, ViewVertical->{-0.16192729907684586`, 0.34487246924147025`, 0.9245769463776224}]], "Output", CellLabel->"Out[24]=",ExpressionUUID->"9B361674-80E0-4B3B-A129-2CAF126BFDEE"] }, Open ]], Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{"p", ",", RowBox[{"MapIndexed", "[", RowBox[{ RowBox[{ RowBox[{"Text", "[", RowBox[{ RowBox[{"#2", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "#", ",", RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], ",", RowBox[{"p", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "}"}], "]"}]], "Input", CellLabel->"In[98]:=",ExpressionUUID->"3A42B7E3-C61F-4B44-A3B0-588A550551CF"] }, Closed]], Cell[CellGroupData[{ Cell["DehnInvariant", "Subsection",ExpressionUUID->"D1802C5E-29E6-4F60-AF4C-4F4A7C8201A0"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[25]:=",ExpressionUUID->"FEE0A332-A7CA-47A3-967C-8B1837C31A76"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[25]=",ExpressionUUID->"A4D57404-6AC2-4480-9CD3-22BF89CF9E95"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"dehn", "=", RowBox[{"DehnInvariant", "[", RowBox[{"p", ",", RowBox[{"Debug", "\[Rule]", "True"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"D795EE71-FB9C-4022-A892-760E255EBC9D"], Cell[BoxData[ RowBox[{"ToConwayBasis", "[", "dehn", "]"}]], "Input",ExpressionUUID->"FFE5F771-52B7-4517-AD7C-21DB727679E7"] }, Closed]], Cell[CellGroupData[{ Cell["DihedralAngles", "Subsection",ExpressionUUID->"BFB64E64-954F-4B9E-80C9-3D1DE2CF2993"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "//", "Tally"}]], "Input", CellLabel->"In[26]:=",ExpressionUUID->"9D268BC2-CD90-45C4-939B-9F12903D2DAE"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"ArcSec", "[", RowBox[{"-", "3"}], "]"}], ",", "240"}], "}"}], "}"}]], "Output", CellLabel->"Out[26]=",ExpressionUUID->"04C09F4D-1542-47A2-9DD6-09C06CB69331"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"SimplifyNumericallyDistinct", "[", RowBox[{ RowBox[{"DihedralAngles", "[", "p", "]"}], ",", RowBox[{"\"\\"", "\[Rule]", "RootReduce"}]}], "]"}], "//", "FullSimplify"}], "//", "Quiet"}], "//", "Tally"}]], "Input", CellLabel->"In[30]:=",ExpressionUUID->"AAFC4F2D-5450-4B60-9E9C-85D375AE85E1"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"ArcSec", "[", RowBox[{"-", "3"}], "]"}], ",", "240"}], "}"}], "}"}]], "Output", CellLabel->"Out[30]=",ExpressionUUID->"85A76B83-5C22-43B1-AAA8-579407D38B17"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Dual", "Subsection",ExpressionUUID->"9F20D4E1-6051-42CD-AA7B-16D1D5A7AE76"], Cell[CellGroupData[{ Cell[BoxData["pname"], "Input", CellLabel->"In[32]:=",ExpressionUUID->"1FE0438F-432E-4BC4-A121-7F3FC9BA902B"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"OctahedronTwentyCompound\"\>", ",", "2"}], "}"}]], "Output", CellLabel->"Out[32]=",ExpressionUUID->"B56CCB9F-034E-4D0C-9B03-98D0FEBFC417"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"dname", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[33]:=",ExpressionUUID->"25CF4108-7418-4DC1-AE26-42153AC14A61"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"CubeTwentyCompound\"\>", ",", "2"}], "}"}]], "Output", CellLabel->"Out[33]=",ExpressionUUID->"9D5D6CC1-F3EC-4DCF-B257-FE9C3626392D"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[34]:=",ExpressionUUID->"E6BF8A0D-38E6-4332-BEA5-921E23B54FF2"], Cell[BoxData[ SqrtBox[ RowBox[{"2", "-", FractionBox[ RowBox[{"2", " ", SqrtBox["5"]}], "3"]}]]], "Output", CellLabel->"Out[34]=",ExpressionUUID->"4DAFEF0A-C97D-401E-8D1C-5523E0C34F97"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"midrs", "=", RowBox[{"{", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"dname", ",", "\"\\""}], "]"}]}], "}"}]}]], "Input", CellLabel->"In[35]:=",ExpressionUUID->"6F8B883C-00E1-4CA4-B652-8528B9FD6F19"], Cell[BoxData[ RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", FractionBox["1", SqrtBox["2"]]}], "}"}]], "Output", CellLabel->"Out[35]=",ExpressionUUID->"5264EFAF-C668-477F-AA13-3EE83E830771"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Divide", "@@", "midrs"}], "//", "FullSimplify"}]], "Input", CellLabel->"In[36]:=",ExpressionUUID->"9BCA38E2-6913-490C-89D3-AD2619FC3F42"], Cell[BoxData[ FractionBox["1", SqrtBox["2"]]], "Output", CellLabel->"Out[36]=",ExpressionUUID->"3E54D72F-DDDE-4894-BA7C-ED41744D2222"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphicsRow", "[", RowBox[{ RowBox[{"With", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"s", "=", RowBox[{"{", RowBox[{"Yellow", ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"style", "=", RowBox[{"Directive", "[", RowBox[{"Black", ",", "Italic", ",", RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", "14"}], "]"}]}]}], "\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{"s", ",", "Green", ",", RowBox[{"Opacity", "[", ".1", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"TextCell", "[", RowBox[{ RowBox[{"Style", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", "style"}], "]"}], ",", RowBox[{"PageWidth", "\[Rule]", "200"}], ",", RowBox[{"TextAlignment", "\[Rule]", "Center"}]}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{"s", ",", "Red", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"dname", ",", "\"\\""}], "]"}], ",", "style"}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"Green", ",", RowBox[{"Opacity", "[", ".3", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"Red", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{ "pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", "s"}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "style"}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "style"}], "]"}]}]}], "]"}]}], "\[IndentingNewLine]", "}"}]}], "]"}], ",", RowBox[{"Alignment", "\[Rule]", "Top"}], ",", RowBox[{"ImageSize", "\[Rule]", "800"}]}], "]"}]], "Input", CellLabel->"In[40]:=",ExpressionUUID->"2E886EC7-9794-4023-9A46-DA34ADBE8506"], Cell[BoxData[ GraphicsBox[{{}, {InsetBox[ Graphics3DBox[{ {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}, NCache[Rational[1, 2], 0.5]]}, {RGBColor[0, 1, 0], Opacity[0.1], PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, \ -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, \ {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]]}}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox["\"second cube 20\[Hyphen]compound\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], PageWidth -> 200, TextAlignment -> Center], TextCell[ Style["second cube 20\[Hyphen]compound", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14]], PageWidth -> 200, TextAlignment -> Center]], TraditionalForm]], {194.4, -9.5}, ImageScaled[{0.5, 1}], {360, 380}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}, NCache[Rational[1, 2], 0.5]]}, {RGBColor[1, 0, 0], Opacity[0.5], PolyhedronBox[ NCache[{{( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.04715964733388994, -0.41681008784595175`, -0.4538847095720435}, { 0.5773502691896258, 0, -0.22052817941653585`}, {-0.13629391035655408`, \ -0.5610323549787952, 0.22052817941653585`}, { 0.39389671149918176`, -0.14422226713284356`, 0.4538847095720435}, { 0.1362939103565541, 0.5610323549787952, -0.22052817941653585`}, {-0.39389671149918176`, 0.14422226713284356`, -0.4538847095720435}, {-0.04715964733388994, 0.41681008784595175`, 0.4538847095720435}, {-0.5773502691896257, 0, 0.22052817941653585`}, { 0.04715964733388994, -0.41681008784595175`, 0.4538847095720435}, { 0.5773502691896258, 0, 0.22052817941653585`}, {-0.13629391035655408`, \ -0.5610323549787952, -0.22052817941653585`}, { 0.39389671149918176`, -0.14422226713284356`, -0.4538847095720435}, \ {0.1362939103565541, 0.5610323549787952, 0.22052817941653585`}, {-0.39389671149918176`, 0.14422226713284356`, 0.4538847095720435}, {-0.04715964733388994, 0.41681008784595175`, -0.4538847095720435}, {-0.5773502691896257, 0, -0.22052817941653585`}, { 0.0599879980728618, -0.5901786199285975, -0.1733685320826459}, { 0.5901786199285975, -0.1733685320826459, 0.0599879980728618}, {-0.35682208977308993`, -0.35682208977308993`, 0.35682208977308993`}, {0.1733685320826459, 0.0599879980728618, 0.5901786199285975}, {0.35682208977308993`, 0.35682208977308993`, -0.35682208977308993`}, \ {-0.1733685320826459, -0.059987998072861794`, -0.5901786199285975}, \ {-0.059987998072861794`, 0.5901786199285975, 0.1733685320826459}, {-0.5901786199285975, 0.1733685320826459, -0.059987998072861794`}, {-0.5010443569059335, \ -0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, -0.5010443569059335, -0.31759079921548944`}, \ {-0.31759079921548944`, -0.1733685320826459, 0.5010443569059335}, { 0.35682208977308993`, -0.35682208977308993`, 0.35682208977308993`}, {0.31759079921548944`, 0.1733685320826459, -0.5010443569059335}, {-0.35682208977308993`, 0.35682208977308993`, -0.35682208977308993`}, {0.5010443569059335, 0.31759079921548944`, 0.1733685320826459}, {-0.1733685320826459, 0.5010443569059335, 0.31759079921548944`}, {-0.35682208977308993`, \ -0.35682208977308993`, -0.35682208977308993`}, {0.1733685320826459, 0.0599879980728618, -0.5901786199285975}, { 0.0599879980728618, -0.5901786199285975, 0.1733685320826459}, { 0.5901786199285975, -0.1733685320826459, -0.059987998072861794`}, \ {-0.059987998072861794`, 0.5901786199285975, -0.1733685320826459}, {-0.5901786199285975, 0.1733685320826459, 0.0599879980728618}, {0.35682208977308993`, 0.35682208977308993`, 0.35682208977308993`}, {-0.1733685320826459, \ -0.059987998072861794`, 0.5901786199285975}, {-0.31759079921548944`, -0.1733685320826459, \ -0.5010443569059335}, { 0.35682208977308993`, -0.35682208977308993`, \ -0.35682208977308993`}, {-0.1733685320826459, 0.5010443569059335, -0.31759079921548944`}, {0.5010443569059335, 0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, -0.5010443569059335, 0.31759079921548944`}, {-0.5010443569059335, -0.31759079921548944`, 0.1733685320826459}, {0.31759079921548944`, 0.1733685320826459, 0.5010443569059335}, {-0.35682208977308993`, 0.35682208977308993`, 0.35682208977308993`}, {-0.22052817941653585`, -0.5773502691896257, 0}, {0.4538847095720435, -0.39389671149918176`, \ -0.14422226713284356`}, {-0.22052817941653585`, -0.13629391035655408`, 0.5610323549787952}, {0.4538847095720435, 0.04715964733388994, 0.41681008784595175`}, {0.22052817941653585`, 0.1362939103565541, -0.5610323549787952}, {-0.4538847095720435, \ -0.04715964733388994, -0.41681008784595175`}, { 0.22052817941653585`, 0.5773502691896258, 0}, {-0.4538847095720435, 0.39389671149918176`, 0.14422226713284356`}, {-0.14422226713284356`, \ -0.4538847095720435, -0.39389671149918176`}, { 0.41681008784595175`, -0.4538847095720435, 0.04715964733388994}, {-0.5610323549787952, -0.22052817941653585`, 0.1362939103565541}, { 0, -0.22052817941653585`, 0.5773502691896258}, {0.5610323549787952, 0.22052817941653585`, -0.13629391035655408`}, { 0, 0.22052817941653585`, -0.5773502691896257}, { 0.14422226713284356`, 0.4538847095720435, 0.39389671149918176`}, {-0.41681008784595175`, 0.4538847095720435, -0.04715964733388994}, {-0.4538847095720435, 0.04715964733388994, -0.41681008784595175`}, { 0.22052817941653585`, -0.13629391035655408`, -0.5610323549787952}, \ {-0.22052817941653585`, 0.5773502691896258, 0}, {0.4538847095720435, 0.39389671149918176`, -0.14422226713284356`}, { 0.22052817941653585`, -0.5773502691896257, 0}, {-0.4538847095720435, -0.39389671149918176`, 0.14422226713284356`}, {0.4538847095720435, -0.04715964733388994, 0.41681008784595175`}, {-0.22052817941653585`, 0.1362939103565541, 0.5610323549787952}, {-0.22052817941653585`, \ -0.13629391035655408`, -0.5610323549787952}, {0.4538847095720435, 0.04715964733388994, -0.41681008784595175`}, {-0.4538847095720435, 0.39389671149918176`, -0.14422226713284356`}, { 0.4538847095720435, -0.39389671149918176`, 0.14422226713284356`}, { 0.22052817941653585`, 0.1362939103565541, 0.5610323549787952}, {-0.4538847095720435, -0.04715964733388994, 0.41681008784595175`}, {-0.14422226713284356`, -0.4538847095720435, 0.39389671149918176`}, { 0.41681008784595175`, -0.4538847095720435, -0.04715964733388994}, \ {-0.5610323549787952, -0.22052817941653585`, -0.13629391035655408`}, { 0, -0.22052817941653585`, -0.5773502691896257}, { 0.5610323549787952, 0.22052817941653585`, 0.1362939103565541}, { 0, 0.22052817941653585`, 0.5773502691896258}, { 0.14422226713284356`, 0.4538847095720435, -0.39389671149918176`}, {-0.41681008784595175`, 0.4538847095720435, 0.04715964733388994}, {-0.4538847095720435, -0.39389671149918176`, \ -0.14422226713284356`}, {-0.4538847095720435, 0.04715964733388994, 0.41681008784595175`}, { 0.22052817941653585`, -0.13629391035655408`, 0.5610323549787952}, { 0.4538847095720435, -0.04715964733388994, -0.41681008784595175`}, \ {-0.22052817941653585`, 0.1362939103565541, -0.5610323549787952}, { 0.4538847095720435, 0.39389671149918176`, 0.14422226713284356`}, { 0.31759079921548944`, -0.1733685320826459, -0.5010443569059335}, \ {-0.5010443569059335, 0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, 0.5010443569059335, -0.31759079921548944`}, { 0.5010443569059335, -0.31759079921548944`, 0.1733685320826459}, {-0.1733685320826459, -0.5010443569059335, 0.31759079921548944`}, {-0.31759079921548944`, 0.1733685320826459, 0.5010443569059335}, {-0.41681008784595175`, -0.4538847095720435, \ -0.04715964733388994}, {0.14422226713284356`, -0.4538847095720435, 0.39389671149918176`}, { 0.5610323549787952, -0.22052817941653585`, -0.13629391035655408`}, \ {-0.5610323549787952, 0.22052817941653585`, 0.1362939103565541}, { 0.41681008784595175`, 0.4538847095720435, 0.04715964733388994}, {-0.14422226713284356`, 0.4538847095720435, -0.39389671149918176`}, {-0.1733685320826459, 0.0599879980728618, -0.5901786199285975}, {-0.5901786199285975, \ -0.1733685320826459, -0.059987998072861794`}, {-0.059987998072861794`, \ -0.5901786199285975, 0.1733685320826459}, {0.5901786199285975, 0.1733685320826459, 0.0599879980728618}, {0.0599879980728618, 0.5901786199285975, -0.1733685320826459}, { 0.1733685320826459, -0.059987998072861794`, 0.5901786199285975}, {-0.1733685320826459, -0.5010443569059335, \ -0.31759079921548944`}, { 0.5010443569059335, -0.31759079921548944`, -0.1733685320826459}, { 0.31759079921548944`, -0.1733685320826459, 0.5010443569059335}, {-0.31759079921548944`, 0.1733685320826459, -0.5010443569059335}, {0.1733685320826459, 0.5010443569059335, 0.31759079921548944`}, {-0.5010443569059335, 0.31759079921548944`, 0.1733685320826459}, {-0.41681008784595175`, -0.4538847095720435, 0.04715964733388994}, { 0.14422226713284356`, -0.4538847095720435, -0.39389671149918176`}, \ {0.5610323549787952, -0.22052817941653585`, 0.1362939103565541}, {-0.5610323549787952, 0.22052817941653585`, -0.13629391035655408`}, { 0.41681008784595175`, 0.4538847095720435, -0.04715964733388994}, {-0.14422226713284356`, 0.4538847095720435, 0.39389671149918176`}, {-0.5901786199285975, -0.1733685320826459, 0.0599879980728618}, {-0.059987998072861794`, -0.5901786199285975, \ -0.1733685320826459}, {-0.1733685320826459, 0.0599879980728618, 0.5901786199285975}, { 0.1733685320826459, -0.059987998072861794`, -0.5901786199285975}, { 0.5901786199285975, 0.1733685320826459, -0.059987998072861794`}, { 0.0599879980728618, 0.5901786199285975, 0.1733685320826459}, {-0.04715964733388994, -0.41681008784595175`, \ -0.4538847095720435}, {-0.39389671149918176`, -0.14422226713284356`, 0.4538847095720435}, {0.1362939103565541, -0.5610323549787952, 0.22052817941653585`}, {0.39389671149918176`, 0.14422226713284356`, -0.4538847095720435}, {-0.13629391035655408`, 0.5610323549787952, -0.22052817941653585`}, {0.04715964733388994, 0.41681008784595175`, 0.4538847095720435}, {-0.04715964733388994, -0.41681008784595175`, 0.4538847095720435}, {-0.39389671149918176`, \ -0.14422226713284356`, -0.4538847095720435}, { 0.1362939103565541, -0.5610323549787952, -0.22052817941653585`}, { 0.39389671149918176`, 0.14422226713284356`, 0.4538847095720435}, {-0.13629391035655408`, 0.5610323549787952, 0.22052817941653585`}, {0.04715964733388994, 0.41681008784595175`, -0.4538847095720435}}], CompressedData[" 1:eJwNwwk7wgAAAFCtJEsH0yFTTRjTsZGmTMVaB0rNnN2FkiNnh5R0SOpH877v IZkimwFGRkYq/wX/+TxAwOOLhABPOMoXjImEorFRATA6Ni6eAMXjUvk4KJFO iOUyuVQiAydkkqlpaHISUiunJpUKaFqlVqpViukphUozp4PnNDNaDTw7o5vT 6mGdflY7M6ufXzAgiGF5ybCALs8jS4tLy+jiwvwiajFhRpMFN2Mm84rFuIob sZVVM766srFG2DZsm6SNWN9c2yCtxJp1ndxctzq3HXZqy+6gHNsu+5bbuUW5 3NtOt8uzu0Pv7DJeesfr3/X4GA/t93kZn38vsE/uB4gQuR8KBvYOiD0yeBAi DoJH3GE4woYPw+zxUeSQO2EjJ8fc0fFJ9II5jZ6e0afM+dlFlI4xF7Fz+uw8 ls4kkEw6haaReCqRQZNIIhlHU/Eke3WZ5a6zl9zlVS57nWevuVz+is3nCjfY 7S1291C4fcCxm/u7h7t7/KaA3z8Xodfis+IRKj4+Pb++KF6hp5dHxcsT9VYq v1HvFapcfS+9VZyV96qzXHJW67UPGP5ofH7UtI06/Nn8bGibtXpT+9Vuydtf HfBL3u202uA32Ol+y1vf3X5P9NPrA7+i3u+g/zMEfoHh4Ec0GP4Bm/J/dw== "]]}}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"second cube 20\[Hyphen]compound\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], {583.2, -9.5}, ImageScaled[{0.5, 1}], {360, 377}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ {RGBColor[0, 1, 0], Opacity[0.3], PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, \ -0.2312188477625563}, {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, -0.6682348722113773}, {-0.52533376545453, \ -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, \ {-0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, \ {-0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, -0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, \ {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]]}, {RGBColor[1, 0, 0], Opacity[0.5], PolyhedronBox[ NCache[{{( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) ( 1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.04715964733388994, -0.41681008784595175`, -0.4538847095720435}, { 0.5773502691896258, 0, -0.22052817941653585`}, {-0.13629391035655408`, \ -0.5610323549787952, 0.22052817941653585`}, { 0.39389671149918176`, -0.14422226713284356`, 0.4538847095720435}, { 0.1362939103565541, 0.5610323549787952, -0.22052817941653585`}, {-0.39389671149918176`, 0.14422226713284356`, -0.4538847095720435}, {-0.04715964733388994, 0.41681008784595175`, 0.4538847095720435}, {-0.5773502691896257, 0, 0.22052817941653585`}, { 0.04715964733388994, -0.41681008784595175`, 0.4538847095720435}, { 0.5773502691896258, 0, 0.22052817941653585`}, {-0.13629391035655408`, \ -0.5610323549787952, -0.22052817941653585`}, { 0.39389671149918176`, -0.14422226713284356`, -0.4538847095720435}, \ {0.1362939103565541, 0.5610323549787952, 0.22052817941653585`}, {-0.39389671149918176`, 0.14422226713284356`, 0.4538847095720435}, {-0.04715964733388994, 0.41681008784595175`, -0.4538847095720435}, {-0.5773502691896257, 0, -0.22052817941653585`}, { 0.0599879980728618, -0.5901786199285975, -0.1733685320826459}, { 0.5901786199285975, -0.1733685320826459, 0.0599879980728618}, {-0.35682208977308993`, -0.35682208977308993`, 0.35682208977308993`}, {0.1733685320826459, 0.0599879980728618, 0.5901786199285975}, {0.35682208977308993`, 0.35682208977308993`, -0.35682208977308993`}, \ {-0.1733685320826459, -0.059987998072861794`, -0.5901786199285975}, \ {-0.059987998072861794`, 0.5901786199285975, 0.1733685320826459}, {-0.5901786199285975, 0.1733685320826459, -0.059987998072861794`}, {-0.5010443569059335, \ -0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, -0.5010443569059335, -0.31759079921548944`}, \ {-0.31759079921548944`, -0.1733685320826459, 0.5010443569059335}, { 0.35682208977308993`, -0.35682208977308993`, 0.35682208977308993`}, {0.31759079921548944`, 0.1733685320826459, -0.5010443569059335}, {-0.35682208977308993`, 0.35682208977308993`, -0.35682208977308993`}, {0.5010443569059335, 0.31759079921548944`, 0.1733685320826459}, {-0.1733685320826459, 0.5010443569059335, 0.31759079921548944`}, {-0.35682208977308993`, \ -0.35682208977308993`, -0.35682208977308993`}, {0.1733685320826459, 0.0599879980728618, -0.5901786199285975}, { 0.0599879980728618, -0.5901786199285975, 0.1733685320826459}, { 0.5901786199285975, -0.1733685320826459, -0.059987998072861794`}, \ {-0.059987998072861794`, 0.5901786199285975, -0.1733685320826459}, {-0.5901786199285975, 0.1733685320826459, 0.0599879980728618}, {0.35682208977308993`, 0.35682208977308993`, 0.35682208977308993`}, {-0.1733685320826459, \ -0.059987998072861794`, 0.5901786199285975}, {-0.31759079921548944`, -0.1733685320826459, \ -0.5010443569059335}, { 0.35682208977308993`, -0.35682208977308993`, \ -0.35682208977308993`}, {-0.1733685320826459, 0.5010443569059335, -0.31759079921548944`}, {0.5010443569059335, 0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, -0.5010443569059335, 0.31759079921548944`}, {-0.5010443569059335, -0.31759079921548944`, 0.1733685320826459}, {0.31759079921548944`, 0.1733685320826459, 0.5010443569059335}, {-0.35682208977308993`, 0.35682208977308993`, 0.35682208977308993`}, {-0.22052817941653585`, -0.5773502691896257, 0}, {0.4538847095720435, -0.39389671149918176`, \ -0.14422226713284356`}, {-0.22052817941653585`, -0.13629391035655408`, 0.5610323549787952}, {0.4538847095720435, 0.04715964733388994, 0.41681008784595175`}, {0.22052817941653585`, 0.1362939103565541, -0.5610323549787952}, {-0.4538847095720435, \ -0.04715964733388994, -0.41681008784595175`}, { 0.22052817941653585`, 0.5773502691896258, 0}, {-0.4538847095720435, 0.39389671149918176`, 0.14422226713284356`}, {-0.14422226713284356`, \ -0.4538847095720435, -0.39389671149918176`}, { 0.41681008784595175`, -0.4538847095720435, 0.04715964733388994}, {-0.5610323549787952, -0.22052817941653585`, 0.1362939103565541}, { 0, -0.22052817941653585`, 0.5773502691896258}, {0.5610323549787952, 0.22052817941653585`, -0.13629391035655408`}, { 0, 0.22052817941653585`, -0.5773502691896257}, { 0.14422226713284356`, 0.4538847095720435, 0.39389671149918176`}, {-0.41681008784595175`, 0.4538847095720435, -0.04715964733388994}, {-0.4538847095720435, 0.04715964733388994, -0.41681008784595175`}, { 0.22052817941653585`, -0.13629391035655408`, -0.5610323549787952}, \ {-0.22052817941653585`, 0.5773502691896258, 0}, {0.4538847095720435, 0.39389671149918176`, -0.14422226713284356`}, { 0.22052817941653585`, -0.5773502691896257, 0}, {-0.4538847095720435, -0.39389671149918176`, 0.14422226713284356`}, {0.4538847095720435, -0.04715964733388994, 0.41681008784595175`}, {-0.22052817941653585`, 0.1362939103565541, 0.5610323549787952}, {-0.22052817941653585`, \ -0.13629391035655408`, -0.5610323549787952}, {0.4538847095720435, 0.04715964733388994, -0.41681008784595175`}, {-0.4538847095720435, 0.39389671149918176`, -0.14422226713284356`}, { 0.4538847095720435, -0.39389671149918176`, 0.14422226713284356`}, { 0.22052817941653585`, 0.1362939103565541, 0.5610323549787952}, {-0.4538847095720435, -0.04715964733388994, 0.41681008784595175`}, {-0.14422226713284356`, -0.4538847095720435, 0.39389671149918176`}, { 0.41681008784595175`, -0.4538847095720435, -0.04715964733388994}, \ {-0.5610323549787952, -0.22052817941653585`, -0.13629391035655408`}, { 0, -0.22052817941653585`, -0.5773502691896257}, { 0.5610323549787952, 0.22052817941653585`, 0.1362939103565541}, { 0, 0.22052817941653585`, 0.5773502691896258}, { 0.14422226713284356`, 0.4538847095720435, -0.39389671149918176`}, {-0.41681008784595175`, 0.4538847095720435, 0.04715964733388994}, {-0.4538847095720435, -0.39389671149918176`, \ -0.14422226713284356`}, {-0.4538847095720435, 0.04715964733388994, 0.41681008784595175`}, { 0.22052817941653585`, -0.13629391035655408`, 0.5610323549787952}, { 0.4538847095720435, -0.04715964733388994, -0.41681008784595175`}, \ {-0.22052817941653585`, 0.1362939103565541, -0.5610323549787952}, { 0.4538847095720435, 0.39389671149918176`, 0.14422226713284356`}, { 0.31759079921548944`, -0.1733685320826459, -0.5010443569059335}, \ {-0.5010443569059335, 0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, 0.5010443569059335, -0.31759079921548944`}, { 0.5010443569059335, -0.31759079921548944`, 0.1733685320826459}, {-0.1733685320826459, -0.5010443569059335, 0.31759079921548944`}, {-0.31759079921548944`, 0.1733685320826459, 0.5010443569059335}, {-0.41681008784595175`, -0.4538847095720435, \ -0.04715964733388994}, {0.14422226713284356`, -0.4538847095720435, 0.39389671149918176`}, { 0.5610323549787952, -0.22052817941653585`, -0.13629391035655408`}, \ {-0.5610323549787952, 0.22052817941653585`, 0.1362939103565541}, { 0.41681008784595175`, 0.4538847095720435, 0.04715964733388994}, {-0.14422226713284356`, 0.4538847095720435, -0.39389671149918176`}, {-0.1733685320826459, 0.0599879980728618, -0.5901786199285975}, {-0.5901786199285975, \ -0.1733685320826459, -0.059987998072861794`}, {-0.059987998072861794`, \ -0.5901786199285975, 0.1733685320826459}, {0.5901786199285975, 0.1733685320826459, 0.0599879980728618}, {0.0599879980728618, 0.5901786199285975, -0.1733685320826459}, { 0.1733685320826459, -0.059987998072861794`, 0.5901786199285975}, {-0.1733685320826459, -0.5010443569059335, \ -0.31759079921548944`}, { 0.5010443569059335, -0.31759079921548944`, -0.1733685320826459}, { 0.31759079921548944`, -0.1733685320826459, 0.5010443569059335}, {-0.31759079921548944`, 0.1733685320826459, -0.5010443569059335}, {0.1733685320826459, 0.5010443569059335, 0.31759079921548944`}, {-0.5010443569059335, 0.31759079921548944`, 0.1733685320826459}, {-0.41681008784595175`, -0.4538847095720435, 0.04715964733388994}, { 0.14422226713284356`, -0.4538847095720435, -0.39389671149918176`}, \ {0.5610323549787952, -0.22052817941653585`, 0.1362939103565541}, {-0.5610323549787952, 0.22052817941653585`, -0.13629391035655408`}, { 0.41681008784595175`, 0.4538847095720435, -0.04715964733388994}, {-0.14422226713284356`, 0.4538847095720435, 0.39389671149918176`}, {-0.5901786199285975, -0.1733685320826459, 0.0599879980728618}, {-0.059987998072861794`, -0.5901786199285975, \ -0.1733685320826459}, {-0.1733685320826459, 0.0599879980728618, 0.5901786199285975}, { 0.1733685320826459, -0.059987998072861794`, -0.5901786199285975}, { 0.5901786199285975, 0.1733685320826459, -0.059987998072861794`}, { 0.0599879980728618, 0.5901786199285975, 0.1733685320826459}, {-0.04715964733388994, -0.41681008784595175`, \ -0.4538847095720435}, {-0.39389671149918176`, -0.14422226713284356`, 0.4538847095720435}, {0.1362939103565541, -0.5610323549787952, 0.22052817941653585`}, {0.39389671149918176`, 0.14422226713284356`, -0.4538847095720435}, {-0.13629391035655408`, 0.5610323549787952, -0.22052817941653585`}, {0.04715964733388994, 0.41681008784595175`, 0.4538847095720435}, {-0.04715964733388994, -0.41681008784595175`, 0.4538847095720435}, {-0.39389671149918176`, \ -0.14422226713284356`, -0.4538847095720435}, { 0.1362939103565541, -0.5610323549787952, -0.22052817941653585`}, { 0.39389671149918176`, 0.14422226713284356`, 0.4538847095720435}, {-0.13629391035655408`, 0.5610323549787952, 0.22052817941653585`}, {0.04715964733388994, 0.41681008784595175`, -0.4538847095720435}}], CompressedData[" 1:eJwNwwk7wgAAAFCtJEsH0yFTTRjTsZGmTMVaB0rNnN2FkiNnh5R0SOpH877v IZkimwFGRkYq/wX/+TxAwOOLhABPOMoXjImEorFRATA6Ni6eAMXjUvk4KJFO iOUyuVQiAydkkqlpaHISUiunJpUKaFqlVqpViukphUozp4PnNDNaDTw7o5vT 6mGdflY7M6ufXzAgiGF5ybCALs8jS4tLy+jiwvwiajFhRpMFN2Mm84rFuIob sZVVM766srFG2DZsm6SNWN9c2yCtxJp1ndxctzq3HXZqy+6gHNsu+5bbuUW5 3NtOt8uzu0Pv7DJeesfr3/X4GA/t93kZn38vsE/uB4gQuR8KBvYOiD0yeBAi DoJH3GE4woYPw+zxUeSQO2EjJ8fc0fFJ9II5jZ6e0afM+dlFlI4xF7Fz+uw8 ls4kkEw6haaReCqRQZNIIhlHU/Eke3WZ5a6zl9zlVS57nWevuVz+is3nCjfY 7S1291C4fcCxm/u7h7t7/KaA3z8Xodfis+IRKj4+Pb++KF6hp5dHxcsT9VYq v1HvFapcfS+9VZyV96qzXHJW67UPGP5ofH7UtI06/Nn8bGibtXpT+9Vuydtf HfBL3u202uA32Ol+y1vf3X5P9NPrA7+i3u+g/zMEfoHh4Ec0GP4Bm/J/dw== "]]}, {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}, NCache[Rational[1, 2], 0.5]]}}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"compound with midsphere\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], {972., -9.5}, ImageScaled[{0.5, 1}], {360, 377}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ PolyhedronBox[ NCache[{{ Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2]}, {(Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^ Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.4370160244488211, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, { 0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.4370160244488211, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.4370160244488211}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.4370160244488211, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.4370160244488211}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, {0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.4370160244488211, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D8loAIF BBqlBUAhAKFQhAY0ggoYgQkkLhACTiIYiSEEjpAITvAsyvKA5VCOBTwDGB5l OMAxKC4pEi5LmIJJMi7KIq6ImIyJiq4Rmk5qBmFopK6Sqk6oBmmoBGU5FmWb lEOZNm3ZFu2YtE2bjssGrOuzXuCxvsv4jBswnu8xAS+FEh9JXMhJES9GIh+K XMSJYRorcSrDVEmhnMRynCgwkROopFqupZma5qmaJVqmJbmaZImaW0ZhWKVu FZZemkZpmIVulqZeuLVTu3btOV5tu5VduU7l2V7lNH3QN37XBE3nt73ft0HX +m0X9GM49tHQh/0QdWM0duHQRd0QDvEUD3M8TmM8D3CGwwTHeYTTuuf7mu1L vuzZumXbmm9Ltmz5uRf7We5HcezluZXbWWxHeWzFWV/1edfHddT3Wd3VeVXH fVRX81xPcz/t1T53895vc73t3b7Xs0zLM6/P9Kzzu8zLO63v/K7THzQbO3w= "]], PolyhedronBox[ NCache[{{( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0, ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (1 - 5^Rational[1, 2])^(-1) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, { 0, (Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0]}, { Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^ Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (1 + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^ Rational[1, 2])}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^ Rational[1, 2], (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 - 12 # + 16 #^3 + 16 #^4& , 1, 0]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]/(3 + 5^Rational[1, 2] + (22 + 10 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((2 + Rational[-2, 3] 5^Rational[1, 2]) (-2 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] - (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]/(3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 1, 0], ( Rational[1, 4] (1 - 5^Rational[1, 2])) (2 + Rational[-2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] + 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-3 + 5^Rational[1, 2]), (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2] Root[-1 + #^2 + #^4& , 2, 0], ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2])}, {( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (-1 + 5^Rational[1, 2] - 2 (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] (2 + Rational[-2, 3] 5^Rational[1, 2])^ Rational[1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] ((Rational[1, 2] (2 + Rational[-2, 3] 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.04715964733388994, -0.41681008784595175`, -0.4538847095720435}, { 0.5773502691896258, 0, -0.22052817941653585`}, {-0.13629391035655408`, \ -0.5610323549787952, 0.22052817941653585`}, { 0.39389671149918176`, -0.14422226713284356`, 0.4538847095720435}, { 0.1362939103565541, 0.5610323549787952, -0.22052817941653585`}, {-0.39389671149918176`, 0.14422226713284356`, -0.4538847095720435}, {-0.04715964733388994, 0.41681008784595175`, 0.4538847095720435}, {-0.5773502691896257, 0, 0.22052817941653585`}, {0.04715964733388994, -0.41681008784595175`, 0.4538847095720435}, { 0.5773502691896258, 0, 0.22052817941653585`}, {-0.13629391035655408`, \ -0.5610323549787952, -0.22052817941653585`}, { 0.39389671149918176`, -0.14422226713284356`, -0.4538847095720435}, { 0.1362939103565541, 0.5610323549787952, 0.22052817941653585`}, {-0.39389671149918176`, 0.14422226713284356`, 0.4538847095720435}, {-0.04715964733388994, 0.41681008784595175`, -0.4538847095720435}, {-0.5773502691896257, 0, -0.22052817941653585`}, { 0.0599879980728618, -0.5901786199285975, -0.1733685320826459}, { 0.5901786199285975, -0.1733685320826459, 0.0599879980728618}, {-0.35682208977308993`, -0.35682208977308993`, 0.35682208977308993`}, {0.1733685320826459, 0.0599879980728618, 0.5901786199285975}, {0.35682208977308993`, 0.35682208977308993`, -0.35682208977308993`}, {-0.1733685320826459, \ -0.059987998072861794`, -0.5901786199285975}, {-0.059987998072861794`, 0.5901786199285975, 0.1733685320826459}, {-0.5901786199285975, 0.1733685320826459, -0.059987998072861794`}, {-0.5010443569059335, \ -0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, -0.5010443569059335, -0.31759079921548944`}, \ {-0.31759079921548944`, -0.1733685320826459, 0.5010443569059335}, { 0.35682208977308993`, -0.35682208977308993`, 0.35682208977308993`}, {0.31759079921548944`, 0.1733685320826459, -0.5010443569059335}, {-0.35682208977308993`, 0.35682208977308993`, -0.35682208977308993`}, {0.5010443569059335, 0.31759079921548944`, 0.1733685320826459}, {-0.1733685320826459, 0.5010443569059335, 0.31759079921548944`}, {-0.35682208977308993`, \ -0.35682208977308993`, -0.35682208977308993`}, {0.1733685320826459, 0.0599879980728618, -0.5901786199285975}, { 0.0599879980728618, -0.5901786199285975, 0.1733685320826459}, { 0.5901786199285975, -0.1733685320826459, -0.059987998072861794`}, \ {-0.059987998072861794`, 0.5901786199285975, -0.1733685320826459}, {-0.5901786199285975, 0.1733685320826459, 0.0599879980728618}, {0.35682208977308993`, 0.35682208977308993`, 0.35682208977308993`}, {-0.1733685320826459, -0.059987998072861794`, 0.5901786199285975}, {-0.31759079921548944`, -0.1733685320826459, \ -0.5010443569059335}, { 0.35682208977308993`, -0.35682208977308993`, \ -0.35682208977308993`}, {-0.1733685320826459, 0.5010443569059335, -0.31759079921548944`}, {0.5010443569059335, 0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, -0.5010443569059335, 0.31759079921548944`}, {-0.5010443569059335, -0.31759079921548944`, 0.1733685320826459}, {0.31759079921548944`, 0.1733685320826459, 0.5010443569059335}, {-0.35682208977308993`, 0.35682208977308993`, 0.35682208977308993`}, {-0.22052817941653585`, -0.5773502691896257, 0}, {0.4538847095720435, -0.39389671149918176`, \ -0.14422226713284356`}, {-0.22052817941653585`, -0.13629391035655408`, 0.5610323549787952}, {0.4538847095720435, 0.04715964733388994, 0.41681008784595175`}, {0.22052817941653585`, 0.1362939103565541, -0.5610323549787952}, {-0.4538847095720435, \ -0.04715964733388994, -0.41681008784595175`}, { 0.22052817941653585`, 0.5773502691896258, 0}, {-0.4538847095720435, 0.39389671149918176`, 0.14422226713284356`}, {-0.14422226713284356`, -0.4538847095720435, \ -0.39389671149918176`}, {0.41681008784595175`, -0.4538847095720435, 0.04715964733388994}, {-0.5610323549787952, -0.22052817941653585`, 0.1362939103565541}, { 0, -0.22052817941653585`, 0.5773502691896258}, {0.5610323549787952, 0.22052817941653585`, -0.13629391035655408`}, { 0, 0.22052817941653585`, -0.5773502691896257}, { 0.14422226713284356`, 0.4538847095720435, 0.39389671149918176`}, {-0.41681008784595175`, 0.4538847095720435, -0.04715964733388994}, {-0.4538847095720435, 0.04715964733388994, -0.41681008784595175`}, { 0.22052817941653585`, -0.13629391035655408`, -0.5610323549787952}, \ {-0.22052817941653585`, 0.5773502691896258, 0}, {0.4538847095720435, 0.39389671149918176`, -0.14422226713284356`}, { 0.22052817941653585`, -0.5773502691896257, 0}, {-0.4538847095720435, -0.39389671149918176`, 0.14422226713284356`}, {0.4538847095720435, -0.04715964733388994, 0.41681008784595175`}, {-0.22052817941653585`, 0.1362939103565541, 0.5610323549787952}, {-0.22052817941653585`, -0.13629391035655408`, \ -0.5610323549787952}, {0.4538847095720435, 0.04715964733388994, -0.41681008784595175`}, {-0.4538847095720435, 0.39389671149918176`, -0.14422226713284356`}, { 0.4538847095720435, -0.39389671149918176`, 0.14422226713284356`}, { 0.22052817941653585`, 0.1362939103565541, 0.5610323549787952}, {-0.4538847095720435, -0.04715964733388994, 0.41681008784595175`}, {-0.14422226713284356`, -0.4538847095720435, 0.39389671149918176`}, { 0.41681008784595175`, -0.4538847095720435, -0.04715964733388994}, \ {-0.5610323549787952, -0.22052817941653585`, -0.13629391035655408`}, { 0, -0.22052817941653585`, -0.5773502691896257}, {0.5610323549787952, 0.22052817941653585`, 0.1362939103565541}, { 0, 0.22052817941653585`, 0.5773502691896258}, {0.14422226713284356`, 0.4538847095720435, -0.39389671149918176`}, {-0.41681008784595175`, 0.4538847095720435, 0.04715964733388994}, {-0.4538847095720435, -0.39389671149918176`, \ -0.14422226713284356`}, {-0.4538847095720435, 0.04715964733388994, 0.41681008784595175`}, {0.22052817941653585`, -0.13629391035655408`, 0.5610323549787952}, { 0.4538847095720435, -0.04715964733388994, -0.41681008784595175`}, \ {-0.22052817941653585`, 0.1362939103565541, -0.5610323549787952}, { 0.4538847095720435, 0.39389671149918176`, 0.14422226713284356`}, { 0.31759079921548944`, -0.1733685320826459, -0.5010443569059335}, \ {-0.5010443569059335, 0.31759079921548944`, -0.1733685320826459}, { 0.1733685320826459, 0.5010443569059335, -0.31759079921548944`}, { 0.5010443569059335, -0.31759079921548944`, 0.1733685320826459}, {-0.1733685320826459, -0.5010443569059335, 0.31759079921548944`}, {-0.31759079921548944`, 0.1733685320826459, 0.5010443569059335}, {-0.41681008784595175`, -0.4538847095720435, \ -0.04715964733388994}, {0.14422226713284356`, -0.4538847095720435, 0.39389671149918176`}, { 0.5610323549787952, -0.22052817941653585`, -0.13629391035655408`}, \ {-0.5610323549787952, 0.22052817941653585`, 0.1362939103565541}, { 0.41681008784595175`, 0.4538847095720435, 0.04715964733388994}, {-0.14422226713284356`, 0.4538847095720435, -0.39389671149918176`}, {-0.1733685320826459, 0.0599879980728618, -0.5901786199285975}, {-0.5901786199285975, \ -0.1733685320826459, -0.059987998072861794`}, {-0.059987998072861794`, \ -0.5901786199285975, 0.1733685320826459}, {0.5901786199285975, 0.1733685320826459, 0.0599879980728618}, {0.0599879980728618, 0.5901786199285975, -0.1733685320826459}, { 0.1733685320826459, -0.059987998072861794`, 0.5901786199285975}, {-0.1733685320826459, -0.5010443569059335, \ -0.31759079921548944`}, { 0.5010443569059335, -0.31759079921548944`, -0.1733685320826459}, { 0.31759079921548944`, -0.1733685320826459, 0.5010443569059335}, {-0.31759079921548944`, 0.1733685320826459, -0.5010443569059335}, {0.1733685320826459, 0.5010443569059335, 0.31759079921548944`}, {-0.5010443569059335, 0.31759079921548944`, 0.1733685320826459}, {-0.41681008784595175`, -0.4538847095720435, 0.04715964733388994}, { 0.14422226713284356`, -0.4538847095720435, -0.39389671149918176`}, { 0.5610323549787952, -0.22052817941653585`, 0.1362939103565541}, {-0.5610323549787952, 0.22052817941653585`, -0.13629391035655408`}, {0.41681008784595175`, 0.4538847095720435, -0.04715964733388994}, {-0.14422226713284356`, 0.4538847095720435, 0.39389671149918176`}, {-0.5901786199285975, -0.1733685320826459, 0.0599879980728618}, {-0.059987998072861794`, -0.5901786199285975, \ -0.1733685320826459}, {-0.1733685320826459, 0.0599879980728618, 0.5901786199285975}, { 0.1733685320826459, -0.059987998072861794`, -0.5901786199285975}, { 0.5901786199285975, 0.1733685320826459, -0.059987998072861794`}, { 0.0599879980728618, 0.5901786199285975, 0.1733685320826459}, {-0.04715964733388994, -0.41681008784595175`, \ -0.4538847095720435}, {-0.39389671149918176`, -0.14422226713284356`, 0.4538847095720435}, {0.1362939103565541, -0.5610323549787952, 0.22052817941653585`}, {0.39389671149918176`, 0.14422226713284356`, -0.4538847095720435}, {-0.13629391035655408`, 0.5610323549787952, -0.22052817941653585`}, {0.04715964733388994, 0.41681008784595175`, 0.4538847095720435}, {-0.04715964733388994, -0.41681008784595175`, 0.4538847095720435}, {-0.39389671149918176`, -0.14422226713284356`, \ -0.4538847095720435}, { 0.1362939103565541, -0.5610323549787952, -0.22052817941653585`}, { 0.39389671149918176`, 0.14422226713284356`, 0.4538847095720435}, {-0.13629391035655408`, 0.5610323549787952, 0.22052817941653585`}, {0.04715964733388994, 0.41681008784595175`, -0.4538847095720435}}], CompressedData[" 1:eJwNwwk7wgAAAFCtJEsH0yFTTRjTsZGmTMVaB0rNnN2FkiNnh5R0SOpH877v IZkimwFGRkYq/wX/+TxAwOOLhABPOMoXjImEorFRATA6Ni6eAMXjUvk4KJFO iOUyuVQiAydkkqlpaHISUiunJpUKaFqlVqpViukphUozp4PnNDNaDTw7o5vT 6mGdflY7M6ufXzAgiGF5ybCALs8jS4tLy+jiwvwiajFhRpMFN2Mm84rFuIob sZVVM766srFG2DZsm6SNWN9c2yCtxJp1ndxctzq3HXZqy+6gHNsu+5bbuUW5 3NtOt8uzu0Pv7DJeesfr3/X4GA/t93kZn38vsE/uB4gQuR8KBvYOiD0yeBAi DoJH3GE4woYPw+zxUeSQO2EjJ8fc0fFJ9II5jZ6e0afM+dlFlI4xF7Fz+uw8 ls4kkEw6haaReCqRQZNIIhlHU/Eke3WZ5a6zl9zlVS57nWevuVz+is3nCjfY 7S1291C4fcCxm/u7h7t7/KaA3z8Xodfis+IRKj4+Pb++KF6hp5dHxcsT9VYq v1HvFapcfS+9VZyV96qzXHJW67UPGP5ofH7UtI06/Nn8bGibtXpT+9Vuydtf HfBL3u202uA32Ol+y1vf3X5P9NPrA7+i3u+g/zMEfoHh4Ec0GP4Bm/J/dw== "]]}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"compound\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], {1360.8000000000002, -9.5}, ImageScaled[{0.5, 1}], {360, 377}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True]}, {}}, ImageSize->800, PlotRangePadding->{6, 5}]], "Output", CellLabel->"Out[40]=",ExpressionUUID->"12558F8A-D9AE-4195-81F5-7B16EF0C5AC9"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["EdgeCount", "Subsection",ExpressionUUID->"E5AE51F6-4BCA-4578-BD7E-212B63DAD40B"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[31]:=",ExpressionUUID->"BD5671D4-7549-4485-9165-B1A216A35C8E"], Cell[BoxData["240"], "Output", CellLabel->"Out[31]=",ExpressionUUID->"7BB1D807-C2BF-4148-B84B-9E527F496409"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["EdgeLengths", "Subsection",ExpressionUUID->"B90A5422-C9D6-45E8-9842-32A29993F367"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Tally", "[", RowBox[{ RowBox[{"PolyhedronEdgeLengths", "[", "p", "]"}], "//", "RootReduce"}], "]"}]], "Input", CellLabel->"In[32]:=",ExpressionUUID->"6FB48DAA-1342-498C-B2BB-51A717E05850"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"1", ",", "240"}], "}"}], "}"}]], "Output", CellLabel->"Out[32]=",ExpressionUUID->"0EDFAAD4-2D6A-4946-A9AD-A952EC33330B"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[33]:=",ExpressionUUID->"5E6D70ED-B11D-4B4F-9B7D-A10C1BF56C68"], Cell[BoxData[ RowBox[{"{", "1", "}"}]], "Output", CellLabel->"Out[33]=",ExpressionUUID->"2E257358-90FA-4D8C-B8F3-2AB5594E9268"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "/.", RowBox[{ RowBox[{"Line", "[", "l_", "]"}], "\[RuleDelayed]", RowBox[{"EuclideanDistance", "@@", "l"}]}]}], "//", "FullSimplify"}], "//", "Union"}], "//", "Quiet"}]], "Input", CellLabel->"In[46]:=",ExpressionUUID->"E30ADFF3-7881-47CC-99CF-CFC6330FFF37"], Cell[BoxData[ RowBox[{"{", "1", "}"}]], "Output", CellLabel->"Out[46]=",ExpressionUUID->"C8BA9D7C-C59A-41DC-B6B6-91379BCFFFE7"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"lens", "=", RowBox[{"SimplifyNumericallyDistinct", "[", RowBox[{"PolyhedronEdgeLengths", "[", "p", "]"}], "]"}]}], ";"}], "//", "Quiet"}]], "Input", CellLabel->"In[47]:=",ExpressionUUID->"D56A8427-1CE0-4488-9AD9-B827C31EE9B7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"distinctlens", "=", RowBox[{"Mean", "/@", RowBox[{"Split", "[", RowBox[{ RowBox[{"Sort", "[", "lens", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"Abs", "[", RowBox[{"#1", "-", "#2"}], "]"}], "<", "1.*^-10"}], "&"}]}], "]"}]}]}], ")"}], "//", "N"}], "//", "Quiet"}]], "Input", CellLabel->"In[48]:=",ExpressionUUID->"800F64E8-A5D2-40AD-A2B8-39BA36217517"], Cell[BoxData[ RowBox[{"{", "1.`", "}"}]], "Output", CellLabel->"Out[48]=",ExpressionUUID->"8D5A526A-6AFE-4CAF-B011-2B1F21211767"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"v", "=", RowBox[{"p", "[", RowBox[{"[", "1", "]"}], "]"}]}], ";"}]], "Input", CellLabel->"In[49]:=",ExpressionUUID->"9EE729B7-2C4C-411C-93A1-55AEC1CD05CB"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"colors", "=", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"n", "=", RowBox[{"Length", "[", "distinctlens", "]"}]}], "}"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"Hue", "[", RowBox[{"i", "/", "n"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", RowBox[{"n", "-", "1"}]}], "}"}]}], "]"}]}], "]"}]}]], "Input", CellLabel->"In[50]:=",ExpressionUUID->"58392E5D-3976-4AC5-8FEB-11B03DDABCA5"], Cell[BoxData[ RowBox[{"{", TemplateBox[<|"color" -> Hue[0]|>, "HueColorSwatchTemplate"], "}"}]], "Output", CellLabel->"Out[50]=",ExpressionUUID->"F3BCFD21-EC77-431C-AAC5-439E573E205D"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"Thick", ",", RowBox[{"Sequence", "@@", RowBox[{"Nearest", "[", RowBox[{ RowBox[{"Thread", "[", RowBox[{"distinctlens", "->", "colors"}], "]"}], ",", RowBox[{"EuclideanDistance", "@@", RowBox[{"v", "[", RowBox[{"[", "#", "]"}], "]"}]}]}], "]"}]}], ",", RowBox[{"Line", "[", RowBox[{"v", "[", RowBox[{"[", "#", "]"}], "]"}], "]"}]}], "}"}], "&"}], "/@", RowBox[{"PolyhedronEdges", "[", "p", "]"}]}], ",", RowBox[{"Boxed", "->", "False"}]}], "]"}], "//", "Quiet"}]], "Input", CellLabel->"In[51]:=",ExpressionUUID->"0889A5E0-B85E-414E-8230-B602ED5D82FE"] }, Closed]], Cell[CellGroupData[{ Cell["FaceCount", "Subsection",ExpressionUUID->"00B501AC-BA99-4B6F-9E88-7DCAC237880C"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[34]:=",ExpressionUUID->"B6C5AF5C-04D5-486F-97ED-CB33908199E4"], Cell[BoxData["160"], "Output", CellLabel->"Out[34]=",ExpressionUUID->"45A1251D-58DD-4034-B103-D7C0766F4721"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["GeneralizedDiameter", "Subsection",ExpressionUUID->"7EEBB646-0E48-4DF5-B291-4D57F6C71808"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[35]:=",ExpressionUUID->"DA23EC38-16FB-47C4-A331-FB5172DEF50E"], Cell[BoxData[ SqrtBox["2"]], "Output", CellLabel->"Out[35]=",ExpressionUUID->"331485A3-2DAC-490C-AA2E-776773247B40"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"GeneralizedDiameter", "[", "p", "]"}], "//", "FullSimplify"}], "//", "Quiet"}]], "Input", CellLabel->"In[36]:=",ExpressionUUID->"3729E4EA-D205-424D-96ED-064B42B80EB7"], Cell[BoxData[ SqrtBox["2"]], "Output", CellLabel->"Out[36]=",ExpressionUUID->"B8A2BE0F-AE58-47B4-9A88-CA658EEAF40D"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Hull", "Subsection",ExpressionUUID->"28FD2503-B5E0-4703-9A1F-EE2C3ECDC639"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"hullname", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[37]:=",ExpressionUUID->"0FD4FF86-0E66-44E2-A7D8-2863CE2A6239"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[37]=",ExpressionUUID->"E69E1186-8392-4D2A-ACD0-A45D2E7BF31E"] }, Open ]], Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"7ECA0C3C-A211-45DE-B461-DE054BDD49CC"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox[ RowBox[{"Max", "[", RowBox[{"Norm", "/@", RowBox[{"p", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], RowBox[{"Max", "[", RowBox[{"Norm", "/@", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"hullname", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]], "//", "FullSimplify"}], "//", "Quiet"}]], "Input",ExpressionUUID->"E8530EF3-B601-4210-8DA1-47E36D508F82"], Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[3]:=",ExpressionUUID->"196715A6-C727-422A-BB35-A82769D07EAE"], Cell[BoxData[ RowBox[{"Max", "[", RowBox[{"Norm", "/@", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]], "Input", CellLabel->"In[5]:=",ExpressionUUID->"C875A080-2454-4200-A170-013579BE8AAD"], Cell[BoxData[ RowBox[{"Max", "[", RowBox[{"Norm", "/@", RowBox[{"p", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"0D4E423F-4458-4909-A67C-18E4F2E88C04"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".5", "]"}], ",", "Red", ",", "p"}], "}"}], "]"}], ",", RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".5", "]"}], ",", "Blue", ",", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "}"}], "]"}]}], "}"}]], "Input", CellLabel->"In[7]:=",ExpressionUUID->"10784EE2-8368-459C-83FE-3FB111C394D5"], Cell[BoxData[ RowBox[{"Show", "[", "%", "]"}]], "Input", CellLabel->"In[8]:=",ExpressionUUID->"22C6FE8B-2F70-481E-A657-60E2293A5DEB"] }, Closed]], Cell[CellGroupData[{ Cell["InertiaTensor", "Subsection",ExpressionUUID->"E4615BF6-CF1B-4E78-B749-2855C464F0AC"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[38]:=",ExpressionUUID->"A01CA6D9-406A-4311-AA52-F2D267C43180"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[38]=",ExpressionUUID->"09B41D8D-4D0D-4504-ABAA-CD6B0A1609CA"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Insphere", "Subsection",ExpressionUUID->"34260633-853D-4F43-9C92-2E1CD0BA15FF"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[39]:=",ExpressionUUID->"9237EA46-B907-4435-B178-14B1E300598E"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[39]=",ExpressionUUID->"87C176A8-5CEB-41B2-8F86-2D3444D95CB1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Insphere", "[", "p", "]"}]], "Input", CellLabel->"In[58]:=",ExpressionUUID->"F1BBFD7C-0F6C-44A9-860C-11B5CE1EA178"], Cell[BoxData[ TemplateBox[{ "Insphere", "spec", "\"\\!\\(\\*RowBox[{\\\"Polyhedron\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\\\ \", RowBox[{RowBox[{\\\"{\\\", RowBox[{FractionBox[\\\"1\\\", RowBox[{\\\"4\\\ \", \\\" \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\ \", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"15\\\", \\\"-\\\", RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\ \\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", RowBox[{\ \\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]]}], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\ \", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"15\\\", \\\"-\\\", RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\ \\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\ \", SqrtBox[RowBox[{\\\"7\\\", \\\"-\\\", RowBox[{\\\"3\\\", \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"7\\\ \", \\\"+\\\", RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"3\\\", \ RowBox[{\\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{FractionBox[\\\"1\\\", \ \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"7\\\", \\\"+\\\", \ RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \ \\\"]\\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"3\\\", RowBox[{\\\"4\\\", \\\" \ \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"7\\\", \\\"-\\\", \ RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \ \\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{FractionBox[RowBox[{RowBox[{\\\"-\\\", \\\"3\\\"}], \\\"+\\\", \ SqrtBox[\\\"5\\\"]}], RowBox[{\\\"8\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]], \\\ \",\\\", RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"7\\\", \\\"+\\\", RowBox[{\\\"3\\\", \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", \ FractionBox[\\\"3\\\", RowBox[{\\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]]}], \ \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{RowBox[{\\\"-\\\", \ FractionBox[\\\"1\\\", \\\"8\\\"]}], \\\" \\\", SqrtBox[RowBox[{\\\"7\\\", \\\ \"+\\\", RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"3\\\", RowBox[{\\\"4\\\", \\\" \ \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"7\\\", \\\"-\\\", \ RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \ \\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"15\\\", \\\"-\\\", RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\ \\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"1\\\", \ RowBox[{\\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\ \", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\ \\\"1\\\", \\\"4\\\"]}], \\\" \\\", SqrtBox[RowBox[{\\\"3\\\", \\\"-\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], \\\",\\\", \ FractionBox[SqrtBox[RowBox[{\\\"3\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}]], \ \\\"4\\\"], \\\",\\\", FractionBox[\\\"1\\\", RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"2\\\"]}]]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{FractionBox[SqrtBox[RowBox[{\\\"3\\\", \\\"+\\\", \ SqrtBox[\\\"5\\\"]}]], \\\"4\\\"], \\\",\\\", FractionBox[\\\"1\\\", RowBox[{\ \\\"2\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]], \\\",\\\", RowBox[{RowBox[{\\\"-\ \\\", FractionBox[\\\"1\\\", \\\"4\\\"]}], \\\" \\\", SqrtBox[RowBox[{\\\"3\\\ \", \\\"-\\\", RowBox[{\\\"Power\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \ \\\"+\\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}], \\\",\ \\\", RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"15\\\", \\\"-\\\", RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\ \\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ \[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", FractionBox[\\\"1\\\", \ RowBox[{\\\"4\\\", \\\" \\\", SqrtBox[\\\"2\\\"]}]]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"110\\\", \\\"\[RightSkeleton]\ \\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"66\\\", \\\",\\\", \\\"120\\\", \ \\\",\\\", \\\"28\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{\\\"120\\\", \\\",\\\", \\\"66\\\", \\\",\\\", \\\"51\\\"}], \ \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"120\\\", \\\",\\\", \\\ \"22\\\", \\\",\\\", \\\"28\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{\\\"22\\\", \\\",\\\", \\\"120\\\", \\\",\\\", \\\"51\\\"}], \ \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"66\\\", \\\",\\\", \ \\\"1\\\", \\\",\\\", \\\"51\\\"}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"66\\\", \\\",\\\", \ \\\"28\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \ \\\",\\\", \\\"22\\\", \\\",\\\", \\\"51\\\"}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"22\\\", \\\",\\\", \\\"1\\\", \\\",\\\", \ \\\"28\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"82\\\", \ \\\",\\\", \\\"119\\\", \\\",\\\", \\\"67\\\"}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"119\\\", \\\",\\\", \\\"82\\\", \\\",\\\", \ \\\"21\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"150\\\", \\\"\[RightSkeleton]\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]\\) is \ not a valid Insphere specification.\"", 2, 58, 3, 21663204854482869440, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[58]:=",ExpressionUUID->"6805A9D5-0873-4823-B0AA-E7DFF2BA6A63"], Cell[BoxData[ RowBox[{"Insphere", "[", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["120", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.6, 0.3, 0.85], EdgeForm[ Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30]], PolyhedronBox[ NCache[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJyVla1LRFEQxR9qFIXNFoNFxCKbNtxkEMTgYhYUTcI2v4rB/0JkEavJJAg6 yUVwxSYaFhfRYrW8sMEF39zwGw5iWJZ739z5OHPOzPRGa3VrpCiK/eFvdPjr No6222edVJ/qTBzsfaS56827hcWnVN0b728H9zezS5fp+GT567zdS687b93d sh/Obme//ybsjfaIn/N6OaxP1soHOx2MXzVX3qvvz4lntxP1+NmE/+CvOpvw b8J/wI91Oh5+Li++y7XHz+xnrNdcn5/pZ9z8nnb0x/eqr8CBeRr9eh9FniF+ ZWciTxN5Es/MD/KI/tyOffJ+CpyZR65D4M/6M06s0+vne/plfYInfm/EAWfi YMRB9NGQH3Fgfw39JQ4mcGCckDdwIA/J59w/9D3rGPVnHUP/Qcf/1SVwCrh7 P6gLr5fv/Tvfu1/B8+CX8YifmJ9qDlOnxN8E/mGOYu4E3Su9Kl0K/AN+7Cfw J0+ZN/FnnzO/Bf6Bv2K/qD2l+M95EuYSdU99up3itdBX2BMen3X/wfOwD/y7 2KeKh5wnYS4RB6UTsacUz8NcBg4hvuCbnI9iX4d43CPcD0o3gg/kZ65b6DrM a89L7TGx19S+UP0KcxZ5hjrE3gx6U7j7/Q/z5GTB "]], CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["120", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["160", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (15 - 5 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2]), Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 8] (7 - 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2])}, { Rational[-3, 4] 2^Rational[-1, 2], (Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2], Rational[1, 8] (23 - 3 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (23 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, {(Rational[1, 8] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2]), Rational[-1, 8] (7 + 3 5^Rational[1, 2])^Rational[1, 2], Rational[-3, 4] 2^Rational[-1, 2]}, { Rational[1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}, { Rational[-1, 4] 2^Rational[-1, 2], Rational[-1, 8] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] 2^Rational[-1, 2]) (-5 + 5^Rational[1, 2])}}, CompressedData[" 1:eJwNw4PW8gAAANDasm0t27bNZdcyl+tx/kf9v3vOhRAURgAMBvPvL/g3/ZP9 0p6fQCb4edJYDzYtwwo8AqwM/ma+MP/LzDC/fBjgA3AGYPKZQOZTjBQ/miIY AYuaT0gT+kRCoAYMRRI39S0RvRXUhVs0gYviEmpcIVrAqdGgPYhWgng7PlhB S5USai/hK/iSvXGoHhq2Q6AaONgaBBuhUSUEbAFCdZ9n5PftPJFBzLf3yXZy z0gS28QkY3W9XFfkq/KivJJXJDJpdSEpyUrSZeqf+acUP3VG9VOmTUpzOmtS KdTmbPCmvwevt5lufr8GtBdtQKeZX2YaXbe8L3WsJXJHliydiqXS3VUIC1Hd pU/jU2p4noynp0HKNrClRvbJcGIbHXPO3DGedznd+dihH+sdHH133NVz1pPR ZM2dKEaKCXdt5VrXI6uCq7COeGf3mSc/P9yPs5wnkot4btFD/hC5nT1hz3ns 9YX93tFpOVqcQkv/2LcItZ1tRyvuLLaLjljrEru0W9dCvHBthzvJbrjZmSSm 3WYIbaChBDJtTJDE5215fbG6r+Wrx8remLfcqpdj5Xorl61lc6l4rpaLp8LZ VDZci4dT4XjtP4Zgc7w= "]], Editable->False, SelectWithContents->True, Selectable->False], "]"}]], "Output", CellLabel->"Out[58]=",ExpressionUUID->"65E7BF02-5D1F-4496-90E2-D270399A1772"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"sphere", "=", RowBox[{"MyInsphere", "[", RowBox[{"p", "//", "N"}], "]"}]}]], "Input", CellLabel->"In[40]:=",ExpressionUUID->"C02E9E58-AF62-494F-9AF4-F8871EAD4F2F"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel->"Out[40]=",ExpressionUUID->"ECD61C07-CA49-4D2B-8920-B10128A9C94D"] }, Open ]], Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".5", "]"}], ",", "p"}], "}"}], ",", RowBox[{"{", RowBox[{"Red", ",", "sphere"}], "}"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input",ExpressionUUID->\ "C78E8B1E-3FD3-41DD-AEBA-F938404F20EB"] }, Closed]], Cell[CellGroupData[{ Cell["MeanCylindricalRadius", "Subsection",ExpressionUUID->"E9132D28-363E-48E6-AF40-AD0749AF83EA"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[61]:=",ExpressionUUID->"F44D9D78-2446-4B8A-BCFF-76FDAECD001E"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[61]=",ExpressionUUID->"15819D68-A07C-43FE-B5D7-461D7547843F"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MeanSquareCylindricalRadius", "Subsection",ExpressionUUID->"8CFB7EDB-9413-4184-ABDD-1FE7D988C13D"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[62]:=",ExpressionUUID->"F93405C5-D2FF-4E07-840A-EAE5F3B25274"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[62]=",ExpressionUUID->"F590AEC0-FFC2-457E-B5DD-D5DEEFA20DDF"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MeanSphericalRadius", "Subsection",ExpressionUUID->"A1E809B1-85C8-4D3A-A99B-846D9C4451C7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[63]:=",ExpressionUUID->"F6A12AA9-3F7F-4CFC-8602-C6854CACB631"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[63]=",ExpressionUUID->"F8E14E23-865C-4103-88F4-A345B2B4BE95"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MeanSquareSphericalRadius", "Subsection",ExpressionUUID->"683EB3CE-1B10-4A44-A499-64770AD365B3"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",\ CellLabel->"In[64]:=",ExpressionUUID->"A7896681-01F2-4AB5-801A-0790346C5580"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[64]=",ExpressionUUID->"966D025E-B109-42F9-AB5B-7030CCA331AD"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Midsphere", "Subsection",ExpressionUUID->"ED2267E1-DB90-4FD7-A4D9-94F4358D8FF4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"sphere", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"605A728F-FA74-4601-A2BF-E333781081E7"], Cell[BoxData[ RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", FractionBox["1", "2"]}], "]"}]], "Output", CellLabel->"Out[4]=",ExpressionUUID->"9D867F3D-11C8-4B42-822E-304A6DBE5E30"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Midsphere", "[", RowBox[{"p", "//", "N"}], "]"}]], "Input", CellLabel->"In[26]:=",ExpressionUUID->"8A69050E-AB30-4D25-A0A4-4110D494A200"], Cell[BoxData[ RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", "0.5000000000000002`"}], "]"}]], "Output", CellLabel->"Out[26]=",ExpressionUUID->"673971D8-49DF-479E-953B-06E5D5E281A0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"sphere", "=", RowBox[{"Midsphere", "[", "p", "]"}]}], ")"}], "//", "Timing"}]], "Input",\ CellLabel->"In[66]:=",ExpressionUUID->"FA0EDF5D-F01D-4344-9BB9-A22CB6E20B63"], Cell[BoxData["$Aborted"], "Output", CellLabel->"Out[66]=",ExpressionUUID->"7D6D86ED-0374-4AA5-867B-5923097DC3F6"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"sphere", "=", RowBox[{"Midsphere", "[", RowBox[{"p", ",", RowBox[{"Method", "->", "\"\\""}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"A0DF69C7-BFFB-4D24-B7E6-\ 128285A844CE"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".1", "]"}], ",", "Yellow", ",", "p"}], "}"}], ",", RowBox[{"{", RowBox[{"Red", ",", "sphere"}], "}"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel->"In[5]:=",ExpressionUUID->"E24B02FB-3DC3-469C-A921-E4536CEFEE1D"], Cell[BoxData[ Graphics3DBox[{ {RGBColor[1, 1, 0], Opacity[0.1], PolyhedronBox[ NCache[{{Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { 0, Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0, Root[ 1 - 6 #^2 + 4 #^4& , 2, 0]}, { Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), (Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2]}, {( Rational[-1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (-3 + 5^Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 2, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) (-1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2], ( Rational[-1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 2] 2^Rational[-1, 2]) (1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), ( Rational[1, 4] 2^Rational[-1, 2]) (3 - 5^ Rational[1, 2] + (2 (-1 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, {( Rational[1, 2] 2^Rational[-1, 2]) ( 1 + (-2 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 8] (2^Rational[1, 2] (-3 + 5^Rational[1, 2]) - 2 (-1 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2] (1 + Root[-1 + #^2 + #^4& , 1, 0])^Rational[1, 2]}, { Root[1 - 6 #^2 + 4 #^4& , 2, 0], Rational[-1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (3 - 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 + 5^Rational[1, 2])^Rational[1, 2], 0}}, {{-0.43701602444882104`, 0.5558929702514211, 0}, {-0.52533376545453, -0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, {-0.18177301573201746`, -0.14290110675684736`, \ -0.6682348722113773}, {-0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {0.52533376545453, 0.4129918634945738, -0.2312188477625563}, {0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, {-0.18177301573201746`, \ -0.14290110675684736`, 0.6682348722113773}, {-0.2312188477625563, 0.52533376545453, -0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, 0.4129918634945738}, {-0.4129918634945738, 0.2312188477625563, 0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, -0.52533376545453}, { 0.43701602444882104`, -0.5558929702514211, 0}, {0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, {-0.14290110675684736`, \ -0.6682348722113773, 0.18177301573201746`}, { 0.6682348722113773, -0.18177301573201746`, -0.14290110675684736`}, \ {-0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.2312188477625563, 0.52533376545453, 0.4129918634945738}, { 0.2312188477625563, -0.52533376545453, -0.4129918634945738}, \ {-0.4129918634945738, 0.2312188477625563, -0.52533376545453}, { 0.4129918634945738, -0.2312188477625563, 0.52533376545453}, { 0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, {-0.14290110675684736`, -0.6682348722113773, \ -0.18177301573201746`}, {0.6682348722113773, -0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, { 0, -0.43701602444882104`, -0.5558929702514211}, { 0, 0.43701602444882104`, 0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, -0.14290110675684736`}, {-0.6682348722113773, \ -0.18177301573201746`, 0.14290110675684736`}, {-0.5558929702514211, 0, -0.43701602444882104`}, { 0.5558929702514211, 0, 0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, 0.4129918634945738}, {-0.2312188477625563, -0.52533376545453, \ -0.4129918634945738}, {0, -0.43701602444882104`, 0.5558929702514211}, { 0, 0.43701602444882104`, -0.5558929702514211}, {0.6682348722113773, 0.18177301573201746`, 0.14290110675684736`}, {-0.6682348722113773, -0.18177301573201746`, \ -0.14290110675684736`}, {-0.5558929702514211, 0, 0.43701602444882104`}, { 0.5558929702514211, 0, -0.43701602444882104`}, {0.2312188477625563, 0.52533376545453, -0.4129918634945738}, {-0.2312188477625563, \ -0.52533376545453, 0.4129918634945738}, {-0.18177301573201746`, 0.14290110675684736`, -0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, 0.6682348722113773}, {-0.14290110675684736`, 0.6682348722113773, 0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, -0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, -0.52533376545453}, {-0.4129918634945738, \ -0.2312188477625563, 0.52533376545453}, {-0.52533376545453, 0.4129918634945738, -0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, 0.2312188477625563}, {-0.18177301573201746`, 0.14290110675684736`, 0.6682348722113773}, { 0.18177301573201746`, -0.14290110675684736`, -0.6682348722113773}, \ {-0.14290110675684736`, 0.6682348722113773, -0.18177301573201746`}, { 0.14290110675684736`, -0.6682348722113773, 0.18177301573201746`}, { 0.4129918634945738, 0.2312188477625563, 0.52533376545453}, {-0.4129918634945738, -0.2312188477625563, \ -0.52533376545453}, {-0.52533376545453, 0.4129918634945738, 0.2312188477625563}, { 0.52533376545453, -0.4129918634945738, -0.2312188477625563}, \ {-0.43701602444882104`, -0.5558929702514211, 0}, { 0.43701602444882104`, 0.5558929702514211, 0}}], CompressedData[" 1:eJwNw4VRxEAAAMBPLu7udnF3T6qgBBqgJUqFnVn4/fP1jX4+n9//4D+CkQhO IBSK0ABDCEwgMVHBJBlHSFwgcFHGJYVCACWglGlTlkMjKC0A2nRoy2Y4wPAo 4waM57McyvKAdX3WCzgG5VjAiSEnRTwDeBblxYiXQgEjBJwUKCDQqIjJIq6I XCTyoYQpEi5LXCjxkaoTqkGqSaamuaaTmkFoSa6lma6SukboZqlbhaEShkYa ZmFYpUk5Jm2bemEapUXZFu1YemkZhcv4Lhu4le3WjscEHut7lePVNkxkmCpw mOA4x4kSp3I8zPE4JWqeaFkClSSWUzVLtTyFchorletUnl0dd3VetWvXnlMf V33eTec3fdA8V/PebRe0vd8+d/teXRN0rd8NYTdGfeP3bdAPUT+GA5yHeBq6 aOjDEU5jPI9dOPbRsuXLni3PvLzTumXrnq/PtL7ztmTbmm9HuZ3FvuT7mu1H sZ/lUV1HfR9bcezlWd1nfZ1bee7F09xPez3L9Kzz21xve7/L/K7THyjCO3w= "]]}, {RGBColor[1, 0, 0], SphereBox[{0, 0, 0}, NCache[Rational[1, 2], 0.5]]}}, Boxed->False, ImageSize->{360., 360.}, ImageSizeRaw->Automatic, ViewAngle->0.30119507988000055`, ViewPoint->{-0.860088563322277, -2.0503910870934305`, 2.5507144201595846`}, ViewVertical->{-0.5150931933915591, 0.2576271348845668, 0.8175006186498304}]], "Output", CellLabel->"Out[5]=",ExpressionUUID->"6EFEFB4C-5DE8-4BDE-B034-0A99932E27BE"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Net", "Subsection",ExpressionUUID->"2835E990-2A72-4226-B2E6-9A1C13872A6F"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[70]:=",ExpressionUUID->"716BFF5A-7863-46E6-B7EC-18844C990B7D"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[70]=",ExpressionUUID->"054DFDEA-E507-4398-9920-1C75EEB3A53E"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["NotationRules", "Subsection",ExpressionUUID->"609A9AC1-CD64-42C6-A004-D112CF8BBB16"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[71]:=",ExpressionUUID->"C2181EA0-B46B-4C69-BF8D-DDD7C9B15132"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel->"Out[71]=",ExpressionUUID->"D1D37E2F-A24B-4FD0-A0F2-0980FF8FA21A"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Orientations", "Subsection",ExpressionUUID->"C5426C77-BDF5-4AD6-94FE-5E4603285F28"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[72]:=",ExpressionUUID->"8BC42741-A596-4D07-8C24-CBD8F2719617"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[72]=",ExpressionUUID->"38BA6E80-2C8C-4EF6-A948-ABCA0CAB258B"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[73]:=",ExpressionUUID->"B5FC631C-3703-440C-9D67-B8A8A7681F1E"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[73]=",ExpressionUUID->"AE7560F1-A787-4E1A-B4B6-652222B2AC9C"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"{", RowBox[{"pname", ",", "#"}], "}"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], "&"}], "/@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\